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On the dynamic description of the rock failure process 

W. K. NOWACKI (WARSZAWA) 

AN EXAMPLE of a uni-axial state of stress is used to present an attempt of a dynamic descriptioll' 
of failure of rocks, concretes and similar materials. A model is proposed of an elastic/viscoplastic 
body with softening in the range of inelastic deformations. The material is assumed to behave 
as a viscoplastic body of the range of stresses exceeding the elastic limit. During unloading the 
process follows the statical unloading curve and disturbances are propagated at infinite velo-. 
cities. 

Na przykladzie jednoosiowego stanu napre(zenia przedstawiono probe( opisu dynamicznego· 
zniszczenia skal, beton6w itp. Zaproponowano model ciala spre(:Zysto/lepkoplastycznego z osla
bieniem w strefie deformacji niespre(zystych. Przyje(to, ze w zakresie napre(zen przekraczaj~cych 
granic~ spre(zystosci material zachowuje siC( jak lepkoplastyczny. W odci~zeniu natomiast proces 
odbywa siC( wzdluz krzywej odci~zenia- zaburzenia rozprzestrzeniaj~ siC( nieskonczenie szybko. 

Ha npHMepe O.QHOOCHOro HanpH>KeHHOro COCTOHHHH npe,u;CTaBJieHa ITOllbiTI<a OITHCamm .D;H- · 

HaMHqeetrorO pa3pyrneHHH CI<aJI, 6eTOHOB H T. IT. IJpe,D;JIO>KeHa MO,D;eJib ynpyro-BH3l<OITJiaCTH-· 

"tleCI<Oro TeJia C OCJia6JieHHeM B 30He HeynpyrHX ,u;ecl>opMai_\HH. IJpHHHTO, "tiTO B HHTepBaJie

HanpH>KeHHH, npeBbilllaiOI..QHX npe,u;eJI ynpyrOCTH, MaTepHaJI Be,D;eTCH KaK BH3KOITJiaCTH"tle

CKHH. B pa3rpy3Ke me npol_\ecc npoxo,u;HT B.D;OJib craTuqeci<o:H KpHBo:H pa3rpy3KH- B03 MY--

I..QeHHH pacnpocTpaHHIOTCH C 6eCKOHetffiOH Cl<OpOCTblO. 

1. Introduction 

THE PAPER represents an attempt to describe the failure process of rocks subject to dynamic· 
compression in the case of one-dimensional stress states. A model is proposed to simulate· 
the behaviour of elasticjviscoplastic body with softening in the ran'ge of plastic deformation ... 
The paper deals only with dynamic compression processes which lead to the degradation. 
of the material. 

Let us assume the material exibits purely elastic properties in the range of stresses. 
below the elastic limit and behaves as a viscoplastic material above that limit. During 
unloading the process follows the statical unloading curve. In the process of elastic and 
viscoplastic straining, the behaviour of the material is described by a set of partial differen-
tial equations of the hyperbolic type so that the disturbances are propagated at finite · 
velocities; during unloading, however, the process is governed by parabolic equations . 
and the disturbances propagate at infinite speeds. 

Section 2 presents the proposed constitutive equations which describe fairly well the 
properties of rocks, concretes and similar materials. The remaining sections present the 
solution of the problem of wave propagation in a semi-infinite rod made of a material 
exhibiting the degradation phenomena during unloading. The paper terminates with a numer-
ical example which illustrates the theoretical considerations. 
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2. Model of the body with softening 

Let us assume the following properties of the body with softening (in a one-dimensional 
stress state): 

I) Within the ra~ge of stresses smaller than a certain limiting value CJ0 the material 
is elastic and its deformation is reversible. 

2) Under dynamic loading the material is capable of carrying stresses greater than CJ0
• 

3) A statical softening curve CJ5 t =/(c) is assumed (Fig. I) in the form of a monoto
nously decreasing function of strain: dffdc ~ 0 for c0 ~ c ~ c*- gradual degradation 

FIG. 1. Model of the material with softening. 

follows; consequently, with c ~ c* one obtains CJst = 0 what results in complete degrada-
tion of the medium. -.J 

4) In the range of strains greater than c the material exhibits viscous properties (at 
(] > (]st). 

