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Wave propagation in laminated plates of inextensible transversely
isotropic elastic material

W. A. GREEN and E. R. BAYLIS (NOTTINGHAM)

THE PROPAGATOR method of GILBERT and Backus [1] is employed to obtain dispersion equations
in a multi-ply laminated plate of finite depth but otherwise infinite extent. Each of the laminae
is formed from the same transversely isotropic material, with the axis of transverse isotropy
lying in the plane of the lamina and the material being inextensible in the direction of this axis.
The material is intended to model a composite formed of an elastic matrix reinforced by a family
of parallel fibres. The plate is constructed by arranging the laminae so that the directions of
inextensibility in adjacent layers are mutually orthogonal, and attention is restricted to waves
travelling along one of these directions. Results are obtained for two different symmetric arrange-
ments of the laminae. For one of these configurations the dispersion equation is independent
of the number of laminae which make up the plate, for the other configuration this is not the
case. Numerical results are obtained using measured moduli for a specific fibre reinforced
composite.

Zastosowano metode ,,propagatorow’” GILBERTA i BACKUSA [1] do wyprowadzenia réwnan dysper-
syjnych wielowarstwowej plyty laminowanej o skoniczonej grubosci i nieograniczonych wymiarach
poprzecznych. Wszystkie warstwy wykonane sa z tego samego materialu poprzecznie izotro-
powego, osie izotropii leza w ptaszczyznach warstw, a material jest nierozciagliwy w kierunku
tych osi. Material ten ma modelowaé¢ kompozyt zlozony ze sprezystej matrycy wzmocnionej
rodzing nierozciagliwych wiokien. Plyta jest tak skonstruowana, ze w sasiadujacych ze soba
warstwach kierunki nierozciggliwo$ci sa wzajemnie ortogonalne, a rozwaza si¢ propagacje fal
w tych wlasnie kierunkach. Otrzymano wyniki dla dwoch roznych symetrycznych konfiguracji
warstw. Dla jednej z nich rownanie dyspersyjne jest niezalezne od liczby warstw tworzacych
plyte, dla drugiej konfiguracji sytuacja jest odmienna. Wykonano obliczenia numeryczne dla
pewnego konkretnego przypadku kompozytu zbrojonego wioknami.

IIpumenen meton ,,mpomaratopoB’’ I'MmasBEPTA M BAkvca [1] Ans BeIBofla AUCNEPCHOHHBIX
YPaBHEHHH MHOT'OCJIOHMCTON JIAMHHWPOBAHHOW TLIHTBHI KOHEUHOH MJIWHBI U ¢ HeOTpaHUUEHHBI-
MH IIOTIEPEYHBIMK pasMepamMu. Bce C10M H3rOTOBJIEHBI U3 TOTO K€ CaMOro IIONEPEUHO H3OTPOTI-
HOT'O MaTepHalia, OCH H30TPOIMH JIEXKAT B IJIOCKOCTAX CJIOEB, @ MAaTePHaJl HEPACTAXKUM B Ha-
TIpaBJIEHHH ITHX OCei. DTOT MaTepHaJl JOJKEH MOAEIHPOBATh KOMIIOSHT, COCTOSILLKI H3 yIIpy-
ToH MaTpHIlbl, YIPOYHEHHOH CEMEHCTBOM HEPACTAMKHMBIX BOJIOKOH. IInHTa Tak HOCTpOEHa,
YTO B COCEACTBYIOLIMX APYT C JPYTOM CJIOAX HAaNpaBJICHMA HEPAacTAXKMMOCTH B3aHMHO ODTO-
TOHAJIbHBI, 4 PACCMATPHBAETCA PaclpPOCTPaHEHME BOJH B 3THX MMEHHO Hanpabyenusx. Ilony-
YeHBLI Pe3yJbTaThbl JJIA ABYX PasHbIX CHMMETPHUHBIX KoH(pHrypaumii cioeB. JlnA onHoi u3
HUX JUCIEPCHOHHOE YpaBHEHME HE 3aBMCHT OT KOJIMUYECTBA CJI0EB, 00pasyloumx NJHTy, JAJA
BTOpO# KoHpHrypamuu curyauusi apyras. ITpoBeneHbl YHCIeHHbIE PacyeThl [UIsi HEKOTOPOIo
KOHKPETHOI'O CJIydasi KOMIIO3HTa apMHPOBaHHOI‘O BOJIOKHaMH.

1. Introduction

THE sTUDY of elastic wave propagation in multi-layered wave-guides is conveniently
carried out using matrix methods and there exists a considerable literature on the subject.
References to the early work are contained in the paper by GiLBERT and Backus [1] who
develop the propagator matrix method originally attributed to Volterra. An alternative
matrix method based on reflection and transmission matrices has been developed and
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exploited by KENNETT [2]. Most of the applications of these matrix methods have been in
the field of seismology. There the waveguide is regarded as either a finite number of layers
overlying a homogeneous half space, as in the work of KENNETT [2] and KERRY [3], or as
a half space composed of a periodic arrangement of strata as considered by GILBERT [4]
and SCHOENBERG [5].

