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Electro-magneto-thermo-elasticity of extrinsic semiconductors 
Classical irreversible thermodynamic approach 

B. MAR USZEWSKI (POZNAN) 

THE PAPER aims at investigating, in the irreversible thermodynamic way, an extrinsic thermo
elastic semiconductor interacting with an electromagnetic field. Thanks to the above considera
tions, it is possible to describe a vast majority of nonequilibrium processes occurring inside the 
semiconductor. 

Praca dotyczy opisu sprz~zonych oddzialywan mi~dzy polami spr~zystym, termicznym, dyfuzji 
nosnik6w ladunku i elektromagnetycznym w niesamoistnym p61przewodniku, na podstawie 
klasycznej termodynamiki proces6w nier6wnowagowych. Uwzgl~dniaj~c powyzsze rozwa:lania, 
mozliwy staje si~ opis wi~kszosci nier6wnowagowych zjawisk, jakie mog~ zachodzic w osrodku 
p61przewod~cym. 

Pa6oTa I<acaeTCH onHcaHHH conpH>KeHHbiX B3aHMo~eH:craiDi: Me>K~Y ynpyrHM, TepMHtleCI<HM, 
~HCP<l>Y3HH HOCHTeJieH 3apH~a H :mei<TpoMarHHTHbiM llOJIHMH B Heco6CTBeHHbiM nonynpo
BO~HHI<e, onHpaHcb Ha I<JiaccHqeci<yro TepMo~HHaMHI<Y HepaBHoBeCHbiX npo~eccoa. Ha ocHo
ae BbiiiieynoMHHYTbiX paccy>K~eHHH CTaHOBHTCH B03 MO>I<HbiM OllHCaHHe 6oJibiiiHHCTBa He
paBHOBeCHbiX HBJieH:ffii:, I<ai<He MOryT HMeTb MeCTO B llOJiynpOBO~H~eH cpe~e. 

Introduction , 

TECHNOLOGICAL progress in the last decades is visible mainly in semiconductor physics 
and technology. Basic and applied investigations developed parallelly allowing to discover 
new and unexpected possibilities of technical applications. 

In a way, a semiconductor can be considered as an insulator. At low temperature the 
valency band of a pure semiconducting material is completely filled by electrons. Since 
neither the completely full band nor obviously the empty band allow to carry any charges 
over, the conductivity of a medium is equal to zero. The difference between a metal and 
a semiconductor is of a qualitative kind: in a semiconductor there is an energetic break 
between the valency band and the conduction band; in a metal there isn't one; the 
bands cross each other. However, between a semiconductor and an insulator is only 
a quantitative difference which is connected with the width of the energetic break. In the 
semiconductor that break is small and a great number of electrons pass to the conduction 
band by thermal forcing at temperatures below melting point; in the insulator that break 
is greater than in the semiconductor and the number of thermally-excited electrons is so 
small that one can omit it. 

However, charge carriers do not have to be excited necessarily up the forbidden band 
to the conductivity band (like in intrinsic semiconductors). Some impurities dissolved 
inside a mother substance introduce such energetic levels which are situated within the 
energetic break (extrinsic semiconductor). There are donor impurities (n-type) and acceptor 
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(p-type) according to whether at low temperatures near absolute zero an impurity level 
includes an electron or is deprived of it (includes a hole). If, for instance, that level 
includes the electron, its excitation into the conductivity band is easier than excitation 
of the valency electron because the donor level lies nearer to the bottom of the conductivity 
band. The ability of a mat~rial to be a semiconductor is determined by the possibility 
of solving of response impurities. 

The present paper is devoted to the irreve1 sible thermodynamic description of nonequi
librium phenomena in semiconductors. As one knows, each phenomenon which can be 
physically observed is always connected with deviation of the system from equilibrium 
state as, for instance: electric current flow, thermoelectric power generation, heat flow, 
thermogalvanomagnetic, piezoelectric, piezomagnetic and thermoelastic phenomena, 
diffusion, and the like. The most important nonequilibrium processes in semiconductors 
are such which are connected with deviations of charge earlier concentrations from equili
brium values. It is a specific feature of a semiconductor that one can change the values 
of the above concentrations very strongly (contrary to metals). Moreover, such processes 
~r~ usua1ly sensitive in the presence of every kind of defects in semiconducting crystals 
(impurities, for instance) and th~ jnftuence of mechanical and nonmechanical fields (electro
magnetic or thermal). 

