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A boundary method applied to elastic scattering problems 

F. J. SANCHEZ-SESMA (MEXICO) 

A BOUNDARY method for solving soine elastic scattering problems is presented. The scattered 
field is represented in terms of a linear combination of wave functions which are particular 
solutions of the governing equations. Green's functions with singularities or sources located 
outside the region of interest have been chosen. Coefficients of these sources are determined 
such that, for each given frequency of excitation, boundary conditions at the interface the scatter­
er and the rest of the region are satisfied in the least-squares sense. The scatterer can be a cavity 
or an inclusion. For elastic inclusions an interior problem arises and thus the refracted field is 
obtained using exterior sources. Results are presented for the problem of scattering and diffrac­
tion of harmonic SH waves by cavities or canyons in an elastic half-space. Comparison with 
known analytical and numerical solutions yields very good agreement. 

Przedstawiono zastosowania metody brzegowej do analizy problem6w rozpraszania spr~zys­
tego. Pole rozproszone przedstawia si~ za pomOCCl Iiniowej kombinacji funkcji falowych ~dCl­
cych rozwillzaniami szczeg6lnymi r6wnan rozwai:anego problemu. Wykorzystano funkcje 
Greena z osobliwosciami lub zr6dlami znajdujllcymi si~ poza rozpatrywanym obszarem. 
lntensywnosci tych ir6del ustalono w ten spos6b, by. dla kazdej cz~stosci wymuszenia warunki 
brzegowe na powierzchniach rozdzialu mi~dzy elementami rozpraszajllcymi a resztll obszaru 
spelnione byly w sensie warunku najmniejszych kwadrat6w. Czynnikiem rozpraszajllcym moi:e 
bye pustka lub inkluzja. W przypadku inkluzji pojawia si~ problem wewn~trzny i odpowiednie 
pole fal zalamanych otrzymac moi:na za pomocll ir6del zewn~trznych. RozwiClzania przedsta­
wiono dla zagadnienia rozproszenia i zalamania harmonicznych fal scinania SH na pustkach 
kulistych i cylindrycznych w p6lprzestrzeni spr~i:ystej. Por6wnanie ze znanymi rozwillzaniami 
analitycznymi · i numerycznymi pozwala stwierdzic bardzo dobrll zgodnosc wynik6w. 

Tipe~craaneHhi npHMeHeHH.H rpanM'!Horo MeTo~a ~n.H ananH3a 3a~aq ynpyroro pacceHHHH. 
PacceHHHOe none npe~craBn.ReTCH npH IIOMOll\H nHHeMHOH KOM6HHalUIH BOnHOBblX cPYH­
KQHH, 6y~yqHX l!aCTHbiMH pellieHHHMH ypaBHeHHH paCCMaTpHBaeMOH 3a~a'!H. 11CIIOnh30BaHbl 
cPYHKQHH rpHHa C OC06eiDIOCTHMH HnH 1-ICTO'lHHKaMH, HaXO~Hll\HMHCH BHe paCCMaTpHBaeMOH 
o6naCTH. 11HTeHCHBHOCTH 3THX HCTO'IHHKOB ycraHOBneHbl TaKHM o6pa30M, l!T06bl ~nH I<a>K­
~OH T.IaCTOTbi Bbmy>K~eHHH rpaHH'IHbie ycnOBHH, Ha IIOBepXHOCTHX pa3~ena Mem~y pacceH­
BalOll\MMH 3neMeHTaMH M OCTanhHOH l!aCTblO o6naCTM, 6binM B CMbiCne ycnOBMH HaHMeHb­
lliHX I<Ba~paroa. PacceHBaiOll\HM <PaKTopoM MO>KeT 6hiTh nycroTa unu BKnrol!eHHe. B cnyqae 
BKniO'leHMH IIOHBnHeTCH BHy.TpeHHaH 3a~aqa H COOTBeTCTBYJOll\ee none npenOMneHHbiX BOnH 
MO>KHa nonyquTL npu noMOll\H BHelliHHX HCTO'!HHKOB . PerneHMH npe.n:craaneHhr ~nH 3a~aq 
pacceHHHH H npenoMneHHH rapMOHH'!eCKHX sonn c,n:sura SH Ha c<Pepuqeci<HX H QHnun,n:pu­
'lecKHX nycToTax a ynpyroM nonynpocrpalicrae. CpaBHeHue c H3BeCTHhiMM ananMTH'!ec­
KHMH H 'li1CneHHbiMH pellieHHHMM II03BOnHeT KOHCTaTHpOBaTb Ol!eHb XOpOlliee COBna~eHHe 
pe3yn&TaTOB. 

