Obiekt

Tytuł: How many of them? Genetic diversity, survival and effective population size of the capercaillie population fromthe Gorce Mountains

Inny tytuł:

How many capercaillies are there in the Gorce Mts?

Wydawca:

Muzeum i Instytut Zoologii Polskiej Akademii Nauk

Miejsce wydania:

Warszawa

Opis:

24 cm

Abstrakt:

Population size and effective population size are important factors affecting probability of extinction of small, isolated population. Hence, from conservation perspective, it is recommended to monitor changes in population size of endangered species. Genetic methods, based on genetic profiling of non-invasive samples of biological material, despite some limitations, were proved to be efficient method in tracking individuals in the field and estimate populations' parameters. We used this strategy to investigate isolated population of the capercaillie (Tetrao urogallus) in the Gorce Mountains. In two study periods (2012–2013 and 2017–2018) almost 400 faeces and feathers were collected. Microsatellite genotyping was performed to identify individuals and estimate genetic diversity. We found that population is stable in terms of size and genetic indices, although allelic richness has significantly increased between 2012–2013 and 2017–2018. In the overall study period (2012–2018) there were 52 individuals identified. However, only 10 birds were found in both study periods. This suggests low survival in the population. Moreover, genetic data indicated low effective population size of the capercaillie in the Gorce Mts. Thus, we suggest that monitoring, either genetic and based on field-surveys, should be implemented in the management and protection of this population.

Bibliografia:

ÅHLEN P.-A., WILLEBRAND T., SJÖBERG K. & HÖRNELL-WILLEBRAND M. 2014. Survival of female capercaillie Tetrao urogallus in northern Sweden. Wildlife Biology 1 9(4): 368–373. DOI: https://doi.org/10.2981/13-025
BARTLEY D., BAGLEY M., GALL G. & BENTLEY B. 1992. Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conservation Biology 6 (3): 365–375. DOI: https://doi.org/10.1046/j.1523-1739.1992.06030365.x
BRADLEY B. J. & VIGILANT L. 2002. False alleles derived from microbial DNA pose a potential source of error in microsatellite genotyping of DNA from faeces. Molecular Ecology Notes 2 (4): 602–605. DOI: https://doi.org/10.1046/j.1471-8286.2002.00302.x
BROOKFIELD J. F. Y. 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5(3): 453–455. DOI: https://doi.org/10.1046/j.1365-294X.1996.00098.x
CAIZERGUES A., DUBOIS S., MONDOR G. & RASPLUS J.-F. 2001. Isolation and characterisation of microsatellite loci in black grouse (Tetrao tetrix). Molecular Ecology Notes 1 (1-2): 36–38. DOI: https://doi.org/10.1046/j.1471-8278.2000.00015.x
ENGLAND P., LUIKART G., WAPLES R. 2010. Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conservation Genetics 11 (6): 2425–2430. DOI: https://doi.org/10.1007/s10592-010-0112-x
FRANKHAM R. 2010. Inbreeding in the wild really does matter. Heredity 104 (2): 124.
FRANKHAM R., BRADSHAW C. J. A. & BROOK B. W. 2014. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation 170: 56–63. DOI: https://doi.org/10.1016/j.biocon.2013.12.036
FRANKHAM R. 2015. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology 24 (11): 2610–2618. DOI: https://doi.org/10.1111/mec.13139
GAGNEUX P., BOESCH C. & WOODRUFF D. S. 1997. Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Molecular Ecology, 6 (9): 861–868. DOI: https://doi.org/10.1111/j.1365-294X.1997.tb00140.x
GOUDET J. 2001. FSTAT V2.9.3, a program to estimate and test gene diversities and fixation indices. Available at: http://www.unil.ch/izea/softwares/fstat.htlm
JACOB G., DEBRUNNER R., GUGERLI F., SCHMID B. & BOLLMANN K. 2010. Field surveys of capercaillie (Tetrao urogallus) in the Swiss Alps underestimated local abundance of the species as revealed by genetic analyses of non-invasive samples. Conservation Genetics 11 (1): 33–44. DOI: https://doi.org/10.1007/s10592-008-9794-8
JOHNSON J. A., BELLINGER M. R., TOEPFER J. E. & DUNN P. 2004. Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Molecular Ecology, 13 (9): 2617–2630. DOI: https://doi.org/10.1111/j.1365-294X.2004.02264.x
KLINGA P., MIKOLÁŠ M., SMOLKO P., TEJKAL M., HÖGLUND J. & LADISLAV P. 2019. Considering landscape connectivity and gene flow in the Anthropocene using complementary landscape genetics and habitat model ling approaches. Landscape Ecology 34(3): 521–536. DOI: https://doi.org/10.1007/s10980-019-00789-9
KORMANN U., GUGERLI F., RAY N., EXCOFFIER L. & BOLLMANN K. 2012. Parsimony-based pedigree analysis and individual-based landscape genetics suggest topography to restrict dispersal and connectivity in the endangered capercaillie. Biological Conservation 152: 241–252. DOI: https://doi.org/10.1016/j.biocon.2012.04.011
LUIKART G., RYMAN N., TALLMON D., SCHWARTZ M. & ALLENDORF F. 2010. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics 11 (2): 355–373. DOI: https://doi.org/10.1007/s10592-010-0050-7
MILLS L. S., CITTA J. J., LAIR K. P., SCHWARTZ M. K. & TALLMON D. A. 2000. Estimating animal abundance using noninvasive DNA sampling: Promise and pitfalls. Ecological Applications, 10 (1): 283–294. DOI: https://doi.org/10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2
MOSS R., PICOZZI N., SUMMERS R. W. & BAINES D. 2008. Capercaillie Tetrao urogallus in Scotland - demography of a declining population. Ibis 142 (2): 259–267. DOI: https://doi.org/10.1111/j.1474-919X.2000.tb04865.x
NEI M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89 (3): 583–589.
PEAKALL R. & SMOUSE P. E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics Applications Note 28 (19): 2537–2539. DOI: https://doi.org/10.1093/bioinformatics/bts460
PEEL D., OVENDEN J. R. & PEEL S. L. 2004. NeEstimator: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and Fisheries.
PETIT R. J., EL MOUSADIK A. & PONS O. 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12 (4): 844–855. DOI: https://doi.org/10.1111/j.1523-1739.1998.96489.x
PIERTNEY S. B. & HÖGLUND J. 2001. Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Molecular Ecology Notes 1 (4): 303–304. DOI: https://doi.org/10.1046/j.1471-8278.2001.00118.x
POGGENBURG C., NOPP-MAYR U., COPPES J. & SACHSER F. 2018. Shit happens … and persists: decay dynamics of capercaillie (Tetrao urogallus L.) droppings under natural and artificial conditions. European Journal of Wildlife Research 64: 29. DOI: https://doi.org/10.1007/s10344-018-1187-9
R CORE TEAM. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: https://www.R-project.org/
RAYMOND M. & ROUSSET F. 1995. GENEPOP (version 1.2): Population Genetics Software For Exact Tests And Ecumenicism. Heredity 86 (3): 248–249. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a111573
ROUSSET F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106. DOI: https://doi.org/10.1111/j.1471-8286.2007.01931.x