In this paper we adopt the propagator matrix approach described in [1] to obtain
dispersion equations for wave propagation in multilayered plates of finite thickness but
of otherwise infinite extent. We consider specifically a plate constructed from laminae
of a single transversely isotropic material which is inextensible in the direction of transverse
isotropy, the laminae being arranged so that the axes of transverse isotropy in adjoining
layers are orthogonal. We consider harmonic waves propagating in the plane of the
plate and for simplicity here we restrict attention to waves whose direction of propagation
is parallel to the axis of transverse isotropy for one set of layers (and therefore orthogonal
to that in the other set). The method is not, however, restricted to propagation in the
specific direction and results for the general direction of propagation will be presented
in a further paper.

The inextensible transversely isotropic material is intended to model a composite
material consisting of a single family of parallel strong fibres embedded in an elastic
matrix. SPENCER [6] has pointed out that for many static stress analysis problems the
idealized material which is inextensible in the direction of transverse isotropy can provide
an adequate simple model of such a composite. GREEN [7] and GREEN and MILOSA-
VLIEVIC [8] have shown that this idealized material does not provide a good model for
wave propagation in a single plate of fibre reinforced material in either the long wavelength
or the short wavelength limit. On the other hand, BayLis and GRreeN [9] show that for
laminated plates of the type to be considered here, the idealized material can give an
acceptable approximation to the short-wavelength (high frequency) behaviour of a lami-
nated composite, with a considerable simplification in the analysis involved. Aside from
these considerations, the results obtained here give an exact solution to the problem
of wave propagation in a laminate subject to internal constraints.

Elastic wave propagation in laminated plates has been examined by a number of
authors. Amongst these, JONES [10] has obtained the exact dispersion equation for a two-ply
laminate of orthotropic material, whilst KULKARNI and PAGANO [11] report exact results
for 2, 3, 4 and 5-ply laminates of orthotropic materials at a variety of fibre orientations
and undergoing dynamic bending deformations. For multi-ply laminates with a large
number of plies, formed from a periodic array of basic units, results have been obtained
using approximate theories based on some form of averaging procedure for an infinite
body composed of the periodically repeating elements. Examples of these are the mixture
theory of MURAKAMI and HEGEMIER [12], the effective stiffness theory of SUN, ACHENBACH
and HERRMANN [13] and the new quotient method of NEMAT-NAsser [14]. An exact solu-
tion for a multi-layer plate consisting of a finite sequence of unit cells composed of two
alternating layers, each of which is homogeneous and isotropic, has been obtained by
HERRMANN, BEAUPRE and AuLp [15]. This solution relates to S.H. waves propagating
in the plane of the plate and the dispersion equations relating phase-velocity (or frequency)
to wavenumber are found to be independent of the number of repeating unit cells contained



‘WAVE PROPAGATION IN LAMINATED PLATES 303

in the plate. HERRMANN et al. [15] obtained their results using Floquet theory for the
infinite periodic composite. SCHOENBERG [5] uses propagator matrices to obtain the dis-
persion equation for coupled P and SV waves in a multilayer body consisting of a single
isotropic material with slip at the interfaces between layers. He derives the reflection and
transmission coefficient for a half space of such a material. Our approach here closely
follows that of GILBERT [4] and SCHOENBERG [5]. In Sect. 2 we present a general description
of the method. Detailed propagator matrices are derived in Sect. 3 and the dispersion
.equations for two different symmetric configurations are obtained in Sect. 4. Section 5

contains numerical results for a specific composite and the paper closes with a discussion
of these results.

2. The propagator matrix method

The propagator matrix approach can be used to obtain exact solutions to the problem
of wave propagation in a multilayered medium in which each layer is a homogeneous
-elastic material. In this Section we shall give an outline of the method and its application
to laminated plates, leaving the details of specific problems to the following Sections.

