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Viscoelastic flows with dominating extensions: 
application to squeezing flows 

S. ZAHORSKI (WARSZAWA) 

PLANE viscoelastic flows with dominating extensions are defined as thin-layer flows described 
by the constitutive equations valid for steady or unsteady extensions and perturbed with respect 
to the strain-rate invariants. Certain approximate solutions and applications to continuous 
squeezing flows are discussed in greater detail. 

Plaskie przeplywy lepkospr~zyste z dominuj(lcym rozci(lganiem zdefiniowano jako przeplywy 
w cienkich warstwach opisywane r6wnaniami konstytutywnymi dla ustalonego lub nieustalonego 
rozci(lgania, perturbowane wzgl~dem niezmiennik6w szybkosci odksztalcenia. Bardziej szcze
g61owo przedyskutowano niekt6re przyblizone rozwi(lzania oraz zastosowania do zagadnien 
wyciskania cieczy. 

IlJIOCI<He B.H3I<OynpyrHe Te'leHWI C gOMHHHpyJOI..l.\HM paCT.H>I<eHHeM onpegeJieHbl I<ai< Te'leHHK 

B TOHI<HX CJIO.HX, OllHCbiBaHHbie onpegeJUilOI..l.\HMH ypaBHeHH.HMH gml yCTaHOBHBIIIerOC.H HJIH 

HeyCTaHOBHBIIIerOC.H paCT.H>I<eHWI, nepryp6HpOBaHHbiMH llO OTHOIIIeHHIO I< HHBapHaHTaM 

CI<opocrH gecpopMa~HH. Eonee geTaJILHO o6cymgeHbi Hei<oTophie npH6JIH>I<eHHbie peiiieHH.R: 

H npHMeHeHH.H I< 3aga'laM BblgaBJIHBaHH.H >I<Hgi<OCTH. 

1. Introduction 

It is well known that in many practically important situations the character of flows con
sidered is neither viscometric nor purely extensional. There appears also a variety of 
important velocity fields and viscoelastic phenomena which are not representable as small 
perturbations of slow steady flows [1]. On the other hand, there exist numerous flows 
of particular geometries, e.g., squeezing flows, converging and diverging flows, rolling,. 
calendering and milling flows, etc., in which the extensional parts of deformation are 
dominating and more essential as compared with shearing deformations, usually prevailing 
in the regions close to solid boundaries. 

For such flows, especially those characterised by high Deborah numbers and low 
vorticity components, A. B. METZNER [1, 2] introduced and developed the notion of 
"extensional primary fields" or EPF approximations. These are the flows in which the 
diagonal components of the stress matrix are much greater than the shearing ones at a 
given deformation rate level. The EPF approximations are precisely the reverse of those 
usually made in the boundary layer theory or in the slow flows of lubricating fluids. 

In the present paper we adopt the Metzner's idea and discuss a class of plane viscoelastic 
flows called the "flows with dominating extensions" or briefly FDE. These flows can 
be defined as thin-layer flows (one of the characteristic dimension is much greater than the 
other) in which the general constitutive equation of an incompressible simple fluid for 
steady and unsteady extensional flows (cf. [1, 3]) may be used in a form linearly perturbed 
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192 S. ZAHORSKI 

with respect to the relevant strain-rate invariants. Such an idea seems to be similar, in 
.a reverse sense, to that used for quasi-viscometric approximations of viscoelastic bound
ary layers with small Weissenberg numbers (cf. [1, 4]). The FDE considerations lead 
to relatively simple, analytical or semi-numerical solutions satisfying more or less exact 
boundary conditions. In the present paper the case of plane squeezing flows is analysed 
in greater detail, and the effects of an increasing or decreasing extensional viscosity on the 
velocity profiles and the load-bearing forces are widely discussed. 

It is noteworthy that the analysis presented in the paper can be extended, with only 
slight modifications, to other cases of lubricating, rolling, etc., flows. 