5) For strains greater than c0 unloading follows the statical softening curve <Tst = f(c). 
The model proposed may be used to describe the total degradation only; in order 

to describe also a partial degradation of the material, one should assume the existence 
of a certain limiting value of strain c11 m below which elastic unloading would be possible. 

The constitutive equations for such a medium have the following form: 
in the range of elastic strains 

(2.1) . I . l" c = -- (] 10f 
Eo 

in the range of inelastic strains 

(2.2) e = ~o (T+y(4>[CJ-f( e)]) signCJ for e > e0 and CJ > f( c) 
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during unloading 

(2.3) C1-f(8) = 0 for 8 > c0 and e1 ~/(c) 

with the following notations: Eo- Young's modulus, y- viscosity constant, (J)[F]
nonlinear function of argument F = Cf- f(c) symbol <) denotes 

(2.4) 
if 

if 

F > 0, 

F~ 0. 

The form of function (J)[F] must be determined from the experiments performed in simple 
shear tests, under various strain rates. 

The physical equations (2.2) resemble the equations of elasticfviscoplastic media 
proposed by L. E. MALVERN [1] for viscoplastic behaviour of metals but, in our case, 
the function/(8) is the material softening curve. Under sudden loading of the body (i = oo) 
the material remains elastic. For constant strain rates the relation (2.2) represents the 
curves parallel to the statical material softening curve (Fig. 1). Degradation of the material 
at 8 > c0 proceeds along the statical curve CB. Such a model may be used to describe, 
with good accuracy, the dynamic behaviour of rocks. In Fig. 2 are presented the results 

FIG. 2. Compression curves for the volcanic tuff specimens at various strain rates. 

obtained by S. S. PENG and E. R. PooNIESK [2] for simple compression test of volcanic 
stuff specimens; this material exhibits considerable relaxation properties. 

On the basis of the extensive experimental literature of the problem of dynamic behav
iour of rocks (cf., e.g. [3, 4]), it may be stated that rocks exhibit considerable relaxation 
effects also in the range of elastic strains. The corresponding constitutive equation may be 
written in the form 

(2.5) i = g(e1, 8)a+('P(C1, c))signe1, 
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where the function g(a, e) represents the instantaneous response of the material, and 
P(a, e) is the retarded response connected with the rheological properties of the material. 

In considering the wave propagation phenomena, the analysis wilJ be confined to Eqs. 

(2.1) and (2.2). 

3. Wave propagation in a semi-infinite rod 

Let us present the solution of the problem of propagation of waves in a semi-infinite 

rod, the end x = 0 of the rod being subject to dynamic loading. 
The equation of motion and the small deformation relation have the form 

(3.1) 

Here v = oufot is the particle velocity of the medium. 
Assume the homogeneous initial conditions 

(3.2) a(x, 0) = v(x, 0) = e(x, 0) = 0 Vx > 0. 

and the boundary condition 

(3.3) a(O, t) = -p(t), Vt ~ 0, p(t) > 0, 
dp 
dt ~ 0. 

The system of Eqs. (3.1) together with the constitutive relations (2.1) or (2.2) leads 

to a set of differential equations of the hyperbolic type. Characteristics of this set of equa

tions are the straight lines 

(3.4) x = ± a0 t+const, x = const, 

where a0 = ~/Eolf! is the longitudinal wave speed in the rod. The wave propagation 

speeds in the elastic and viscoplastic strain ranges are identical. 
The following relations should be fulfilled along the characteristics (3.4): 

along the line x = ± a0 t + const 

(3.5) da ± eaodv + ea5($[F]) signadt = 0, 

along the line x = const 

(3.6) de- ~0 da-y($[F])signadt = 0. 

3.1. Solution at the strong discontinuity wave front x = a0 t 

Under the initial-boundary conditions assumed above, a strong discontinuity wave 

x = a0 t will be propagated in the rod. Let-.. us assume that p(O) > I a0 1. The medium in 
front of the wave x = a0 t is undisturbed. At the wave front the dynamic and kinematic 

compatibility conditions must be satisfied. For x = a0 t 

(3.7) I [a]l = - eaol [v]f, I [v]l = - aol [e]]. 
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where the symbol I [{]I denotes the jump off across the strong discontinuity wave front. 
In addition, a0 = v0 = eo = 0, the subscripts denoting the solutions in the corresponding 
regions of the phase plane (x, t), Fig. 3. 