Consider a laminated plate composed of n parallel layers of depth Ay, h,, ..., h,,
respectively and choose a Cartesian system of axes Ox, x, x5 such that the layers are parallel
to the x, x;-plane. The plate is assumed to be of infinite extent in the x, and x5 directions
and each of the displacement components u{”(x,,?) (i,j = 1,2, 3) in the r'® layer is
.expressed as the product of a function U{”(x,) of x, only and either sin¢ or cos¢, where
«p = (kpyx, +kix;—wt) and ¢ is the time. These displacements represent a plane wave
of angular frequency , propagating in the direction of the vector k whose components
are (0, k,, k3). When these displacements are substituted into the anisotropic elastic
stress strain relations of the material of the r'® layer, each of the stress components ¢{;’(x;, t)
'will also have the form of the product of a function of x, only, T{}(x,), with either sin¢
or cos¢. The stress functions T{7(x,) are linear combinations of the dlsplacement functlons
U{”(x,) and their first derivatives. Consequently, the equations of motion in the rtt
Jayer reduce to a coupled system of three second-order ordinary differential equations
for U™(x,) (k = 1, 2, 3) and the general solutions involve 6 arbitrary constants. These
«constants can be expressed in terms of the three traction components T, T¢2, T{3 and
the three displacement components U{”, US”, Uy" evaluated at the lower face of the r'
layer, x, = H,_, say. The stress functions T{}’(x,) and displacement functions U{”(x,)
throughout the r*™® layer may then be expressed as linear combinations of the components
.of the six-vector X”(H,_,) where X®™(x,) is defined as (T{?(x,), TVxy), T{(x,),
UM(xy), UL (x,), UP(x))T and T denotes the transpose. In particular, the six-vector
X™(H,)) evaluated at the upper surface x;, = H,_,+h, = H,, is related to X"(H,_,)
by means of the 6 x 6 propagator matrix M through the equation

Q.1 XO(H,) = MOXT(H,_,).

The matrix M is a function of the elastic constants of the material of the r'® layer, the
wave numbers k, and k,, the angular frequency w and the layer thickness 4, .
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The interface conditions between adjoining layers serve to express the traction compo-
nents Ty; (i = 1, 2, 3) and the displacement components U, (j = 1,2, 3) at the bottom
surface of one layer in terms of the same quantities at the upper surface of the layer imme-
diately below. Thus, for an n-layered plate with perfect bonding between each layer,
we have

2.2) XOH,_)=X"YH._) (r=2,3,..,n).
Using Eq. (2.1) in each layer together with Eq. (2.2) then gives
(2.3) XM(H,) = M®OM*"=D  MDXD(H,) = MXD(Hy),

where M is the overall propagator matrix for the composite plate whose lower surface
is at x; = H, and whose upper surface is at x; = H, = Ho+hy+h,+ ... h,.

To examine wave propagation in the plate under traction free conditions at the upper
and lower surfaces, we set the three traction components at the lower surface to zero

(2.4) T{Y(Ho) = T{?(Ho) = T{¥(Ho) = 0.

Equation (2.3) then relates the components of X™(H,) to the three displacement compo-
nents at the lower face U{")(H,) (i = 1, 2, 3). In particular the three traction components

T{P(H,) (j = 1, 2, 3) at the upper surface are given as linear combinations of these three
displacements. The requirement that these traction components be zero leads to a system
of three homogeneous equations for the U{"(H,) (i = 1,2, 3). These have nontrivial
solutions provided the determinant of the coefficients vanishes;

My Mys Mye
2.5 My Mys Mye| =0,
[maq mas mse

where m;; are the elements of the overall propagator matrix M. Equation (2.5) is the
dispersion equation relating the angular frequency w to the wave numbers k,, k3, or
relating the phase velocity v = w/k to the wave number k = (k3+k2%)'/* and the propa-
gation angle y where k, = ksiny, k3 = kcosy. The dispersion equation involves the
elastic constants and density of each layer as well as the layer thicknesses.

Whilst this method of deriving the dispersion equation is straightforward in theory,
the practical difficulty arises in forming the matrix product M of the » individual propa-
gator matrices. This problem is considerably simplified when the laminate is constructed
from a periodic arrangement of two or more layers of material with different properties.
Thus, if the laminate consists of n identical units with each unit comprised of a layer of
material with the propagator matrix M, bonded on top of a layer of material with propa-
gator matrix M,, we have that

2.6) M = (M,M,)’ = (M),

where M = M;M,. By repeated application of the Cayley—Hami]ton theorem, it is
possible to reduce (M)" to a matrix polynomlal of degree 5 in M with known coefficients
depending on # and on the eigenvalues of M. Even with this simplification, the derivation
of the dispersion equation is still a formidable problem.
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A further simplification results when the two materials are isotropic. The motion then
degenerates into two separate disturbances. One is a horizontally polarized shear (S.H.)
disturbance with one nonzero displacement component and one associated nonzero
stress component. The second disturbance involves two displacement components (coupled
S.V. and P) and their associated stress components. For the S.H. waves the propagator
matrices M; , M,, M, reduce to 2 x 2 matrices and (M)'l is expressnble in terms of I and M
only with coefficients depending on » and the eigenvalues of M. The dispersion equation
then reduces to m;, = 0 and is independent of »n, as shown by HERRMANN et al. [15].
In the coupled S.V. and P wave, the matrice§ M,,M,, M are all of order 4 and (M)" is
expressible as a polynomial of degree 3 in M. The dispersion equation then reduces to
a 2x2 determinantal condition.

