Ryszard JABŁONSKI

INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH ul. Wólczyńska 133, 01-919 Warszawa

Określenie koncentracji chromu w GaAs metodą EPR

1. WSTEP

Atomy chromu są jedną z niewielu domieszek z grupy żelaza, celowo wprowadzanych do związków A_{III}B_V. Domieszkowanie atomami Cr jest najtańszą i dość pewną metodą [1] powtarzalnego otrzymywania za pomocą techniki LEC pół-izolujących kryształów. Kryształy GaAs, GaP, InP określane jako niedomieszkowane są zwykle typu n i zawierają elektrycznie aktywne płytkie domieszki takie jak: C, Si, S.

Celowe domieszkowanie atomami chromu ma na celu kompensację niepożądanych domieszek. Izolowany defekt Cr_{Ga} ma własności amfoteryczne, t.zn. że w materiale typu n neutralny atom Cr wychwytuje elektrony /zachowuje się jako akceptor/, natomiast w materiale typu p wychwytuje dziury /zachowuje się jako donor/. Izolowany atom Cr_{Ga} może znaleźć się w czterech następujących stanach ładunkowych: Cr^{4+} /A⁺, 3d²/, Cr^{3+} /A⁰, 3d³/, Cr^{2+} /A⁻, 3d⁴/ Cr^{+} /A²⁻, 3d⁵/.

Metodą Elektronowego Paramagnetycznego Rezonansu możemy rozróżniać linie odpowiadające jonom chromu o różnych wartościowościach, a tym samym znaleźć ich koncentrację w badanych kryształach GaAs.

2. WIDMO EPR

Pomiary EPR w GaAs:Cr przeprowadzano na spektrometrze EPR pasmo X /prod. Politechniki Wrocławskiej/ wyposażonym w przepływowy układ helowy /firmy Oxford Ins./

Intensywność otrzymywanego widma porównywano z wzorcem Al₂0₃:Cr³⁺ umieszczonym wewnątrz rezonatora pomiarowego poza układem chłodzącym.

2.1. GaAs:Cr²⁺ 3d⁴ S=2

Widmo obserwowane poniżej 20 K 4 ma symetrię tetragonalną i może być opisane następującym hamiltonianem:

ze stałymi: $g_{\parallel} = 1,974/3/, g_{\perp} = 1,997/2/, D = -1,860/16/ cm^{-1},$ a = 0,031/13/ cm⁻¹.

Ze względu na małą wartość a ostatni wyraz hamiltonianu /1/ możemy pominąć.

Rozwiązaniem są wartości własne macierzy zespolonej o wymiarach 5x5. Rutynowo macierz zespoloną rozwiązuje się przez sprowadzenie jej do macierzy rzeczywistej o wymiarach 2n x 2n, w naszym przypadku będzie to macierz 10 x 10.

W celu osiągnięcia żądanej dokładności obliczeń macierz tego rzędu wymaga maszyny cyfrowej /EMC/, która dysponuje co najmniej 14 miejscami znaczącymi /ODRA 1305, CYBER/ pojedynczej precyzji. Jak wiadomo w podwójnej precyzji obliczenia wydłużają się kilkunastokrotnie.

Osie kompleksów tetragonalnych leżą odpowiednio wzdłuż kierunków [001], [100], [010], wartości H_x, H_y, H_z dla wymienionych kompleksów są następujące:

1. [001]	2. [100]	3. [010]
$H_x = -1/\sqrt{2} H \sin\theta$	$H_x = -H \cos \theta$	$H_{x} = -H \cos\theta$
$H_y = -1/\sqrt{2} H \sin \theta$	$H_y = -1/\sqrt{2} H \sin\theta$	$H_y = 1/\sqrt{2} H \sin\theta$
$H_z = H \cos \theta$	$H_z = -1/\sqrt{2} H \sin\theta$	$H_z = -1/\sqrt{2} H \sin\theta$

W przypadku szczególnym zespolona macierz 5 x 5 upraszcza się, ma to miejsce dla kompleksu 1. przy $\Theta = 90^{\circ}$ i dla 2. przy $\theta = 0^{\circ}$. Kąt Θ mierzony jest od kierunku [001].