A part of the above mentioned problems in deformable semiconductors has been 
considered by many authors. The most complete description of the above processes was 
made by H. D. DE LoRENZI and H. F. TIERSTEN (1], M. G. ANCONA and H. F. TIERSTEN 
[2], [3], H. F. TIERSTEN [4] (ibidem a comprehensive bibliography list of subject matter 
references), M. G. ANCONA [5] and B. MARUSZEWSKI [6, 7]. However, none of the above 
mentioned Ieferences includes either the complex description of reciprocal interactions 
of the mentioned physical fields or the complete description of the mentioned none
quilibrium processes in extrinsic semiconductors. The aim of this paper is to fill this 
gap. 

Let us consider an elastic, polarizable, magnetizable, extrinsic, homogeneous and 
isotropic semiconductor. The choice of the medium is due to the possibility of simultaneous 
investigations of correlations of the elastic, temperature, electromagnetic and charge 
carrier diffusion fields in it as well as to the fact that such a material collects properties 
of dielectrics, magnetics, electrics, conductors and semiconductors. Distributions of the 
above fields, i.e. ui- elastic displacements, Ei- electric field intensity, Bi- magnetic 
induction, n- negative charge concentration (electron mass density), p- positive charge 
concentration (hole mass density), T- temperature, can be found as solutions of initial
boundary-value problems which are founded on field equations set up from the universal 
laws of mechanics and thermodynamics (balances), electrodynamics and depend on a kind 
of medium constitutive relations. 

1. Balances of mass, momentum and energy 

We assume the monophase and unary medium of mass density (!. Mass of the charge 
carriers is omitted in comparison to mass of atoms which build our medium and we do not 
take . account of impurities diffusion both charged and neutral because the relaxation 
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time of that process is uncomparably longer than relaxation times of the charge diffusion 
and relaxation in their drift forced by applied fields, (conductivity). Moreover, we admit 
that amplitudes of applied fields will not make the whole energy of impurity greater than 
its activation energy during mass diffusion processes. For such a body balances of mass, 
momentum and energy are as follows [8-1 0]: 

(1.1) i!+evi,i = o, 

( 
aP ) -(1.2) evt-r1,,1+tffkPk,t- TtxB t+BkMk,t 

-e[p+p-Po- (n+n -no)] tffi- [(in+ jp) x B],-ft = 0, 

(1.3) e ! ( v; + u) + aa~· = er+J.v,+ [<11v1 ~q,- (E xH)Jl 1 . 

In the expressions (1.1)-(1.3) Vt denotes batycentric velocity, r1i- electromagnetodiffusive 
stress tensor, ck = Ek+ (v X B)k- objective electric field intensity, pk- polarization 
vector, Mk- magnetization vector defined by (2.2h, 3 •4 , p, Po, n, n0 - nonequilibrium 
and equilibrium mass densities of electrons and holes, p, n- mass densities of impurities 
charges, in. jp- electron and hole fluxes,[i- volume forces, U- internal energy density, 
Ue- electromagnetic energy, r- heat source distribution and qi- heat flux. A superim
posed dot denotes the total material derivative. Moreover, it is assumed that the medium 
considered is magnetically saturated, i.e., 

(1.4) 
M,, =0, 

2. Electromagnetic field equations 

The electromagnetic field in a moving semiconductor defined above is described by 
Maxwell's equations [6, 12, 13] 

aB 
v X E = - Tt' v . D = e [p + p-Po- (n + n- no)]' 

(2.1) 

V H 
., an 

X = J +at' V·B = 0, 

and the expressions 

(2.2) 

. 1 -
H = -B-M, M = M+Meq, 

flo 
.!. 'Y -

..1t = - ..11 x B, M = eJt, 
flo-

1 u1 =vi, Wtk = T (vt.k-vk.t). 

The total current j' is defined as follows: 

(2.3) j' = i+e[p+p-po-(n+n-no)]v. 

