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Electro-magneto-thermo-elasticity of extrinsic semiconductors
Extended irreversible thermodynamic approach

B. MARUSZEWSKI (POZNAN)

AN EXTENDED irreversible thermodynamic approach to electro-magneto-thermo-elasticity
of extrinsic anisotropic semiconductors is given. Basing on the above description, some new
physical effects are shown. Starting from the residual entropy inequality, generalized kinetic
relations for semiconductors are presented.

Przedstawiono rozszerzone, termodynamiczne podejscie do opisu sprzezonych oddzialywan
poOl sprezystego i termicznego, dyfuzji no$nikoéw ladunku oraz elektromagnetycznego w nie-
samoistnym, anizotropowym polprzewodniku. Opierajac si¢ na powyzszych rozwazaniach,
zasygnalizowano istnienie pewnych nowych efektéw. Na podstawie residualnej czgéci nierownosci
wzrostu entropii zaprezentowano uogoélnione relacje kinetyczne.

IlpencraBiieH paclIMPEHHbIH, TEPMOIMHAMUHAMHUECKHI NOAXOM [J15 OTIMCAHUS CONPXKEHHBIX
B3aUMOJICHCTBHI YIIPyroro, TepMuueckoro, Aud@y3un HocuTelei 3apsaga U 3JeKTPOMarHUT-
HOT'O IoJIeil B HeCOOCTBEHHOM, aHH30TPOITHOM IIOJIyNpOBOAHMKe. OnupasAch Ha BBILIEYIIOMA-
HyTBIe pacCy»AeHus1, oOpalleH0 BHUMaHHe Ha CYILEeCTBOBaHHE HEKOTOPbIX HOBBIX 3(p¢(eKToB.
Ha ocHOBe BbIYeTHOH 4acTH HepaBEHCTBAa POCTA JHTPOIMH NpeACTaBJIeHbl 0D0DLIEHHBIE KH-
HeTHYECKHE 3aBHCHMOCTH.

Introduction

A vaST MAJORITY of methods which describe interactions between mechanical, electro-
magnetic, temperature and diffusion fields in solids of various electromagnetic, mechanical
and thermal properties are based on classical irreversible thermodynamics [1]. The differen-
tial field equations obtained in that way, except equations of motion and equations of
electromagnetic field, are of the parabolic type (equation of heat transfer, of transport
of mass or charge carriers; in particular cases, also of electric or magnetic fields). Such
a description allows for velocities of thermal and diffusive perturbations to be interpreted
as infinite what, as one knows, is not true. In order to avoid such a paradox situation,
instead of classical irreversible thermodynamics, weutilize in this paper the so-called extend-
ed irreversible thermodynamic description proposed by I. MULLER [2]. The main idea
of that approach is based upon the postulate that a function of state can not only depend
on parameters of state, but also on irreversible fluxes. The extension of the independent
variables set is connected with the introduction of some new evolution equations which are
responsible for time rates of the introduced new independent variables.

1. Evolution equations

We consider an extrinsic, polarizable, magnetizable, homogeneous, anisotropic and
elastic semiconductor. The first evolution equation which we need in our further investiga-
tions is the evolution equation of mass, that is, the continuity equation
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(1.1) 0+ov;,; = 0.
The next basic equations are the evolution equations of momentum, i.e., balance of mo-
mentum (see also [3])

aP s _ _
¥ XB)E+BkMk.!’“Q[P+P_Po—(”+n—no)]¢g,z

F
= [Ga+i) xBli—fi =0
and the evolution equation of internal energy or so-called energy balance [4].

(1.2) 97‘11—7}(,;+ng;‘_!—(

d 2 aU,
(1.3) Qw(%“"‘U) +m¢')t = or+fivi+[vvi—gq;,— (Ex H)j, ;.