2. Flows with dominating extensions (FD E) 

Consider a plane flow in which the Cartesian velocity components can be presented 
in the following form: 

{2.1) 
u* = q(t)x+u(x,y, t), 

v* = -q(t)y+v(x, y, t), 

where q(t) may depend at most on time t, and u and v denote the additional velocity 
-components along the axes x and y, respectively(!). 

If, ·moreover, the above flow is realised in a thin layer of fluid, in which one of the 
-characteristic dimensions L is much greater than the dimension h describing the layer 
thickness, we can use all the kinematic simplifications resulting from the so-called lubrica
tion (or thin-layer) approximation. 

Denoting 

(2.2) X = xL, y = yh, u = uU, v = svU, 
h 

s =-~I L ~ ' 

where U = qh is a characteristic velocity, and overbars denote dimensionless quantities, 
we obtain 

ou* ( ou ) 
ox = q I+ 8 ox ' 

(2.3) ov* ( ov ) a-y- = q - I + s oy , 
ov* ~ ov 

----gx = qs ox- ' 

* _ _!_ (~ _ !!!:_) _ _!_ ( ou _ 2 ov ) 
w - 2 oy ox - 2 q oy s ox · 

It is seen from the above relations that, under the assumption of dimensionless velocity 
gradients being of order O(I), the first terms of diagonal components may be more mean
ingful than the remaining terms, if only the vorticity w* (or oufoy) is sufficiently small. 
In the case of pure extension ( w* = 0), the diagonal components are proportional to the 
extension rate q. 

(1) A similar analysis can be developed in any system of orthogonal coordinates. Also, axially symme
tric flows of the FDE-type can be considered (cf. [5]). 
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VISCOELASTIC FLOWS WITH DOMINATING EXTENSIONS: APPLICATION TO SQUEEZING FLOWS 193 

The constitutive equation of an incompressible simple fluid in any extensional (irrotat
ional) flow, which can be treated as a motion with constant or proportional stretch history 

(cf. [3, 6, 7]), has the following form: 

(2.4) 

where p is a hydrostatic pressure, A 1 denotes the first Rivlin-Ericksen kinematic tensor 

( cf. [3]), and 

(2.5) 
~ 

are the corresponding invariants. It is noteworthy that the material functions {Ji (i = 1, 2) 
may explicitly depend on time t for unsteady flows. Moreover, for plane flows, the term 
{3 2 A 2 can be included into the pressure one. 

In the case of plane flows described by Eq. (2.1), we formally write 

(2.6) 
[

- 2~ 
2q 0 ox 

[A!] ~ [Ad+ [A.]'~ [ O _ 2q] + .~ + ov_ 
oy ax 

~+~] ay ax 
2~ , 

ay 

(2.7) [
4 

2 
0 ] [A~ 2] = [Ai] +[Ail' = ~ 4q2 + 

[ 

au ( au )
2 

( au av )2 

Sq-+4 - · + - +-ox ax ay ax + . . 
0 

0 l au au 2 au ov 2 
• 

Sq - +4 (---- ) + ( - + - ) OX ox oy ax 
For invariants, we also have 

trAi = 0, trA~ 3 = 0, 

trA~ 2 = trM+(trM)' = Bq'+ [16q t +8 ( ~~ r +2 ( ~; + ~: n (2.8) 

Taking into account the order arguments discussed after Eq. (2.3), we can define the 
plane "flows with dominating extensions" (FDE) as such thin-layer flows in which the 
constitutive equations (2.4), exact for purely extensional flows of an incompressible simple 
fluid, may be used in a form linearly perturbed with respect to the invariants (2.5), depend
ing on the extension rate q. 