Meq = Pxv, 

P = eft_, 

http://rcin.org.pl



74 B. MARUSZEWSKI 

In the above relations s 0 and flo denote the dielectric constant of free space and permeability 

of free space respectively, y- gyromagnetic ratio, .h- objective current flow vector and 

superimposed star- so-called Jaumann's objective time derivative [11]. Because barycen

tric velocity vi is very small in comparison to velocities of electrons and holes, we assume 

that practically in = 0 and j-p = 0 [1]. Utilization of Eqs. (2.1h. 3 , (2.2)5 , (2.3) and the 

above approximation allows us to write very important charge conservation laws of elec
trons, holes and impurities: 

(2.4) 

e ~ + v . jp + ev . v p = g; ' 

e ~~ - V ·in+ ev · Vn = gt, 

oiJ Y;- -+ 
eai~ +ev· p=gp, 

an _ _+ 
e Tt+ev · Vn = gn, 

(2.5) gt +g; +gt +g; = 0. 

In the above mentioned and in all the further investigations we assume that the electron 

and hole fields do not influence each other. The functions gt, g;, gt and -g; describe 

generation and recombination of electrons and holes and charge production of donors 

and acceptors respectively. Equations (2A)3 , 4 , however, need some additional comment 

[14]. Let, in a considered medium which is built on atoms of the IVth group (classical 

semiconductor - Ge or Si), one of the basic atoms be exchanged with an atom of the 

Vth group (with P, for instance) (doping of impurities). Then four of its valency electrons 

participate in a covalent bond with the neighbouring atoms of the base, and the bond 

energy of the fifth valency electron with impurity is e2 times lower from the other bonds 

(e- relative dielectric constant of the base). Therefore an impurity can be ionized very 

easily but does not participate in electric current flow. A similar situation takes place 

when as the impurity we take an atom of the Illrd group (As, for instance). Then one 

of the bonds with the base is empty. The energy which is needed to transfer the electron 

than the atom of the base to the impurity which grows the negative ion, is much lower 

from the energy needed to make the electron free. Since the negative charge is localized 

within the impurity, it does not participate in conductivity, either. Taking into account 

the above considerations, we admit that concentrations of impurity charges p and n are 

practically constant in time. Hence [11] 

(2.6) 

and Eqs. (2.4h. 4 pass into 

(2.7) gt = -g; = 0 

or the impurity charges can only vary by a convection of the impurity field during deforma

tion. In the particular case of compensated semiconductors, when p = n, Eqs. (2.4h.4 

vanish. 
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3. Constitutive relations (1) 

In classical irreversible thermodynamics, a state of a body is described by thermo
dynamic potentials- functions of the state of independent variables belonging to a set 
of state parameters. Here, as the function of state, basing on the previous considerations 
and assumptions, we choose the internal energy taking into account the case of infinitesimal 
deformations about a natural undeformed configuration [11] 

(3.1) 

which is a function of parameters: cu- elastic strain tensor, &>h .iih n, p, S- entropy 
density and gradients EiJ,b n,;, P.h T, 1• The elastic strain tensor is taken in the following 
approximation: 

(3.2) 
1 

cu = T (u1, 1+u1, 1), 

where ui denotes the displacement vector. Since it is very difficult to measure the magnitudes 
&>h Jii or Sin the direct way, we take instead of internal energy (3.1) the free energy with 
the help of Legendre's transformation as 

(3.3) F = U-&>1Ci-.Ji1B1- TS, 

(3.4) F = F(C), 

where 
C = {cu, fff, B, n,p, T, ck1,1, n, 1,p,, T,1}. 

Now we should define the electromagneto-thermodiffusive stress tensor r 1; in balances 
( 1.2) and (1.3) in conditions of magnetic saturation 

(3.5) 

where the thermodiffusive stress tensor ail is defined as follows:, 

aF 
(Jij = (] -~- · 

ucu 
\ (3.6) 

Finally we have to specify the remaining unknowns in Eqs. (1.2), (1.3), (2.2), (2.4)1,2• 
(3.1) and (3.5) i.e. a,1--;P,, Mh S, g;, g;i, qhjn;,jpi· We find the first six of them with the 
help of constitutive relations: 

(3.7) 

and definitions 

(3.7') 

ail = ail( C), 

P 1 = Pi(C), 

M, = MiC), 

S = S(C), 

g; = g;(c), 

g;i = g;i(C) 

then the last three fluxes are found from the kinetic relations presented in Sect. 6. 
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All the magnitudes which construct the constitutive relations (3.8), both tensorial 
dependent (Jil and independent eil, both vector dependent Pj, M; and independent Cb 
B;, T,;, ek1,;, n,;, p,; and both scalar dependent S, g:, g: and independent n, p, T are 
objective [11, 15, 16]. 

