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Electro-magneto-thermo-elasticity of extrinsic semiconductors 
Extended irreversible thermodynamic approach 

B. MAR USZEWSKI (POZNAN) 

AN EXTENDED irreversible thermodynamic approach to electro-magneto-thermo-elasticity 
of extrinsic anisotropic semiconductors is given. Basing on the above description, some new 
physical effects are shown. Starting from the residual entropy inequality, generalized kinetic 
relations for semiconductors are presented. 

Przedstawiono rozszerzone, termodynamiczne podejscie do opisu sprz~i:onych oddzialywan 
pol spr~iystego i termicznego, dyfuzji nosnik6w ladunku oraz elektromagnetycznego w nie­
samoistnym, anizotropowym p6lprzewodniku. Opieraj'lc si~ na powyzszych rozwai:aniach, 
zasygnalizowano istnienie pewnych nowychefekt6w. Na podstawie residualnej cz~sci nier6wnosci 
wzrostu entropii zaprezentowano uog6lnione relacje kinetyczne. 

Ilpe}:\CTaBJieH paCIIIHpeHHhiM, TepMO):\HHaMHHaMH'tieCKirif ITO.L\XOA ,1:\Jl.H OflHCaHH.H COITp.HmeHHblX 
B3aHMO,l:\eMCTBHM yrrpyroro, TepMHlleCKOrO, .L\HcPcPY3HH HOCHTeJieM 3ap.H,l:\a H 3JieKTpOMarHHT­
Horo rroJiell: B Heco6crseHHOM, aliH30TporrHOM rroJiyrrpoBOAHHKe. OITHpaHCb Ha BhillleyrroMH­
HYThie paccym,l:\eHHH, o6pa~eHO BHHMaHHe Ha cy~eCTBOBaHHe HeKOTOpblX HOBhlX 3cPcPeKTOB. 
Ha ocHose BhilleTHOM llaCTH HepaseHcrsa pocra 3HTpOITHH rrpeACTaBJieHhi o6o6~eHHhxe KH­
HeTHlleCKHe 3aBHCHMOCTH. 

Introduction 

A VAST MAJORITY of methods which describe interactions between mechanical, electro­
magnetic, temperature and diffusion fields in solids of various electromagnetic, mechanical 
and thermal properties are based on classical irreversible thermodynamics [1]. The differen­
tial field equations obtained in that way, except equations of motion and equations of 
electromagnetic field, are of the parabolic type (equation of heat transfer, of transport 
of mass or charge carriers; in particular cases, also of electric or magnetic fields). Such 
a description allows for velocities of thermal and diffusive perturbations to be interpreted 
as infinite what, as one knows, is not true. In order to avoid such a paradox situation, 
instead of classical irreversible thermodynamics, we utilize in this paper the so-called extend­
ed irreversible thermodynamic description proposed by I. MULLER [2]. The main idea 
of that approach is based upon the postulate that a function of state can not only depend 
on parameters of state, but also on irreversible fluxes. The extension of the independent 
variables set is connected with the introduction of some new evolution equations which are 
responsible for time rates of the introduced new independent variables. 

1. Evolution equations 

We consider an extrinsic, polarizable, magnetizable, homogeneous, anisotropic and 
elastic semiconductor. The first evolution equation which we need in our further investiga­
tions is the evolution equation of mass, that is, the continuity equation 

6* 
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84 B. MARUSZEWSKI 

(1.1) 

The next basic equations are the evolution equations of momentum, i.e., balance of mo­
mentum (see also [3]) 

(1.2) eV1--r11 ,1+C.P •. ,-( ~~ xB), +B.M •. ,-e[p+Ji-po-(n+li-no)]C, 

- [(jn+jP)xB],-.1; = 0 

and the evolution equation of internal energy or s?-called energy balance [4]. 