We are concerned with a multilayered plate made up of a single transversely isotropic
elastic material which is inextensible in the direction of transverse isotropy. The plate is
constructed of alternate layers of this material of thickness 24 and 2d respectively, ar-
ranged so that the directions of transverseisotropy are at right angles to each other in adjacent
layers. In this paper we restrict attention to waves propagating parallel to the axis of
transverse isotropy in the layers of thickness 2/ (and theorefore at right angles to the axis
in the layers of thickness 2d). The motion degenerates in the same way as for isotropic
materials into two separate disturbances. The first of these is an S. H. wave with displacement
polarized at right angles to the direction of propagation and parallel to the plane of the
plate, for which the results are identical to those derived by HERRMANN et al. [15]. The
second disturbance involves coupled S.V. and P waves, for which the displacement is.
polarized in the plane containing the direction of propagation and the normal to the plate.
Whereas for isotropic materials the propagator matrices for this second disturbance are
of order 4, in this problem the constraint of inextensibility associated with one of the layers
in each pair allows the propagator matrices to be reduced to order 2. The dispersion
equation then reduces to m,, = 0 where m,, is the upper right hand corner element of
the overall propagator matrix M. The detailed derivation of these propagator matrices
is considered in the following sections.

3. Solutions of the equations of motion

We consider waves propagating in the x;-direction and with displacements polarized
in the x, x;-plane so that in each layer the displacements have the form

3.1) uy (xx, 1) = U(xy)cos(kxs—owt), u(x, 1) =0
us(xg, t) = W(xpsinlkx;—wt) (k=1,2,3).

The layers are arranged with the direction of inextensibility parallel to Ox; and Ox,
alternately, the former being of thickness 24 and the latter of thickness 2d. We shall refer
to these as the inextensible layer and the isotropic layer, respectively, since the latter
appears isotropic relative to the disturbance under consideration. The governing equations

in each layer have been derived by BAyLis and GREEN [9] and are quoted here without
derivation.
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Inextensible layer

The inextensibility constraint gives W(x,;) = 0 throughout the layer and the equations
of motion reduce to

2

U

(32) ¢ ‘;x,_ +k (g2 —3)U = 0,
1

where '

(33) G S By

e e

o is the density and 4, 7 and u, are elastic moduli. Because of the inextensibility constraint,
the longitudinal stress component 753 is not determined by the constitutive equations but
is obtained directly as a reaction stress from the equation of motion in the x;-direction.
BayLis and GReeN [9] have pointed out that this reaction stress can be singular at the
interface between two layers, allowing a discontinuity in the shear stress ¢, across the
singularity. The normal stress component #,, must be continuous and this is given by the
expression

(3.4) tll = Tll(xl)COS(kx:,—a)I) = QC} dU
dx,

Writing T(x,) = T,,(x,)/ecik and defining the vector X(x,) by X(x,) = (T(x,) U(x,))",
the solution of Eq. (3.2) is given by

cos(kx; —wt).

(3.5) X(xy) = M (x1)X(0).

Here, M, (x,) is the propagator matrix for the inextensible layer and is defined by
C pS

(3.6) M, (xy) = E cl
p

where

(3.7 p* = (c3—2?)/ct

and

(3.8) C = coshpkx,, S = sinhpkx,.

It is easy to show directly from the definition (3.6) that
(3.9 M, (a+b) = M (a)M,(b)
and it follows that the solution for X(x,) can equally be expressed in terms of X at any

-other point, x; = / say. In particular, the value of X* at the upper surface of a layer of
depth 4 is given in terms of the value X* at the lower surface in the form

(3.10) X' = M, X%,
where

(3.11) M, = M, (h).
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[sotropic layer
The equations of motion in this layer are ([9] Egs. (3.2))

2
d ) +k2('U —Cz)U+(C1 Cz)k i
N dx? dx;

=0,

(3.12)
du  ,d*W
_( Z)k__+ C2 d 3

+k2(@*—chHW = 0,

where ¢3 = purfo.
The traction components ¢,, = T;,(x,) cos (kx;—wt), and t;5 = T,3(x,) sin(kx; —wt)
on any plane x; = constant, are given by the expressions

aw
(3.13) o = ot W oet-2W,  Tio = 0t (D k)
1
Writing
(3.14) T(x,) = Tyifocik, S(x,) = T,3/ocik

the solution of Egs. (3.12) give expressions for 7T(x,), S(x,), U(x,), W(x,) in terms
of their values at x; = 0 say, in the form

