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Some theorems in generalized micropolar thermoelasticity 

D. S. CHANDRASEKHARAIAH (BANGALORE) 

A THEOREM on the uniqueness of solution, a generalized Hamilton's principle and a reciprocal 
theorem for dynamical mixed boundary value problems are obtained in the context of a linear 
anisotropic micropolar thermoelasticity theory, which predicts a finite speed of propagation 
of thermo-mechanical signals. 

W ramach liniowej termospr~zystosci anizotropowych cial mikropolarnych wyprowadzono 
twierdzenie o jednoznaczno§ci rozwi~zan, uog6lnion~ zasad~ Hamiltona oraz twierdzenie 
o wzajemnosci dla mieszanych, dynamicznych zagadnien brzegowych; uwzgl~dniono przypadek 
skonczonej pr~dkosci propagacji zaburzen termomechanicznych. 

B paMKax JIHHeiiuoii TepMoynpyroCTH aHH30TpOnHbiX MHKponon.apHbiX Ten Bhmegeua Teope­
Ma egHHCTBeHHOCTH peiiieHHi:f, o6o6meHHbiH npHHUHll raMHJThTOHa H TeopeMa B3aHMHOCTH 
gJIH CMeiiiaHHbiX, gHHaMWieCKHX KpaeBbiX 3agaq; ytiTeH CJiytiaH KOHetiHOH CKOpOCTH pac­
npOCTpaHeHHH TepMOMeXaHHlleCKHX B03MymeHIIH. 

1. Introduction 

THE THERMOELASTICITY theory formulated by GREEN and LINDSAY [1) and by SUHUBI [2) 
has aroused much interest in recent years. Unlike the conventional coupled thermoelas­
ticity theory [3], this theory includes the temperature-rate among the constitutive variables 
and consequently predicts a finite speed for the propagation of thermo-mechanical disturb­
ances. Since pure thermal signals propagating with a finite speed have actually been 
observed in solids [4, 5], this theory, like some other generalized thermoelasticity theories 
(e.g. [6, 7]), is physically more realistic than the coupled theory, and problems revealing 
interesting phenomena characterizing the theory are contained in [8-17]. BoscHI and 
IESAN [18], and DosT and TABARROK [19] have extended this theory to micropolar elastic 
materials, and CHANDRASEKHARAIAH [20] has formulated an analogous theory for piezo­
electric materials. 

The object of this paper is to prove three main theorems, viz., (i) a uniqueness theorem, 
(ii) a variational principle of the Hamilton-type, and (iii) a reciprocal theorem of the 
Betti-Rayleigh type, for linearized anisotropic micropolar thermoelastic interactions, 
by employing the equations obtained in [18, 19]. In Sect. 2, we summarize the governing 
equations of the generalized (linear) micropolar thermoelasticity and formulate an initial, 
mixed boundary value problem. In Sect. 3, we obtain the equation of energy balance in 
terms of the Biot's potential [21], and in Sect. 4, we employ it to establish a uniqueness 
theorem. In Sect. 5, we establish a Hamilton-type variational principle in terms of a single 
functional and in Sect. 6, we deduce a Betti-Rayleigh type reciprocal theorem. Throughout 
the paper, we show how some known results follow as limiting cases of those obtained 
here. 
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2. 'Basic equations 

In the context ~f the theory formulated in [18, 19], the governing equations of linear 
micropolar thermoelastic interactions in a homogeneous and anisotropic solid are: 

(i) Kinematic equations 

(2.1) 
(ii) Equations of motion 

(2.2) 

(2.3) 

(iii) Equation of entropy 

(2.4) 

(iv) Constitutive equations 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

tiJ,j+eF, = eub 

mlt,J+ Etlktlk+eM, = elu¢~. 

til = Aukl ekl + Buktcf> ,, k + ati() + cxO), 

mu = Bwlekl + cl)klcp l.k + cij(() + cxO), 

q1 = -Oo(b10+ku0.1), 

es = a +'dO+ hiJ- b, e.~- at1eu- cljcf> 1.t· 
/ 

Unless stated to the contrary, the notation and the symbols in these equations and those 
to follow are as explained in [18]. 