Taking now into account the previous considerations, we can specify a system of 
equations necessary to obtain field variables of interest to us. That system is built on 
Eqs. (1.2), (1.3) and (2.1). 

4. Entropy inequality 

The balances (1.1)-(1.3) do not include sufficient restrictions on the physical processes 
occurring inside the considered semiconductor (according to their reality) and on the 
constitutive relations. In order to fill the hole above, we introduce the entropy principle 
in the following way: 

in each body there exists additive scalar function- entropy the balance of which is 
written in the form 

(4.1) 

and is true for each thermodynamical process. $; denotes the objective entropy flux, 
s- entropy supply which, in linear approximation [17], has the well-known form 

(4.2) 
er . 

s= -r, 

then (J which denotes entropy production is assumed as nonnegative 

(4.3) (J?;; 0. 

Utilization of the above definition leads us to the following entropy inequality: 

(4.4) 
0 er 

eS+<P,,,-T?;; 0, 

. which is just the missing expression that was mentioned at the beginning of this section. 
According to the assumptions connected with the properties of the considered medium 
and the possible processes occurring inside it, we take the entropy flux <Pi in the form 
[9, 15] 

(4.5) 

where the chemical potentials of electrons and holes fln, flp are specified from the defini
tions 

(4.6) 
oF 

fln = on ' 
as constitutive relations 

(4.7) 
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which, basing on the principle of equipresence, are the functions of the same variables 
like in the relation (3.4). Obviously, according to the above principle, entropy flux also 
depends on the same variables 

(4.8) 

and fluxes 

(4.9) jni = jnt(C), 

jpt =jpt(C). 

In order to obtain information on restrictions in detail, which result from entropy ine
quality, we substitute Eq. (4.5) and balance Eq. (1.3) into the relation (4.4) in the following 
way: 

the rate of electromagnetic energy is calculated with the help of the balance (1.1), 
the definition (1.4), Maxwell's equations (2.1) and the expressions (2.2) 

(4.10) !{/ = -(Ex H)~, t-jtCt-e[p+/J-po- (n+n-no)]Ctvt- (j x B)1v1 

the rate of internal energy is calculated with the help of the expressions (3.3) and (3.4), 
and the definitions (1.2), (2.4), (3.2), (3.5), (3.6), (3. 7') and (4.6) are utilized. 

Hence the inequality considered is as follows: 

(4.11) ( 
oF ) . oF . oF . oF . oF . 

-e - +S T-e --- sk,,i-e - -n.t-e--P.i-e--T.i 
. oT . osk,,i on.t op,t oT.i 

+ (j,, + j,1)C1 - ~ q1 T, 1 + Tj, 1 ( ';:)..- Tj,, ( -"; ), / (l xM),, 1 

1 - -
- T (<!_ xM)t T. i- ftn?;i- ftpg;- (aki- MkBt-PkcS'i)wkt ;:;:::: 0. 

Since the expression (4.11) is linear with respect to the variables t, T,j, n,h P,b Ekt,b 

we obtain 

(4.12) 

(4.13) 
oF 

7iT = 0, 
,i 

oF 
s =-......_or' 

= 0, 

claiming that free energy must be invariant under an infinitesimal rigid rotation of the body 
(19]: 

(4.14) 
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which, in the case of linear constitutive equations, occurs symmetric [11] and leads to 
the so-called residual inequality 

(4.15) j., [ G,+T( ':;)..] +jP, [ C,- :r( ".;. u- [q,+(<f X M),] ~~ 
+ ~ xM)i,t-P,ng: -p.Pg; ~ 0. 

Relation (4.12) defines the entropy, then the relations (4.13) prove that free energy F 
is independent of Ekl,h n,h P.h T, 1• But from the expression (4.14) there results an equiv
alent way to define a symmetry of tensor ail instead of the common way, that is, the 
introduction moment of the momentum· balance [20]. 

5. Constitutive relations (2) 

In the previous section were found restrictions . on free energy F. From the relation 
( 4.13) there results that 

(5.1) F = F(eu, 8 1, Bb n, p, T). 

Also the expressions (3.6), (3.7'), (4.6), (4.12) are the functions of {eu, 8 1 , Bh n,p, T}. 
Basing on those and the relation (5.1) we can write Gibbs' equation in the form 

1 --
(5.1 ') dF = - audeu- f!/J 1d81 -JI/1dB1 + ftndn + ftpdp- SdT. 

e 
Let us consider now the behaviour of our semiconductor at states very close to equili

brium. In order to make that assumption we introduce the following functions: 

0 ~ T-T0 , I :
0 

I<{ I, N ~ n-n0 , 

P ~ p-Po' I~ I <{ I. 