(3.15) Y(x;) = P(x,)Y(0),
where
T(x,)
(3.16) Y(x,) = SGa)
' Yl UG) |
Wi(x,)
and
3.17)
«S, 2pa? S,
Ci+(l-a)C —4+ (1= S - =4+ 2y(1—w) g, S
aCy+(1-a)C; @ (1-20)g,S, (1-) q, 7( 425>
(l—oc)q,S,+£S'—2— (1—a)Cy +aC, —2pa(C, - C,)
P =l o s (1-a)
—a —u
- S—»»i) —- C,-C oCi+(1—)C
2y (‘111 72 2y (¢, 2) 1+ ( )C,
(1-a) (l—a)(sl ) S,
Cc,—-C = —g,S —g———(1- S
2y (G, 2) 2y @ g292 o 0 (1-a)g,S; )
2ya(C,—C3)
2)/0: S,
zy(l_a)ql (1 a)qz
—(1-2)g 81 —a——

2

(1—a)C; +aC,

is the propagator matrix for the isotropic layer.
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The terms appearing in the matrix in Eq. (3.17) are defined by
(3.18) S; = sinhkg,x;, S, =sinhkg,x,, C, = coshkqg,x,, C, = coshkq,x,,
where
2¢2 Cﬁ ? 1/2 o2 1/2
(3.19) Gt=]—v—2, y:c—%, ql= 1——2 3 q, = ]_E .

The matrix P(x;) possesses the properties of propagator matrices detailed by GILBERT
and Backus [1], in particular P(x,) has determinant unity and

(3.20) P(a+b) = P(a) P(5).
It follows from Eq. (3.20) that

(3.21) Y(x)) = P(x, =) Y(D),
for any 1.

In the applications being considered here we are concerned with relating the value
of the two quantities 7”and U at the upper surface of the layer to their values at the lower
surface, when these two surfaces are themselves subject to some contraint conditions.
There are three separate cases to be considered. In the first of these we have a layer of
thickness 2d with each surface subject to the constraint W = 0, corresponding to the layer
being bonded at each surface to an inextensible layer. Using these conditions gives an
expression for X at the upper surface X" in terms of its value at the lower surface X"
This may be expressed in terms of elements of the propagator matrix P(2d) for the complete
element, but it is convenient to write this as the product P(d)P(d) and the resulting expres-
sion has the form

(3.22) X% = M, X = Rll'“R . XL,
where
r r A [ & f
(323) R _ ( 11 12)’ R _ ( 22 12),
Fa1 Faz a1 Iy

and the elements r;; are related to the elements p,; of the propagator P(d) by the expressions

P1aPar P12P43

Fip = Pin— »  TF12 = P13 — ,
(3.24) Paa Paz
P41P34 P32Pa3
ro, = — == rp = gL A
21 = P31 Das 22 = P33 Da

The second case we consider is that of a layer of thickness d, subject to the constraint
S = 0 at the upper surface and W = 0 at the lower surface. This will correspond to the
top layer of the composite plate. These constraints may be employed to express all the
quantities at the upper surface in terms of the two quantities 7"and U at the lower surface.
In particular we have for T and U at the upper surface

(3.25) X = SX%,



WAVE PROPAGATION IN LAMINATED PLATES 309

where
P P12D21 P~ P12P23
(3.26) S = P22 D22
' — P32P21 P P32P23
1
D22 P22

Finally we may derive the corresponding expression for a plate of thickness d subject
to the constraint W = 0 at the upper surface and S = 0 at the lower surface, in the form

(3.27) X" = SXE.

Here S is given in terms of the components s,; of the matrix S defined in Eq. (3.26) by
A S22 Si2

3.28 S = ( )

( ) S21 S11

In deriving the results (3.28) we have made use of the relations

(3.29) P33 = P11s  Paa = P225 P23 = —Pias  Par = —P3z2,
Pa3z = —DPi2, P3a = —Pai1s
which follow from the expression for P(x,) given in Eq. (3.17).
We note that the transfer matrices M,, S and S defined by Egs. (3.22), (3.26) and (3.28)
are not true propagator matrices in that they do not possess all the properties detailed

by GILBERT and Backus [1]. They do, however, each possess the property of having
a unit determinant.

In the next section we shall make use of these transfer matrices to derive the overall
transfer matrices and hence the dispersion equations for multilayered plates.

4. Dispersion equations

We consider as a basic unit a layer of thickness 2d of the apparently isotropic material,
sandwiched between two layers, each of thickness /4, of the inextensible material, as shown
in Fig. 1(a). From this we form two symmetric multi-ply plates, each of thickness 2n(d+h).

a b ¢
£L LAT"
& P
£
&
sz,
8| 7 =
“t
3 N %
= o

FiG. la. Basic unit. b. Type 1 n-ply plate. c¢. Type II n-ply plate.
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The first of these consists of n of the basic units bonded together as shown in Fig. 1(b),
with outer layers being each of an inextensible material. The second configuration consists
of (n—1) basic units bonded together and bounded at the top and bottom by a half unit,
so that the outer layers are each of an isotropic material, as shown in Fig. 1(c).