1. Introduction 

SoME problems in earthquake engineering and seismology can be formulated as problems 
of scattering and diffraction of elastic waves. It is of interest to know the surface motion 
at a given site due to incoming and scattered seismic waves in order to assess the potential 
ground motiori. Local geology and topography should be taken into account [16, 29]. 
Other problems involve the dynamic stress concentrations at cavities or other scatterers. 
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168 F. J. SANCREZ-SESMA 

Many problems of scattering and diffraction of elastic waves have been solved using 
suitable wave functions when the geometry permits use of separation of variables. The 
~xcellent monography by Mow and PAo on the subject presents many such solutions for 
infinite domains [26]. The same method of separation of variables has been applied to 
solve the scattering and diffraction of horizontally-polarized harmonic SH waves by 
semi-circular and semi-elliptical cylindrical canyons and alluvial deposits on the surface 
of an elastic half-space [42, 43, 45, 46]. 

For arbitrarily-shaped cavities and incidence of compressional P waves an integral 
formulation has been used to solve the steady state response [7}. The same approach has 
been used to calculate the scattering and diffraction of harmonic SH waves by canyons 
of arbitrary shape and has been appllied to study the effects of the topography on ground 
motion due to the San Fernando earthquake of 1971 [44]. 

A formulation in terms of a singular Freedholm integral equation of the second kind 
has been used to solve the problem of scattering of SH-waves by ridges or other surface 
irregularities in an elastic half-space [38]. 

For surface scatterers some approximate solutions have been obtained. Using asympto­
tic expansions, a solution for arbitrary shaped scatterers has been obtained [32]. This 
approximation is valid for long wavelengths. Other methods assume a scatterer with 
small slopes [20, 24] and/or periodic repetition of .the scatterer [2, 9, 28]. Finite difference 
and finite element methods have been used [4, 5, 8, 21, 30] defining artificial boundaries 
which may introduce spurious waves. This difficulty may be overcome by using the so-called 
efficient-active boundaries [4]. 

In recent years boundary methods have gained increasing popularity [3, 6, 11, 12, 27]. 
This fact is dtte mainly to the availability of high speed computers. Moreover, in many 
problems the reduction of the dimensionality by. one leads to considerable economy in 
numerical work. 

A boundary method which employs multipole expansions of Hankel functions as base 
functions has recently been developed and applied to solve the scattering of SH-waves by 
surface cavities [15, 31] and alluvial valleys [30]. The coefficients of the expansions were 
obtained by least-squares treatment of boundary conditions. 

Herrera in his recent work [17, 18] has developed a general theory of connectivity. 
This theory appears to be a powerful tool to construct base functions [19]. 

A recent survey [47] shows how boundary methods can be used in a finite element 
context. A method which is a combination of the finite element method and the boundary 
element method has been presented [6]. Numerical improvements have been found by 
means of the use of Galerkin's method. 

In this paper a boundary method is presented for solving the scattering and diffraction 
_of harmonic elastic waves by cylindrical scatterers of arbitrary shape. For infinite exterior 
domains the formulation is straightforward. This is also the case for antiplane disturbances 
or SH waves in an elastic half-space. 

The method makes use of the superposition principle. The scattered field is represented 
in terms of linear combinations of wave functions which are in turn part~cular solutions 
of the governing equations. Green's functions with singularities or sources located outside 
the region of interest have been chosen. The idea is similar to CoPLEY's [13] for the Weber 
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equation and has been applied by DE MEY [14] to the solution of Laplace's interior prob­
lem. The singularities which appear in the classical theory of singular integral equations [41] 
are avoided in this treatment. The coefficients of the sources are determined such that, for 
each given frequency of the excitation, boundary conditions at the interface between the 
scatterer and the rest of the region are satisfied in the least-squares sense. 

MILLAR [25] has shown for a related problem that the least-squares criterion leads to 
a representation which converges uniformly in the mean to the solution of the problem, 
provided a complete set of functions is chosen. 

The method has been applied to solve scattering and diffraction of P, SV and SH 
waves by canyons [33, 34, 35] as well as ground motion on alluvial valleys [37] and dynam­
ic stress concentrations on underground cavities [36] for incident SH waves. 

The method is presented in detail for the anti plane case, the formulation for the in-plane 
problem follows in parallel to that presented here. 

2. Basic equations 

In the propagation of elastic SH waves the antiplane displacement w in the z-axis 
direction satisfies the wave equation [I] 

(2.1) 
o2 w o2 w I o2 w 
ox2 + oy2 = c; ai2' 

where Cs = v·flff!- propagation velocity of S waves, ft- shear modulus, (!-medium 
density, and t- time. 

For harmonic waves with time dependence given by exp(iwt), where w- circular 

frequency, and i = y'=I, Eq. (2.1) becomes the reduced wave or Helmholtz equation 

(2.2) 

where ks = wfc!l- the shear wave number. 
The non-zero components of the stress tensor are 

(2.3) 
ow 

T zx = ft -rfX ' 
ow 

Tzy = ft Ty' 

The traction vector !T in surfaces parallel with the z-axis has only the z-component 
which is given by 

(2.4) 

where n - vector normal to a surface parallel with the z-axis. 
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3. The excitation 

For the sake of simplicity we will restrict our treatment to incident plane waves. Let 
an incident field of unitary amplitude be given by 

(3.1) w<i> = exp iw (t-~siny+ __Lcosy), . 
Cs Cs 

where y - angle .of incidence (Fig. I). 

X 

Plane Wll\16 1 
IJ 

FIG. 1. Incident plane wave, free-field solution. 

In an infinite medium the incident wave-field will be termed as the free-field solution; 
that is, the solution in the absence of the scatterer. F~r half-space the free-field can be 
constructed superposing the reflected plane waves in such a way that the plane free surface 
will have zero traction. 

4. The scattered field 

Let us consider a scatterer occupying the region R, as shown in Fig. 2. Let E be the 
exterior domain, S .the common boundary, and n the inward normal unit vector. The 
scatterer can be a cavity or an elastic or rigid inclusion. We will present below the appro­
priate boundary conditions. 

s 

y 

FIG. 2. Definition of regions E and R 
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The exterior field can be written as 

(4.1) W = W(O) + w<s>, 

where w< 0>- free-field solution (w< 0 > = w<i> for infinite domains), and w<s>- scattered 
field. The displacement w<s> must be a solution of Eq. (2.2) in E, fulfilling SOMMERFELD'S 

radiation condition [40] 

(4.2) 

This condition means that the energy which is radiated from the sources must scatter 
to infinity; no energy may be radiated from infinity into the prescribed singularities of the 
field [40]. 

Let w<·s> be of the form 

M 

(4.3) w<s>(P) = 2 r:xmG(P, Qm), 
m=l 

where M- number of sources of SH-waves, r:xm -complex constants to be determined 
from boundary conditions, and G(P, Qm) is the Green's function, i.e. it holds that 

(4.4) 

where (j( ·) is the Dirac delta, PQm- distance between the points P and Qm, P is a point 
in E or S, and Qm is a point in R. The solution of Eq. (4.4) which satisfies the radiation 
condition is given by 

(4.5) G(P , Qm) = ! Hb2 >(ksrm)eiwt, 

where H~/> ( ·)- Hankel function of the second kind and order zero, and '"' = PQm. 
Equation (4.5) represents cylindrical SH-waves propagating radially from Qm with ve­
locity C5 • This fact becomes evident if we use the asymptotic representation of the HankeJ 
function. Thus, for large values of ksrm we have 

(4.6) 

For computations the points Qm will be located equally spaced on curves which should 
have approximately the same shape as the boundary. This choice appears to be reasonable 
for smooth geometries. 

The Green's function for a half-space is immediately obtained by applying the method 
of images [1]. Thus the scattered field satisfies also the free-boundary condition on the 
half-space's surface and the solution procedure needs to consider only the interface between 
the scatterer and the rest of the half-space. Surface and buried scatterers are shown in 
Fig. 3. Figure 4 shows how the method of images is used to construct the scattered field. 

Obtaining solutions for sources of P or SV waves in a half-space is a difficult task 
which requires solving complicated integrals [22, 23]. Their numerical handling requires 
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172 F. J . SANCHEZ-SESMA 

FIG. 3. Surface and buried scatterers in a half-space. 