VIII 

p(t} Po X 

Fro. 3. Graph of wave propagation in a rod at the phase plane (x, t). 

. 
The relation holding at the positive characteristic (3.5) and the compatibility relations 

(3. 7) yield the equation 

(3.8) 2da1 +eao ( <1+·1 -1( ;J]) signa1 dx ~ 0 for x ~ a0 t. 

After integration we obtain 

X 

(3.9) a 1 (x) = C- J P[~, a1 (~)]d~, -
0 

where 

(3.10) 'l'[x, a, (x)] ~ } ea~ ( <P [ a 1 (x)-f { a~~x))]) sign a 1 . 

From the boundary condition (3.3) it follows that 

(3.11) C = -p(O). 

The integrand of the relation (3.10) is a bounded function and satisfies the Lipschitz 
condition, hence the consecutive approximation method is convergent. 

From the estimates we obtain 

(3.12) 
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where M- upper bound of the integrand, R - value of the derivc,t_tive for the parameters 
corresponding to the upper bound of the integrand and h denotes the smaller number 
of the pair 

I 
Po-~ ·· 

2M · 

The value of xK is found from the condition a 1 (xK) = a0. The velocity and strain at the 
wave x = a0 t is then found from the conditions (3. 7). 

Degradation of the material in the interval 0 :::;; x :::;; xK will take place if the stress 
decreases with time (see the boundary condition (3.3)). 

For x > xK the strong discontinuity wave is elastic, and at its front we obtain 

(3.13) v 1 (x) = 1 0 
---a.' 

eao 

3.2. Solution in Region I (viscoplastic strains) 

Once the solution at the wave front x = a0 t is known under the given boundary condi
tion (3.3) expressed in terms of stresses (the boundary condition may also be of the kine
matic type), the solution in Region I may be found, for instance, by the method of charac
teristics (see, e.g., [5]). 

Region I is bounded from above by the unloading wave. It constitutes the locus of such 
points of the phase plane for which, at a fixed cross-section x(O :::;; x :::;; xK), the following 
conditions is fulfilled: 

(3.14) 

At the end x = 0 of the rod Eq. (3.6) may be integrated (along the vertical characteristic) 
since the function a 1(t) = - p(t) is known from the boundary condition (3.3). We obtain 

t 

(3.15) c1(0, t) = - ~ p(t)-y J <1>lp(r)-f(s1(0, r))] dr+C1 

0 0 

the integration constant being determined from the initial condition a 1 (0, 0) = 
1 

= Eo t: 1(0, 0) = -p(O), 

(3.16) 

Equation (3.15) may be solved, like Eq. (3.9), by the method of iterations. 
Point P (Fig. 3), from which the unloading wave will start to propagate, is determined 

from the condition 

(3.17) 

The assumed model of the body suggests that the stress at P is smaller than I 0'
0 I, 

(3.18) 
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The unloading wave (its equation will be denoted by x = q;(t)) connects the points P' 

and K of the phase plane. Stress at its front is a function of x and varies between p(tp) < 
< la0 1 (for x = 0) and Ia I (for x = xK). 

3.3. Determination of the unloading wave x = qJ(t) 

The equation x = e(t) of the wave of unloading will be determined from the solution 
in Region I, account being taken of the solutions in the unloading regions (II and III} 
and the elastic region (IV). 

Let us assume that the unloading process is quasi-static and follows the unloading: 
curve CB (Fig. I). During the inelastic unloading the following set ofequations is satisfied:. 

(3.19) a-f( e) = 0, a. x = 0, e. t = v. x, 

The inertial term of Eq. (3.1)1 has been disregarded here. The set of equations (3.19) 
is of the parabolic type and the disturbances are propagated at infinite velocities. 

From Eq. (3.19h it follows that 

(3.20) a(x, t) = C(t) Vt ~ q;- 1 (x). 

Stresses in the unloading region II are functions of time only, so that 

(3.21) a2(t) = -p(t) V 0::::; x::::; xR, t ~ aq;- 1(x). 

The unloading wave x = e(t) is assumed to be a weak discontinuity wave; at its front 
the stresses and velocities must be continuous, 

(3.22) <1 dq;(t), t] = <12 [<p(t), t], V1 [<p(t), t] = V 2 [<p(t), t] \;/ 0 ::::; X ::::; XR 

and 

(3.23) <11 [q;(t), t] = a 3 [q;(t), t], 

The initial speed of the unloading wave must be positive, 

(3.24) q;'(O) > 0. 