In order to obtain the transfer matrix for the basic unit, we must make use of the
interface conditions between the isotropic layers and the two inextensible layers bonded
to it. These are that U and T must be continuous across the interfaces and that W = 0
at the interfaces. The value of S can be discontinuous in view of the possible singularity
in the reaction stress at the boundary in the inextensible layers.

The vector X7 at the top of the basic unit is then given in terms of the vector X2 at the
bottom by the expression

4.1) — DX® = M, M, M, X?
- ?Q(l2 ol

where

4.2) ~ Q=MR, Q=RwM,

and

4.3) Q| = IM;R| = [R].

The overall transfer matrix M for the symmetric configuration of Fig. 1(b) is then
given by

4.4 M=D"

and on using the Cayley—Hamilton theorem this reduces to
(41—43) (Z" it )

4.5 M = —~D - I,

(53 (h—Aa) “(h—h)

where A, and A, are the eigenvalues of D.
Setting the traction component T, to zero at the lower surface of the composite,
the condition that T, should vanish at the top of the plate then becomes

=), _ (-1
Gy e ™ oy M =

Equation (4.6) is satisfied by either of the equations

_ 42 v*CC, C2+C%PS(C1 S5,—419,5,C;)
911 q: {2¢3C + (v2—2c3) C, }

(4.6) My, =

=0

(4.7) or
iy = _qszCSl S, +¢ipS(5:C;—4:19:C, S2)
' ci($1—419252)
and these are the dispersion equations for the composite plate. These equations are inde-
pendent of n and were previously derived for the plate for which n = 1 by BAyLIs and
GREEN [9].

- =0,
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The configuration 1(c) consists of (n— 1) basic units bounded at the top and the bottom
by one half a basic unit so that the outer layer at both surfaces is an isotropic layer. The
traction free conditions require that both T and S should vanish at the two surfaces and
it is therefore necessary to employ the transfer matrix S defined in Eq. (3.26) for the upper

ayer and the matrix S defined in Eq. (3.28) for the lower layer. The overall transfer matrix
M* is then given by

4.8) M* = SM,D"‘1M1§
= VD1V,
where
4.9) V=SM,, V=M,S.
Using the Cayley-Hamilton theorem Eq. (4.8) reduces to
An-1_ ) -1 R an—2__ In—2 »
(4.10) M* = "(*"Ezl—%i) ) vDv- '(AEAI _t)—)— A A VV.

Setting the traction T at the lower boundary equal to zero, the condition that 7" should
vanish at the upper boundary is then that

(A —4;) (911922— 912921)

2 An—z_}.n-&
"'W(_(-l};,—lzz)-lr A 20,0, = 0.

The eigenvalues A,, 4, of D may be written explicitly as

@11y mh = _2_(”1—1"”5_1) (011911 +912G21) (V11 912+ 012 G22)

@12) 2= Va1 d22 +V a12021)" 7, — (V' g1:1922 =V 412921 )
(911922— 912921) (911922—912921)

b

and these when substituted into Eq. (4.11) give the dispersion equation in the form

n—1 — A— -
(4.13) M onl g1z +o02 q21‘1_22)2——}*"2_1(3’111/ 911912 — V12V 21922 )
1/411412421422

When n = 1, Eq. (4.13) reduces to v,,7,, = 0 which agrees with the equation derived
by BayLis and GREEN [9] for the triple plate consisting of a single inextensible layer
of thickness 2k bounded by isotropic layers of thickness 4 at top and bottom. .

=0.

5. Dispersion curves

The dispersion equations (4.7) and (4.13) are readily solved using a micro-computer,
and the resulting dispersion curves are shown in Fig. 2—4. These results are based on the
elastic constants measured by MARKHAM [16] for a carbon-fibre epoxy resin composite
and for which c¢%/c? = 4.297 and c%/c3 = 2.301.

The curves shown in Fig. 2 relate to the plate configuration of Fig. 1(b) and are obtained
by solving Eqs. (4.7). The motion is symmetric relative to some plane x, = H say, if the
displacement U is an odd function of the variable X = x, — H (i.e. if U(—X)=-U(X)
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1

FI1G. 2. Variation of phase velocity with wavelength for Type I plateanda —v =01, b—v =1,
c—v = 10,

and the traction Tis an even function of X (T(—X) = T(X)). The motion is antisymmetric relat-
ive to x, = H if U is an even function of X and 7" an odd function of X. It may be shown
that the first of Eqs. (4.7) (9., = 0) corresponds to a motion which is symmetric with
respect to the middle plane of each of the isotropic layers and antisymmetric with respect
to the middle plane of each inextensible layer. Following HERRMANN et al. [15], we will
designate this motion as SA. The second of Egs. (4.7) (¢,, = 0) corresponds to a motion
which is antisymmetric relative to the middle planes of each of the isotropic and the inex-
tensible layers and this will be designated 44. For a plate with » = 1, the S4 motion
corresponds to a longitudinal wave whilst the A4 motion corresponds to a flexural wave.

