Jeerzy FRYDRYCHOWICZ, Marek KOJDECKI, Ryszard ŚWIŁŁO WCOJSKOWA AKADEMIA TECHNICZNA, Warszawa

Podwyższenie wiarygodności rentgenograficznych badań materiałowych przez zastosowanie metody regularyzacji

1.. WPROWADZENIE

Ograniczymy się do interpretacji dyfraktogramów rentgenowskich oppartych na równaniach całkowych

$$g(x,y) f(y) dy = h(x), x \in [c,d]$$
 /1.1a/

wzzględnie

$$f(u) g(x-u) du = h(x), /splot/, x \in [c,d]$$
 /1.1b/

O niektórych właściwościach powyższych równań można się dowiedzieć npp. z pracy [4].

Równanie /1.1b/ stanowi podstawę analizy profilu prężka interferencyyjnego, przy czym:

- h ((x) widmo kątowe natężenia promieniowania ugiętego na preparacie badanym,
- g((x) jak wyżej, lecz na próbce wzorcowej,
- f((x) "czysty" profil dyfrakcyjny /"funkcja poszerzająca"/, nie naruszony czynnikami instrumentalnymi.

Oczekujemy, że:

- 1⁰⁰ zagadnienie 1.1 ma rozwięzanie,
- 2⁰⁰ rozwiązanie jest jednoznaczne,
- 3⁰⁰ małe zmiany h i g powodują małe zmiany f /zależność f od g i h jest ciągła/.

W matematyce zagadnienie spełniające warunki 1⁰, 2⁰, 3⁰ /postulaty Hædamarda/ nosi nazwę poprawnie postawionego /zob. np. [1], [3]/. Niiestety, zagadnienie /1.1/ do takich nie należy, co powoduje m.in. zmane trudności w wyliczeniu rozkładu wymiarów krystalitów z poszerzzenia profilu prążka interferencyjnego motodą Warrena i Averbacha [22]. Efekty kwantowe związane z emisją i detekcją promieniowania X

powodują bowiem silne fluktuacje natężenia rozproszonego, co wskutek niespełnienia postulatu 3⁰ powoduje oscylacyjny przebieg zmodyfikowanych /np. przez numeryczne różniczkowanie/ widm kątowych natężenia rozproszonego /patrz np. rys. 5/. Wobec tego wątpliwe jest wszelkiego rodzaju "przybliżone" rozwiązywanie /1.1/, jeżeli wymagamy pewnego stopnia wiarygodności i ewentualne rozwiązanie może istnieć jedynie w sensie przybliżenia najmniejszych kwadratów.

Według naszego rozeznania najsolidniej podbudowanym sposobem rozwiązywania zagadnień niepoprawnie postawionych w rodzaju /1.1/ jest metoda regularyzacji A. Tichonowa, którą tu w największym skrócie omówimy odsyłając po szczegóły do prac [1,3].

Numeryczne rozwiązywanie zagadnienia /1.1/ wymaga zastąpienia równania całkowego przez układ równań liniowych, całkowania – przez kwadraturę; czyli /1.1/ przybiera postać /wężyki oznaczają wektory/:

$$\tilde{g} \cdot \tilde{f} = \tilde{h} \ czyli \ \sum_{j=1}^{n} g_{ij}f_{j} = h_{i}, \ i=1,...,n$$
 /1.2/

Poszukuje się wektora \tilde{f}^X spełniającego warunek:

$$\|\tilde{g}\tilde{f}^{x} - \tilde{h}\| = \min \|\tilde{g}\tilde{f} - \tilde{h}\|$$
 /1.3/

gdzie|| u|| = $\left(\sum_{i=1}^{n} u_{i}^{2}\right)^{1/2}$ oznacza euklidesową normę u.

Ze względu na niestabilność funkcjonału llĝ.f – ĥll można, w celu poprawnego znalezienia rozwiązania zagadnienia /1.3/, dodać do niego funkcjonał stabilizujący /oznaczony przez S w /1.4/ i znaleźć rozwiązanie /1.3/ metodą Lagrange'a:

$$\tilde{f}^{\alpha}$$
: $\|\tilde{g}\tilde{f}^{\alpha} - \tilde{h}\|^{2} + \alpha \|\tilde{f}^{\alpha}\|^{2} = \min (\|\tilde{g}\tilde{f} - \tilde{h}\|^{2} + \alpha \|f\|^{2})$ /1.4/

Tak znalezione rozwiązanie równania /1.2/ jest przybliżeniem pseudorozwiązania tego równania /czyli rozwiązania uogólnionego/. Szukamy więc takiego spośród rozwiązań zagadnienia /1.3/, którego norma euklidesowa jest najmniejsza.