In the opposite case, that is if q;' (0) ::::; 0, the wave could be determined from the solution 
in Region I . It may be proved that the wave would then be a strong discontinuity wave, 
and at its front the kinematic compatibility condition 

(3.25) I [v]l = q;'(t) I [s] J. 

would not be satisfied. 
In Region II and III, as it follows from Egs. (3.19)t, 2 the strains are functions of time 

only. 

(3.26) e(.X, t) = J- 1 [a(t)]. 

Integration of Eq. (3.19h with respect to x yields the formulae for the particle velocities 
in the unloading regions, 

(3.27) 
de 

v(x, t) = ----;Ji x+ C(t), 

or 

(3.28) v(x, t) = df-~~a(t)] x+ C(t). 
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The integration constant is determined at the unloading wave front x = e(t), 

(3.29) C(t) = vd<p(t), t]- df-
1J;(t)] <p(t). 

In Region I, inside the triangle OMP (Fig. 3), Picard's problem is now solved. In the 
remaining part of the region, Darboux's problem must be solved; it should be noted that 
for 0 ~ x ~ xR, in view of the infinite velocity of load propagation in the unloading zone 
(parabolic equation), one may observe the effect of the boundary x = 0, while for xR ~ 
~ x ~ xK- the effect of the other boundary x = xK. The solution is constructed together 
with the determination of the unloading wave. For 0 ~ x ~ xR, at an arbitrary point 
S of the unloading :X = <p(t), in view of Eqs. (3.21) and (3.22), we obtain 

(3.30) ad<p(ts), ls] = <T2[<p(ts), ls] = -p(ts). 

From the condition (3.5) 1 satisfied at the negative characteristic and the condition (3.6) 
fulfilled at the vertical characteristic, we obtain ad(t5 ), t8 ] and sd<p(t8 ), ts]. The position 
of the wave is found from the condition a 1 [<p(ts), t5 ] = f[s1 (<p(t~), t5)]. Let us now 'determine 
v 1 [<p(t5 ), t5 ]. The particle velocity in Region II is found on the basis of Eqs. (3.28) and 
(3.29). 

(3.31) 
df- 1 [-p(t}] 

v2(x, t) = dt · (x- <p(t) )+v1 [<p(t), t]. 

For xR ~ x ~ xK the solution in Region I and the wave x = <p(t) are determined from the 
relations in Regions III and IV. At an arbitraty point T of the wave x = <p(t) (Region 1), 
the relations between ad<p(tT), tT], vd<p(tT), tT] and sd<p(tT), tT] are obtained. At the 
segment TT' a 3(tT) = a 3(tT') = a4(xK, tT') = ad<p(tT), tTl· From the conditions satisfied 
along the negative characteristic in Region IV and on the basis of Eq. (3.23h, we obtain 
a4(xK, tT') = -ea0v4(xK, tT) = -ea0 v3(xK, tT-). Determinationofthe integration constant 
C(t) in Eq. (3.28) for x = xK yields 

(3.32) ( ) _ dj-l[ 0'1 (<p(tT), fT )] ( · ) 1 [ ( ) ] 
V 3 X, t T - dt X- X K - - - 0' 1 <p f T , t T . 

eao 
For x = <p(tT) we obtain the formula 

(3.33) V [ m(t ) f ] = df-
1

l0'1 (<p(fT), (T )] ( ( ) ) } [ ( ) ] 
1 r T ' T dt <p (T -XK - -- 0'1 ({< fT , fT , 

eao 

which enables the determination of x = <p(tT) with the additional condition 

0'1 [<p{tT), tT] = /[£1 (<p(tT), tT)] · 

Let us now present the solutions in the remaining regions of the phase plane (Fig. 3). 