Figure 2 shows graphs of the phase velocity versus the reduced wave number (kd)
for the fundamental modes of both the S4 wave and the A4 wave for three different
values of » = d/h. Note that the S4 curves have a common point of intersection for all

-3
2
values of ». This is the point v = 5, kd = %(‘;—3_1) = 1.377, corresponding top = 0,
2

C, = 0. Since the wave number k is related to the wave length 4 by the equation k =
= 2m/A, the limiting behaviour as kd — 0 (and therefore k% — 0) corresponds to long
wave disturbances in the composite plate. It is easy to show that the limiting velocity
of the long wave 44 motion is given by

2 2
2 _ €3 +vez
l+v 7
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whereas the limiting velocity for the long wave S4 motion tends to infinity. The latter
corresponds to a finite cut-off frequency w, in the long wave limit, given by the equation

.0 cos w—dcos i ] = 0.
C2 51
Equation (5.1) has the solutions
od =n wd+h) _=n
(5'2) c, - 2 P "__'2—5

which correspond to a variation of velocity with kd of the form

7 7 v ¢y v 7
@3 & o %kd % e T e (149 2%kd”
in the limit as kd —» 0.

The cut-off frequency for the fundamental SA mode is given by the first of Egs. (5.2)
for values of ¥ > ¢,/(c; —¢;) (= 0.932). The limiting form of the dispersion curve is then
given by the first of Egs. (5.3) and is independent of ». For values of » < ¢,/(c;—c,),
the fundamental mode cut-off frequency is given by the second of Egs. (5.2) and the limit-
ing form of the dispersion curve is dependent on », being given by the second of Eqgs.
(5.3). These conclusions are borne out by the data presented in Table 1 where it is seen
that the dispersion curves for » = 1.0 and » = 10.0 agree with each other and with the
first of Egs. (5.3) in the limit as kd — 0 but they differ from the curve for » = 0.1 which
is in close agreement with the second of Egs. (5.3).

Table 1. Long wavelength solutions for Type I plate

" ¢ v n 1% /[ v R_n’.f-uz
= am ] - lza] /E)

v? } w = Di1 w21 v =10
ek | kd R, kd R, J kd R,
10 0.107 0.77 0.462 1.16 0.519 0.91
20 0.070 089 | 0327 1.15 0.359 0.96
30 0.056 0.93 0.269 1.13 0.291 0.97
40 0.048 0.94 0.234 1.12 0.251 0.98
50 0.043 0.95 0.211 111 0.224 0.984
100 0.030 0.977 0.151 1.08 0.158 0.992
200 0.021 0.989 0.108 1.05 0.111 0.996
300 0.017 0.992 0.089 1.04 0.091 0.997
400 0.015 0.994 0.077 1.03 0.079 0.998
500 0.013 0.995 0.069 1.03 0.070 0.998

In order to examine the high frequency (short wavelength) behaviour of the dispersion
curves, it is necessary to determine whether v is less than or greater than ¢, as kd — co.
Setting v = ¢, in the two equations (4.7), it is possible to show that neither equation is
satisfied for any value of kd and none of the dispersion curves can therefore cross the line
9 = ¢,. Since the fundamental modes for both the S4 motion and the A4 motion lie

7 Arch. Mech. Stos. nr 3/86
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/ above v = ¢, as kd — 0, it follows that they will do so for all kd. It is then straightforward
to deduce from Egs. (4.7) that the limiting velocity as kd — oo is given for the S4 mode
(g:1 = 0) by the conditions

(5.9 §,=0 and ¢,C,=0,
and for the 44 mode (¢,, = 0) by the conditions

(5.5 C,=0 and ¢,5,=0.
Equations (5.4) are satisfied by

(5.6) kljmqukd =mn m=1,2,..)

which gives for the fundamental S4 mode (m = 1), that v varies with kd in the limit as
kd — o0, according to the equation

2?2 2
(5.7) (-T%— =1+ W 5
The solutions of Eq. (5.5) are
(5.8) lim qzkd=(m+i)n m=20,1,2,..)
kd—co0 2
and the variation of  with kd (as kd » co) for the fundamental 44 mode (m = 0) is
2 2
5.9 S AN T
(5:9) a = e
viect |

I 1 1 | | | 1 | E—

— -

] 1 2 3 4 5 6 7 8 kd

FiG. 3. Variation of phase velocity with wavelength for Type II plate forn = landa—» = 0.1, b—v» = 1
c—v = 10.
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Both solutions (5.7) and (5.9) are independent of » and this is evident from the graphs
in Fig. 2.

For the plate configuration shown in Fig. 1(c), the dispersion curves are dependent
on the value of n as well as on the parameter ». Figure 3 shows the curves for the case
n = 1, for which the dispersion equation (4.13) factorises into the two equations

(5.10) 2;;, =0 and 9, =0.

The first of Egs. (5.10) corresponds to the longitudinal motion of the plate whilst the second
gives the dispersion curve for flexural waves. The fundamental modes for each of these
are plotted in Fig. 3 for 3 values of ». In the long wave limit (kd — 0) the flexural wave
velocity tends to the value given by

3
5.11 = "
(i Ty
whereas the velocity of longitudinal waves tends to infinity, corresponding to a finite
cut-off frequency. The cut-off frequency is again determined by Eq. (5.1) and the same
considerations apply as for the plate in Fig. 1(b). Detailed results for kd — 0 are presented
in Table 2 which also contains the solutions (5.3) for comparison. It may be seen from
Fig. 3 that in the short wave limit (kd - o) each of the dispersion curves asymptotes
the Rayleigh wave velocity in the isotropic layer, all the curves running together from
kd = 5 onwards.

Table 2. Long wavelength solutions for Type II plate for n = 1

B e ¢, v 7 2 v? B 7 1? v?
Al Bl &I/}
0.1

v, v = y=1 v =10
c3 kd R, kd R, kd R,
10 0.104 0.81 0.515 0.93 0.599 0.68
20 0.070 0.91 0.356 0.97 0.383 0.84
30 0.056 0.94 0.289 0.987 0.303 0.89
40 0.048 0.95 0.249 0.992 0.259 0.92
50 0.043 0.96 0.223 0.995 0.230 0.94
100 0.030 0.98 0.157 0.999 0.160 0.97
200 0.021 0.99 0.111 1.00 0.112 0.984
300 0.017 0.994 0.091 1.00 0.091 0.989
400 0.015 0.995 0.079 1.00 0.079 0.992
500 0.013 0.996 0.070 1.00 0.070 0.993

In Fig. 4 we present dispersion curves for three different values of n(1, 2, 11) all for
the case of d = (v = 1). For n = 1 we plot the fundamental mode of each of the two
equations (5.10), corresponding to longitudinal and flexural waves respectively. For
values of n > 1 the dispersion equation (4.13) is solved for both the fundamental mode
and the first harmonic and each of these is plotted in Fig. 4. It is evident that the funda-
mental mode corresponds to what becomes the flexural wave for n = 1 whilst the first
harmonic degenerates into the longitudinal wave for » = 1. The noteworthy feature

T*
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FIG. 4. Variation of phase velocity with wavelength for Type II plate withv =1 and a — n=1,
b—n=2,c—n=11.

of these curves is that they all come together into a common curve and this occurs for
decreasing values of kd as n increases. It is straightforward to show that as kd — 0 the

limiting velocity for the fundamental mode of Eq. (4.13) is given by
2 2
2 nes+(n—1Drvez

(12) - n(l +»)

whereas the limiting velocity for the first harmonic tends to infinity, corresponding to

a cut-off frequency & given by

od an(d+h)
cos =

&) Cy

0.

(5.13) cos

Equation (5.13) has the solutions

fo_d L - an(d+h) _ T
Cy 2 Cy N 2 ’

(5.14)

and the variation of velocity with kd as kd — 0 is given by

LI Pl T L H
(513) o 2kd O G T (4w n 2kd°
The limiting behaviour is given by the first of Egs. (5.15) for values of » and n satisfying
veq/[n(l+»)c,] = 1 and by the second of Egs. (5.15) otherwise. The curves in Fig. 4 all relate
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to » = 1 and limiting behaviour is given by the first of Eqgs. (5.15) for n < 1.036 and by
the second of Egs. (5.15) for n > 1.036. These conclusions may be verified from the data
given in Table 3.

Table 3. Long wavelength solutions for Type 1I plate v = 1

B, = [1,]2 /[v_’], Ry = [f}. 1 1] /[i]
2%d ] | | 3 €2 2n 2kd 3

v | n=1 n=2 n=11
c3 } kd R, kd Ry kd R3
10 ! 0.515 0.93 0.269 0.92 0.051 0.84
20 } 0.356 0.97 0.186 0.96 0.034 0.92
30 | 0.289 0.987 0.151 0.97 0.028 0.95
40 0.249 0.992 0.130 0.98 0.024 0.96
50 0.223 0.995 0.116 0.985 0.021 0.97
100 0.157 0.999 0.082 0.992 0.015 0.984
200 l 0.111 1.00 0.058 0.996 0.010 0.992
300 | 0.091 1.00 0.047 0.997 0.009 0.995
400 | 0.079 1.00 0.041 0.998 0.007 0.996
500 i 0.070 1.00 0.036 0.998 0.007 0.997
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