Istota korzyści ze stosowania metody regularyzacji Tichonowa polega na rozwiązywaniu zagadnienia wariacyjnego /1.4/ zamiast /1.2/, przy czym rozwiązanie równania /1.4/ znajduje się zazwyczaj w postaci rozwiązania równania Eulera dla /1.4/, mianowicie:

$$\tilde{g}^{T}\tilde{g}\tilde{f}^{\alpha} + \alpha f = \tilde{g}^{T}\tilde{h} \Longrightarrow \tilde{f}^{\alpha} = (\tilde{g}^{T}\tilde{g} + \alpha E)^{-1}\tilde{g}^{T}\tilde{h}$$
 /1.5/

gdzie $\alpha - tzw.$ parametr regularyzacji. Jak wiadomo z prac [1,3], jeśli błędy określania g i h, $\delta = \|\tilde{h}_0 - \tilde{h}\|$ oraz $\eta_2 = \|\tilde{g}_0 - \tilde{g}\|$ dążą do zera ($\delta \rightarrow 0, n \rightarrow 0$) oraz $\alpha \rightarrow 0$ tak, że $\frac{(\delta + n)}{d} \rightarrow 0$, to rozwiązanie zregularyzowane zbliża się do dokładnego: $\|\tilde{f}^{\alpha} - \tilde{f}_0\| \rightarrow 0$ /zakłada się, że $\tilde{g}_0 \tilde{f}_0 = \tilde{h}_0$ /. http://rcin.org.pl Istnieją sposoby wyznaczania optymalnych wartościć, dla których błąd llfé-f_ll jest najmniejszy /zob. [1,3]/.

2. PRZYKŁADY ZASTOSOWANIA METODY REGULARYZACJI A. TICHONOWA W RENTGENOGRAFICZNYCH BADANIACH MATERIAŁOWYCH

2.1. Wyznaczanie funkcji rozkładu średnic cząstek Ag₂S w zawiesinie koloidalnej metodą małokątowego rozpraszania promieni X /MRX/

Badano koloidalną zawiesinę Ag₂S w żelatynie stosując dyfraktometr małokątowy z wiązką padającą o "nieskończonej" wysokości /wiązką schodkową/ [5]. Wyniki pomiaru widma kątowego natężenia promieniowania były interpretowane na podstawie wzoru z pracy [6]:

$$I(m) = I_{e} \langle (\delta q)^{2} \rangle 4 \widetilde{\Pi}^{3} \int_{O} \left\{ 1 - \frac{8}{15} mR \cdot \frac{1}{2} [\frac{1}{2}; 2, \frac{7}{2}; (mR)^{2}] \right\} R^{4} F(R) dR /2.1 / gdzie: I(m) - zarejestrowane widmo kątowe natężenia promieniowania,$$

I – natężenie promieniowania rozproszonego przez pojedynczy elektron,

A - uogólniony szereg hipergeometryczny,

 $\langle (\delta g)^2 \rangle$ - dyspersja rozkładu gęstości elektronowej,

R – promień cząstki rozpraszającej,

 $m=\frac{2\pi}{2}$ sin 20,0 - kąt rozpraszania, λ - długość fali.

Podstawiając

$$P(m) = \frac{I(m)}{I_{e} \langle (\delta \xi)^{2} \rangle 4 \tilde{\pi}^{3}}$$
 /2.2/

oraz

$$I(m_sR) = 1 - \frac{8}{15}mR_1F_2 \left[\frac{1}{2}; 2, \frac{7}{2}; -(mR)^2\right]$$
 /2.3/

otrzymujemy

$$P(m) = \int_{O} I(m,R) R^{4} F(R) dR$$
 /2.4/

11

Równanie /2.4/ zostało zastąpione układem równań liniowych

$$P(\mathbf{m}_{1}) = \sum_{j=1}^{n} I(\mathbf{m}_{1}R_{j}) \cdot R_{j}^{4} F(R_{j}) \Delta R; \quad i=1,\ldots,n; \quad \Delta R = \frac{b-a}{n}$$
 /2.4a/

gdzie:

a, b - granice całkowania w zmienionym wzorze 2.4 /b - wystarczająco duże/

i rozwiązane z wykorzystaniem programów w języku FORTRAN zamieszczonych w pracy [3]. Programy te, po uzupełnieniu wyspecjalizowanymi procedurami /skalowanie natężeń, obliczanie wartości szeregu hipergeometrycznego, korekcja na tło i pochłanianie i inne/, były realizowane przez komputer ODRA-1305 w systemie GEORGE-3.

Na schemacie 1 przedstawiono uproszczony przebieg obliczeń funkcji F(R) rozkładu średnic częsteczek. Szczegóły zamieścimy w pracach [7,8].