W tej sytuacji równanie sekularne sprowadza się do równania algebraicznego drugiego i trzeciego stopnia.

 $e^{2} - e(A+B) + A B - a = 0$ $e^{3} - e^{2}(A+B) + e(A B - (a+2b)) + 2A b = 0$

gdzie: A = 4D = -223,04 CHz, B = D = -55,76 GHz

 $a = \begin{cases} g H = 7,7913557 H \\ b = 3/2 g H = 11,687034 H \end{cases}$

 $\chi = B/h = 1,3996649$

Dla płaszczyzny (001) i (110) $H_{rez} = f/\theta/$ obliczone na EMC SM-4 dla trzech kompleksów pokazują rys. 1, 2 – linia ciągła, kółkami zaznaczono wyniki eksperymentalne. W dolnej części wykresu naszkicowano poziomy energetyczne w funkcji pola magnetycznego.

Uwzględniając prawdopodobieństwa przejść związane z wektorami własnymi rozpatrywanej macierzy, przejścia dozwolone wystąpią wewnątrz dubletu |+1>, natomiast przejścia między dubletami przy stosowanym kwancie energii proporcjonalnym do 9,08 GHz, oraz przy polu magnetycznym do 10 kÖę nie wystąpią.

2.2. GaAs: Cr^{3+} 3d³ S = 3/2

Widmo obserwuje się poniżej 5 K, ma symetrię rombową. Atom chromu podstawia Ga i wskutek działania efektu Jahna-Tellera jest przesunięty wzdłuż osi [100]. Można opisać je hamiltonianem spinowym [3]

$$\chi = \overline{g} \ \beta \overline{H} \ \overline{S} + D((S_z^2 - 1/3 \ S(S+1)) + E(S_x^2 - S_y^2)) /3/$$

ze	stałymi:	g _x	=	1,998					XII	[110]		
		g,	-	1,958					УП	[001]		
		8,	=	2,0023					zII	[110]		
		E/I) =	0,266	2Q =	=	2(D ²	+	3E ²)1/2 =	7+2	cm ⁻¹

Ze względu na duże rozszczepienie początkowe dubletów $\pm 1/2 \pm 3/2$ hamiltonian /3/ można zastąpić dla poszczególnych dubletów hamiltonianem ze spinem efektywnym S'= 1/2.

$$H = \overline{g} \ \beta \overline{H} \ \overline{S}' \qquad /4/$$

$$g'^{2} = g_{x}'^{2} \ 1^{2} + g_{y}'^{2} \ m^{2} + g_{z}'^{2} \ n^{2} \qquad /5/$$

$$g_{x}' = g_{x} \ (1+(D-3E)/Q)$$

$$g_{y}' = g_{y} \ (1+(D+3E)/Q)$$

$$g_{z}' = g_{z} \ (2D/Q-1) \qquad /6/$$

Wyrażenie /6/ dotyczą wyższego dubletu A^1 , dla dolnego dubletu A^u należy zmienić znak w D i E oraz przyjąć bezwzględne wartości g'_x , g'_y , g'_z .

_	8x	=	1,1834645	g _x	=	2,36456
AL	g'	-	2,6330157	g,	-	5,15545
	gz	=	0,8164800	gz		1,63484
	g'x		0,8165360	g,		1,63144
Au	gý	-	0,6330600	By	=	1,23945
	8%	=	2,8164800	8,	=	5,63944