This assumption means that 

(2.9) T* = -pl+fJA1 +{JA~ + ~ q'A1, 

where for plane flows: -p = T* 33 +4{J2 q2 , and the linear increment of q, denoted by q', 
is 

(2.10) , au 1 ( au )2 
1 ( au av )2 

q = ax + 2q ax + 8q ay + Tx . 
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194 S. ZAHORSKI 

Thus we have in a component form 

T* 11 = -p+2fJq+2fJ!!!_ + _!__ dfJ [sq!!!_ + 4(!!!_)
2 
+ (!!!__ + ~)

2

] 
OX 4 aq ox ox oy OX ' 

(2.11) 
T*22 = -p-2fJq-2fJ !!!__- _!__ dfJ [sq!!!_ + 4 (!!!_)2 + (~ + !!!__)2] 

ax 4 dq ax ax ay ax ' 

T*33 = -p-4{J2q2, 

' r*t2 = fJ (!!!__ + ~1!), 
ay ax 

where, without any loss of generality, we have omitted the subscript 1 at {J. 
The terms involved in Eqs. (2.11) are of different orders of magnitude with respect 

to the parameter e = hfL. An answer to the question, which of them are really essential 
for further considerations, results from the dynamic equations of equilibrium written 
in a dimensionless form. To this end, we introduce Eqs. (2.11) into 

op ar;u oT*12 
- = - --+---, 
ax ax ay 

(2.12) 
ap ar;22 oT*12 
a-y=ay+ax, 

where the subscript E denotes the extra-stress components (Tli = Tii + p, i = 1 , 2), and 
the inertia terms have been disregardede). 

Expressing the resulting equations in a dimensionless form, by means of Eqs. (2.2) 
and 

(2.13) 
_ U'YJL 

p=p~, fJ = fJ'YJ' 

where overbars denote dimensionless quantities and 'YJ is a constant with dimension of 
viscosity, we may retain only terms of the highest order of magnitude with respect to 
e = hfL. Such a procedure leads to the following, simplified equations of dynamic equi
librium: 

(2.14) 

op 1 d{J ou o2u o2u 
ax= 2 dq ay oxoy +fJ oy2 ' 

op 1 d{J ou o2u 
ay - 2 dq ay oy2 · 

Eliminating the pressure terms by consecutive differentiation with respect to y and x, 
we obtain 

(2.15) _J_ [_!__ d{J _J_ (~)2 + ~] = 0 
a y 2 dq ax a y fJ a y2 · 

e) Retaining these terms seriously complicates further considerations; the inertia effects, however, 
can be taken into account in an approximate way (cf. Sect. 4). 

http://rcin.org.pl
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Introducing the notation: 

(2.16) 1 dfJ ( ou )
2 

p* = p-Ti22 = p+4dq ay +2fJq, 

we can arrive at the alternative system of Eqs. (2.14), viz. 

(2.17) dp* 1 dfJ o(ou)
2 

fJo
2
u op*=O 

. dx = 2 dq ax ay + oy2 ' oy ' 

where p* is a function of x only. 
It is also noteworthy that the simplified constitutive equations, leading immediately 

to Eqs. (2.15) or (2.17), can be written as follows: 

(2.18) 

T*u - 2fJ 1 dfJ ( ou ). 2 
- -p+ q+4 dq .6Y ' 

T*22 = -p-2fJq- _!_ dfJ (~)2, 
4 dq ay 

T*t2 = fJ~ ay, 

where the function fJ may also depend on time t for unsteady flows. For steady flows, 
this function can be related to the corresponding elongational viscosity 'YJ*(q). Thus, e.g., 
for a pure two-dimensional extension, we have 

(2.19) 
1 

'YJ*(q) = -q (T*11_ T*22) = 4f3(q), 

since then oufoy = 0. In what follows, we shall call fJ(q) the extensional viscosity function. 
Eq. (2.15) is a third order nonlinear partial differential equation, a solution of which, 

even for simple boundary conditions imposed on u or its derivatives, is not known at 
all. On the other hand, the solution of the simplified equation 

(2.20) 
dp* o2u 
- ·· =flo - = Co(x), 
dx oy2 

valid for a Newtonian fluid, can be presented as 

(2.21) u ~ ;,;-[-}c0 (x)y2 +C1(x)y+Cz(x)l 

where C1 (x) and C2 (x) are functions depending on the boundary conditions. 
In more general cases of viscoelastic fluids, we shall seek an approximate solution 

of Eq. (2.15) in the following form: 