> Wprowadzenie danych: I(m), S, n, a, b, c, d /oznaczenia - jak we wzorach /1.1a/,/1.5// Wyliczenie wartości funkcji: I(m,R)=1 $\frac{8}{15}$ mR·1^F2 $\left[\frac{1}{2}; 2, \frac{7}{2}; -(mR)^2\right]$ na wybranej siatce punktów (m₁,R_j); i,j=1,...,n Wštępne przetwarzanie danych /skalowanie natężeń, korekcja na tło i pochłanianie/ Rozwiązywanie układu równań liniowych: P(m₁) = $\sum_{j=1}^{n}$ I(m₁,R_j)R⁴_j F(R_j) Δ R i=1,...,n, Δ R $\frac{b-a}{n}$ metodą regularyzacji A.N. Tichonowa, w celu wyzna-

czenia F(R) /oznaczenia - jak we wzorze /2.4a//

Wyprowadzanie wyników: funkcji rozkładu wymiarów cząstek F(R) i jej wykresu, wartości parametru regularyzacji

Schemat 1. Uproszczony przebieg wyznaczania funkcji rozkładu średnic cząstek F(R) na podstawie analizy małokątowego rozpraszania promieni X

Na rys. 1 pokazano obliczony rozkład wymiarów częstek F(R) układu modelowego. Jak widać jest on prawie homodyspersyjny, co potwierdza poprawność otrzymanych innę metodę wyników [5]. Operowanie funkcję F(R) wymaga jednakże komentarza. Opisuje ona jedynie modelowy polidyspersyjny układ kul równoważny i n t e r f e r e n c y j n i e układowi badanemu. Ta abstrakcja matematyczna została wprowadzona przez R. Świłłę [6], w celu nadania poględowości wynikom badań metodę MRX. Do wykorzystania wyników z metody MRX /np. w badaniach nad katalizę/ najodpowiedniejsza jest funkcja Y(r) korelacji rozkładu

gęstości elektronowej w badanym preparacie. Funkcja ta ma postać:

$$\gamma(r) = \int \frac{4\pi}{3} R^3 \left[1 - \frac{3}{2} \frac{r}{2R} + \frac{1}{2} \left(\frac{r}{2R} \right)^3 \right] F(R) dR$$

i zawiera w sobie całość informacji dostarczonej przez analizę natężeniowego obrazu dyfrakcyjnego. Wykorzystując funkcję $\gamma(r)$ można wyliczyć np. wewnętrzną powierzchnię właściwą $[m^2/cm^3]$ preparatu wg wzoru:

$$\chi'(0) = \chi'/_{r=0} = \beta \cdot \frac{S}{\nabla}$$
 / β - pewna stała/

/szczegóły patrz [5,6]/.

Przebieg funkcji y(r) dla koloidalnej zawiesiny Ag₂S w żelatynie przedstawia rys. 2.

2.2. <u>Wyznaczenie funkcji rozkładu P(N)</u> wymiarów krystalitów w proszku MgO metodą analizy profilu prąźka interferencyjnego

Użyto MgO otrzymanego przez prażenie MgOH w 600⁰C przez 2 godziny. Na dyfraktometrze HZG-2 zarejestrowano prężek (002) oznaczony h(x)

w równaniu /1.1b/. Z tej samej partii sporządzono wzorzec przez wygrzewanie MgO w temperaturze 1800⁰C w ciągu 4 godzin /dla spowodowania rozrostu krystalitów/. Prążek ten oznaczono symbolem g(u) w /1.1b/.

Do interpretacji wyników użyto wzoru słusznego dla dowolnej struktury kryształu:

$$I(x) = const \iint \frac{\sin^2 (A \cdot N(f_1, f_2) \cdot x)}{(Ax)^2} df_1 df_2$$
 /2.5/

gdzie: x = 2($\Theta - \Theta_0$), A = $\overline{\Lambda} dc \cos \Theta_0 / \Lambda$ Λ - długość fali prom. X

Oznaczając "czysty" profil /fizyczną funkcję poszerzającą/ przez f(x) otrzymamy

$$f(x) = \frac{I(x)}{I(0)} = \int_{0}^{\infty} \frac{P(N)}{N^{2}} \frac{\sin^{2}(A \cdot Nx)}{(Ax)^{2}} dN \qquad /2.6/$$

gdzie: I(O) natężenie w x=O, N - czynnik normalizujący /można go wy-·liczyć np. ze wzoru Scherrera/.

Zastępując /podobnie jak w [9]/ całkę w /2.6/ przez kwadraturę prostokątów, można napisać wzór ostateczny:

$$f(x_{j}) = \sum_{k=1}^{n} \frac{P(N_{k})}{\bar{N}^{2}} \frac{\sin^{2}(A \cdot N_{k} \cdot x_{j})}{(A \cdot x_{j})^{2}} \Delta N ; j=1,...,n ; \Delta N = \frac{b-a}{n} /2.7/$$

gdzie:

b. a - zmienione granice całkowania we wzorze 2.6 /b - wystarczająco duże/.