, -... lma~ source 
(R' 'X 
'- ......... ) 

WQ/////~/7/' 

~~ 
E E 

FIG. 4. Application of the method of images to construct the scattered field in a half-space. The image 
source is located in an image domain R'. 

considerable computation. Approximate results can be obtained for such a class of diffrac­
tion problems using, in addition to sources, homogeneous and inhomogeneous plane 
waves in order to satisfy the boundary conditions on the surface of the half-space [10, 33]. 

5. Boundary conditions 

Let f/ be the traction vector associated to a point and to a plane with unit normal n, 
and 6 the displacement at the same point. In general we can write 

(5.1) 

and 

(5.2) 

f/ = f/(0) + /T(S) 

It is clear that the first term in Eqs. (5.1) and (5.2) stands for the free-field solution 
while the second represents the scattered field. 

If the scatterer is a cavity, we have 

(5.3) f/ = f/< 0 >+ff<s> = 0, at S. 

For an elastic inclusion, conditions that ought to be satisfied are 

(5.4) 

and 

(5.5) 

to have continuity of stresses and displacements. The subscripts E and I ~ean the exterior 
and interior solutions, respectively. 
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For rigid inclusions, rigid body displacements should be imposed as conditions on the 
boundary. If the mass of the scatterer is considered, additonal equilibrium considerations 
are needed [26]. 

6. The interior problem 

Let us restrict ourselves to treat the case of an elastic inclusion. 
The interior solution or refracted field can be constructed in a manner analogous to 

the exterior one. 
Consider the refracted displacement with the form 

N 

(6.1) w<">(P) = ~ p,.G(P, Q;), 
· n=l 

where {J,. - coefficients of the exterior sources which are given by 

(6.2) G(P Q+) = _!_ H<2>(k r+)eiwr 
' n 4 0 s1 n , 

where ks is the shear wave-number in the interior domain, and r;; is the distance between 
1 

the exterior point Q;; and the interior point P as can be seen in Fig. 5. 

FIG. 5. Location of exterior sources to construct the solution of the interior problem. 

7. Numerical solution 

For the sake ofilltJstration we wiJJ consider only the cavity case. Thus, Eq. (5.3) becomes 

(7.1) ~<0>+ T~s> = 0, at S, 

aw 
where Tz = t-t a;· Equation (7.1) can be written as 

(7.2) 
aw(O) aw(S) 

---ail+ an = 0, at S. 

Substituting Eq. (4.3) into Eq. (7.2), we have 

(7.3) 
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- - ··- -·-- - - --· -------· 

The set of coefficients am, m = 1, 2, ... , M will be obtained in the least-squares sense. 
That is, a set for which the mean-square error on S is a minimum. Let the mean square 
error be defined as 

(7.4) ( 

1

1 aw(O) aw(S) 12 
-- + - - dS. 

.! an an 
s 

A straightforward derivation leads us to a system of linear equations given in matrix 
form by 

(7.5) 

where 

(7.6) F, = J~ aG*(P, Q,) ~_(P, Qm) dS 
m on an ' s . 

(7.7) 

and oG*(P, Q1)/on is the complex conjugate of oG(P, Q1)/on. The system in Eq. (7.5) 
is of order M x M and the matrix [F1m] is hermitian. Integrals in Eqs. (7.6) and (7.7) are 
evaluated by numerical integration. 

Once the system is solved, Eqs. (4.1) and (4.3) allow us to compute the displacement 
w at any point of the region E and its boundary. 

For a related problem MILLAR [25] has shown that when the mean-square error is 
minimized on the boundary, the obtained representation converges uniformly in the mean 
to the unique solution of the problem provided a complete set of functions is chosen. 
The completeness of the functions H~2 > (krm(s)) defined on the boundary and its normal 
derivatives can be established. The proof is closely related to that given by MILLAR [25] 
for multipole expansions. Of course, this argument supports the method only for the anti­
plane case. For the inplane problem the support comes from the results obtained for 
geometries which allow separation of variables [26], and from heuristic considerations. 
The complete proof of completeness needs to be developed. 