(2.22) u = (x+a) (w(y)+b ), 

where a and bare constants and w(y) is a function of y only. After introducing Eq. (2.22) 
into Eq . . (2.15), we arrive at 

(2.23) (x+a)(tlw"(y)+ ~ w'2 (y)) ~ Co(x), 

13* 
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196 . S. ZAHORSKI 

where primes denote differentiation with . respect to y. In particular, any solution of the 
equation 

(2.24) ,Bw"(y)+ ~ w'2 (y) = C = const 

also satisfies Eq. (2.23) when C0 (x) = C'(x+a), i.e. for a parabolic dependence of p* 

on x. More general distributions of the thrusts p*(x) can be taken into account under the 
assumption that C = C(x), if xis treated as some parameter, on which the solutions of Eq. 
(2.24) may depend. 

The simplified Eq. (2.24) represents a special Riccati equation for w'(y); its general 
solution satisfying the boundary condition: w' (0) = 0, is 

(2.25) 

w'(y) ~ Jl B tg(JI -ABy) for AB < 0, 
-AB · 

w'(y) = B th (y ABy) for AB > 0, 
yAB 

where 

(2.26) 
c 1 dp* 

B=-=-----. 
,8 (x+a)f3 dx 

'This gives 

w(y) = ~-lncos(v -ABy)+C1 for AB < o, 
(2.27) 

w(y)= ~ lnch(yABy)+C1 for AB>O, 

where C1 denotes an integration constant. It is easy to see that A > 0 corresponds to an 
increasing function ,B(q), while A < 0- to a decreasing f3(q). The sign of B depends 
exclusively on the sign of C(f3 > 0), i.e. on whether the thrust p*(x) is an increasing or 
decreasing function of x. 

For Newtonian fluids ({3 = {3 0 = const), we obtain instead of Eqs. (2.25) and (2.27): 

{2.28) w'(y) = ;. y, 
. . c 

w(y) = 2f3o y2 + cl. 

The above considerations can be applied, in principle, to anyplane FDE in a sufficiently 
thin layer of viscoelastic fluid. To this end, ho~ever, a knowledge of .the appropriate 
boundary conditions is necessary. In every case we must verify that the parameters = h/L 
is sufficiently small in the range of x considered. 

3. Plane squeezing flows of viscoelastic fluids 

Various problems of plane and axially symmetric squezing flows were widely discussed 
·elsewhere (for references cf. [8, 9, 10, 11]). In what follows, we shall be interested mainly 
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in the case of continuous squeezing flows with some simulated approach velocity as de
scribed by D. R. OLIVER and M. SHAHIDULLAH (12, 13]. 

Consider a test fluid contained between two horizontal plates of width 2a, at the distance 
2h one from the other, and loaded with the force P per unit length (Fig. 1). In a traditional 

)( 

FIG. 1. 

flow the top plate is released at some instant t = 0 and falls down freely under the constant 
load; the distance h is measured as a function of current time. The resulting flow is unsteady 
one, in which inertia effects rna~ be of great importance. In a continuous flow, the fluid 
moves through a stationary lower plate, being extruded from numerous holes uniformly 
distributed over the lower surface, with neither plate moving (cf. [12]). The force P corres
ponding to the simulated approach velocity h is measured. Such a flow is steady, since 

the ratio of the approach velocity to the fluid-layer thickness is kept constant. 
For the case of plane continuous squeezing flows, we assume that 

(3.1) 
h 

c = - ~ 1, 
a 

h 
q = - h = const, v*(h) = h = const, 

and the velocity field is of the form: 

(3.2) u* = qx+w(y)x, v* = -qy+v(x,y). 

The kinematic boundary conditions, expressing adhesion of the fluid to the walls anc.l 

symmetry of the flow considered, lead to 

(3.3) u*( ±h) = 0, ~* (0) = 0, 

or 

(3.4) w'(±h) = -q, w'(O) = 0. 