Ponieważ mamy do czynienia z symetrią rombową wystąpi 6 kompleksów, dla których cosinusy kierunkowe mają następującą postać:

$$A_{1,2} = (\pm 1/2 \sin\theta(\cos\psi \pm \sin\psi) + 1/\sqrt{2} \cos\theta)^2$$

$$m^2 = 1/2 \sin^2\theta(\cos\psi \pm \sin\psi)^2$$

$$n^2 = (\pm 1/2 \sin\theta(\cos\psi \pm \sin\psi) + 1/\sqrt{2} \cos\theta)^2$$

$$l^2 = (\pm 1/2 \sin\theta(\cos\psi \pm \sin\psi) + 1/\sqrt{2} \cos\theta)^2$$

$$m^2 = 1/2 \sin^2\theta(\cos \pm \sin\psi)^2$$

$$n^2 = (\pm 1/2 \sin\theta(\cos\psi \pm \sin\psi) + 1/\sqrt{2} \cos\theta)^2$$

http://rcin.org.pl

$$A_{5} \qquad \begin{array}{c} 1^{2} = \sin^{2}\theta \, \cos^{2}\varphi \\ n^{2} = \cos^{2}\theta \\ n^{2} = \sin^{2}\theta \, \sin^{2}\varphi \\ n^{2} = \sin^{2}\theta \, \sin^{2}\varphi \\ n^{2} = \sin^{2}\theta \, \sin^{2}\varphi \\ n^{2} = \sin^{2}\theta \, \cos^{2}\varphi \\ A_{1,2,3,4} \quad g^{2} = 1/2(g_{x}^{2} + g_{z}^{2}) \quad g^{2} = 1/4(g_{x}^{2} + g_{z}^{2}) + 1/2 g_{y}^{2} \\ A_{5} \quad g = g_{y} \\ A_{5} \quad g = g_{y} \\ A_{6} \quad g = g_{y} \\ e = g_{x} \\ W \, \text{plaszczyźnie} \, (100) \quad \varphi, \theta = 90^{0} \\ C_{4} \quad \varphi = 45^{0} \\ C_{2} \quad \varphi = 0^{0} \\ A_{1,3} \quad g^{2} = 1/2(g_{x}^{2} + g_{z}^{2}) \quad g^{2} = 1/4(g_{x}^{2} + g_{z}^{2}) + 1/2 g_{y}^{2} \\ A_{2,4} \quad g = g_{y} \\ B_{5} \quad g^{2} = 1/2(g_{x}^{2} + g_{z}^{2}) \quad g = g_{x} \\ A_{6} \quad g^{2} = 1/2(g_{x}^{2} + g_{z}^{2}) \quad g = g_{x} \\ A_{6} \quad g^{2} = 1/2(g_{x}^{2} + g_{z}^{2}) \quad g = g_{z} \end{array}$$

/We wzorach /8/ i /9/ przy symbolach g, dla przejrzystości wzorów nie umieszczono znaczka prim/.

Zależności H_{rez} = g/0/ dla płaszczyzny (100) i (170) pokazują rys. 3, 4, linią ciągłą zaznaczono przebiegi teoretyczne, natomiast kółka oznaczają punkty eksperymentalne. Brak punktów dla dubletu A^{u} wynika z małego prawdopodobieństwa dla przejść w ramach tego dubletu /+3/2/.

Rys. 5 pokazuje widmo EPR zdjęte w 4 K pasmo X, dla kierunków [001] oraz [110] uwzględniające linie chromu dwu- i trójwartościowego. Linią przerywaną oznaczono na rysunku linie, których intensywność była o wiele mniejsza od oczekiwanej. Różnice te wynikają z różnic w obsadzeniu poziomów energetycznych przez elektrony. w zależności od temperatury, w której przeprowadzone są badania.

Rys. 6 pokazuje widma chromu Cr^{2+} , Cr^{3+} zdjęte w zakresie temperatur 4 do 15 K. Linie chromu trójwartościowego zaznaczone są strzałkami, linie w wysokich polach pochodzi od chromu dwuwartościowego, pozostałe cztery linie odpowiedzialne są za defekt typu "antisite" As_{Ga} otrzymany przez naświetlanie neutronami [6].