(1.3) e ~ ( ~ +U) + 
0~· = er+J.v,+ [Tjtv,-qr (EX H)Jl.J· 

Remark that the indices n and p refer only to electron and hole fields and there is not any 

summation over them. 
The evolution equations of the electromagnetic field are the well-known Maxwell's 

equations 

V · D = e[P+P-Po-(n+n-no)], 
(1.4) 

v xu= J., + an v. B = o, at ' 
where j' = j+e[p+p-p0 -(n+n-n0 )]v, then the evolution equations of charge carriers 
are as follows: 

ap . - + 
eat +]pt,t+eviP,t- gP, 

an . + 
eTt -]nt,i+ev,n,i = gn' 

(1.5) 
ap - -+ 

eTt +ev,p,, = gp, 

an - - - + 
eTt +evin.i- gn' 

(1.6) g;+g:+g;+g: = 0. 

The last system of evolutiQll equations refers to the time rate of irreversible fluxes [5] 

qt = Qt(C), 

(1.7) 

* jpi = lpt(C); 

finally we should add the evolution equation of entropy, i.e., entropy balance 

(1.8) 

In the above mentioned evolution equations the following notations were introduced: 
e - denotes mass density, rii - electro-magneto-thermodiffusive stress tensor, C k = Ek 

+ (v x B)k- the objective electric field intensity vector, Pk and Mk- polarization and 
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magnetization vectors, respectively, n0 , p 0 , n, p- mass densities of equilibrium and 
nonequilibrium charge of electrons and holes, respectively, n, p - localized mass densities 
of impurity charges Un1 = jp; = 0 [6]), in1, jpi- fluxes of electrons and holes, fi- volume 
forces, U- internal energy, Ue- electromagnetic energy, r- heat production by the 
heat source distribution, q1 -heat flux, g:, g;, g:, g; - charge source densities of 
electrons and holes and negative and positive charges of impurities, S- entropy, c])1 -

entropy flux, a- entropy production, s- entropy supply, superimposed dot- the total 
time derivative and superimposed star- the objective Zaremba-Jauman's time derivat­
ive (d; = a;-W;kak) [7]. On the other hand the expressions below are connected with 
Eqs. (1.1)-(1.8): 

(1.9) 

(1.10) 

(1.11) 

P = ef!JJ, 

I -
H=-B-M, 

flo 
i , -
.A= -JtxB, 
- flo-

1 
Wtk = 2- (v,,k-vk,t), 

r11 = au+(lffkPk+BkMk)~11 , 

C = {c:u , 8, B" n,p, T, q,jn,jp, c:kJ,b n,,p,, T,,}, 

where u denotes the displacement vector, a11 - the thermodiffusive stress tensor, the expres­
sions (1.9) 14 _ 1 -magnetic saturation conditions [7], eo, flo- dielectric constant and 
magnetic permeability of vacuum, y - gyromagnetic ratio, e;J- elastic strain tensor 

(1.12) 

and T- absolute temperature. 
As we see now, from Eqs. (1.11) and (1.12) the following set of unknown fields results: 

(1.13) 

which can be found with the help of Eqs. (1.2), (1.3), (1.4)1. 3 (1.5)1 , 2 and (1.7). The above 
set of equations stands for the basic system of equations of the theory. 

In our further investigations it will be better to use the free energy instead of the internal 
energy. The latter we introduce in the way 

(1.14) 

(1.15) 

F = F(C), 

F = U-f!JJ1G1-JI1B1- TS. 

Finishing this section we should stress that both in the previous and in the further 
considerations we have used 

1) the principle of equipresence stating that if an independent variable appears in 
one response function, it should appear in any response function unless contradicted 

by the laws of continuum thermodynamics; 
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2) the assumption that electron and hole fields do not influence each other; 
3) the case of infinitesimal deformations about a natural undeformed configuration 

[7]. 

2. Entropy inequality 

Let us consider now entropy balance (1.8) in details. Following [3] we admit that 
entropy supply s in linear approximation is 

(2.1) er 
S=r, 

then entropy production a in semiconductor is nonnegative 

(2.2) (] ~ 0. 

The above mentioned assumptions lead to the following entropy inequality: 

(2.3) 

in which the extended entropy flux C/J1(C) is taken in the form [3, 5] 

(2.4) f./>,( C)= ~ q,+ ~ fl-njni- ~ P,pjpi + ~ (~ xM),+k,(C), 

where k1(C) denotes an extra entropy flux which could appear not to be equal to zero 
because of the assumed set of independent variables C (1.11 ). 

Now, if we substitute Eqs. (1.1)-(1.5)1 2 , (1.9)-(1.12) and (1.15) into the inequality 
(2.3), it takes the form 

( 
oF ) . oF aF oF oF • -e aT· +S T-e ~q Q,-e~Jn,-e~Jp,-e-~--ekJ,t 

U i .· cJ}nt cJ}pt Uek),i 
(2.5) 

oF . oF . oF . j ak, 1 . . i 
-eann,,-ea--

11 
p,,-e oT T,+ ToT -T[q,+P,nlnt-fl-p}pt 

,i ,l ,i 

- - } ak, ak, ak, ak, 
+&_xM),] T, 1+T oskl skl,t + T 0~1 ~1 • 1 + T oB

1 
B1, 1+ Tann,, 

ak, ok, ok, . ak, . ak, 
+T ~'P P.t+T-qk,t+T--Jnk,t+T--]pk,t+T--slJ,kt 

u oqk ojnk ojpk osli. k 

ok, ak, ak, ( aF oF ) 
+Tann.k,+T-0-P.kl+Tar T.kt- e 8~ ~~+e aB B,+ak, wk, 

• k 'P. k • k k k 

+jn,(~t+#n, ,)+jpi(~t-P,p, ,)+(!_ xM),,,- 11-ng:-p,pg; ~ 0. 

As we see, the above inequality is linear in the variables T, ek1• h iz. , p. h t. h G 1., B1 , 1, 

qlc," jnk, h)pk," eiJ, kh n, kb P. kh T, ki and therefore we obtain the following relations and 
restrictions on free energy F and extra entropy flux k 1 (we also require that free energy 
F is to be invariant under an infinitesimal rigid rotation of the body [17]): 
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(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

oF 
oT +S = 0, 

aF _ oF _ oF _ oF _ 
0 

7Jekz. t - on,-; - op, t - oT, t - ' 

oki _ oki _ oki _ oki _ oki _ 
0 otff

1 
- oB1 - oqk - oink - o}pk - ' 

~+ okk = 0 
oe11 ,k Oeu,t ' 

oki _ + _ okk = 0 
on.k on,i ' 

oki + okk = 0 
op,k op,i ' 

~ okk _ 0 oT + oT - ' ,k • i 

. - } oki · oki 
-,up]pt+~xM)tJ T,t+T oekl ekl,t+T on n,, 

+ T ~"; P. t + int(Ct+ ,Un, t)+ipt(Ct- ,Up, t)+ (cf_ xM), ~-,ungt- ,Upg; ~ 0. 

From the relation (2. 7) we see that free energy F does not depend on the gradients ek1, 1, 

n. ;, p. i , and T, i • Hence 

(2.15) 

Basing now on the relation (2.15) we can formulate Gibbs' equation in the form (see also 
[8-10]) 

(2.16) 

where the following definitions were introduced: 

(2.17) 

(2.18) 

(2.19) 

oF 
aiJ = (! -- thermodiffusive stress tensor, 

(}eij 

oF 
f/J- =- -, otffi , 

oF 
.Ai = -oBi, 
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(2.20) 
oF 

fln = ----ail' 
oF 

ftp = op . chemical potentials of electrons and holes, 

oF oF oF 
{2.21) Ilqt=f!~, Ilnt=f!~, Ilpt=f!~ 

uq, cJ}nt cJ}pt 

vector potenti'als of thermal, electron and hole fields. Moreover, from Eq. (2.8) it results 
that extra entropy flux does not depend on C b B1, qk, jnk, j pk. 

Now we should specify extra entropy flux k 1 using the relations (2.9)-(2.12). The 
solution of Eq. (2.12) is as follows 

(2.22) k1 = Du(e1b n,p, T, eu,k' n,k,P.k)T, 1 +!J1(e1b n,p, T, eu,k' n,k,P,k), 

where Q 11 = -Q11 and we have from Eq. (2.12) that both !J11 and Q1 do not depend on 
T, 1• Substituting Eq. (2.22) into Eq. (2.10), we obtain 

(2.23) 

(2.24) 

the solutions of which have the form 

(2.25) 

and 

(2.26) 

!J,k = M,k,n,,+ii,k 

where M1k, !J,k and A;k are skew-symmetric tensors and together with vector Y1 do not 
depend on n, 1• Hence we obtain 

(2.27) 

Now, if we utilize the solution (2.27) in Eq. (2.11) and repeat the above calculations, we 
get 

(2.28) oM,k, + oM}kl = 0 
op,J op,t ' 

(2.29) otJ,k + otJjk = 0 
op,J op, t ' 

(2.30) oA,k + oA1k = 0 
op,J op,, ' 

(2.31) oY, + oY1 = 0 
op,J op,, ' 

(2.32) Mikl = cikls p. s + Mikl' 

(2.33) Qik = GiksP,s+Qik' 

(2.34) Atk = RtksP,s+Atk, 

(2.35) Y, = W,sP,s+ Y, 
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where cikls' Mik, Glks, Riks' Qik, Aik, Wis are skew-symmetric tensors and together with 
Yt do not depend on p . 1• Hence 

(2.36) k, = {(CtklsP, s+ Mikl)n,r + (GiksP, s+Qtk)} T,k + (RiksP, s+ A,k)n , k + WtsP,s+ Y, · 
To obtain the final form of k1, we substitute the solution (2.36) into Eq. (2.9). Then in the 
same way as in the above calculations we have 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

and their 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

solutions 

oRiks + oR1ks = O 
OEmr,J OEmr, i ' 

_ aA.,k + aA.jk = o, 
OEmr , j OEmr, i 

cikls ~ Kiklsjmr Emr,j+ cikls' 

Mikl = oikljmrEmr,j+M,k, 

G iks = riksjmr e.;.,.. j + G iks' 

Qik = Aik)mr Emr,j+ti,b 

Riks = JiiksjmrEmr , J+Rtks' 

A.,k = LJik)mr em,.,J+A,k, 

Wis = Yf isjmr Emr, J + Wis' 

Y, = Zumr Emr,J + Y,' 

where Ktklslmr' cilclH QuclJmr' riks}mr' M,k, GtkH Aikjmr' IIiksjm,., Riks' ti,k, LJik}mr' YftsJm,.,. 

Atk, Wts, ZtJmr are skew-symmetric tensors and together with the vector Yi do not depend_ 
on Emr,J· 
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In this way, the final form of extra-entropy flux is as follows: 

(2.53) kt = {[(Ktklsjmr Bmr,j+ clkls)P. s + (Olkl)m_~ Cmr.j + Mtkl)]n,, 

+ [(Flksjmr Bmr,j+ Glks)P, s+ (Alk}mr Bmr.j +~k)]} T,k + ((Jiiksjmr Bmr,j + Rlks)P,s 

+ (Lilkjrm Bmr,j+Atk)]n, k+ (Yfisjmr Bmr,j+ Wls)P,s+Ztjmr Bmr,j+ f, • 
From the above mentioned considerations it results that all vectorial and tensorial coeffi­
-cients in Eq. (2.53) depend only on cu, n, p, T. If now we demand that vector k 1 is to be 
-objective, all the coefficients in Eq. (2.53) have to vanish, that is, 

(2.54) Ktklsjmr = cikls = oikljmr = Mtkl = rlksjmr = Giks = Aikjmr = Qik = 

= Jiiks}mr = Rtks = LJ lk}mr = Atk = Yf isjmr = Wls = Zijmr = Yj = 0' 

because there exist no objective vector and no skew-symmetric tensor depending on a 
:single scalar and a single symmetric tensor [II]. Hence we have 

~(2.55) k, = 0 

:and the entropy flux has the form 

\(2.56) ([>, = ~ [q, + ,Unjni- ,Upjpi + ~ xM)l] . 

.On the other hand we have arrived at the final form of residual entropy inequality: 

,:(2.57) -JiqiQi -JiniJni -JiplJpi- :; T,l + (lfft + ,Un, i)jni 

.+(C,-,up,t)jpt-e(,ung:+,uPq;) ~ 0, 
-where 

I 
([>, = T "Pt· 

We should interpret the relation (2.13). If one utilizes Gibbs' equation (2.16), the 
-expression (2.I3) takes the form 

.(2.58) 

which proves that the thermodiffusive stress tensor is nonsymmetric. This is an equivalent 
way to define the symmetry of tensor ail in'stead of the common way based on the moment 
.of the momentum balance [18]. 

