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On stability of a column under circulatory load 

R. BOGACZ (WARSZAWA) and 0. MAHRENHOLTZ (HAMBURG) 

THE PAPER is devoted to the generalization of the results obtained for the optimal segmen
tation of Beck's column to the case of column with viscoplastic hinge joints. The problem is 
solved by using the transfer matrix technique. For some parameters of the system qualitative 
change of the shape of characteristic curves has been observed with a considerable discontinuous 
rice of critical load. 

Pra~ poswi<(Cono uog6lnieniu rezultat6w optymalnej segmentacji columny Becka na przy
padek lepkospr~zystego podparcia kolumny oraz pohlczen spr~i:ystymi przegubami. Zagad
nienie rozwi~zano, wykorzystuj~c technik~ macierzy przeniesienia. Przy pewnych parametrach 
ukladu zaobserwowano jakosciow~ zmian~ ksztaltu linii charakterystycznych, kt6rej towarzyszy 
istotny, nieci~gly wzrost obci~zenia krytycznego. 

Pa6oTa nocBH~eHa o6o6~eHmo pe3yJibTaToB orrTHMaJibHOH cerMeHTaQHH I<OJIOHHhi Eei<a Ha 
cnyqaif BH3I<oyrrpyroro orrHpaHHH I<OJIOHHbi H coe,wrneHH:H yrrpyrHMH mapHHpaMH. 3a,n;aqa 
pemeHa, HCIIOJib3YH TeXHHI<Y MaTpHQbl npeo6pa30BaHHH. TipH Hei<OTOpbiX rrapaMeTpaX CHC
TeMbl Ha6mo,n;aJIOCh I<atieCTBeHHoe H3MeHeHHe cpopMbl xapai<TepHCTHtieCI<HX JIHHHH, I<OTOpOMY 
COIIYTCTByeT cyiQeCTBeHHbiH, pa3pbiBHbiH poCT I<pHTHtieCI<OH Harpy3I<H. 

1. Introduction 

VARIOUS generalizations of Beck's problem have received considerable attention in recent 
years. The stability problem of inelastic columns may be said to constitute a special branch 
of the broader area of problems concerned with the dynamic stability of structures. 
Several investigators as ANDERSON, KAR [1], WAHED [2] have studied the influence of 
damping on the stability of a cantilever beam resting on an elastic foundation and subject 
to a follower force at its free end. In most cases, however, the critical load values were 
obtained by approximate methods without estimation of accuracy of the received results. 
Moreover, when dampers are used as structural members or viscoelastic supports acting 
at several distinct points on the column, it is possible to obtain an exact solution [3]. 
As shown in [3] the critical force for the case of a single damper is independent of the 
damping coefficient, but depends mainly on the position of the damper. This paper is 
devoted to the generalization of the above results to the case of Beck's column with in
elastic supports and some hinge-joints. The problem is solved by using the transfer matrix 
technique. 

2. Formulation of the problem 

In the following the structure principally shown in Fig. 1 will be considered. It consists 
of a segmented column supported by various types of inelastic supports or hinge-joints. 
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FIG. 1. Column under circulatory load. 

The segment-joints or the supports are located at positions x1 , x 2 , ... , Xn and are charac
terized by the parameters x1 , •• • , ""' respectively, where 

(2.1) 

the parameters k1 , 1JJ refer to stiffness and damping of the j-th joint or support, w is a cir
cular frequency imposed on the system. For the case of a simple structure, particularly 
when it is subjected to distributed follower load, good results can be obtained using 
LEIPHOLTZ' generalization of the adjointness principle [4]. 

In the case of a more complicated structure with discontinuities of stiffness, cross
section or foundation at several distinct points, the exact solution can be obtained by using 
the transfer matrix technique [3, 5]. 

The simplest form of equation of motion of a uniform segment reads 

(2.2) 

with EI bending stiffness, P longitudinal force, (! density, A cross-sectional area. 
The boundary conditions for the case of clamped end are 

(2.3) y = 0, ay = o ax . 
For the case of free end with tangential force we have 

(2.4) 

and for the free end of Reut's case it follows 

(2.5) 

The exact solution for this segment of constant mass and stiffness distribution has the 
form 
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where 

(2.7) ( 
+ P ... I( P )2 eAw2 )1/2 

).112 = 2EI + Jl 2EI + --eJ . 
Since all dependent variables y, q;, M, Q have a similar constitutive form (2.8), the state 
vector S and the partial transfer matrix Ti can be expressed as follows. The state vector 
S is given by 

(2.8) 
S = [y, q;, M, Q]T = [y, y', Ely", -Ely"']T, 

S?+1 = TtS?, SJ = SixJ = 0). 

The transfer matrix for the segment is defined in [6]. Non-zero elements of the transfer 
matrix for a support sensitive to deflection are 

(2.9) 

and in the case of a support sensitive to rotation 

(2.10) lu = 1, t32 = x,. 

For a hinge-joint the non-zero elements are 

(2.11) 

The transfer matrix for the whole structure can be expressed by 

(2.12) T = Tn Tn-1 ... T2 T1. 

Satisfying the boundary conditions, we get a characteristic equation as relation between 
force and frequency, 

(2.13) f/J(P,w) = 0. 

It is to be noted that in the case of a dissipative structure, the characteristic equation (2.13) 
is of a complex form. In order to get the critical values, one may use the MIKHA YLOV 

stability criterion as a similar one [6]. 