On the basis of the above conditions~ we arrive at Eqs. (2.25) and 

w(y) =_!_In cos(J!--=ABy) -q for AB < 0, 
A cos(t/ -ABh) 

w( ) = _!_In ch (li ABy) -q for AB > 0, 
y A ch(yABh) 

(3.5) 

where A and B have been defined in Eqs. (2.26). 
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For Newtonian fluid ({J = {30 = const), we obtain Eq. (2.28) 1 and 

eN 
(3.6) w(y) = 2fJo (y2- h2)- q. 

S. ZAHORSKI 

The continuity condition, or the equivalent requirement that the volume discharge Q 
of fluid duripg the flow is conserved, leads to the condition: 

h h 

~ Q = -ah = 2 j u* lx=ady = 2qah+2 J w(y)ady. 
0 0 

(3.7) 

Since for Newtonian fluids, after integrating Eq. (3.6), we have 

(3.8) or 

it can be deduced that also for viscoelastic fluids 

(3.9) 
{Jq 

C= -Hfi2<0, 

where H is a dimensionless number determined later in t4is Section. 
Introducing the results (3.5) into Eq. (3. 7) and perf<;>rming integration, we arrive at 

(3.10) 

where 

(3.11) 

~- = ~[ 1 
L(tl -ABh)+hlncos(y -ABh)] 

2 A V -AB 
for 

; = - ~ [ 11~B L(tf ABh)-hlnch(tf ABh)] for 

X 

L(x) = - J lncoszdz and 
0 

X 

L(x) = J lnchzdz, 
0 

d{J 
dq > 0, 

d{J 
dq < 0, 

denote the Lobachevsky and the modified Lobachevsky functions, respectively. Only 
the first of them is tabelarised ( cf. [14]); the second one can easily be calculated. 

For simplicity of further calculations, the notations used in Eqs. (3.10) require some 
slight alterations. To this end, we introduce the new parameter: 

(3.12) 
. 1 d{J 

y = AHq = 7f dqHq, 

where H is related to C by Eq. (3.9). Then, instead of Eqs. (3.10), we can write 

(3.13) 

~~ = - [tncos tlirl + V~rl L(~11Yi)] for y > 0, 

~~ = [tnch VTYT- V~rl L(rlYD] for y < o. 

The above relations connect H (or C) with other kinematic and material parameter3 
involved in y. 
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FIG. 2. 

In Fig. 2, the diagrams of the Lobachevsky functions L and L are compared with the 
functions -In cos yy and Inch yy occurring in Eqs. (3.13). It is obvious that L(x) is 
determined for 0 < x < n/2 only. 

H 

25 

2.0 

1.0 

0.5 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.l. 1.6 . 1.8 
\WI 

FIG. 3. 

The relations between J/ IYi and H resulting from Eqs. (3.13) are shown in Fig. 3. 
Since y is defined by Eq. (3.12), it is easy to observe that H does not differ significantly 
from H = 1.5 (for Newtonian fluids) for sufficiently small values of the extension rate 
q = - h;h. The upper curve refers to a decreasing extensional viscosity (J(q), while the 
lower one- to an increasing {J(q). 

The illustrative velocity profiles at the ends of plates for y = 2.25 and y = -2.47 
are drawn in Fig. 4. The Newtonian profile is marked with a broken line. It is seen, that 
for an increasing extensional viscosity (A > 0), the profile may be much more flattened 
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S. ZAHORSKI 

as compared with the Newtonian one. It is also interesting that the limit case of plug 
flow (with entirely flattened velocity profile) corresponds to (cf. (2.25)) 

(3.14) .. ; - - n r -ABh = -
2 

or 

i.e., for sufficiently high rates of increase of the extensional viscosity {J(q). For a constant 
rate of increase of {J, the above case is impossible at all. 

4. Load-bearing forces for various boundary conditions at the adge 

The velocity profiles could be determined on the basis of the boundary conditio~s 
satisfied on surfaces of the upper and lower plates. For satisfactory determination of the 
total thrust on the top plate or the load-bearing force, one has to know something more 
about the boundary conditions at the edges. The whole problem may become very complex, 
if we want to take into account all the possible edge effects (cf. [15, 16]). For sake of simpli
city we restrict ourselves to certain approximate boundary conditions valid for the cases 
of free and drowned edges of the plates. 