Eliminating ti1 from Eqs. (2.2) and (2.5) and mu from Eqs. (2.3) and (2.6), and using 
Eq. (2.1), we obtain 

(2.9) 

(2.10) Bklll(u,,kl + Etkmcf>m.l) + Cltktcf> l. kl+ eli(()+ cxO).j+ Etjk {Alkrs(Us, r + Esrmcf>m) 

+B1krs4>s.r+a1k(O+cx0)}+eMt = eJlJ¢1. 

Eliminating qi and S from Eqs. (2.4), (2.7) and (2.8) and using Eq. (2.1), we obtain 

(2.11) (erfOo)+kt)0, 11 - dO- hii+ 2b, 0, 1 +au(u1, t + e1,k¢k) + cu¢ 1.t = 0. 

Evidently, Eqs. (2.9) and (2.10) are the equations of motion and (2.11) is the equation 
of thermo-mechanical transport, expressed in terms of the displacement components Uj, 

microrotation components cp 1 and the temperature change 0. All these equations are 
coupled together and form a complete system of field equations of the theory considered. 
Apart from the notation, these equations are identical with Eqs. (4.14) of [19]. 

It has been shown [18, 19] that the material constants satisfy the symmetry conditions 

(2.12) 

and the inequality 

(2.13) 

Since (), 1 and e· are arbitrary real variables, it readily follows that 

(2.14) dcx-h;:: 0, kuYtYJ;:: 0 

for arbitrary real variables Yi· 
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We recognize, from Eq. (2.11), tlat dis the specific heat capacity and ku is the 
thermal conductivity tensor. From the inequalities (2. 12h and (2.14) 2 , it follows that 
ku is a positive definite symmetric tensor-a result well known in the coupled ther­
moelasticity theory [3] . Because of its physical meaning, we may take 

(2.15) d > 0. 

If we set h = ex0 d and postulate that 

(2.16) 

then the inequality (2.14) 1 yields 

(2.17) 

rt 0 ~ 0 , 

It is evident that if ex = 0, then ex0 = 0 and that if ex0 > 0, then ex > 0 . We also see 
that if ex0 > 0, then the thermo-mechanical t~ansport equation (2.11) is of the hyper­
bolic-type implying a finite speed of propagation of thermal disturbances (-second sound). 
Consequent1y, it follows that if tu and mii are independent of 0, then Sis also independent 
of £i, see Eqs. (2.5), (2.6) and (2.8), and that if the theory admits second sound, then tu,. 
rnu and S depend on fi In the 1imiting case when ex = 0 (and consequently ex0 = 0) and 
bi = 0, the theory reduces to the conventional micropolar thermoelasticity theory [22]. 
Indeed, if we set ex = bi = 0, in the field equations (2.9)-(2.11) and specialize the equa­
tions for isotropic materials, we recover Eqs. (4.1), (4.2) and (4.4) of [23]. 

If we assume that at time t = 0, the body is at rest in its initial undeformed state and 
is at the reference temperature 00 , zero temperature-rate and zero entropy, then the follow­
ing initial conditions are to be satisfied: 

(2.18) Ut(X , 0) = Ut(X, 0) = </>t(X, 0) = ;pi(X, 0) = 
= O(x, 0) = O(x, 0) = S(x, 0) = 0, x E B,. 

with B being the initial configuration of the body. 
Further, if we assume that for t ~ 0 (i) the surface forces are prescribed on a part 

oB 1 and the displacements on the remaining part 8Bf of the boundary surface 8B of B,. 
(ii) the surface couples are prescribed on a part oB2 and the microrotations on the remain­
ing part 8B2 of 8B, and (iii) the heat flux is prescribed on a part 8B3 and the temperature 
on the remaining part 8B of 8B~, then the following conditions are to be satisfied for t ~ 0: 

(2.19) tunJ = Tt on 8B1 , Ut = Ut on oBf; 

(2.20) mJinJ = L 1 on oB2 , 4>t = rpt on oB~; 

(2.21) qtni = OoQ on oB3 , 0=8 on oB~. 