(5.2) 

To obtain the constitutive relations (3.6), (3. 7'), ( 4.6) and ( 4.12) in the explicit form~ 
we expand free energy F into Taylor's series with respect to equilibrium state confining 
the consideration to the . quadratic terms 

(5.3) 

where a?b PP, M?, p.~, p.~, S are the equilibrium values, A., p. Lame's constants, Xe• Xm
electric and magnetic susceptibilities, bn, bP - diffusive constants c- specific heat coef
ficient, J'n, 'YP- elastodiffusive constants, y{}- thermoelastic constant, .E- magneto
eectric constant and cxn, cxP- thermodiffusive constants. 
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Utilizing the expansions (5.3), one obtains the constitutive relations (3.6), (3.7'), 
(4.6) and (4.12) in the form 

(5.4) 

au = 2ft Bu + ( Ackk- )'f)()- YnN- y P P) bu + a?1 , 

Pi= Xe<fft+l:Bt+P?, 

Mt = .ECt+XmBt+M?, 

'Yn bn N () 0 
fln = - ---;; Bkk +- - CXn + fln' 

~::: no . 

)'p bp p () 0 
u.P = - - ckk+- -ex +u. ' ' e Po p rp 

S - /'1} N p c () o 
- - Ekk + CXn . + CXp + -T. + S . e o 

The last two constitutive relations (3.7)5 , 6 are specified by expanding the functions gt 
and g: into Maclaurin's series with respect to the equilibrium. Hence 

(5.5) 

+ - b+ e N b+ e gn - en Bkk- - +- + Tn ' 
'in 

+ - b+ e P b+ e gp - ep ckk- - + + Tp ' 
'ip 

where in the equilibrium the following equalities have to be satisfied: 

(5.6) 

and were introduced below the abbreviations 

(5.7) 

ogt I = 
oN o 

og: I = 
oP o 

e --i+, 
p 

ogt I - b+ ao 0- Tn' 

rt and r: are the relaxation times of the charge carrier lives (recombination relaxation 
.imes) [13], [14]. 

6. Kinetic relations 

To finish the specifications of the magnitudes which define the basic laws responsible 
for all the considerations presented here, we should still give exact forms of expressions. 
for irreversible fluxes ( 4.9). According to the above remark, we utilize the residual inequality· 
( 4.15). The l.h.s. of it describes entropy production a as follows: 

(6.1) a= a1 +a2, 

where 

(6.2) a, =j.,[c,+T( "; ).J+j,,[c,-r( ";. )..1-[q,+~xM:},] TT, 
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while a2 describes entropy supply: 

{6.3) Cf2 = (l_ X M)t, i- ftng:- ftpg; • 

On the other hand, we know that we can present a 1 in the following bilinear form: 

(6.4) 

where ] 0 denotes generalized fluxes and xa- generalized forces. Assuming also the linear 
dependence between flUXeS JD and forCeS xa 
(6.5) 

we obtain 

(6.6) 

The phenomenological coefficients Lac are to be constant. Basing now on Eqs. (6.2) and 
(6.6), we choose 

( 6.7) 

:and with [6] 

{6.8) 

r I I - - VT 

and 

~-TV(";)j 

l
xT f3n T {3P T I 

{L}= f3nT e~nn 0 
{3p T 0 [!~pp 

the requested expressions for irreversible fluxes a,re as follows 

q,+~xM), ~ -"T.,+P.r[c.+ r( "; )J+P,r[c,- r( ~ )..]. 

{6.9) j., ~ -/i.T,,+e~.n [c,+ r( "; )..]. 

j,, ~ -P,T .• +e~.p[c.-r( "; ).J 
Relations (6.9) for nonmagnetics (M = 0) and in the case of the states very close to the 
.equilibrium (5.2) pass into the relations showri in [6]. Moreover, from the matrix (6.8) 
it results that Lac = Lea, i.e. phenomenological coefficients satisfy Onsager's relations. 
In the expressions (6.9) x denotes the thermal conductivity coefficient, f3n, {3p- thermo
-diffusive constants and ~n, ~ P - mobilities of electrons and holes. 