3. Results of numerical calculations 

Using such a method, the influence of viscosity of a support on the critical load can 
be achieved. In genera], viscosity influences the stability boundary if the postcritical behav
iour of the structure has an oscillating form (flutter), while in the case of a divergent 
type of instability the viscosity has no influence. As an illustrative example let us consi
der a column supported at the end by a support of stiffness k and damping coefficient 'YJ· 

The results are shown in Fig. 2. It can be seen that for the case of a damper, acting at the 
end of the column, the critical force takes a smaller value than in the case without damper 
(k = 0). In the range 0 < k < k 0 the critical values increase with i~creasing stiffness for 
both 17 = 0 and 17 > 0, but the value of critical force is independent of the value of 'YJ· 
Thus P cr as function of k jumps to a lower value a k = k0 and further decreases with 
increasing k. 

For the case k > k 0 , the critical force takes the same value for 'YJ = 0 and 17 > 0, 
because in this range of k the instability is of a divergent type. 

5* 

http://rcin.org.pl



284 R. BoGACZ AND 0. MAHRENHOLTZ 
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FIG. 2. Critical load versus spring stiffness. 

A more complicated case was considered in [6] where the material of support was 
elastic-plastic. Due to the nonlinearity, in such a case various configurations of a stable 
and unstable limiting cycle are possible. 

Let us now consider the behaviour of the column with an elastic hinge-joint with 
stiffness characterized by a parameter a, 

_£2£1/1 1 
ex- 2 I . E!Ll L t-O 

(3.1) 

It is interesting to note that for the case of stiffness of an elastic hinge-joint smaller than the 
stiffness of the whole column (a < 1) the critical value is greater than in the case of a uni
form column without the hinge-joint (Fig. 3). 

FIG. 3. Column with hinge-joint. 
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FIG. 4. Critical load versus hinge-joint stiffness. 
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The critical forces versus the stiffness of the hinge-joint for various values of x 1 describ

ing the position of the joint are shown in Fig. 4. It can be seen that for x 1 = 0.5 the 
critical value of load increases rapidly in the range ex E (0.1 , 1.0) with decreasing stiffness 

taking for ex = 0.001 a value about four times greater than for the case without a joint 
(ex~ oo). 

For the values of x 1 E (0.5, 1.0) one can observe that there exists an optimal stiffness 
of the elastic joint for which the critical force reaches a maximum. 

The configuration of the characteristic curves for various joint locations x 1 and a joint 
stiffffness ex = 0.001 is shown in Fig. 5. 
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FIG. 5. Force-frequency plane. Characteristic curves for various joint locations (IX = 0.001). 

It is interesting to observe that for the joint location x 1 E (0.5, 1.0) we have a classical 

shape of characteristic curves with an increasing critical value if the position x 1 tends 

from x 1 = 1.0 to x 1 = 0.5. 
For x 1 = 0.5 we observe an intersection of the characteristic curves and a jump of the 

critical force from Per~ 71 to the value Per~ 81 with a discontinuous decreasing of criti
cal frequency from w ~ 20 tow ~ 4.0. Further change of the joint position in the direction 
of the damped end causes a decrease of the critical force and critical frequency. For the 

case of the column with an elastic joint of stiffness ex = 0.001 located at the position x 1 = 

= 0.001, the critical load is smaller than in the case without a joint. The critical load as 
a function of dimensionless joint location is shown in Fig. 6 for some values of ex. Similarly 
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FIG. 6. Critical load versus joint location for various joint stiffnesses. 

as in the case of viscoelastic support, there is a significant influence of damping on the 
critical load in case of an inelastic hinge-joint. This problem wi1l be discussed in a separate 
paper. 

4. Final remarks 

The stability problem of a cantilever column with a local loss of rigidity or supported 
at a selected point and subjected to a follower force has been considered. 

Considerable increase and decrease of the critical load has been observed depending 
on the parameters of support or hinge-joint. The characteristic curves are found to be 
sometimes very sensitive to small variations of the design variables. For this reason it 
might be regarded as theoretically feasible to make the critical load higher than that in the 
results obtained so far by using a hinge joint. It is interesting to know if such a phenom
enon may occur also in the case of a supertangentialload [7]. , This problem as well as 
a limiting case to Ziegler's model will be disussed in a separate paper. 

References 

1. R. C. KAR, Stability of a nonuniform viscoelastic cantilever beam on a viscoelastic foundation under the 
influence of follower force, SM Arch. , 4, 457-473, 1980. 

http://rcin.org.pl



ON STABILITY OF A COLUMN UNDER CIRCULATORY LOAD 287 

2. I. F. A. W AHED, The instability of a cantilever on elastic foundation under influence of a follower force, 
J. Mech. Engng. Sci., 17, 219-222, 1975. 

3. R. BoGAcz, 0. MAHRENHOLTZ, On the optimal design of viscoelastic structures subjected to circulatory 
loading, in: Optimization Methods in Structural Design, Ed. H. EscHENAUER, Wissenschaftsverlag, 
281-289, 1983. 

4. H. H. E. LEIPHOLZ, On a variational principle for the clamped-free rod subjected to tangential follower 
forces, Mech. Res. Comm., 5, 335-359, 1978. 

5. R. BoGAcz, 0. MAHRENHOLTZ, Optimally stable structures subjected to follower forces, in: Structural 
Control, Ed. H. H. E. LEIPHOLZ, North Holland Publ. Comp., Amsterdam-New York-Oxford, 
139-157, 1980. 

6. R. BOGACZ, 0. MAHRENHOLTZ, Modal analysis in application to design of inelastic structures subjected 
to circulatory loading, in: Proc. of Euromech. 174 on Inelastic Structures under Variable Load, Ed. 
C. Polizetto, 377-386, 1984. 

7. Z. KoRDAS, M. ZYCZKOWSKr, On the loss of stability of a rod under a supertangential force, Arch. 
Mech., 15, 7-31, 1963. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH 
and 

TECHNICAL UNIVERSITY OF HAMBURG-HARBURG, FRG. 

Received June 10, 1985. 

http://rcin.org.pl