In these conditions, Ti, Ut, Lt, r!Jb e and Q are the prescribed functions in their respect­
ive domains and ni is the unit outward normal to 8B. With Ft(X, t), Mi(x, t) and r (x, t) 
as the prescribed functions for x E B and t ;;?!: 0, the problem of determining the field 
variables ut(x, t), </>i(x, t) and O(x, t) for x E Band t > 0, by solving Eqs. (2.9)-(2.11) 
constitutes an initial mixed boundary value problem in the context of the theory con­
sidered. We will refer to this problem as the problem associated with the system: 

{(Fj) Mj, r); (Tj) Ut, Lb r!Jj) 8, Q); (uj) 4> j) 0)}. 
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3. Energy equation 

We now obtain the equation of energy balance in terms of the generalized free energy 
function Vintroduced by BIOT [21] through the equation 

(3.1) V = U-800 

where U is the internal energy. 
The energy function considered in [181 is given by 

(3.2) 1p = U-Sl/J 

and has the following explicit form, under the initial conditions (2.18): 

1 • 1 . . . . 
(3.3) (!1J' = lJo- 2 d02

- d(X()()- 2 h(X()2 + (Xbt 0, t () + auet1(0 +(X())+ c,1ljJ 1, 1 (()+(X()) 

1 1 1 
+ 2 ('J,kiJO, t O,j+ 2 AukletJekl + 2 CtJktl/JJ, t4>t.k+BukteiJ~ t,k· 

The scalar function 4> appearing in (3.2) is also given by [18] 

(3.4) 

Eliminating U from Eqs. (3.1) and (3.2) and substituting for tp, gJ and S from 
Eqs. (3.3), (3.4) and (2.8), we obtain the following quadratic form expansion for the 
Biot's energy function V: 

(3.5) 
1 . . 1 

eV = 2 (d0 2 +h(X02 + ('J,kuO. t 0, 1) +h00-b1 0, 10 + 2 Auklellekl 

1 
+ 2 Cukl4>J.t4>z.k+BtJkteucf>t.k· 

In obtaining this expression we have made use of the initial conditions (2.18) and 
have neglected third and higher degree terms in the field variables. 

The kinetic energy per unit mass is given by [18] 

1 • • • • 
(3.6) T = 2 (utut+Iul/J 14> 1). 

With the aid of Eqs. (2.5)-(2.7), (2.9)-(2.11), (3.5) and (3.6), and the divergence 
theorem, we obtain -- [ ~ I (T+V)dm] +N ~ I k,ii,+M,~,+ :. (6+<X6)}dm 

m m 

(3.7) 

where 

(3.8) N = f {(d('J,-h)iJ2+2b10.JJ+kiJ0, 101 }dB 
B 

and m is the mass included in B. 
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The equation (3.7) is the desired equation of energy balance. This is a generalization 

to micropolar thermoelasticity of Eq. (20) of [24]. If we set rx. = bi = 0 in this equation, 

we recover Eq. (5.11) of [23], obtained for isotropic materials. 
We note that because of the inequality (2.13), the integrand on the right-hand side 

of Eq. (3.8) is nonnegative, and accordingly we have 

(3.9) N~ 0. 

4. Uniqueness theorem 

We now employ Eq. (3.7) to establish the following uniqueness theorem. 

THEOREM. If the Biot 's energy function V is positive definite, then there exists at most 

one solution for the problem associated with the system: 

{(Fb Mj, r); (Tl, Uh Lb <1>, e, Q); (ubcph 0)}. 

Proof. To establish the theorem it is sufficient to show that for Fi = Mi = r = 0 

in Band T1 = Ui = e = Q = 0 in their respective domains on oB, the solution is trivial. 

For Fi = Mi = r = 0 and the homogeneous boundary conditions, Eq. (3.7) simplifies to 

(4.1) ~ f (T+V)dm = -N. 
m 

Since the right side of this equation is non-positive, because of (3.9), it follows that 

j(T+ V)dm is a nonincreasing function of time. At t = 0, we have T = V = 0, in view 
m 

of the initial conditions (2.8). Consequently, we should have 

(4.2) J (T+ V)dm ~ 0 for t ~ 0. 
m 

Since T ~ 0 by definition [18], it follows that 

(4.3) T = V = 0 m B for t ~ 0, 

provided V is positive definite. 
The equations (4.3) readily yield the trivial solution 

(4.4) ut(x, t) = c/Jt(x, t) = O(x, t) = 0 for x E B, t ~ 0. 

This completes the proof. 
It may be remarked that this uniqueness theorem is a generalization to micropolar 

thermoelasticity of the corresponding theorem proved in [24]. 

5. Variational principle 

For the initial, mixed boundary value problem considered in Sect. 2, we now obtain 

a generalized Hamilton's principle in the form of the following theorem. 
THEOREM. If t 1 and t2 are two arbitrary instants of time, then the field equations (2.9)­

(2.11) form a set of necessary and sufficient conditions for the variational equation 
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+ f 1Ju1dA + f L,¢,dA- ~ f QOdA] dt ~ 0 
oBt oB2 oB3 

to hold for arbitrary variations ~ub ~¢i and~() in ui, ¢ 1 and() respectively, which, in addition 

to being compatible with the kinematic constraints, satisfy the conditions 

(5.2) ~u1 (x, t) = ~¢ 1 (x, t) = ~O(x, t) = 0 for x E B and t = t 1 , t2 , 

(5.3) ~u1 = 0 on oBl, ~¢ 1 = 0. on oB2, ~() = 0 on oB~ 

and the functions Fb Mb r, ~: , Tb Li and Q, and t being kept unchanged. 

Proof. From Eqs. (3.6) and (5.2), we obtain 
12 12 

(5.4) ~ f dt J Tdm = - J dt J e(ui ~u~ +Jlj¢1 ~¢~)dB. 
It m It B 

Equations (2.1), (2.5)-(2.7), (2.19)-(2.21), (3.3), (5.2) and (5.3) together with the 
divergence theorem yield 

(5.5) 

12 

+ :: Jo,,)dm ~ f dt[ f T1 Ju,dA+ f L1 J¢ 1 dA-~ f Q~OdA 
'i It oB1 oB2 oB3 

-J {Atjkl(u,, kj + Cfkm¢ m,j) + Bijkl¢ l.kj + atiO + r:t.O),j} ~ui dB 
B 

+ J {Bkl)l(u,,kj+ Cfkm¢m,j) + ci)kl¢ l,kj + Cjt(() + r:t.O),j + CfjkA)krs(Us, r + Csrm¢m) 
B 

+ EtjkB)krs¢ s, r+ Et)ka)k(fJ+ r:t.O)} ~¢tdB- r:t. J {d0+hii-2b, IJ,l 
B 

- au(u1• 1 + s1tk¢k)- cu~ 1 , t -ku0.1,} ~fJdB]. 
With the aid of Eqs. (5.4) and (5.5), the variational equation (5.1) reduces to 

12 

(5.6) f dt f [ {Aij"(u,,., + e.,.¢ •. 1) + Bij"t/> 1,,1 + a,1(0 + ~iJ).J + e(F, -il,)} Ju, 
It B 

http://rcin.org.pl



SOME THEOREMS IN GENERALIZED MICROPOLAR THERMOELASTICITY 325 

Obviously, this equation holds if and only ifEqs. (2.9)-(2.11) are satisfied. 

This completes the proof. ' 
It may be noted that whereas the variational principles of the Hamilton-type obtained 

in the conventional thermoelasticity theories involve two functionals (see, for example, 
[25]), the principle obtained above involves just one. In the absence of polar effects this 

variational principle reduces to the one obtained in [24]. 

6. Reciprocal theorem 

We consider two initial, mixed boundary value problems associated with the two 

systems: 

{(Ff'/), M~">, r<">); (Tf">, Uf'J), L1">, <1>1">, (9<TJ>, Q<">); (u~'~>, 4>~'~>, ()<">) }, r; = 1, 2 

and suppose that tfj>, m1J>, qf"> are the corresponding stresses, couple stresses and heat 

flux. For r;, p, = 1, 2, if 

(6.1) ETJIJ = J [e(Ff'~J*u~JJ>+M~TJ>*~~JJ>)- f{(r<">*e<JJ>)+a(r<TJ)*o<JJ>)} 
B 0 

where 

(6.2) 

- 2b.{ (0~7' 1<-ii'"') + a(O~i' * 0'"')}] dB+ f (Ti"' * U\"')dA 
oB1 

I (Uf 11'*t1J>n1)dA + I (L~TJ>*¢1JJ>)dA- J (<P~TJ>*m5f>~1)dA 
as~ asl as~ 

f*g = j'J(x, t-t0 )g(x, fo)dt0 , 

0 

t 

f*g =I f(x, t-to)~t- (x, t0 )dto, 
0 

t 

~ J ()2g 
f*g = f(x, t-to) otJ (x, to)dto, 

0 

we prove the reciprocal theorem that 

(6.3) E12 = Ezt 

Proof. By hypothesis, the functions associated with the two problems considered 

are governed by the field equations (2.9)-(2.11) and the boundary conditions (2.19)-(2.21). 
Taking the Laplace transform of these equations, under the initial conditions (2.l8). 
we obtain the following equations for the transformed functions, by using (2.1). 

(6.4) 
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(6 5) B -e<'~> + C :i:(,> + (1 + ) -()<"> + {A -c,> B 'A:< 'I> · klji kl,J }ikl'f'l,kj CXW CJt ,} Et}k Jkrsers + Jkrs'f's,r 

+(1+a.w)a1klJ<'~>}+eM["> = ew2J1j~'~>, 

(6.6) _g_-,.(7'/)+k lJ<J?-w{(d+hw)0<">+2b {j<'!>+a e~]>+c ;J><'I>} = 0 
Oo tJ • I t . ' tJ I lJ J,t ' 

(6.7) (<">n - f,<'l> ij j- i on oB1, u~'l> = ill"> on oBf, 

(6.8) m~1>n1 = L~'~> on oB2, cj> ~'I) = f/><'1> on oBi, 

(6.9) qf'~>n, = Oo Q<'~> on oB3 , 0<'1> = @<'I> on oB3. 

Also Eqs. (2.5)-(2. 7) yield 

(6.10) 

(6.11) 

(6.12) 

-t<"> - A - c1>+B :i:<">+ (1 + ) -()<"> iJ - tJkl ek tJkl.,., z. k CJ:W au , 

In all these equations, f = f(x, w) denotes the Laplace transform of f(x, t). 

From Eqs. (6.4}-(6.6) and (6.10)-(6.12), we obtain 

·(6.13) {~<J>u1 1 > +m~f>¢P>- tl]>u~2>- mJf>;j;~2 >},j = e(£?>u~2 > + M~ 1 >;j;~ 2 > 

- p<2>u<t>- M<2>7,~t>)- (1 + "'W) {a (O(l>e~~> - -()<2>e<P) + c (0<t>7.<2>- ()(2>~<1>)} 
L l l 'f'• ~ '-" lj ; Jl }1 ij l. 'f'},l 'f'J,t , 

( 6.14) (q~ ~ ) (j{2>- q~2>{j(1>),~ = e(r<I>(j{2>- r<2>0(1>) + Oow {au(e5f>{j<2> 

- e5f>o(1>) + c~i¢5~fo<2>-~~{o(1>) + 2b~(~~>ii<2>- ~t>o<l>) }. 

With the aid of the divergence theorem and the boundary conditions (6.7)-(6.9). 

Eqs. (6.13) and (6.14) yield 

(6.15) I [ ew(i.'''Ul2'+MP'4>l''-i.'2'W'-M/''4>P'> 
B 

- :
0 

(I + ocw )(f ">0<2>-f<2>0"')- 2wb, (I + ""')(0~ /'ii<2
'- ~l!li<")] dB 

+w[ J (Tf 1 >u~ 2>-f,<2>up>)dA+ J (~<]>fit<2>-f,<J>up>)n1 dA 
aB1 aB~ 

+ J (lp>;j;~2>- L~2 >;j;~ 1 >)dA + f (m5t>iP~2>- m5f><Pp>)njdA 

aB~ aB~ 

+ 1 ~:w [oo J (Q<1>(j{2>-Q"<2>fi<n)dA+ J (qp>(9<2>-q~2>{9<1>)n,dA] = 0. 

aB3 aB~ 

Inverting this equation by using the convolution theorem for Laplace transforms, 

we obtain the desired equation (6.3). 
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If we neglect the micropolar effects, this theorem reduces to that obtained in [24]. 
If we also set a = bt = 0 in this theorem we recover the reciprocal theorem of [23], obtained 
for isotropic materials. 
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