.3. Kinetic relations 

It seems to be necessary now to take care of kinetic reciprocal r.elations for Ilqi, IIni, 
II ph VJi,jni ,jpi, i.e. for irreversible fluxes: generalized heat flux and fluxes of charge carriers, 
respectively, and response thermodynamic forces Qi, ln1, Jpb T,,r-1, lffi+,Un,b Ci-,Up,t· 

"The solution of the above problem is based on residual inequality (2.57). It is well known 
that the above inequality can be written in the form (omitting for simplicity the source-like 

·terms) 

.(3.I) 
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where 

(3.2) 

Lab denote phenomenological coefficients. 

Now, basing on the inequality (2.57) and the relations (3.1) and (3.2), we choose the 
generalized forces and fluxes in the following way: 

r 1p, I I 1 --T, T , 

jpt s,-/lp.t 
(3.3) Ja= jnt x. ~ r·+.u ... 

Ilqt -Q, 
Ilpt -Jpl 

liinl l -Jnl 

and the matrix of tensorial phenomenological coefficients will now be as follows: 

I Tuu Tmf1 Tm'/1 TA3 TAf1 TAfj l 
Tmf1 ep~f1 0 B8 Bf'J 0 

L -~ Tm'/1 0 en~'/1 C8 0 C~ 
ab - T A3 B8 C8 D3 Df1 Dfj l' 

TAf1 Bf'J 0 DfJ E~ 0 
.TAfJ 0 C~ Dfj 0 F1~ 

(3.4) 

From the matrix (3.4) we deduce that the symmetry of matrix Lab coincides with Onsager's 
reciprocity relations Lab = Lba. "'il is the heat conduction tensor, ~'/1 , ~f1 -the tensors 
of mobilities of charge carriers and m'/1, mfJ- the tensors of Peltier-Seebeck's effects 
referred to electron and hole currents. Now, from Eq. (3.2)-(3.4) the kinetic relations 
take the form 

(3.5) V't = --xu T, 1+ TmfJ(81-/lp, 1)+ Tm'/i<ff1+ lln, 1)- TA3Q1- TAfJJP1- TAfiln1, 

(3.6) jp1 = -mfJT. 1 +ep~fJ(81 -/lp, 1)-B8Q1 -Bf'JJP1 , 

(3.7) jnt = -m?1 T, 1 +en~'i1(C1 +/ln,J)-C8Q1 -C~JnJ' 

(3.8) Ilqt = -A3T,J+B8(8J-!lp,J)+C8(8J+!ln.J)-D3QJ-DfiJPl-DfJJnJ' 

(3.9) Ilpt = -AfJT. 1 +Bf'J(S1 -/lp,j)-DfJQ1-E1~Jp1 , 

(3.10) lint= -AfjT,J+C~(SJ+Iln.i)-D~QJ-F~Jni· 

The above relations differ from the previous ones [12] by vector-potential-like terms. The 
tensorial coefficients A3, AfJ, AfJ, B8, BfJ, B~, C8, C~, D3, DfJ, DfJ, E!;, F~ describe new 
effects connected with rates of irreversible fluxes. And now it appears that adding 
irreversible fluxes to the set of independent variables widens kinetic relations by "fluxes" 
Ilqi, II,.i, II pi and "forces" Q, lnh lpt· It is very interesting to note that, using the description 
presented here, thermal and diffusion fields have both scalar (T, /lp, /ln) and vector (Q, 
lp, ln1) potentials. This is a new result in comparison to the existing theories. 
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4. Constitutive relations 

The general problem to be solved is the determination of the field variables uh C;, 

Bh n, p, T, q;, j,_h jp; as functions of space and time. These quantities are obtained from 
the balance equations (1.2), (~.3) and (1.5)1 2 complemented by Maxwell's equations (I.4) 
and evolution equations (I.7). Since balance and Maxwell's equations contain new unknown 
quantities a1h P, M, ftn, ftp, S, IIq, IIn, IIP, it is necessary to express the latter in terms 
of the above set of variables through constitutive equations. 