RUTKOWSKI R., JAGOŁKOWSKA P., ZAWADZKA D. & BOGDANOWICZ W. 2016. Impacts of forest fragmentation and post-glacial colonization on the distribution of genetic diversity in the Polish population of the hazel grouse Terastes bonasia. European Journal of Wildlife Research 62 (3): 293–306. DOI: https://doi.org/10.1007/s10344-016-1002-4
RUTKOWSKI R., ZAWADZKA D., SUCHECKA E. & MERTA D. 2017a. Conservation genetics of the Capercaillie in Poland – delineation of Conservation Units. PLoS One 12 (4): e0174901. DOI: https://doi.org/10.1371/journal.pone.0174901
RUTKOWSKI R., DULISZ B., SZCZEPAŃSKI S., NOWAKOWSKI J. J., ZWIJACZ-KOZICA T. & KRZAN P. 2017b. Conservation genetics of the capercaillie in Poland ― estimating the size of the Tatra National Park population by the genotyping of non-invasive samples. Fragmenta Faunistica 60 (2): 119–128.
SACCHERI I., KUUSSAARI M., KANKARE M., VIKMAN P., FORTELIUS W. & HANSKI I. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392 (6675): 491–494.
SANTOREK A., KULIGOWSKA B., SZCZEPAŃSKI S., DULISZ B. & RUTKOWSKI R. 2018. Ocena liczebności głuszca (Tetrao urogallus) w Babiogórskim Parku Narodowym na podstawie analiz genetycznych prób nieinwazyjnych. Studia i Materiały CEPL w Rogowie 54 (4): 125–133.
SEGELBACHER G., PAXTON R. J., STEINBRUCK G., TRONTELJ P. & STORCH I. 2000. Characterization of microsatellites in capercaillie Tetrao urogallus (Aves). Molecular Ecology 9(11): 1934–1935. DOI: https://doi.org/10.1046/j.1365-294x.2000.0090111934.x
SCHWARTZ M. K., LUIKART G. & WAPLES R. S. 2007. Genetic monitoring as a promising tool for conservation and management. Trends in Ecology and Evolution 22(1): 25–33. DOI: https://doi.org/10.1016/j.tree.2006.08.009
STORCH I. 2007. Conservation Status of Grouse Worldwide: an update. Wildlife Biology 13 (SP1): 5–12. DOI: https://doi.org/10.2981/0909-6396(2007)13[5:CSOGWA]2.0.CO;2
TABERLET P., LUIKART G. & WAITS L. P. 1999. Noninvasive genetic sampling: Look before you leap. Trends in Ecology and Evolution 14 (8): 293–332. DOI: https://doi.org/10.1016/S0169-5347(99)01637-7
VÁZQUEZ J. F., PÉREZ T., ALBORNOZ J. & DOMÍNGUEZ A. 2013. Census and effective population size of the endangered Cantabrian capercaillie (Tetrao urogallus ) estimated from non - invasive samples. Grouse News 46: 12–26.
WAPLES R. S. 1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121 (2): 379–391.
WAPLES R. S. 1991. Genetic methods for estimating the effective size of Cetacean populations. Report of the International Whaling Commission Special Issue 13: 279–300.
WAPLES R. S. & DO C. 2008. ldne: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8 (4): 753–756. DOI: https://doi.org/10.1111/j.1755-0998.2007.02061.x.
WAPLES R. S. & DO C. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications 3 (3): 244–262. DOI: https://doi.org/10.1111/j.1752-4571.2009.00104.x
WAPLES R. S. & ENGLAND P. R. 2011. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189 (2): 633–644. DOI: https://doi.org/10.1534/genetics.111.132233
WEGGE P., LARSEN B. B., GJERDE I., KASTDALEN L., ROLSTAD J. & STORAAS T. 1987. Natural mortality and predation of adult capercaillie in southeast Norway. In: Lovel T. & Hudson P. (Eds.). Proceedings of the 4th International Symposium on Grouse. Lam. Germany: 49–56.
WEGGE P. & KASTDALEN L. 2007. Pattern and causes of natural mortality of capercaille, Tetrao urogallus, chicks in a fragmented boreal forest. Annales Zoologici Fennici 44 (2): 141–151.
WEIR B. S. & COCKERHAM C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38(6): 1358–1370.
ZAWADZKA D. 2014. Podręcznik najlepszych praktych ochrony głuszca i cietrzewia [The handbook of the best practices of the Capercaillie and the black grouse protection]. Centrum Koordynacji Projektów Środowiskowych, Warszawa. [In Polish]
ZAWADZKA D., ŻUREK Z., ARMATYS P., STACHYRA R., SZEWCZYK P., KORGA M., MERTA D., KOBIELSKI J., KMIEĆ M., PREGLER B., KRZAN P., RZOŃCA Z., ZAWADZKI G., ZAWADZKI J., SOŁTYS B., BIELAŃSKI J., CZAJA J., FLIS-MARTYNIUK E., WEDIUK A., RUTKOWSKI R. & KRZYWIŃSKI A. 2019. Liczebność i rozmieszczenie głuszca w Polsce w XXI w. Sylwan 163 (9):773–783. DOI: https://doi.org/10.26202/sylwan.2019029
ŻUREK Z. & ARMATYS P. 2011. Występowanie głuszca Tetrao urogallus w polskich Karpatach Zachodnich ― wnioski z monitoringu w latach 2005-2010 oraz końcowa ocena liczebności karpackich subpopulacji głuszca i cietrzewia. [The occurence of Capercillie in Polish Western Carpathians ― conclusions from the monitoring in the years 2005-2010 and the final assessment of the quantity of Carpathians subpopulations of Capercaillie and Black Grouse]. Stud. i Mat. CEPL, Rogów 13: 229-240. [In Polish]

Czasopismo/Seria/cykl:

Fragmenta Faunistica

Tom:

62

Zeszyt:

2

Strona pocz.:

135

Strona końc.:

144

Identyfikator zasobu:

oai:rcin.org.pl:94097 ; 0015-9301

Źródło:

MiIZ PAN, sygn. P.4664 ; kliknij tutaj, żeby przejść ; MiIZ PAN, sygn. P.256

Język:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 3.0 Polska

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Lokalizacja oryginału:

Biblioteka Muzeum i Instytutu Zoologii PAN

Dofinansowane ze środków:

Program Operacyjny Polska Cyfrowa, lata 2014-2020, Działanie 2.3 : Cyfrowa dostępność i użyteczność sektora publicznego; środki z Europejskiego Funduszu Rozwoju Regionalnego oraz współfinansowania krajowego z budżetu państwa

Obiekty

Podobne

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji