
Arch. Mech ., 38, 3, pp . 329-333 , Warszawa 1986 

BRIEF NOTES 

On the existence of materials with absolute memory 

S. POHL and K. FRISCHMUTH (ROSTOCK) 

IN A RECENT PAPER Frischmuth and Kosinski discussed a special case of materials with temporal 
memory, the so-called materials with absolute memory. It was stated that the memory of such 
materials must fade with time. This result would be meaningless if such materials did not exist. 
The aim of the present paper is to show by an example that the postulates of the mentioned 
paper allow for the existence of materials with absolute memory. 

1. Introduction 

ONE POSSIBILITY of describing the constitutive behaviour of material systems is to intro­
duce a space of deformation histories fJ and to define then the stress as a function r: fJ --+ fl'. 
Now, if one formally defines a space PJ and a function r from PJ to the space of stresses fl', 
it is doubtful whether one has described a "real" material system. Consequently, this 
gives rise to the problem of distinguishing the class of "real" materials within the class 
of formally possible descriptions. Therefore several postulates are introduced as the 
continuity of r and the existence of limit states in some sense. 

One of those postulates, the relaxation property [I] of the history space fJ was shown 
to be improper for describing viscoplastic materials, and hence for this purpose other 
(weaker) postulates have to be found. The asymptotic rest property (AR) proposed in [2] 
was proved to have the same consequences as the relaxation property. On the other hand 
AR cannot be dropped in the case of materials with absolute memory, i.e. if 

Vcp # 1p E f!4, cp(O) = VJ(O) 3P P(O) = cp(O) :r(cp*P) # r(VJ*P), 

where cp * P denotes the continuation of the history cp by the process P. This implies that 
viscoplasticity is in contradiction with absolute memory. Consequently, materials with 
absolute memory must be semi-elastic. This result [2] is meaningful only if it can be shown 
that the class of materials with absolute memory is not empty. In [3] this was mentioned 
as an open question. The present paper solves it by giving a simple example of such a ma­
terial. 

2. Materials with absolute memory 

In order to be possibly self-contained, let us briefly recall some notions which are used 
in the sequel. 
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First of all, we have a space t§ of configurations (or deformations) and a space [/ 
of stresses. Functions from the closed interval [0, + oo) to t§ are called deformation his­
tories (or simpler histories). A history cp is defined by its final(!) value cp(O) and by the past 
history CfYr = cpl <o, oo> - as the restrictions of histories to the open interval (0, oo) are called. 
The space of all histories is called f!J, the space of all past histories f!Jr, hence f!J = t§ x f!Jr. 
By a process we denote a function P: Dom P = [0, dur P] ~ t§ such that 

q; E f!J A cp(O) = P(O) ~ cp* p E f!J 

with 

JP(durP-s) for 
(cp*P)(s) = lcp(s-durP) for 

sE [O,durP], 

s E [dur P, + oo). 

The history cp*P is called the continuation of cp by P. 
DEFINITION 1. A collection (t§, !/, f!J, r), r: f!J ~ !/, is called a material with memory. 
The response function r defines an equivalence relation in f!J by (cf. [4]) 

cp ~ 1p iff cp(O) = 1p(O) A V P, P(O) . = cp(O) ~ r(cp* P) = r(VJ* P). 

The classes of this relation are called the states of the material. Of course, large states 
mean a "bad memory", fine partitions mean "good memory"". If the states are single 
histories, the memory is called absolute. 

DEFINITION 2. A material with memory is called a material with absolute memory if 

cp"' V' ~cp = V'· 

3. Examples 

In most cases the power of the set f!J equals that of!/ so that one can find a function 
r: 11 ~ f/ such that even 

r(cp) = r(VJ) ~ cp = 1p 

which ensures the above implication(2). Unfortunately, such a response function is in 
general noncontinuous and because of that of no interest. 

Another example is given by 

a(<p) = {~up {s: <p(s) = <p(O)} 

r(cp) = cp(2a(cp) ). 

if cp is constant 

else 

We assume that f/ = t§ is a subspace of a normed vector space. It is easy to see that for 
two different histories cp and 1p, say cp(s0 ) =f. VJ(s0 ), the "test" P so 

P,; = {~ on 

on 

[0, I], 

[l,s0 +2] 

(1) The arguments e [0, oo) of a history is called the elapsed time. Consequently, we call cp(O) a final 
value. It is the present value of the configuration. 

(2) lfJ """ tp ==> r(l{J) = r(tp) => lfJ = tp, because for dur P = 0 and P(O) = l{J(O) = tp(O) we have tp*P = cp, 

tp*P = tp. 
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with 

T(s) i= T(l) for s < 1 and C = T(l) 

yields 

r(cp * Ps
0

) = cp(so) i= 'fJJ(So) = r(1p*Ps0 ). 

This implies absolute memory. 
Now, if fA is a subspace of a normed space with stronger topology than that of uniform 

convergence, we can conclude for constant histories: 

Consequently, r is continuous in · all constants. 
But in this example there are still some serious drawbacks so that we have to look for 

further examples. Usually histories being equal ,u _:_ a.e. with respect to some influence­

measure fl are identified, and under the assumptions of [1] 1.1, has no atoms but s = 0. 

For such history spaces the above definitions lose their sense. Furthermore it would be 
desirable to define a response function r which is continuous in its whole domain, not 

only in constants. To this end let us turn to our last example. For the sake of simplicity 
we put <§ = f/ = R and define the spaces of histories and past histories by 

co 

81 = {cp: R+ --+ R, J cp2 (t)h(t)dt < + oo }, 
0 

co 

81, = {cp, :R + + --+ R, f cp 2 (t)h(t)dt < + oo}. 
0 

The oblivator h: R + --+ R + + is a continuous monotonically decreasing to zero function 
co 

with { h(t)dt =: M < + oo. Letting 
0 

co 

(cp, 1p)~ = cp(0)1p(O)+ .f rp(s)1p(s)qJ(S)h(s)ds 
0 

and 

co 

(q;, 1p,)~, = J 1p,(s)cp,(s)h(s)ds 
0 

we make !!I and !!I, Hilbert spaces with 81 = 81 ,ffi R. By mapping 81, isometrically onto 

L2 ([0, n]) via the substitution 

I 

X= -z J h(r)dr, j(x) = v-: <p(t), 
0 

we obtain the following: 
LEMMA 

cp, = 0 iff \In E N ( cp, k(ni) )~. = 0, 

8* 
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where 

Now we put 

t 

k(n, t) = sin -'; J h(T)dT. 
0 

r(q;): = q;(O)+ (q;, k(n(q;,.), · ))ar., 
1 

n(cp,.): = f jcp,.( T)jh( T)dT. 
0 

THEOREM. (~, f/, f!J, r) describes a material with absolute memory. 
Proof. Assume that q;(O) =I= 1p(O), but q;,. =I= 1p,.. We denote 

_ {0 t E [0, 1] _ {0 t E [0, lJe) 
q;,.(t)= q;,.(t-l)te(l,oo)' 'P,.(t)= 1p,.(t-l)te(l,oo) · 

Hence 

ip,.,ip,. EPA,., ip,. =I= ip,.. 

By the Lemma there exists a number n E N such that 

(if;,.- ip,., k(n, . n~. =I= 0. 

Now there exists a process P with P(O) = q;(O) = 1p(O), dur P = 1 and 
1 

Consequently, 

J P(l- T)h(T)dT = n. 
0 

r(q;*P)-r('P*P) = P(l)+ ((q;*P),., k(n, · ))~.- (P(l)+ ((1J'*P),., k(n, · ))~.) 

= (ip,.-ip,., k(n, . n~. =I= 0. 

This implies q; =I= 1p ~ not true ( q;"' 1p) or q; f'Oool 1p ~ q; = 1p Q.E.D. 
The above response function r is continuous. The proof is an immediate consequence 

of the chain rule and the estimation 

1 00 00 00 

f lq;(T)Ih(T)dT ~ f lq;(T)Ih(T)dT ~ ( f q;2 (T)h(T)dT) 112
• ( f h(T)dT) 112 ~ v Mllq;ll~. 

0 0 0 0 

REMARK. A generalization is easily obtained since the crucial condition for the above 
construction is just that there should exist a continuous function on R + with values in the 
dual space f!J: SUCh that n {q; E fJI,.:(cp,f(t)) = 0} = {0}. 

teR+ 

4. Final comments 

In this paper we were only interested in constructing an example of a continuous 
material with absolute memory. No other aspects of material theories have been con-

(3) rp , ijJ are the reduced continuations (by the amount 1) of CfJr and tpr , respectively (cf. [1]). 
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sidered. As regards the postulates of [2] we find all of them satisfied. (Of course, those 
postulates are only necessary conditions for a material to be real). Note that for the space 
PJ, the relaxation property holds so that our example is in accordance with the mentioned 
statements of [2]. In the previous examples this was not the case since essential assumptions 
of that paper have not been fulfilled there. 
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