Jak widać z rysunku, dwie linie pochodzące od Cr^{3+} i odpowiedzialne za kompleksy A_5^1 i A_6^1 /patrz rys. 3/ w okolicach 10 K całkowicie zanikają. Natomiast linia Cr^{2+} odpowiedzialna za kompleksy 3 i 4 /patrz rys. 1/ zmniejsza swoją intensywność dopiero przy 15 K.

Rys. 1. Zależności kątowe H_{rez} = f /0/ GaAs:Cr²⁺ w płaszczyźnie (001) pasmo X temp. 4 K. Kółkami zaznaczono punkty eksperymentalne. Ze względu na prawdopodobieństwa przejść obserwowane są przejścia w ramach dubletu <u>+</u>1

Rys. 2. Zależności kątowe H_{rez} = f /0/ GaAs:Cr²⁺ w płaszczyźnie (110) pasmo X temp. 4 K

Rys. 3. Zależności kątowe H_{rez} = f /0/ GaAs:Cr³⁺ w płaszczyźnie (100) pasmo X temp. 4 K. Kółkami zaznaczono punkty eksperymentalne. Dublet A^U /<u>+</u>3/2/ nie jest obserwowany ze względu na małe prawdopodobieństwo przejść

Rys. 4. Zależności kątowe H_{rez} = f /0/ GaAs:Cr³⁺ w płaszczyźnie (110) pasmo X temp. 4 K. Linią przerywaną zaznaczono przejścia energetyczne o małym prawdopodobieństwie

Rys. 5. Widmo EPR GaAs:Cr²⁺, Cr³⁺ dla kierunku pola megnetycznego równoległego do osi krystalograficznych 001, 110. 2 - Cr²⁺, 3 - Cr³⁺. Pasmo X, temp. 5 K. Linią przerywaną zaznaczono przejścia nie obserwowane

Rys. 6. Zależności temperaturowe dla widm EPR GaAs:Cr²⁺, Cr³⁺ pasmo X, strzałkami oznaczono przejścia Cr³⁺ kompleksów A¹₅, A¹₆, linia w wysokich polach - Cr²⁺, pozostałe cztery linie odnoszą się do defektu "antisite" As_{Ga} - struktura nadsubtelna

2.3. Cr^+ $3d^5$ S = 5/2. Cr^{4+} $3d^2$

W pracy [1,2] obserwowano w zakresie 5 - 30 K pasmo X i Q w bliskiej podczerwieni izotropową linię z g = 1,993 o szerokości 116 Gs. Brak struktury subtelnej autorzy tłumaczą małym rozszczepieniem a \ll 0,006 cm⁻¹ przy stosunkowo szerokich liniach. Linię powyższą przypisuje się Cr⁺, jednak w późniejszych pracach [5] sugeruje się, że może to być superpozycja Cr⁺ i Cr⁴⁺ z wartościami g bliskimi 2.

3. WNIOSKI

Dotychczas przeprowadzone pomiary EPR pokazują, że w dostępnych warunkach aparaturowych /przepływowy kriostat helowy/ możliwe jest stwierdzenie obecności jonów chromu Cr^{2+} , Cr^{3+} oraz ich wzajemnego stosunku. Konieczne jest jednak możliwie dokładne określenie zależności natężenia linii rezonansowych od temperatury, szczególnie poniżej 10 K, ze względu na silne zmiany intensywności linii rezonansowych związanych z jonem Cr^{3+} .

LITERATURA

- 1. Kaufman U., Schneider J.: Solid State Comm. 20, 143 /1976/
- 2. Stauss G.B., Krebs J.: Inst. Phys. Conf. ser. No 33e, 84 /1977/
- 3. Krebs J., Stauss G.H.: Phys. Rev. <u>B15</u>, 17 /1977/
- 4. Krebs J., Stauss G.H.: Phys. Rev. B16, 97 /1977/
- 5. Goswami N.K., Newman R.C.: Solid State Comm, 36, 897 /1980/
- 6. Kamińska M., Palczewska M., Wosik J.: Conf. Def. in Cryst. Szczyrk 85

/Tekst dostarczono 1986.01.20/ 30

http://rcin.org.pl