Uproszczony schemat obliczania P(N) przedstawia rys. 2. Do wyliczenia f(x) jest stosowane twierdzenie o splocie

$$F(t) = \frac{H(t)}{G(t)}$$
 /2.8/

gdzie F, H i G - przekształcenia Fouriera odpowiednio funkcji f, h, g ze wzoru /1.1b/.

Urpszczony przebieg obliczeń funkcji P(N) rozkładu wymiarów krystalitów na podstawie analizy profilu prążka interferencyjnego pokazano na schemacie 2. Jak widać procedura regularyzacji jest stosowana w trakcie obliczeń dwukrotnie.

Zastosowanie szybkiego przekształcenia Fouriera /prostego i odwrotnego/ i metody regularyzacji pozwala wg równania /2.8/ znaleźć "czysty" /pozbawiony wpływu czynników aparaturowych/ profil dyfrakcyjny f(x) w postaci gładkiej /rys. 3/ funkcji, która pojawia się we wzorze /2.7/. Gdy parametr regularyzacji d =0 /rozwiązanie niezregularyzowane/

funkcja P(N) /patrz rys. 4/ ma znany rentgenografom-praktykom przebieg wynikający z niestabilności numerycznej zagadnienia. W tym przypadku rozwiązanie równania /2.7/ jest pozbawione sensu. Stosując powtórnie procedurę regularyzacji ($\alpha = 0,0063$, n=128, $\delta = 0,035$, $\eta = 0,051$, $||\widetilde{h}||=1$, $||\widetilde{g}||=1$, a=10, b=1280, c=-0,01133, d=0,01110, A=2,383, parametr sieci=1,485 A) obliczyliśmy rozkład P(N) wymiarów krystalitów w Mg0. Wynik ilustruje rys. 5.

Schemat 2. Uproszczony przebieg wyznaczania funkcji

rozkładu wymiarów krystalitów na podstawie analizy profilu prążka interferencyjnego

Funkcję rozkładu wymiarów krystalitów wyliczyliśmy także dla proszku wolframowego. W charakterze profilu h(x) został wzięty prążek (110) od wolframu, jako profil g(x) /funkcja aparaturowa/ posłużył prążek (111) od monokrystalicznego glinu. Wyniki przedstawia rys. 6a,b. http://rcin.org.pl

Rys. 6. Wyniki analizy profilu prężka interferencyjnego od proszku wolframu /obliczenia wg schematu 2/ a/ funkcja f(x) poszerzenia prężka, b/ funkcja P(R) rozkładu wymiarów krystalitów /R=N*d, d - parametr sieci/

UWAGI

Na podstawie dotychczasowych wyników uważamy, że ośrodki stosujące zagadnienia odwrotne /nie tylko w rentgenografii/ i wyposażone w średniej wielkości komputery mogą znacznie podwyższyć wiarygodność przeprowadzanych badań przez wprowadzenie regularyzacji do interpretacji wyników pomiarów. Jądra w równaniach /2.4/ i /2.5/ są zadane analitycznie. Trzeba jednak pamiętać, że zostają one w trakcie obliczeń numerycznych przybliżone i należy brać błędy tych przybliżeń pod uwagę. Bardziej szczegółowa dyskusja błędów związanych z tymi obliczeniami zostanie zamieszczona w pracach [7,8].

LITERATURA

1.	A.N.	Tichonow,	V.Ja.	Arsenin,	Metody	rešenija	nekorrekt	nych	zadač,	Moskwa,	1979.
2.	B.E.	Warren, B	.L. Ave	rbach, J.	. Appl.	Phys., vo	ol. 23, s.	497	/1952/		

- 3. A.N. Tichonow, A.V. Gončarskij, V.V. Stepanov, A.G. Jagoła,
- Reguliarizirujuščije ałgoritmy i apriornaja informacija, Moskwa, 1983.
- 4. A. Piskorek, Równania całkowe. Elementy teorii i zastosowania, Warszawa, 1980.
- 5. J. Frydrychowicz, R. Świłło, Biul. WAT, nr 12 /1981/ i nr 12 /1982/.
- 6. R. Świłło, Rozprawa doktorska, WAT, Warszawa, 1978. .
- 7. J. Frydrychowicz, M. Kojdecki /w przyg. do druku/.
- 8. J. Frydrychowicz, M. Kojdecki, R. Świłło /w przyg. do druku/.
- 9. F. Hossfeld, H.I. Oel, Z. Angew. Physik, Bd. 20, H6, /1966/.

/Tekst dostarczono 1986.07.09./