Title: Moisture and circulation conditions during heavy precipitation events in Łódź


Piotrowski, Piotr

Date issued/created:


Resource Type:



Geographia Polonica Vol. 90 No. 1 (2017)



Place of publishing:



24 cm


A detailed analysis was performed of precipitation data from the years 2011-2013 collected from 17 stations in the city of Łódź over six days with the highest six-hour precipitation periods. Each day was analyzed in respect of the synoptic conditions affecting the weather, with particular emphasis placed on moisture conditions. The highest precipitation was recorded during the May to August period. The convergence of thermally contrasting air masses and significant amounts of water vapor transported to the area of Central Europe were the main cause of extreme precipitation in the area of Łódź. During the advection of warm air masses, the significant amount of water vapor in the air originated not only from the warm sea basins, but also from evapotranspiration during the air masses travelling over hot land areas. A high content of precipitable water during heavy precipitation events was reported in the area of Poland and its neighborhood.


1. Ackermann B., Changnon S.A., Dzursin G., Gatz, D.L., Grosh R.C., Hilberg S.D., Huff F.A., Mansell J.W., Ochs H.T., Peden M.E., Schickedanz P.T., Semonin R.G., Vogel J.L., 1978. Summary of METROMEX, vol. 2: Causes of precipitation anomalies. Illinois State Water Survey, 63, Urbana: Department of Registration and Education. ; 2. Bartnik A., Marcinkowski M., 2015. Przestrzenne zróżnicowanie opadów atmosferycznych na obszarze Łodzi. Acta Universitatis Lodziensis. Folia Geographica Physica, 14, pp. 5-15. ; 3. Bernas M., Kolendowicz L., 2013. Wpływ cyrkulacji atmosferycznej na występowanie ekstremalnych opadów atmosferycznych w Poznaniu w latach 1920-2010. Badania Fizjograficzne. Seria A – Geografia Fizyczna, 4 (A63), pp. 7-28. ; 4. Bokwa A., 2010. Effects of air pollution on precipitation in Kraków (Cracow), Poland in the years 1971-2005. Theoretical and Applied Climatology, vol. 101, nos. 3-4, pp. 289-302. ; - ; 5. Dixon P.G., Mote T.L., 2003. Patterns and causes of Atlanta’s heat island-initiated precipitation. Journal of Applied Meteorology, vol. 42, no. 9, pp. 1273-1284. ; - ; 6. Draxler R.R., Rolph G.D., 2012. HYSPLIT HYbrid Single-Particle Lagrangian Integrated Trajectory Model access via NOAA ARL READY. NOAA Air Resources Laboratory, College Park, MD, http://www.arl.noaa.gov/HYSPLIT.php [26 March 2015]. ; 7. DUBANIEWICZ H., 1974. Klimat województwa łódzkiego. Acta Geographica Lodziensia, 34, Łódź - Wrocław: Zakład Narodowy im. Ossolińskich. ; 8. Groisman P.Y., Karl T.R., Easterling D.R., Knight R.W., Jamason P.F., Hennessy K.J., Suppiah R., Page CH.M., Wibig J., Fortuniak K., Razuvaev V., Douglas A., Rorland E., Zhai P.M., 1999. Changes in probability of heavy precipitation: Important indicators of climatic change. Climatic Change, vol. 42, no. 1, pp. 243-283. ; - ; 9. Han J.Y., Baik J.J., Lee H., 2014. Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, vol. 50, no. 1, pp. 17-30. ; - ; 10. JENKINSON A.F., COLLISON P., 1977. An initial climatology of gales over the North Sea. Synoptic Climatology Branch Memorandum, no. 62, Bracknell: Meteorological Office. ; 11. Jędruszkiewicz J., Zieliński M., 2016. Zróżnicowanie wysokich dobowych sum opadów w Łodzi i okolicach na tle cyrkulacji atmosferyczne [in:] Klimat bioklimat miast, Acta Geographica Lodziensia, 104, Łódź: Łódzkie Towarzystwo Naukowe, pp. 201-211. ; 12. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R.L., Joseph D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, pp. 437-471. ; - ; 13. Kłysik K., Fortuniak K., 1993. Spatial differentiation of the maximal daily and monthly precipitation in the area of central Poland [in:] B. Sevruk, M. Lapin, A. Becker (eds.), Proceedings of the International Symposium on Precipitation and Evaporation, Bratislava, 1993, Bratislava: Slovak Hydrometeorological Institute, pp. 219-220. ; 14. Kotowski A., Kaźmierczak B., Dancewicz A., 2010. Modelowanie opadów do wymiarowania kanalizacji. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN. ; 15. Kotowski A., Dancewicz A., Kaźmierczak B., 2010. Czasowo-przestrzenne zróżnicowanie opadów atmosferycznych we Wrocławiu. Ochrona Środowiska, vol. 32, no. 4, pp. 37-46. ; 16. Kossowska-Cezak U., Mrugała S., 1999. Opady atmosferyczne o anomalnej wysokości (na przykładzie Warszawy i Lublina). Przegląd Geofizyczny, vol. 44, nos. 1-2, pp. 39-51. ; 17. KRUCZAŁA K., 1972. Opady atmosferyczne na obszarze Górnośląskiego Okręgu Przemysłowego. Prace i Studia Zakładu Ochrony Regionów Przemysłowych, 12, Wrocław: Zakład im. Ossolińskich. ; 18. ŁUPIKASZA E., 2010. Genetyczne typy opadów ekstremalnych w sezonie letnim w Polsce oraz ich zmienność wieloletnia w okresie 1951-2007 [in:] E. Bednorz (ed.), Klimat Polski na tle klimatu Europy. Warunki termiczne i opadowe, Studia i Prace z Geografii i Geologii, 15, Poznań : Bogucki Wydawnictwo Naukowe, pp. 131-145. ; 19. NIYOGI D, PIELKE S.R RA, ADEGOKE J., CHANG H.I., CHASE T., DOUGLAS E., GUPTE M., MARSHALL C., MATSUI T., PYLE P.C., SHEPHERD M., 2006. Considering the role of aerosols and land-atmosphere interactions related to agriculture and urbanization in climate studies. American Association of Geographers Annual Meeting, Chicago, March 2006. ; 20. Piotrowski P., 2009. Obiektywna metoda klasyfikacji cyrkulacji atmosferycznej dla Polski. Folia Geographica Physica, vol. 10, Łódź: Wydawnictwa Uniwersytetu Łódzkiego. ; 21. Piotrowski P., Jędruszkiewicz J., 2012. Projections of thermal conditions for Poland for winters 2021-2050 in relation to atmospheric circulation. Meteorologische Zeitschrift, vol. 22, no. 5, pp. 569-575. ; 22. Phillips I.D., Mcgregor G.R., 2001. Western European water vapor flux-southwest England rainfall associations. Journal of Hydrometeorology, vol. 2, no. 5, pp. 505-524. ; - ; 23. Rosenfeld D., Lohmann U., Raga G.B., O'Dowd C.D., Kulmala M., Fuzzi S., Reissell A., Andreae M.O., 2008. Flood or drought: How do aerosols affect precipitation? Science, vol. 321, no. 5894, pp. 1309-1313. ; - ; 24. SHEM W., SHEPHERD J.M., 2009. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmospheric Environment, vol. 92, no. 2, pp. 172-189. ; - ; 25. Thielen J., Wobrock W., Gadian A., Mestayer P.G., Creutin J.D., 2000. The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the mesogamma scale. Atmospheric Research, vol. 54, no. 1, pp. 15-39. ; - ; 26. Veres M.C., Hu Q., 2013. AMO-forced regional processes affecting summertime precipitation variations in the central United States. Journal of Climate, vol. 26, no. 1, pp. 276-290. ; - ; 27. Wibig J., Fortuniak K., 1998. The extreme precipitation conditions in Łódź in the period 1931-1995. Acta Universitatis Lodziensis. Folia Geographica Physica, 3, pp. 241-249. ; 28. Yang Q., Leung L.R., Rauscher S.A., Ringler T.D., Taylor M.A., 2014. Atmospheric moisture budget and spatial resolution dependence of precipitation extremes in aquaplanet. Journal of Climate, vol. 27, no. 10, pp. 3565-3581. ; -


Geographia Polonica





Start page:


End page:



File size 3,6 MB ; application/pdf

Resource Identifier:

oai:rcin.org.pl:61912 ; 0016-7282 ; 10.7163/GPol.0080


CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link




Creative Commons Attribution BY-SA 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-SA 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-SA 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure




Citation style:

This page uses 'cookies'. More information