Hence, expanding free energy (2.I5) about the equilibrium and denoting by 

0 = T- To, I :a~ ~ I, N = n-n0 , 

~~~~!, P=P-Po. ~~~~~ 
(4.I) 

the small deviations of thermal and diffusion fields with respect to the equilibrium, one 
obtains (with the subscript "o" referring to the equilibrium and requiring an invariance 
condition under time reversal): 

c ()2 I H () TE() TB() () () (4.2) F-F0 =-
2

To -eA;1 eli+p; fff;+p 1 B;-ap P-a, N 

I I hE I hB 1 1P + 2e CiJkl eli ekl- e ilk EtJlff k- e iJk euBk- (! A;J e;J p 

I 1N I E f!J f!J .Elk PE NE I B 
--A;JEtJN--2 Xik(!}t(!}k- -- CtBk+P; ffftP+p; C;N- -2 XikB;B~;. 

(! (! (! (! 

PB NBB dp 2 dn 2 I Q +p1 BiP+p1 1N+ -
2 

P + -
2 

N +-
2 

a;kqtqk 
Po no (! 

QIN . I QIP . I IN . . I IP . . + e alk qi]nk+ e aik qt]pk+ 2e aik lnilnk + -ie aik }pt}pk• 

In Eq. (4.2) the following notations were introduced: 
1. For known effects, c- the specific heat coefficient, ).l'J, ).f.J, ).~ - the tensors of thermal 

and diffusion stress coefficients, pfE, pfE, pfE, p[8 , pf8
, pf8 - the pseudovectors of pyro­

electric, pyromagnetic and pyrodiffusive constants, cxP, cxn - the thermodiffusive constants 
c11kt - the tensor of elastic constants, hfJk, h~k - the piezoelectric and piezomagnetic 
constant tensors, X~, xfk the electrical and magnetic susceptibility tensors, dn, dp -the 
diffusive constants, .E1k - the magnetoelectric constant tensor 

2. For unknown effects, aa, a3/~, a?fP, aff, aff -the tensors describing linear interactions 
between nonequilibrium fluxes. 

Cbming back to the remarks presented at the beginning of this section, we can now 
specify the following constitutive relations for dependent variables with the help of Eqs. 
(2.6), (2.I7)-(2.21) and ( 4.2) (we admit that the equilibrium values of all dependent variables 
are conventionally taken equal to zero), 

(4.3) 

(4.4) 
a,1 = CtJkl ekl-hDkCk-h~kBk- ).~N- ).f.,P- ).E(), 

P, = hfkl ekr+ x~Gk+.EtkBk-epfEN-epfEP-epfE(), 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Mi = hfkl ekl + Eik c k + xfk Bk- epf8 N- epr8 p- epJB ()' 

1 1N NB ~ NBB ~n () ftn = -- "kl ekl+Pk 0k+Pk k+ -N-ctn , 
(! no 

1 1P PE ~P () flp = -- "kl ekl+Pk CkBk+ -- P-ctp , 
(! Po 

1 1T TE TB C () S =- "kz ekz-Pk Ck-Pk Bk+ctnN+ctpP+ -T. , 
(! 0 

Ilqi = a~qk+a?lNjnk+a?lPjPk' 

Jlni = a?fNqk+affjnk' 

Ilpt = a?lPqk+af{jvk· 

93 

The last quantities should be specified here by constitutive relations are rates of recombina­
tion of electrons and holes. According to the principle of equipresence we can write them 
in the form 

(4.12) 

(4.13) 

g;i = g;i(C), 

gt = g;(c). 

Now, if we expand them into Taylor's series with respect to the equilibrium, we get 

+ + _ bTN()+ eN +[EN LD +[BNB 1 N+ QN + N · gn-gno- gileiJ i(!)l it----:;:· Yiqt Vi}nt' 
in 

(4.14) 

+ + bTP()+ eP +[EPRJ +[BPB 1 P+ QP + P · gp-gpo= gi}eil i(!}t i i-~ Yiqi Vi}pi• 
ip 

(4.15) 

In equilibrium we assume that g;i0 = gt0 = 0. Then r;i, r; denote the relaxation times 
of linear coupled recombination (life-times of charge carriers) [13]. The coefficients bTN, 
bTP, gif, gfJ and lfN, ffP describe effects of direct influence of temperature, elastic strain, 
electric field intensity and magnetic induction on recombination processes, respectively. 
In the framework of the theory proposed here it appears that the same kind of influence 