At this moment, we also want to comment briefly possible influences of inertia effects, 
which may be essential for viscoelastic fluids (cf. [8, 12]). For the case of continuous 
squeezing flows both plates are stationary. If the top plate moves down under the total 
force P (involving its weight), we have 

(4.1) F= P-mh, 
where mh· represents the load inertia, and F is the force exerted by the fluid on the upper 
plate. The fluid inertia effects have been disregarded in Eqs. (2.12) ; they can be taken 
into account in an approximate way, considering the total mass balance (cf. [17]). This 
gives the following values of fluid inertia forces: 

(4.2) 

which should be added to the force F exerted by the fluid itself (cf.e.g. (4.9)). 
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4.1. The case of free edge 

If the outer surfaces are free from any loading, like in the Mooney plastometer (cf. 
Fig. 1 ), we may assume either 

(4.3) 

where Pa denotes the atmospheric pressure, or 

(4.4) T*ul - ha x=±a- -pa-HS/iJ' 

where S denotes a constant surface-tension coefficient. The above conditions are approx
imately valid, if the wetting angle at the edge, characterising relation among the fluid, 
the solid surface and the atmosphere or vapor in a surrounding region, is close to 90° 
(cf. [16]). 

In some other cases, Eq. (4.3) can be replaced by the condition (cf. [8]): 

h h 

(4.5) f T*11 /x=±adY = f (-p+Ti11)/x=±ady = 0, 
0 0 

expressing the fact that the resulting force on the free surface is equal to zero. 
By way of illustration, Eq. (4.3) together with Eq. (2.18) leads to 

(4.6) 

The load-bearing force (without inertia effects) is calculated from 

a a 

(4.7) F = -2 f T* 22 /Y=±hdx = -2(T*22 /:v=±hx)lo+2 f oT;;
2 

xiY=±hdx, 
0 0 

where integration by parts is used. Bearing in mind Eqs. (4.6) and (2.12), we obtain 

and after introducing Eqs. (3.9), (2.18) 

( 4.9) F = - ~ Ca
3 
(I + ~ tg2 v ~ : qH + 12 ~~2 ) 

if d{Jfdq > 0. Since under the assumption that e = hfa ~ 1 the last term can be neglected, 
we finally have 

2 {Jha
3 

( 3 2 v 1 d{J ) F= --H-- 1+-tg --qH 
3 h3 2 fJ dq 

(4.10) for 
d{J 
dq > 0, 

and 

(4.11) for 
d{J 

--:1 < 0. 
uq . 
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In the case of Newtonian fluids, similar consideration lead to the well-kno:wn expression: 

(4.12) FN = _ } 0 ha3 

h3 . 

It should be emphasized, however, that Eqs. (4.10), (4.11) essentially depend on bound
ary conditions imposed on T*11 as well as on any additional hypothesis concerned with 
the normal-stress differences. By way of illustration, we can consider the case of Weissen
berg hypothesis (Ti 22 = Ti33

) and that of biaxial extension (Ti 11 = Ti33 at the edge) 
( cf. [17]). The number coefficients appearing in the parantheses on the right hand sides 
of Eqs. ( 4.1 0), ( 4.11 ), i.e. 3/2, change into 9/4 for the first case, and into 9/8 in the second. 

A graphical presentation of the ratio FfFN (multiplied by {30 /{3(q)) in function of Jl y 
(A > 0) or y -y (A < 0) is shown in Fig. 5 (solid line). In the same Fig. 5, we plot the 
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/ 
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/ 
/ "E~ / 

/ ~ P, 
/ 3 

A>O 2 

0 

---, +=---r--r-----r---.----11-----r--~---:r::--~-:-1:-1 
1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 

-M z=-tq z=tq fi 

FIG. 5. 

dependence of FfFN on z = ± f3odf30 q, under the assumption that the extensional viscosity 
{3(q) is a linear function of q, viz. 