8. Example~ 

In order to test the accuracy of the method, displacements have been computed at 
points on the surface of a semi-circular canyon under incident plane SH-waves (Fig. 6) 
for several incidence angles and normalized frequencies. Let the normalized frequency 'YJ 

be given by 

where A- incident wave length, a- radius of the canyon, and thus 'YJ is the canyon 
width-to-wave-length ratio. 
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Values of real and imaginary parts of w at some points are presented in Tables 1 and 2 
fo r 'YJ = 0.5, 1.0 and y = 30°, 60°, 90° using several values of M (the number of sources) 
for the computation. Comparison is provided with the values obtained from TRIFUNAc 's 

.. 
X 

SH waves /' 
Incident planet 

y 

FIG. 6. Semi-circular canyon under incident plane SH waves, y = angle of incidence. 

Table 1. Comparison of results to exact solution, semi-cylindrical canyon, t} = 0.50 

t} = 0.50 y = 30° 
x /a M=lO 15 20 EXACT 

-1.50 1.58050 2.34651 1.58499 2.34411 1.58567 2.34345 1.58597 2.34345 
-1.00 1.78212 2.50086 1.79853 2.51549 1.80367 2.52048 1.80367 2.52048 
- 0.50 0.26967 1.18741 0.27035 1.18490 .0.27065 1.18443 0.27064 1.18443 

0.00 -0.37513 1.32332 -0.37752 1.33098 -0.37746 1.33235 - 0.37746 1.33235 
0.50 0.11779 1.13952 0.11346 1.15365 0.11203 1.15642 0.11202 1.15643 
1.00 1.33354 -1.04309 1.32919 -1.12375 1.32788 -1.14951 1.32787 -1.14951 
1.50 1.17565 -1.51 192 1.16390 -1.52688 1.16050 -1.52934 1.16050 -1.52934 

t} = 0.50 y = 600 
x fa M=lO 15 20 EXACT 

- 1.50 -0.35111 2.76297 -0.36179 2.77166 -0.36363 2.77404 -0.36363 2.77404 
-1.00 0.05580 3.42918 0.00487 3.43468 -0.01118 3.43636 -0.01119 3.43634 
-0.50 1.34090 1.89831 1.35122 1.89S79 1.35326 1.89902 1.35327 1.89901 

.0.00 1.55088 0.68743 1.56362 0.68570 1.56577 0.68548 1.56577 0.68549 
0.50 0.97520 -0.20820 0.98511 -0.20577 0.98698 -0.20502 0.98699 -0.20502 
1.00 -0.66929 -0.76096 -0.72590 -0.76897 - 0.74373 -0.77164 -0.74373 -0.77164 
1.50 -0.94689 -0.60061 -0.96035 -0.59339 -0.96288 -0.59116 -0.96288 -0.59116 

t} = 0.50 y = 90° 
x /a M= 10 15 20 EXACT 

-1.50 -1.00549 2.57714 -1.02199 2.58653 -1.02516 2.58821 -1.02516 2.58821 
-1.00 -0.69753 3.53787 -0.76532 3.52327 -0.78662 3.51835 -0.78662 3.51835 
-0.50 1.79185 2.51528 1.80165 2.51953 1.80362 2.52052 1.80365 2.52050 

0.00 2.69832 0.36766 2.71540 0.36239 2.71774 0.36164 2.71774 0.36164 
0.50 1.31194 -1.14324 1.32482 -1.14875 1.32782 -1.14953 1.32785 -1.14954 
1.00 -1.50072 -0.25680 -1.56074 -0.21942 -1 .57964 -0.20761 -1.57965 -0.20761 
1.50 -1.62852 0.25712 -1 .63677 0.27342 -1.63765 0.27722 -1 .63765 0.27722 
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Table 2. Comparison of results to exact solution, semi-cyUndrical canyon, TJ = 1.00 

TJ = 1.00 'Y = 30° 
xja M= 10 15 20 EXACT 

-1.50 -0.63367 1.93452 -0.57841 1.99894 -0.56649 2.00745 -0.56649 2.00745 
-1.00 -0.27270 2.90126 -0.42421 3.17473 -0.47423 3.25607 -0.47425 3.75604 
-0.50 -2.17119 -1.09776 -2.18913 -1.07495 -2.19088 -1.07481 -2.19089 -1.07480 

0.00 -2.12876 0.57789 -2.19232 0.65095 -2.20223 0.66019 -2.20222 0.66020 
0.50 0.27455 1.93222 0.27639 1.95458 0.27938 1.95399 0.27932 1.95397 
1.00 -0.20900 -1.91136 -0.49837 -1.75527 -0.59183 -1.71278 -0.59190 - 1.71278 
1.50 -1.51268 -1.51789 -1.48657 -1.44253 -1.47878 -1.42857 -1.47877 -1.42856 

TJ = 1.00 'Y = 600 
xfa M= to 15 20 EXACT 

-1.50 -1.14891 -0.38026 -1.11820 -0.33940 -1.11216 -0.33234 -1.11216 -0.33234 
-1.00 -3.42344 0.88232 -3.55026 0.99850 -3.59159 1.03019 -3.59159 1.03019 
-0.50 -0.45780 0.64924 -0.45267 0.67753 -0.45104 0.67898 -0.45104 0.67898 

0.00 -0.47612 0.69691 -0.52651 0.76313 -0.53307 0.77163 -0.53307 0.77163 
0.50 0.94607 0.30089 0.93891 0.31092 0.93835 0.30893 0.93833 0.30895 
1.00 -0.56992 -0.07240 -0.75248 0.20648 -0.81286 0.29022 -0.81285 0.29021 
1 ~0 -0.63866 0.75647 -0.58768 0.81934 -0.57536 0.82815 -0.57536 0.82815 

TJ = 1.00 'Y = 900 
x/a M= 10 15 20 EXACT 

-1.50 -0.30442 -0.66994 -0.27899 -0.65685 -0.27456 -0.65505 - 0.27456 -0.65505 
-1.00 -3.75639 -0.54895 -3.78081 -0.46217 -3.78995 -0.43683 -3.78994 -0.43682 
-0.50 -0.47112 3.23936 -0.47485 3.25487 -0.47436 3.25603 -0.47430 3.25604 

0.00 2.6%76 0.28322 2.69189 0.32237 2.68953 0.32773 2.68952 0.32773 
0.50 -0.58142 -1.72149 -0.59171 -1.71117 -0.59201 _:_ 1.71276 -0.59197 -1.71278 
1.00 1.12446 0.44336 1.05657 0.60338 1.03279 0.65191 1.03282 0.65190 
1.50 1.29966 -0.13729 1.33270 -0.11293 1.33999 -0.10967 1.33999 -0.10967 

exact solution [43]. Sources were located equally spaced along a semi-circumference with 
radius 0.8 a. For integration the trapezoidal rule with 99 points at the boundary was used. 

The method has also been app~ied to a semi-elliptical canyon [34]; agreement with the 
published exact solution [45] for the incident plane SH-waves is excellent. 

Amplitudes of surface displacements in a triangular canyon with 45° slopes under 
vertically incoming plane SH waves are given in Fig. 7 for two normalized frequencies 
'YJ = 0.25, 0.5. Sources were placed along lines parallel to the slopes and separated from 
them a distance 0.07 a. At the boundary, 99 points were taken. Tile vertex of the canyon 
was smoothed with a segment of circumference tangent to the slopes. The same figure 
shows results obtained with the finite element method using the efficient-active boundaries 
[4]. The relative size of the discretized domain is also shown. Agreement between solutions 
is very good. Differences are probably due to the different discretization of the vertex. 

The accuracy of the method depends on the number and location of sources; this 
number, for a given accuracy, is an increasing function of the frequency. Location of the 
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3.---------r---------.---------.--------. 
--Presented method 
--- Ffnite element method 

lwl 

2 

OL---------L---------~--------~------~ 
-2 -1 0 

· x/a 

F1o. 7. Amplitudes of displacements for vertically incident SH waves "' = 0.25, 0.5. Comparison of re­
sults with those obtained with the finite element method with efficient-active boundaries (3). 

sources on a curve which follows the boundary appears to be reasonable. The definition 
of the best ·average distance between sources and the boundary requires further scru­
tiny. 

9. Conclusions 

A boundary method has been presented for solving some elastic scattering problems. 
The basis of the method is to construct the scattered wave fields in terms of linear combi­
nations of solutions with singularities located outside the region of interest. The least­
squares criterion simplifies numerical treatment and leads to a representation which 
converges uniformly in the mean to the unique solution of the problem provided that 
a complete set of functions is chosen. 

The obtained results for diffraction of SH-waves were compared with known analytical 
and numerical solutions yielding very good agreement. 

The method appears to be a useful tool in solving some problems of scattering of elas­
tic waves. It could be applied in other. fields to deal with·sound, electromagnetic, or water 
waves. 
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