on the above processes have also irreversible fluxes (coefficients y'/N, y'/P, vf, 1'f). That 
fact seems to be unparalleled till now. 

Finally, we shall focus on the expressions of evolution equations for the heat flux and 
the charge flow currents (1.7). Expanding, therefore, the above expres.sions into Maclaurin's 
series with respect to the equilibrium and confining them only to the linear approxima­
tion, we obtain 

(4.16) 

(4.17) 

r11q1 = - qi- xl1 T, 1 + Tmr/G1 ~ flp. 1) + TmiiC1 + fln. J, 

ri1jn1 = - jnt- m'/1 T. 1 + en~ii C 1 +!-ln. 1), 

(4.18) r~jp1 = -jp1 -m~ T. 1+epr1Htff1- ftp. 1). 

In Eqs. ( 4.16)-( 4.18) r?J, ri1 and rr1 denote relaxation time tensors associated to the 
heat, electron and hole fluxes. Remark that in the phenomenological theory investigated 
in the paper we shall state that the recombination relaxation times of electrons and holes 
quoted in Eqs. (4.14) and (4.15) are much more than components of relaxation time 
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tensors associated to the heat, electron and hole fluxes. These strong inequalities denote 
the so-called diffusion approach to processes occurring inside the considered semiconductor 
[13] and make obtained rules true in the above framework. Equation (4.16) generalizes 
Vernotte-Cattaneo's relation [14, 15] by including the effects of charge carriers and having 
anisotropic form while expressions similar to Eqs. ( 4.17) and ( 4.18) in isotropic form can 
be found in magnetohydrodynamics [16] and in the semiconductor theory [13]. Finally 
we have to underline the fact that when we pass in Eqs. (4.16)-(4.18) with rf1 --+ 0, rij--+ 0 
and rf.J--+ 0 we obtain classical kinetic relations for fluxes qh }ni and }pi (see isotropic form 
in [12]). 

Finally we can write equations for temperature and diffusion fields which suggest 
that velocities of their signals have finite values. Therefore basing on Eqs. (1.3), (1.5)1 , 2 

and (4.16)-(4.18), utilizing the relations (4.1), we obtain in the case of isotropy 

. .. • ( d ) (4.19) _xO,u-iq(!T0 S-eToS-TomP(lfft-flp.t),t-Tom"(lfft+fln,t),t- rq dt +1 

(4.20) 

(4.21) 

x (- /l.j.1, 1 + f',j, 1• 1)- ( r• :r + I) (Q, II •• + J., II.,+ J,1 II,,) 

+ ( r• :r +I} (er+ f'.g.t + ,_.,g;) ~ 0, 

eno ~·(G,+ "'··,),I- r•eN -eN-m•&." + ( r" :r +I) g,t ~ 0, 

-ePo~p(.r,-,_.,,,),- rpeP-ei>+mPO. 11 +( rp :r +I )g; ~ 0. 

For the sake of simplicity, the above expressions do not concern any· constitutive relations 
( 4.3)-( 4.11) and ( 4.14), ( 4.15). 

5. Final remarks 

Summing up, we should like to make two important remarks, 
1) the information about the signs and the relations between the coefficients appearing 

in the kinetic expressions (3.5)-(3.10) can be derived from the fact that the phenomenolo­
gical coefficients Lab have to satisfy such weak inequalities 

Laa ~ 0, LaaLbb- ! (Lab+Lba) 2 ~ 0, detLab ~ 0; 

2) basing on the theory proposed in the paper we can work out the remaining 
coupled differential equations referring to distributions of ui, lfft, Bi, N, P, 0 fields in the 
following way: 

from balance of momentum together with kinetic and constitutive relations -equations 
of motion, 

from Maxwell's equations together with constitutive and kinetic relations - equations 
of the electromagnetic field coupled with other fields. 
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