(4.13) f3(q) = f3o + fJo1 q, f3ot = const. 

The above diagrams are qualitatively in agreement with available experimental results 
(cf. [12, 13]); they show definitive load-enhancement effects, if the extension viscosity 
is an increasing function of the extension rate. For more precise quantitative comparisons, 
further accurate numerical data would be desirable. 

It is doubtful, however, whether Eqs. (4.10), (4.11) can be used for determination 
of the extensional viscosity function {3(q), since the ratio FfFN depends on {3(q) and df3fdq 
as well. Such a determination is possible, in principle, if the form of {3(q) can be deduced 
from other considerations. For instance, if {3(q) is a linear function of q, like in Eq. (4.13), 
we arrive at 

(4.14) _!'___ = -2 n(1 + Pot q) ( 1 + 2_tg2 -. j(/if{3---;;-), 
FN 3 f3o 2 V f3o+f3otq 

from which the ratio {301 //30 can be calculated. 
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If the term under square root in Eq. (4.10) is small enough to be treated as a small 
parameter, the squares of which can be disregarded as compared with the first powers, 
we obtain the following approximate relation: 

(4.15) 

where the subscript N refers to Newtonian quantities. It is seen from Eq. (4.15) that for 
d{J /dq > 0, the velocity h is always less than hN. 

For the case of traditional squeezing flow under a constant load, i.e. when h depends 
on time t, S. J. LEE et a/. [8] explained the oscillatory behaviour of h(t) throughout the 
competition: between inertia and elastic forces. It turns out that an oscillatory compressive 
flow is expected, if only the modified elasticity number is high enough. According to 
our analysis, .even a single "bounce", observed by G. BRINDLEY et al. [9] for viscoelastic 
fluids under more severe loading conditions may appear when iz = 0. Eq. (4.15) leads to the 
following condition of bouncing: 

(4.16) 

which, for a parabolic function: fJ = {3 0 + {12 q2
, gives 

(4.17) 2 f3o 
q = {J

2
(3H-1) . 

It can also be seen from Eq. ( 4.16) that the above described phenomenon of bouncing 
is impossible at all, if {J(q) is a linear function. 

In general, after introducing Eq. (4.10) into Eq. (4.1), we obtain a complex nonlinear 
equation involving, apart from material characteristics of a fluid, the distance h and its 
time derivatives h and h. 

4.2. The case of drowned edge 

If the lower plate is identified with the bottom of a large container, while the top plate, 
being rather a parallelpiped, is drowned in a fluid at the depth I (Fig. 6), we can take 
ad ventage of a procedure similar to that used by R. I. TANNER [18] for viscometric flows. 
To this end, we shift the origin of Cartesian coordinates to the left upper edge ( cf. Fig. 6). 

y' [ 

FIG. 6. 

14* 
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For these new coordinates, viz. 

(4.18) x' = x+a, y' = y-h, 

the force exerted by the fluid on the top part can be expressed as 
a I 

(4.19) F = -2 J T*22 IY'~odx' -2 J T*' 2 lx'=ody'. 

Taking into account that 

dp* 
(4.20) . dx' = -

we have 

0 0 

oT*22 
ox' = C(x' -a), T*12 = fJw'(y)(x' -a), 

(4.21) 
1 

p* = - C(x' -a)2 +p! if p*(a) = p!, 
2 

S. ZAHORSKI 

where p! denotes the maximum thrust in the centre of the upper plate. After integrating 
Eq. (4.19), we arrive at 

(4.22) 
c 3 Cal ( -- ) F= 2p!a+_a_+2 tg V -ABh 

3 . y -AB 
for 

dfJ 
dq > 0, 

and the similar expression with tg replaced by th, for dfJfdq < 0. Since for I ~ h or I ~ a, 
the last terms on the right-hand side of Eq. (4.22) can be disregarded as being of order 
e2 or e, respectively, we finally obtain 

(4.23) F + - 2 * Ca3 - .Pma+-3- , 
fJh 

C = Hfi3, 

independently of the character of function fJ(q). 
The above result has been obtained for C = const, i.e. for a parabolic distribution 

of thrusts on the top plate. In more realistic situations, we may have (cf. (2.20)) 

(4.25) p* = P!f(x'), 

where 

(4.26) f(- oo) = f ' (- oo) = 0, f(a) = 1 , f ' (a) = 0. 

