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A boundary method applied to elastic scattering problems
F.J. SANCHEZ-SESMA (MEXICO)

A BoUNDARY method for solving some elastic scattering problems is presented. The scattered
field is represented in terms of a linear combination of wave functions which are particular
solutions of the governing equations. Green’s functions with singularities or sources located
outside the region of interest have been chosen. Coefficients of these sources are determined
such that, for each given frequency of excitation, boundary conditions at the interface the scatter-
er and the rest of the region are satisfied in the least-squares sense. The scatterer can be a cavity
or an inclusion. For elastic inclusions an interior problem arises and thus the refracted field is
obtained using exterior sources. Results are presented for the problem of scattering and diffrac-
tion of harmonic SH waves by cavities or canyons in an elastic half-space. Comparison with
known analytical and numerical solutions yields very good agreement.

Przedstawiono zastosowania metody brzegowej do analizy problemow rozpraszania sprezys-
tego. Pole rozproszone przedstawia sie za pomoca liniowej kombinacji funkcji falowych beda-
cych rozwigzaniami szczegélnymi rownan rozwazanego problemu. Wykorzystano funkcje
Greena z osobliwosciami lub Zrodtami znajdujgcymi si¢ poza rozpatrywanym obszarem.
Intensywnosci tych zrodel ustalono w ten sposob, by dla kazdej czestosci wymuszenia warunki
brzegowe na powierzchniach rozdzialu migdzy elementami rozpraszajacymi a reszta obszaru
spelnione byly w sensie warunku najmniejszych kwadratow. Czynnikiem rozpraszajacym moze
by¢ pustka lub inkluzja. W przypadku inkluzji pojawia sie¢ problem wewnetrzny i odpowiednie
pole fal zalamanych otrzyma¢ mozna za pomoca Zrodel zewnetrznych. Rozwigzania przedsta-
wiono dla zagadnienia rozproszenia i zalamania harmonicznych fal §cinania SH na pustkach
kulistych i cylindrycznych w pélprzestrzeni sprezystej. Porownanie ze znanymi rozwigzaniami
analitycznymi i numerycznymi pozwala stwierdzi¢ bardzo dobra zgodno$é wynikéow.

ITpeacTaBreHb! NPHMEHEHHS TPAHUYHOIO METOJA [IA aHA/AM33 33Ja4u YIPYIHOro pacCesiHMsA.
PaccesnHoe mnone npeACTABNAAECTCA NPH TOMOLIHM JIMHEHHOH KOMOMHAIMHM BONHOBBIX (yH-
KIHii, OYAyUMX YacTHBIMH pellleHHsAMH YpaBHeHHIl paccmaTpuBaemoii sagaun. Mcenonsaoeansi
hynxaun I'puna ¢ 0coGEHHOCTAME HIIM HCTOUHHKAMH, HAXOAAUIUMHUCA BHE PaccMaTpHBaeMOMH
obnacti. MIHTEHCHBHOCTH 9THX HCTOMHHKOB YCTAHOBJIEHBI TAKMM 00pasom, utoObl I Kay-
10/ HACTOTh! BLIHYYK/ICHHA IPaHHYHbLIC YCIOBHA, HA NOBEPXHOCTAX pasfena MeXXIy pacceH-
BAIOIMMH JIEMEHTAMH M OCTAJBHOM 4acTeio 00j1acTH, OBLTH B CMBICIE YCIOBHS HAWMEHb-
mnx KkBaaparos. PaccenBalomum daxktopom moxeT OBITH MyCcTOTa MM BKuodeHue. B ciyuae
BIJIIOYEHHA TI0AB/IACTCA BHYTPCHHAA 3a/1aua M COOTBETCTBYIOLIEE M0JI€ NPEIOMIICHHBIX BOJIH
MOYKHA NOJIYUHTE NpH HIOMOIH BHEUIHMX HCTOUHHMKOB. PELUCHHH NpeacTaBJIeHBI 1A 3a7a4
paccesHMA M MPeJOMIJICHHS rapMOHHYecKnX BoiH caBura SH Ha cepuuecKux W IWIMHADH-
YecKHX MyCTOTaX B YNPYroM nojynpocrpaHcTBe. CpaBHeHHe C HM3BECTHBIMH aHAJHTHYEC-
KHMH M YHCICHHBIMH PellleHHsIMM MO3BOJIACT KOHCTaTHPOBATh OYeHb XOpolllee COBNAjeHHE
PesyIbTaToOB.

1. Introduction

SoME problems in earthquake engineering and seismology can be formulated as problems
of scattering and diffraction of elastic waves. It is of interest to know the surface motion
at a given site due to incoming and scattered seismic waves in order to assess the potential
ground motion. Local geology and topography should be taken into account [16, 29].
Other problems involve the dynamic stress concentrations at cavities or other scatterers.
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Many problems of scattering and diffraction of elastic waves have been solved using
suitable wave functions when the geometry permits use of separation of variables. The
excellent monography by Mow and PAo on the subject presents many such solutions for
infinite domains [26]. The same method of separation of variables has been applied to
solve the scattering and diffraction of horizontally-polarized harmonic SH waves by
semi-circular and semi-elliptical cylindrical canyons and alluvial deposits on the surface
of an elastic half-space [42, 43, 45, 46).

For arbitrarily-shaped cavities and incidence of compressional P waves an integral
formulation has been used to solve the steady state response [7]. The same approach has
been used to calculate the scattering and diffraction of harmonic SH waves by canyons
of arbitrary shape and has been appllied to study the effects of the topography on ground
motion due to the San Fernando earthquake of 1971 [44].

A formulation in terms of a singular Freedholm integral equation of the second kind
has been used to solve the problem of scattering of SH-waves by ridges or other surface
irregularities in an elastic half-space [38].

For surface scatterers some approximate solutions have been obtained. Using asympto-
tic expansions, a solution for arbitrary shaped scatterers has been obtained [32]. This
approximation is valid for long wavelengths. Other methods assume a scatterer with
small slopes [20, 24] and/or periodic repetition of the scatterer [2, 9, 28]. Finite difference
and finite element methods have been used [4, 5, 8, 21, 30] defining artificial boundaries
which may introduce spurious waves. This difficulty may be overcome by using the so-called
efficient-active boundaries [4].

In recent years boundary methods have gained increasing popularity [3, 6, 11, 12, 27].
This fact is due mainly to the availability of high speed computers. Moreover, in many
problems the reduction of the dimensionality by one leads to considerable economy in
numerical work.

A boundary method which employs multipole expansions of Hankel functions as base
functions has recently been developed and applied to solve the scattering of SH-waves by
surface cavities [15, 31] and alluvial valleys [30]. The coefficients of the expansions were
obtained by least-squares treatment of boundary conditions.

Herrera in his recent work [17, 18] has developed a general theory of connectivity.
This theory appears to be a powerful tool to construct base functions [19).

A recent survey [47] shows how boundary methods can be used in a finite element
context. A method which is a combination of the finite element method and the boundary
element method has been presented [6]. Numerical improvements have been found by
means of the use of Galerkin’s method.

In this paper a boundary method is presented for solving the scattering and diffraction
of harmonic elastic waves by cylindrical scatterers of arbitrary shape. For infinite exterior
domains the formulation is straightforward. This is also the case for antiplane disturbances
or SH waves in an elastic half-space.

The method makes use of the superposition principle. The scattered field is represented
in terms of linear combinations of wave functions which are in turn particular solutions
of the governing equations. Green’s functions with singularities or sources located outside
the region of interest have been chosen. The idea is similar to CopLEy’s [13] for the Weber
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equation and has been applied by DE Mgy [14] to the solution of Laplace’s interior prob-
lem. The singularities which appear in the classical theory of singularintegral equations [41]
are avoided in this treatment. The coefficients of the sources are determined such that, for
each given frequency of the excitation, boundary conditions at the interface between the
scatterer and the rest of the region are satisfied in the least-squares sense.

MILLAR [25] has shown for a related problem that the least-squares criterion leads to
a representation which converges uniformly in the mean to the solution of the problem,
provided a complete set of functions is chosen.

The method has been applied to solve scattering and diffraction of P, SV and SH
waves by canyons [33, 34, 35] as well as ground motion on alluvial valleys [37] and dynam-
ic stress concentrations on underground cavities [36] for incident SH waves.

The method is presented in detail for the antiplane case, the formulation for the in-plane
problem follows in parallel to that presented here.

2. Basic equations

In the propagation of elastic SH waves the antiplane displacement w in the z-axis
direction satisfies the wave equation [1]
3w Pw 1 8%w

2.1 gt S E

where ¢, = ' u/o — propagation velocity of S waves, u — shear modulus, ¢ — medium
density, and 1 — time.

For harmonic waves with time dependence given by exp(imt), where @ — circular
frequency, and i = )/ —1, Eq. (2.1) becomes the reduced wave or Helmholtz equation

Pw  w

epiepinliiriny ——— z 3
(2.2) ot +k2w =0,

where k; = w/c, — the shear wave number.
The non-zero components of the stress tensor are

ow ow

(23) Tex = _a;" Tazy

The traction vector J in surfaces parallel with the z-axis has only the z-component
which is given by

(2.4) T, = poe

where n — vector normal to a surface parallel with the z-axis.
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3. The excitation

For the sake of simplicity we will restrict our treatment to incident plane waves. Let
an incident field of unitary amplitude be given by

5 5

3.1 w® = exp in (r- : siny + ci cosy|,

where y — angle of incidence (Fig. 1).

'
Plane wave %
Yy

Fi1G. 1. Incident plane wave, free-field solution.

In an infinite medium the incident wave-field will be termed as the free-field solution;
that is, the solution in the absence of the scatterer. For half-space the free-field can be
constructed superposing the reflected plane waves in such a way that the plane free surface
will have zero traction.

4. The scattered field

Let us consider a scatterer occupying the region R as shown in Fig. 2. Let E be the
exterior domain, S the common boundary, and n the inward normal unit vector. The
scatterer can be a cavity or an elastic or rigid inclusion. We will present below the appro-
priate boundary conditions.

FiG. 2. Definition of regions E and R.



A BOUNDARY METHOD APPLIED TO ELASTIC SCATTERING PROBLEMS

171

The exterior field can be written as
(4.1) W= w® 4w

where w(© — free-field solution (Ww® = w® for infinite domains), and w® — scattered
ficld. The displacement w'® must be a solution of Eq. (2.2) in E, fulfilling SOMMERFELD’S
radiation condition [40]

4.2) lim r'/2 (ﬂﬂ- + ik, wm) = 0.
r+m or
This condition means that the energy which is radiated from the sources must scatter
to infinity; no energy may be radiated from infinity into the prescribed singularities of the
field [40].
Let w™ be of the form
M

@3) WOP) = D' 0nG(P, Q)

m=1

where M — number of sources of SH-waves, «, — complex constants to be determined
from boundary conditions, and G(P, @,,) is the Green’s function, i.e. it holds that

(4.4) V2G(P, Q) +kiG(P, Q.) = —06(PQ,,),

where () is the Dirac delta, PQ,— distance between the points P and Q,,, P is a point
in Eor S, and Q,, is a point in R. The solution of Eq. (4.4) which satisfies the radiation
condition is given by

(4.5) G(P, Q) = 5 HE (Kira) e,

where H(? (-) — Hankel function of the second kind and order zero, and r, = PQ,,.
Equation (4.5) represents cylindrical SH-waves propagating radially from Q, with ve-
locity ¢,. This fact becomes evident if we use the asymptotic representation of the Hankel
function. Thus, for large values of k,r, we have

(4.6) G(P, Q,) ~ ':i" szchT,., e itk rm—wt=nl4)

For computations the points Q,, will be located equally spaced on curves which should
have approximately the same shape as the boundary. This choice appears to be reasonable
for smooth geometries.

The Green’s function for a half-space is immediately obtained by applying the method
of images [1]. Thus the scattered field satisfies also the free-boundary condition on the
half-space’s surface and the solution procedure needs to consider only the interface between
the scatterer and the rest of the half-space. Surface and buried scatterers are shown in
Fig. 3. Figure 4 shows how the method of images is used to construct the scattered field.

Obtaining solutions for sources of P or SV waves in a half-space is a difficult task
which requires solving complicated integrals [22, 23]. Their numerical handling requires
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FiG. 3. Surface and buried scatterers in a half-space.
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FiG. 4. Application of the method of images to construct the scattered field in a half-space. The image
source is located in an image domain R’.

considerable computation. Approximate results can be obtained for such a class of diffrac-
tion problems using, in addition to sources, homogeneous and inhomogeneous plane
waves in order to satisfy the boundary conditions on the surface of the half-space [10, 33].

5. Boundary conditions

Let 7 be the traction vector associated to a point and to a plane with unit normal n,
and 8§ the displacement at the same point. In general we can write

(5.1) T =FO0O4L g6
and
.2) 8 = 545,

It is clear that the first term in Egs. (5.1) and (5.2) stands for the free-field solution
while the second represents the scattered field.
If the scatterer is a cavity, we have

(5.3 T =9M+F® =0, at S
For an elastic inclusion, conditions that ought to be satisfied are
(54) (Fe=(T), at §
and
(5.9 @)= (8),;, at S,

to have continuity of stresses and displacements. The subscripts E and / mean the exterior
and interior solutions, respectively.
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For rigid inclusions, rigid body displacements should be imposed as conditions on the
boundary. If the mass of the scatterer is considered, additonal equilibrium considerations

are needed [26].

6. The interior problem

Let us restrict ourselves to treat the case of an elastic inclusion.
The interior solution or refracted field can be constructed in a manner analogous to

the exterior one.
Consider the refracted displacement with the form

N
6.1) wO(P) = ' B,G(P, 03),

where f, — coefficients of the exterior sources which are given by

62) G(P,Q;) = - HE(ky i) e,

where k, is the shear wave-number in the interior domain, and r;} is the distance between
the exterior point Q; and the interior point P as can be seen in Fig. 5.

F1G. 5. Location of exterior sources to construct the solution of the interior problem.

7. Numerical solution
For the sake of illustration we will consider only the cavity case. Thus, Eq. (5.3) becomes
(7.1) T4+ T# =0, at S,

where T, = u g:— Equation (7.1) can be written as

aw(® dw®
-—é;l'--l'-—-—én—' =0, at S.

Substituting Eq. (4.3) into Eq. (7.2), we have

5"1 3G(P,Qn) oW
™ om " on

(72)

(1.3)

s
m=1
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The set of coefficients «,,, m = 1, 2, ..., M will be obtained in the least-squares sense.
That is, a set for which the mean-square error on S is a minimum. Let the mean square
error be defined as

(1.4) ds.

l*!awwl aw® |2
. én  on |

A straightforward derivation leads us to a system of linear equations given in matrix
form by

(7.5 [Find{om} = (W1},
where
* 0G* 3
(7.6) Wy | 22 _(;’_, Q) IG(P, 0w 4o
J n an
5
L 8G*(P, Q,) owO(P)
a7 wo=— [ e

5
and 6G*(P, Q))/on is the complex conjugate of dG(P, Q))/én. The system in Eq. (7.5)
is of order M x M and the matrix [F},] is hermitian. Integrals in Eqgs. (7.6) and (7.7) are
evaluated by numerical integration.

Once the system is solved, Eqs. (4.1) and (4.3) allow us to compute the displacement
w at any point of the region E and its boundary.

For a related problem MiLLAR [25] has shown that when the mean-square error is
minimized on the boundary, the obtained representation converges uniformly in the mean
to the unique solution of the problem provided a complete set of functions is chosen.
The completeness of the functions H§* (kr,(s)) defined on the boundary and its normal
derivatives can be established. The proof is closely related to that given by MILLAR [25]
for multipole expansions. Of course, this argument supports the method only for the anti-
plane case. For the inplane problem the support comes from the results obtained for
geometries which allow separation of variables [26], and from heuristic considerations.
The complete proof of completeness needs to be developed.

8. Examples

In order to test the accuracy of the method, displacements have been computed at
points on the surface of a semi-circular canyon under incident plane SH-waves (Fig. 6)
for several incidence angles and normalized frequencies. Let the normalized frequency »
be given by

_ka _ 2a

T a A’
where A — incident wave length, a — radius of the canyon, and thus # is the canyon
width-to-wave-length ratio.
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Values of real and imaginary parts of w at some points are presented in Tables 1 and 2
for n = 0.5, 1.0 and y = 30°, 60°, 90° using several values of M (the number of sources)
for the computation. Comparison is provided with the values obtained from TRIFUNAC’S

Incident plane
SH waves

yy

Fi1G. 6. Semi-circular canyon under incident plane SH waves, y = angle of incidence.

Table 1. Comparison of results to exact solution, semi-cylindrical canyon, n = 0.50

7 = 0.50 y = 30°
xla M=10 15 20 EXACT

—1.50  1.58050 2.34651 1.58499 2.34411 1.58567 2.34345 1.58597 2.34345
—1.00 1.78212 2.50086 1.79853 2.51549 1.80367 2.52048 1.80367 2.52048

—0.50 026967  1.18741 027035  1.18490 027065  1.18443 027064  1.18443
0.00 —0.37513 132332 —0.37752  1.33098 —0.37746 133235 —037746  1.33235
050 011779 113952  0.11346  1.15365  0.11203  1.15642  0.11202  1.15643
100 133354 —1.04309  1.32919 —1.12375 132788 —1.14951  1.32787 —1.14951
150 1.17565 —1.51192  1.16390 —1.52688  1.16050 —1.52934  1.16050 —1.52934

7 = 0.50 y = 60°
x/a M =10 15 20 EXACT

—1.50 —0.35111 276297 —0.36179 2.77166 —0.36363 2.77404 —0.36363 2.77404

—1.00 0.05580 3.42918 0.00487 3.43468 —0.01118 3.43636 —0.01119 3.43634

—0.50  1.34090 1.89831 1.35122 1.89879 1.35326 1.89902 1.35327 1.89901
0.00  1.55088 0.68743 1.56362 0.68570 1.56577 0.68548 1.56577 0.68549
0.50 097520 -—0.20820 098511 —0.20577 0.98698 —0.20502 0.98699 —0.20502
1.00 —0.66929 —0.76096 —0.72590 —0.76897 —0.74373 —0.77164 —0.74373 —0.77164
1.50 —0.94689 —0.60061 —0.96035 —0.59339 —0.96288 —0.59116 —096288 —0.59116

7 = 0.50 = 90°
x/a M=10 15 20 EXACT

—1.50 —1.00549 2.57714 —1.02199 2.58653 —1.02516 2.58821 —1.02516 2.58821
—1.00 —0.69753 3.53787 —0.76532 3.52327 —0.78662 3.51835 —0.78662 3.51835
—-0.50 1.79185 2.51528 1.80165 2.51953 1.80362 2.52052 1.80365 2.52050
0.00  2.69832 0.36766 2.71540 0.36239 271774 0.36164 2.71774 0.36164
050 131194 —1.14324 1.32482 —1.14875 1.32782 —1.14953 1.32785 —1.14954
1.00 —1.50072 —0.25680 —1.56074 —0.21942 —1.57964 —0.20761 —1.57965 —0.2076l
1.50 —1.62852 0.25712 —1.63677 0.27342 —1.63765 027722 -—1.63765  0.27722
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Table 2. Comparison of results to exact solution, semi-cylindrical canyon, 7 = 1.00

n = 1.00 y = 30°
xla M=10 15 20 EXACT

—1.50 -—0.63367 1.93452 —0.57841 1.99894 —0.56649 2.00745 —0.56649 2.00745
—1.00 -0.27270 290126 —0.42421 3.17473 —0.47423 3.25607 —0.47425 3.75604
—0.50 —-2.17119 —1.09776 —2.18913 —1.07495 —2.19088 —1.07481 —2.19089 —1.07480
0.00 —2.12876 0.57789 —2.19232 0.65095 —2.20223 0.66019 —2.20222 0.66020
0.50  0.27455 1.93222 0.27639 1.95458 0.27938 1.95399 0.27932 1.95397
1.00 —0.20900 —1.91136 —0.49837 —1.75527 —0.59183 —1.71278 —0.59190 —1.71278
1.50 —1.51268 —1.51789 —1.48657 —1.44253 —1.47878 —1.42857 —1.47877 —1.42856

= 1.00 y = 60°
x/a M=10 15 20 EXACT

—1.50 —1.14891 —0.38026 —1.11820 —0.33940 —1.11216 -—0.33234 —1.11216 —0.33234
—1.00 —3.42344 0.88232 —3.55026 0.99850 —3.59159 1.03019 —3.59159 1.03019
—0.50 —0.45780 0.64924 —0.45267 0.67753 —0.45104 0.67898 —0.45104 0.67898
0.00 —0.47612 0.69691 —0.52651 0.76313 —0.53307 0.77163 —0.53307 0.77163
0.50  0.94607 0.30089 0.93891 0.31092 0.93835 0.30893 0.93833 0.30895
1.00 —0.56992 —0.07240 —0.75248 0.20648 —0.81286 0.29022 —0.81285 0.29021
150 —0.63866 0.75647 —0.58768 0.81934 —0.57536 0.82815 —0.57536 0.82815

n = 1.00 ¥ =90
xla M=10 15 20 EXACT

—1.50 —0.30442 -—0.66994 -—0.27899 —0.65685 —0.27456 —0.65505 ~—0.27456 —0.65505
—1.00 —3.75639 —0.54895 —3.78081 —0.46217 —3.78995 —0.43683 —3.78994 —0.43682
—-0.50 —0.47112 3.23936 —0.47485 3.25487 —0.47436 3.25603 —0.47430 3.25604
0.00 2.69676 0.28322 2.69189 0.32237 2.68953 0.32773 2.68952 0.32773
0.50 —0.58142 —1.72149 —0.59171 —1.71117 -—0.59201 —1.71276 —0.59197 —1.71278
1.00  1.12446 0.44336 1.05657 0.60338 1.03279 0.65191 1.03282 0.65190
1.50  1.29966 —0.13729 1.33270 —0.11293 1.33999 —0.10967 1.33999 —0.10967

exact solution [43]. Sources were located equally spaced along a semi-circumference with
radius 0.8 a. For integration the trapezoidal rule with 99 points at the boundary was used.
The method has also been applied to a semi-elliptical canyon [34]; agreement with the
published exact solution [45] for the incident plane SH-waves is excellent.
Amplitudes of surface displacements in a triangular canyon with 45° slopes under
vertically incoming plane SH waves are given in Fig. 7 for two normalized frequencies
1 = 0.25, 0.5. Sources were placed along lines parallel to the slopes and separated from
them a distance 0.07 a. At the boundary, 99 points were taken. The vertex of the canyon
was smoothed with a segment of circumference tangent to the slopes. The same figure
shows results obtained with the finite element method using the efficient-active boundaries
[4]. The relative size of the discretized domain is also shown. Agreement between solutions
is very good. Differences are probably due to the different discretization of the vertex.
The accuracy of the method depends on the number and location of sources; this
number, for a given accuracy, is an increasing function of the frequency. Location of the
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FiG. 7. Amplitudes of displacements for vertically incident SH waves n = 0.25, 0.5. Comparison of re-
sults with those obtained with the finite element method with efficient-active boundaries (3).

sources on a curve which follows the boundary appears to be reasonable. The definition
of the best average distance between sources and the boundary requires further scru-
tiny.

9. Conclusions

A boundary method has been presented for solving some elastic scattering problems.
The basis of the method is to construct the scattered wave fields in terms of linear combi-
nations of solutions with singularities located outside the region of interest. The least-
squares criterion simplifies numerical treatment and leads to a representation which
converges uniformly in the mean to the unique solution of the problem provided that
a complete set of functions is chosen.

The obtained results for diffraction of SH-waves were compared with known analytical
and numerical solutions yielding very good agreement.

The method appears to be a useful tool in solving some problems of scattering of elas-
tic waves. It could be applied in other fields to deal with sound, electromagnetic, or water
waves.
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