Remark that the indices » and p refer only to electron and hole fields and there is not any
summation over them.
The evolution equations of the electromagnetic field are the well-known Maxwell’s

equations
B

VXE= -2, VD= olp+p—po—(n+ri—no),
1.4
4 ., D

VXH=]’+W, V'B=0,

where j’ = j+o[p+p—po— (n+n—ny)]v, then the evolution equations of charge carriers
are as follows:

J .
9—31% +ipiitovip, i = &5 »

on . +
T —Jni, 1 FOUIR g = 8

°%
(1.5 B
ea—p +ovip.: =8,
at iF,i P
8j + 00 n ., =gt
76t oon, ; = &n >
(1.6) BT g +E A2 = 0,
The last system of evolution equations refers to the time rate of irreversible fluxes [5]
4 = 0.(0),
*
(1.7 It = Im(C),
*
jm‘ = DI(C);
finally we should add the evolution equation of entropy, i.e., entropy balance
(1.8) 0S+®, , = o+s.

In the above mentioned evolution equations the following notations were introduced:
o —denotes mass density, 7;; — electro-magneto-thermodiffusive stress tensor, &, = E
+ (v x B), — the objective electric field intensity vector, P, and M} — polarization and



ELECTRO-MAGNETO-THERMO-ELASTICITY OF EXTRINSIC SEMICONDUCTORS. II 85

magnetization vectors, respectively, ng, po, #, p— mass densities of equilibrium and
nonequilibrium charge of electrons and holes, respectively, n, p — localized mass densities
of impurity charges (ji; = jz; = 0[6]), jni, jps — fluxes of electrons and holes, f; — volume
forces, U— internal energy, U,— electromagnetic energy, r — heat production by the
heat source distribution, g; — heat flux, g}, g7, &+, g5 — charge source densities of
electrons and holes and negative and positive charges of impurities, S — entropy, @; —
entropy flux, o — entropy production, s — entropy supply, superimposed dot — the total
time derivative and superimposed star — the objective Zaremba-Jauman’s time derivat-
ive (& = a;—wuea) [7]. On the other hand the expressions below are connected with

Egs. (1.1)-(1.8):

D — &,E+P, H=#LB—M, M = M+M“ M“ = Pxy,
0
% Yy — _ e
v=1u, j=j.+ips 4=T£XB» M= o4,
0

1.9) P=9# MM =M>=const, M, =0,

MM, , =0, M=0, MM, =0,

1
Wy = b @1 e— Y%, 1)
(1.10) Tji = G'u+(£kPk+Bka)éU9
(111) C == {Eijs gl, BD ",Pa T: qujnisjph gkj.h ”,isP.t; T,i}:

where u denotes the displacement vector, ;; — the thermodiffusive stress tensor, the expres-
sions (1.9),4_, — magnetic saturation conditions [7], &, po — dielectric constant and
magnetic permeability of vacuum, y — gyromagnetic ratio, ¢;; — elastic strain tensor

1
(1.12) &y = 7(“5.1"‘“1.1)

and T — absolute temperature.
As we see now, from Eqs. (1.11) and (1.12) the following set of unknown fields results:

(I~l3) {ui’gi’Bhn:paTaqiajm’jpi}i
which can be found with the help of Egs. (1.2), (1.3), (1.4),,5 (1.5),2 and (1.7). The above
set of equations stands for the basic system of equations of the theory.

In our further investigations it will be better to use the free energy instead of the internal
energy. The latter we introduce in the way

(1.14) F = F(0),
(1.15) F=U-2,6—MB—TS.

Finishing this section we should stress that both in the previous and in the further
considerations we have used

1) the principle of equipresence stating that if an independent variable appears in
one response function, it should appear in any response function unless contradicted
by the laws of continuum thermodynamics;
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2) the assumption that electron and hole fields do not influence each other;
3) the case of infinitesimal deformations about a natural undeformed configuration

7.

2. Entropy inequality

Let us consider now entropy balance (1.8) in details. Following [3] we admit that
entropy supply s in linear approximation is

or

@.1) =,

then entropy production ¢ in semiconductor is nonnegative
2.2) a=0.

The above mentioned assumptions lead to the following entropy inequality:
2.3) oS+, — %’:- >0,

in which the extended cntropy flux &;(C) is taken in the form [3, 5]

@4 PuC) = e Gut s = e iy i+ 7 (6 XM, +K(C),

where k;(C) denotes an extra entropy flux which could appear not to be equal to zero
because of the assumed set of independent variables C (1.11).

Now, if we substitute Eqs. (1.1)-(1.5); ,, (1.9)-(1.12) and (1.15) into the inequality
(2.3), it takes the form

OF OF oF oF oF
@5 - ( +S) 0 5qr Q@ g Ju= Joy 0
i

oT T T Py
_th_aF._BFT+T8k, 1[+.
e *Bn_, A0 ——ap,i P.i—0 Wi i T i+ UnJni— KpJpi
ok, ok ak ok
+(€XM),]} ‘+T6kl 8kli+Tagi g_,"i'l'TaB! B_,,,+T—3—in,,
ok, ok, ok, ok, ok,

+T—— % 1+Ta ‘Ik.z+T3 Juk, i+T6 Jok, :+Ta - €1y, ki

ok, ok, ak, oF oF
+T@n,k kl+T3 P+ T —r— T, T y— ( A Ei+0 o5 3B, B+ 01| Wi

+Jnl(€i+.un. z)+in(£i—,up.t)+(§ xM)l,l_lu‘ngn —lu'pgp = 0.

As we see, the above inequality is linear in the variables 7, &, .y, p.:, T.1, &5.4, B; .,
G, i> Jnk.is Jpk,is> €ij kts P kis P.xi» T.x; and therefore we obtain the following relations and
restrictions on free energy F and extra entropy flux k; (we also require that free energy
F is to be invariant under an infinitesimal rigid rotation of the body [17]):
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(2.6) % +S =0,

@ v vk it T

e E7RE TR TRl Thk Sl

(2.10) a%k; +§fk—! =4,

@.11) ka,l + 5}’;"!- =0,

(2.12) ;% + :;f"t =,

(2.13) O—04i = 0 ;:,; Ei+o ;;; B,—po ;;; E—op :;; B,

@1 0 i 0o o i o gt T G~
_vapt‘F(iXM):]}TJ"'T%—EM.H‘T% n

ok ; ; M
+Ta—p'p-t+Jné(gt+#n,1)+fpt(épt_l‘p,t)+(£><M)!-i_”"g;_‘“"g’T =0,

From the relation (2.7) we see that free energy F does not depend on the gradients &y, ,
n;, p_,:, and T.i. HCHCC

(215) F= F(eijyéaithnsp: T:qlsjnhjpi)'

Basing now on the relation (2.15) we can formulate Gibbs’ equation in the form (see also
[8-10))

(2.16) dF = —:}—O}J—d&u—?; d&;— M, dB;+ updn+ pu,dp—SdT

1 1 . 1 .
- 'E)—th%— *E 11, djy— ?Hp!d]ph

where the following definitions were introduced:

.17 oy =0 :f thermodiffusive stress tensor,
i
JF

2.18 e

2.13) 7 o&,’

(2.19) A

i _aBlr
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2200 u,= %:-, Hy = g—ﬁ chemical potentials of electrons and holes,

oF oF oF
— o s Hni = as 3 H = 5
T %%, P UL
vector potentials of thermal, electron and hole fields. Moreover, from Eq. (2.8) it results
that extra entropy flux does not depend on &;, B;, qk, Jjuks Jpk-
Now we should specify extra entropy flux k; using the relations (2.9)-(2.12). The
solution of Eq. (2.12) is as follows

(2.22) ki = Qu(sm n,p, T, &,k nkD.x) T.J+Ql(£!js n,p, T, &k Mk P.i)s

where 2;, = —£,; and we have from Eq. (2.12) that both 2,; and 2; do not depend on
T ;. Substituting Eq. (2.22) into Eq. (2.10), we obtain

@.21) 1,

0y | 92y
(2.23) an, =t W.t =0,
20, 082,
(2.24) WJ Er—l-i— =0,
the solutions of which have the form
(2.25) Qp = Mlkln,!+!§lk
and
(2.26) 0, = Ayn, +7,,

where M, 2, and Ay, are skew-symmetric tensors and together with vector ¥; do not
depend on n ;. Hence we obtain

(2.27) k, = (Mikln.l+éik)T,k+Alkn.k+ Y.

Now, if we utilize the solution (2.27) in Eq. (2.11) and repeat the above calculations, we
get

a-Aflkl £ ankl

(2.28) = il
ap.; ap.
(2.29) 80 2 % _ 0,
3p,j op.
o4 oA
2.30 L g LR
(2.30) ap,; ap,
Y, oy
(2.31 LIFARLLY W )
) ap,; ap,
(2-32) My, = CikrsP,s‘*‘Mm,
(2.33) Dy = Gusp, s+ 24,
(2.34) A = Rysp, s+ Ay,

(2.35) Y, = W,p.+7Y,
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where Cis, M, Giuss Rixss !5,—,‘, zf;k, W;s are skew-symmetric tensors and together with
Y; do not depend on p ;. Hence

(2.36) k; = {(CixssP, s+ ﬂikt)". 1+ (Gusp, s+ !:jik)} T+ (Rusp, s+ A~tk)n, xt+Wisp, s+ Yt .

To obtain the final form of k;, we substitute the solution (2.36) into Eq. (2.9). Then in the
same way as in the above calculations we have

aclkh acj“s

(237) a“';‘l'nr,_i + a{’\mr.i B 0,
3MEkl aﬂjkt -

(2.38) Tor s + Tom s 0,
aGiks aGﬂcs —

(2.39) o ; + T 0,

00, FYo)

ORus Ry

. =0,
(241) a8mr._ﬁ 8‘Emr.i
Ay, oAy
sl Bemry T B
oW, W,
24 _ is s _ :
( 3) a"';n:r.] 38mr, i
oY, 2y,
44 . = 0,
(2 ) asmr.j = aEmr,i
and their solutions
(245) Cikls = Kiklsjmr 8mr,j+ éikls:
(2.46) Mm = Outjmr smr,j+Mikts
(2.47) Giks = Diksjmr Eme, i+ émss
(2.48) Qik = Aixjmr Emr.j+9_ﬂcs
(2.49 Ris = g 5mr,1+jézkss
(250) /’iik = Al'kjmr 8mr.j+1‘i'lka
(251) Wis = ';?isjmr 8mr,j+ Wls;

(252) ii = thmr smr.j + )‘;i ’

where Ktkts_lmra Cikls’ Qikl.imr; Fiksjmn Mikb lesa Atkjmra Hiksjmr9 Rikaa -QU“ Aikfmr: Xisjmr -

A, Wis, Zijme are skew-symmetric tensors and together with the vector 17,- do not depend.
on &pp,j.
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In this way, the final form of extra-entropy flux is as follows:

12.53) ki = {[(Kikisjmr Emr, s+ éuus)P. s T (Oixtjmr Emr. j+ Mlkt)]n.l
+ [ iksymr Emr, i+ Gﬂm)P, st Wijme Eme s+ 213 T+ [ ik jme €me, j + ﬁiks)P, s
+ (Aikjem Emr, j +A~ik)]n.k F L txpine B, F WI:)P,5+Zijmr Epr, Tt ?1 .
From the above mentioned considerations it results that all vectorial and tensorial coeffi-
cients in Eq. (2.53) depend only on &;, n, p, T. If now we demand that vector k; is to be
objective, all the coefficients in Eq. (2.53) have to vanish, that is,
'»(2-54) Kiklsjmr = éikls = Olkljmr = Mm = Fiks_imr = G~iks = Alkjmr — Sjtk =

= H!ksjmr o Rm :Alkjmr = A.ik . Jftsj'mr = Wis = lemr = Yj = 0,

‘because there exist no objective vector and no skew-symmetric tensor depending on a
ssingle scalar and a single symmetric tensor [11]. Hence we have

{2.55) k=0

.and the entropy flux has the form

@56) By = o= oyt € XM ).

‘On the other hand we have arrived at the final form of residual entropy inequality:
@57 My Qi—~ydu =y Ty = 25 T+ i+ i, Vi

T

A (=, i — 0 (a8 +195) 2 0,
‘where

1
P, = —y1.

We should interpret the relation (2.13). If one utilizes Gibbs’ equation (2.16), the
-expression (2.13) takes the form

(2.58) Oye— Oy = Pté”k"'ﬂfﬂk_Pkgt_EBh

which proves that the thermodiffusive stress tensor is nonsymmetric. This is an equivalent
way to define the symmetry of tensor ;; instead of the common way based on the moment
of the momentum balance [18].

3. Kinetic relations

It seems to be necessary now to take care of kinetic reciprocal relations for I7,;, IT,;,
Iy, Wiy Jui s Jpi» 1.€. for irreversible fluxes: generalized heat flux and fluxes of charge carriers,
respectively, and response thermodynamic forces Q;, Jut, Jpis T.i T2, i+ thn,is Ei—tip ;-
“The solution of the above problem is based on residual inequality (2.57). It is well known
that the above inequality can be written in the form (omitting for simplicity the source-like
‘terms)

(3.1) Fa X B 1,
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where

(3.2) ja == Lalen

L,, denote phenomenological coefficients.

Now, basing on the inequality (2.57) and the relations (3.1) and (3.2), we choose the
generalized forces and fluxes in the following way:

Y _'lf T,
Joi Ei— Py
3.3) Fa= Vi (» Xa=)Ei+lai (>
Hqt —Qi
le _Jm
Hnt —ni

and the matrix of tensorial phenomenological coefficients will now be as follows:

TKU Tmfj Tm:'j TA?j TA{] TA:\}

Tmf; epéf; 0 Bj B 0
Tm};, 0 onf;, C&5 0 CJ
3.4 L, = if J J ij
A “|74% BY c§ DY D, DY

TAY, B, 0 D E, 0
TAY, 0 C§ DY O FY

From the matrix (3.4) we deduce that the symmetry of matrix L, coincides with Onsager’s
reciprocity relations L, = L;,. %;; is the heat conduction tensor, &};, £F; — the tensors
of mobilities of charge carriers and m};, m{; — the tensors of Peltier—Seebeck’s effects
referred to electron and hole currents. Now, from Eq. (3.2)-(3.4) the kinetic relations
take the form

(3.5) yi = —u; T, ;+Tmi(6;— py, )+ T8+ iy, ) — TAG Q= TAL T,y — TAY Ty,
(3.6) Jor = —m; T, ;+ep&l(8;—pp, ) —B3Q)— Bl T,

3.7) Jat = —miy T+ on&li(E+ pha. ) — C3Q,— CliJuy,

(3.8) I, = — AT ;+ B3(&;—p,. )+ CE (é’j-i-,u,, )—DE0,— D} J,,— DY T,
B9 I, = —ALT ;+ B~ p,. )~ D50, — Ef ),

(3.10) II,; = —ANT ;+ CN(&;+ pta, ) — DY j~FUJ,,j.

The above relations differ from the previous ones [12] by vector-potential-like terms. The
tensorial coefficients A%, 4f;, AY,, B3, Bf;, BY, C3, CY, D3, Df;, Dy, Ef, F{; describe new
effects connected with rates of irreversible fluxes. And now it appears that adding
irreversible fluxes to the set of independent variables widens kinetic relations by “fluxes”
1, 11,;,11,; and “forces™ Q;, J.i, J,:. It is very interesting to note that, using the description
presented here, thermal and diffusion fields have both scalar (T, u,, u,) and vector (Q;,
Jpis Ju) potentials. This is a new result in comparison to the existing theories.
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4. Constitutive relations

The general problem to be solved is the determination of the field variables u;, &;,
B;, n, p, T, qi, jni» jpi as functions of space and time. These quantities are obtained from
the balance equations (1.2), (1.3) and (1.5), , complemented by Maxwell’s equations (1.4)
and evolution equations (1.7). Since balance and Maxwell’s equations contain new unknown
quantities o5, P;, M;, Uns B> S, Iy, 11, IT; , it is necessary to express the latter in terms
of the above set of variables through constitutive equations.

Hence, expanding free energy (2.15) about the equilibrium and denoting by

0=T-T,, €1, N=n-—n,,

T,
(4.1)
<1

ho

0

<19 P=P'P0;

the small deviations of thermal and diffusion fields with respect to the equilibrium, one
obtains (with the subscript “o0” referring to the equilibrium and requiring an invariance
condition under time reversal):

1 ,
(42) F—Fy= — ‘é‘c_'f‘ - AT06,+prE0&,+ prP0B, — 0, 0P — «, 0N
0

L oy | - | R
+ o Cojkt €ij € — 7}%11‘ ;6 — ?hijk ;B — — i &; P

T L L PE NE L
*?AUSUN_TQXikfgtéDk—’*Q*&Bk‘*l’i &iP+p ¢ iN— 20 xix Bi By
+pf®B,P+py®B,N+ % P2+—6LN2+~}-—aﬁqtqk

i i i Zpo 2n0 29 i

1 . 1 . 1 . 1 .
+ ? ad™ g ju+ ? adl® qijo+ —25 Al fui Jun *z‘é- aiy JoiJok-

In Eq. (4.2) the following notations were introduced:

1. For known effects, ¢ — the specific heat coefficient, A7, A, A, — the tensors of thermal
and diffusion stress coefficients, p%, pFE, pI'E, pI®, pP®, p¥® — the pseudovectors of pyro-
electric, pyromagnetic and pyrodiffusive constants, o, o, — the thermodiffusive constants
iy — the tensor of elastic constants, A7y, APy — the piezoelectric and piezomagnetic
constant tensors, x5, xF the electrical and magnetic susceptibility tensors, d,, 6, — the
diffusive constants, X}, — the magnetoelectric constant tensor

2. For unknown effects, a2 , a%'™, a¥/¥, al¥, alf — the tensors describing linear interactions
between nonequilibrium fluxes.

Coming back to the remarks presented at the beginning of this section, we can now
specify the following constitutive relations for dependent variables with the help of Eqgs.
(2.6), (2.17)-(2.21) and (4.2) (we admit that the equilibrium values of all dependent variables
are conventionally taken equal to zero),

4.3) Gij = Cijki skl_hﬁkgk_hZRBk_lgN—' }{JP_ 359’
4.4) Py = iy e+ 25 6+ Zu B — opl EN — op}EP — opf 0,
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4.5) M, = BBy e+ Zubi+ xb Bo—op)PN—opfPP— oprB6,
1 )
(4.6) Mn = "?ARNI 5k1+pfnéak+prBk+;’LN— 0,
o
1 0
.7 Hp = — F Xt &1+ PR By + })i P—u,0,
0
1
(4.8) S = — Hyeu—plEi—pi*Bi+ a,N+a, P+ -0,
1S 0o
4.9) : Il = af g+ a3 juc+a% % o,
(4.10) I, = a¥"g+allju,
(4‘11) Hpi = aﬂtlqu+ailfjp»k.

The last quantities should be specified here by constitutive relations are rates of recombina-
tion of electrons and holes. According to the principle of equipresence we can write them
in the form

4.12) = g (0),

4.13) g = g4 (0).