3.4. Regions V and VI 

Solutions in both regions are derived simultaneously, the conditions of continuity of 
velocities and stresses at the interface being taken into account, 

O's(XK, t) = 0'6(XK, f)= -p(t) 

(3.34) 
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Here the relation dO' 6 + ea0 dv6 = 0 holding true at the negative characteristic in Region 
VI (elastic) has been used. The stress and strain in Region V are functions of the time 
variable only, 

(3.35) O's(x, t) = - p(t), e5 (x, t) = /- 1
[-p(t)], 

From Eq. (3.27) it follows that in Region V 

(3.36) 

the integration constant being determined at the boundary x = xK. For t = t0 we obtain 
O's(x, to) = 0, e5 (x, t0 ) = e*. 

From the conditions satisfied at the positive characteristics and under the boundary 
condition (3.34) 1 we obtain in Region VI 

(3.37) 

1 ( X-XK) e6 (x, t) = --p t---- . 
Eo ao 

3.5. Regions VII and VTII 

In view of the boundary condition p(t) = 0 Vt > t0 

(3.38) 
0'7(x, t) = 0, e1 (x, t) = 0, v 7 (x, t) = 0, 

O'g(X, t) = 0, Eg(X, t)-+ 00, Vg(X, t) = 0. 

It is seen from this solution that the material in the segment 0 ~ x ~ xK is degradated, 
while for x ~ xK an elastic wave will be propagated, carrying the stresses 

(3.39) 

4. Example 

for 

for 

tK ~ t ~ fR, 

t ~ fR• 

Let us assume the simplified model of the medium (Fig. 4) characterized by the linear 
softening function. The following dimensionless variables are introduced: 

(4.1) 
X 

X=/;' 

3 Arch. Mech. Stos. nr 1-2/86 

p 
P=

O'o , 
V=~ 

C1o ' 
A = C1o 

Eo . 
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FIG. 4. Model of a material with linear softening function. 

The boundary condition for X= 0 is assumed in the form 

(4.2) P(T) =Po ( 1- ~) for 0.;;; T.;;; T0 , P(T) = 0 for T ~ T0 , 

where P 0 > I, and the parameters take t~e following numerical values: 

10 = Im, P0 = 2, A = 5 · 10-4, y = I, 2, ... , 15 [s - 1], 

C10 = 2,45 · 104 Pa, e* = l0e0 , t0 = I0- 3 s. 
(4.3) 

sA 
t=10 ~=5 ~=4 X=3 ~=2 

0 1/2 1 x· 
FIG. 5. Stress at the strong discontinuity wave X= T, (y = 1, 2, ... , 15 [s- 1]). 

Figure 5 presents the variation of stress at the strong discontinuity wave front x = a0 t 
calculated from Eq. (3.9) under the bout:tdary condition P(O) = 2. The stress decreases 
with increasing V to reach the elastic limit value = I ; for instance, at y = 2 the elastic 
limit is reached at point K. In the interval 0 ~ X~ XK (withy = 2) the medium is degra
dated. 
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. Figure 6 presents the variation of strain at the boundary X = 0 of the rod as a function 
of time for three values of the viscosity coefficient y 1 = 2, 3, 4 [s- 1

] under the given boun
dary condition (4.2). T~i> denotes the time instant at which the unloading wave will start 
to propagate from the boundary of the rod. For times greater than T~i> the strain increases 
linearly (due to the linear softening function assumed) to reach the value e*. At time T0 

complete degradation of the material at the boundary takes place. 

T 

3 4 5 E·10-4 

FIG. 6. Time-dependent strain at the boundary of the rod, under the given boundary condition S(O, T), 
(y = 2, 3, 4, [s- 1]). 

Figure 7 presents the variation of stresses and strains in time at several cross-sections 
of the rod X<i>, i = 0, ... , 5. In the interval 0 ~ X~ X< 3> = XK the material is subject 
to complete degradation, and the strains increase to infinity. For X~ XK an elastic wave 
is propagated along the rod, and at its front the stress equals 0'0 and the strain is equal 
to e0 • 

5. Conclusion 

The solution presented in the paper applies only to the case of wave propagation 
iQ a semi-infinite rod. It would be interesting to tacke the problem of a finite rod and 
waves reflecting from its free or fixed ends; of considerable interest ·would also· be the 
experimental determination (at uniaxial stress state) of the length of the rock material 
degradation zone and comparison of the results with those derived in this paper. Such 
experiments may easily be performed, for instance by means of the Hopkinson bar system. 

3* 
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Flo. 7. Variation of a) stress and b) strain as a function of time at consecutive cross-sections of the rod. 
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