The total force acting on the bottom of the container can. be written as 
a a 

(4.27) p- = 2 J p*dx' = 2p! J f(x')dx', 
-00 -oo 

while that acting on the upper plate as 
a a 

(4.28) p+ = 2 J p*dx' = 2p! J f(x')dx'. 
0 0 

If we assume, moreover, that the forces acting on both plates must be mutually equilibrated, 
and as a consequence, that the force (4.28) is equal to that described by Eq. (4.27), we 
obtain 
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(4.29) 
a 

(1- J f(x)dx) 
-oo 

The above expression introduced into Eq. (4.28) finally gives 

a 

(4.30) p+ = - H f3(q)ha3 3h3 _ __ a __ _ 

1- f f(x)dx 

J f(x)dx 
0 

-00 

By way of illustration, assume that the real distribution of thrusts on the bottom may 
be described by the following exponential function: 

(4.31) 

and 

(4.32) 

p*(- oo) = 0, p*(a) = p!, 

dp* 
dx' (a)= 0. 

These relations used in the above outlined procedure lead to 

(4.33) p+ = _ H f3(q)ha3 Erf(a) 

3h3 a- (•~" +Erf( ;2) )' 
where 

(4.34) 
X 

Erf(x) = J e-r 2dt, 
0 

denotes the error function (cf. (14]). It is seen from Eq. (4.21) that the approximation 
applied is valid for 

(4.35) 

This inequality can be satisfied if 

(4.36) a-Erf( ;
2

) > ~t; "'0,886, 

i.e. approximately for a > 1.8. 
A direct inspection of Eqs. (4.29) or (4.30) shows that the dependence ofF+ on q = 

= -hfh is generally nonlinear, if the extensional viscosity fJ(q) is not constant. For New
tonian fluids ((J = {30 = const) the load-bearing force p+ is a linear function of q, although 
its slope · essentially depends on the approximation used for p*. 

The continuous squeezing flows with drowned edges can be used, in principle, for 
determination of the extensional viscosity function fJ(q). To this end, however, fluid inertia 
effects as well as more realistic (measured experimentally) thrust distributions should 
be taken into account. 
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5. Concluding remarks 

The problems discussed in the present paper enable to formulate the following remarks: 
1) The concept of flows with dominating extensions (FDE), developed in this paper, 

can be used in all the cases of thin-layer flows in which the extensional rates of deformations 
are important (high Deborah numbers and small vorticities), but shearing effects cannot 
be disregarded, what is done under the extensional primary field (ETF) approximations 
proposed by A. B. Metzner. 

2) Numerous plane steady flows in thin layer of viscoelastic fluids, e.g. squeezing 
and lubricating flows, rolling, calendering, milling etc. flows, can be dealt with the formalism 
introduced. To this end, however, appropriate geometrical assumptions, -~nsuring the 
validity of thin-layer approximations, should be made. 

3) In steady flows of the FDE type, an essential role is played by the extensional viscosity 
function. Many results depend on whether the extensional viscosity is an increasing or 
decreasing function in the range of extension rates considered. 

4) The FDE approximations can be applied to plane and axially symmetric, traditional 
unsteady and continuous steady squeezing flows. At least in the last case, the obtained 
results, i.e., the velocity profiles, the load-bearing forces etc., are in a good qualitative 
agreement with the behaviour observed experimentally. 

5) In certain particular situations, the continuous squeezing flows may be used as 
flows enabling the extensional viscosity measurements. For such cases, possible effects 
of inertia should be determined in an accurate way. 
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