Now, if we expand them into Taylor’s series with respect to the equilibrium, we get
1

4.14) 8 — 8o = b0+ gV e, +IFVE + 1PV B, — o N+y2qi+v) i,
1

(4.15) 8s—8po = bTPB+gij5”+lfPé"1+[?PBl- 7:P+7?P4t+”ffpi-

P

In equilibrium we assume that gfy = g/o = 0. Then t}, 7} denote the relaxation times
of linear coupled recombination (life-times of charge carriers) [13]. The coefficients b™",
b™F, gtN, gtF and [PV, IFP describe effects of direct influence of temperature, elastic strain,
electric field intensity and magnetic induction on recombination processes, respectively.
In the framework of the theory proposed here it appears that the same kind of influence
on the above processes have also irreversible fluxes (coefficients ¥V, 2, #F, »F). That
fact seems to be unparalleled till now.

Finally, we shall focus on the expressions of evolution equations for the heat flux and
the charge flow currents (1.7). Expanding, therefore, the above expressions into Maclaurin’s
series with respect to the equilibrium and confining them only to the linear approxima-
tion, we obtain

(4.16) T?jéj = —qi—xyT ;+ Tmﬁ(‘gj_ﬂn.fﬂ‘ Imiy(&;+ tn, ;)

4.17) = —ju—mj T ;+on&}(&;+pn, ),

T?J'jnj
(4.18) Ti};jpj = _jpi_mipjrj+9p5£(éaj_#p.j)~

In Egs. (4.16)-(4.18) 7%, t}; and t}; denote relaxation time tensors associated to the
heat, electron and hole fluxes. Remark that in the phenomenological theory investigated

in the paper we shall state that the recombination relaxation times of electrons and holes
quoted in Eqs. (4.14) and (4.15) are much more than components of relaxation time
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tensors associated to the heat, electron and hole fluxes. These strong inequalities denote
the so-called diffusion approach to processes occurring inside the considered semiconductor
[13] and make obtained rules true in the above framework. Equation (4.16) generalizes
Vernotte—Cattaneo’s relation [14, 15] by including the effects of charge carriers and having
anisotropic form while expressions similar to Eqs. (4.17) and (4.18) in isotropic form can
be found in magnetohydrodynamics [16] and in the semiconductor theory [13]. Finally
we have to underline the fact that when we pass in Egs. (4.16)-(4.18) with z§, = 0, =}, = 0
and 7§; — 0 we obtain classical kinetic relations for fluxes g;, jn; and j,; (see isotropic form
in [12]). _

Finally we can write equations for temperature and diffusion fields which suggest
that velocities of their signals have finite values. Therefore basing on Egs. (1.3), (1.5)4,,
and (4.16)-(4.18), utilizing the relations (4.1), we obtain in the case of isotropy

. . d
(4.19) 0, ;;— 19Ty S—0ToS—Tom (i — tip, 1), i — Tom"(Ei+ thn, ), i — (Tq 5 +1 )

; } d
X (= M i, 1+ MpJoir, 1) — (Tqﬁ + 1) (@11 + T I+ T, IT )

d
o (t“dt + 1) (or+tngy +4,8,) =0,

.. d
(4.20) ongEN(E 1+ ), i — TON—oN—m"0 ;; + (tndt + 1) g =0,
. o
4.21) — 0P (81— pio, :),s—TPQP”QP+mP9.H+(TPdt + l)g;’ = 0.

For the sake of simplicity, the above expressions do not concern any constitutive relations
(4.3)-(4.11) and (4.14), (4.15).

5. Final remarks

Summing up, we should like to make two important remarks,

1) the information about the signs and the relations between the coefficients appearing
in the kinetic expressions (3.5)—(3.10) can be derived from the fact that the phenomenolo-
gical coefficients L,, have to satisfy such weak inequalities

Lu? 0, Luly— 5 (La+L? 20, detly > 0;

2) basing on the theory proposed in the paper we can work out the remaining
coupled differential equations referring to distributions of u;, &;, B;, N, P, 0 fields in the
following way:

from balance of momentum together with kinetic and constitutive relations — equations
of motion,

from Maxwell’s equations together with constitutive and kinetic relations — equations
of the electromagnetic field coupled with other fields.
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