Let us consider now, for instance, the case when the phenomenological coefficients 
Lac are functions of the magnetic field B. If we expand them into Taylor's series and confine 
them only to the linear terms with respect to B, we can present them in the form 

{6.10) 
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where 

Laco> = ( oLik ) 
ikm oBm B=O. 

Specyfying now terms of the expansions (6.10), the coefficient matrix is the following 
[7]: 

_ I"T~tk+. !l'TelksBs, f3nT~tk+.!VnTetkmBm, {3PT~tk+%pTetkmBm} 
{L(B)} = f3nT~tk+.!VnTetkmBm, f!~nn~lk-LfnetksBs, 0 , 

f3pT~tk+%pTelkmBm, 0, (!~pP~tk-£lpetksBs 

(6.11) 

where e;km is the alternating tensor equal to + 1 if the subscripts are cyclic permutations 
of 1, 2, 3, equal1 if the subscripts are 321, 213, 132 and otherwise equal to zero. The above 
matrix refers only to an isotropic medium and gives the symmetry relations for Lac (B): 

(6.12) 

i.e., the phenological coefficients satisfy Onsager-Casimir's relations. Moreover, the matrix 
(6.11) generalizes the matrix (6.8) on thermogalvanomagnetic effects, that is, besides 
Fouriers' and Ohm's laws, Peltier's, Seebeck's, thermodiffusive and electro-diffusive 
effects (the relation (6.8)) includes the so-called second rank kinetic effects, such as Hall's 
effect (£ln, £lp), Ettingshausen-Nemst's effect (.!Vn, .;V p) and Righi-Leduc's effect (!.t'). 
If we utilize now the expressions (6.5), (6.7) and (6.11), take into account the approxima
tions (5.2) and constitutive relations (5.4)J_ 5 , we obtain very interesting forms of irrever
sible fluxes: 

(6.13) q,+qfM = - ["+To(cxnf3n-cxp{3p)]O,t+To(f3n+f3P)S, 

1 1 
+ e To(f3nYn- f3pyp)uk,kt +n;; To ~n~nN,, 

1 - p;; ~p{3pP,,- [!l' + To(.!Vn CXn-.;V p CXp)] BtkmBmO, k 

1 
+ To(.!Vn+.!Vp)etkmBm8k+e To(Yn.!Vn-yp.!Vp)eikmBmus.sk 

1 1 
+n;; To.!Vn~nBtkmBmN,k-p;; To.!Vp~petkmBmP,k, 

jni = - (f3n+ CXnf!~nno)O,, + f!~nnoSt + ~nYnnouk, kt + f!~n ~nN,i- (.!Vn- CXnLfn) BtkmBmO,k 

1 1 
-£ln BtksBs8k-e £lnYn BtksBsum. mk-n;; £ln <5n BtksBsN,k, 

jpt = - ({3p- CXp(!~pPo)O,i + (!~pPoSt- ~PYPPoUk, kt- (!~p <5pP,i- (% p+ CXpLfp) BtkmBmO,k 

1 1 
-LfP BtksBs8k+e £lPyP BtksBsum,mk+p;; £lp~p BtksBsP,," 

where one introduced notation: 

qfM = [~ x (xmB + M0
)],. 

And so it appears that the relations (6.13) besides the effects mentioned earlier include 
also terms referring to the following effects: 

6 Arch. Mech. Stos. nr 1-2/86 
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effects referring to the linear influence of dilatation and concentration of charge carrier 
gradients on heat flux [6, 18], 

effect referring to the rising of the heat flux by the existence of a perpendicular 
magnetic field and dilatation gradient [7], 

photomagnetothermal effect describing the rising of the heat flux by the influence 
of a magnetic field perpendicular to it and concentration of charge gradients (field which 
results from illuminating of the semiconductor by strong absorbed light) [7], 

effects describing the rising of currents of electrons and holes forced by (and in the 
direction of) the dilatation gradient [7], 

effects responsible for the rising of an electron and hole currents perpendicularly 
to the · applied magnetic field and" dilatation gradient [7], 

and photomagnetoelectric effects describing the rising of an electron and hole currents 
perpendicularly to the magnetic field and charge concentration gradients (field which 
results from illuminating of the semiconductor by strong absorbed light [14]). 

Recapitulating, one should stress that basing on the theory presented above, it 
is possible to describe all piezoeffects, both first and second kind and all others which 
would result from the dependence of phenomenological coefficients on the odd parameters 
(separately or simultaneously). 
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