Object

Title: Program GraphScape – nowe narzędzie do analizy struktury przestrzennej i stopnia łączności w obrębie krajobrazu = GraphScape software – a new tool for analysing landscape spatial structure and connectivity

Creator:

Solon, Jerzy ; Pomianowski, Wojciech

Date issued/created:

2014

Resource Type:

Article

Subtitle:

Problemy Ekologii Krajobrazu = The Problems of Landscape Ecology, t. 38

Publisher:

Polska Asocjacja Ekologii Krajobrazu ; Polska Akademia Nauk. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego.

Place of publishing:

Warszawa

Description:

Bibliogr. ; Summ. eng. ; 244 p. : il. (color.) ; 24 cm

Abstract:

GraphScape is a stand-alone software that exploit vector maps of landscape mosaics. It identifies the shortest path between chosen patches. The shortest path is defined as the path with the minimal sum of resistances for patches and borders to be crossed. Three categories of resistances are incorporated to modify the minimum spanning tree: (a) Patch class resistance (based on the patch suitability for a given species and/or process); (b) Resistance of a patch-to-patch transfer (based on structural/ecological similarity of adjacent patches); (c) Resistance of the patch size and shape (based on a preferred patch size/shape metrics, e.g. the radius of gyration). When all the resistances are not determined (and equal one by convention) then the shortest path is defined as the path with the minimal number of borders to be crossed. On the basis of the identified paths some new landscape metrics are proposed for the Patch and Class levels, e.g.: [Mean] Number of Steps, [Transfer/Patch_Type/Patch_Size] Weighted Number of Steps, Path Elongation (=Weighted Number of Steps / Number of Steps), Path Sum of Resistance, Mean Path Sum of Resistance. Depending on the way of patches choice and resistance defining, the results are useful for identifying, describing and illustrating: (a) Patch and Patch class isolation; (b) Paths in the landscape; (c) Critical patches (nodes for many paths or with the highest resistance). The ecological sense and practical usefulness of the results depend of the kind and accuracy of the input map

References:

1. Batagelj V., Mrvar A., 2012. Pajek - A Program for Analysis and Visualization of Very Large Networks. Reference Manual. List of commands with short explanation version 3.01. Ljubljana. ; 2. Beier P., Majka D., Jenness J., 2007. Conceptual steps for designing wildlife corridor (www.corridordesign.org). ; 3. Bielecka E., Ciołkosz A., 2009. Baza danych o pokryciu terenu w Polsce CLC-2006. Polski Przegląd Kartograficzny 41 (3), s. 227-236. ; 4. Cantwell M.D., Forman R.T.T., 1993. Landscape graphs: Ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecology 8 (4), s. 239-255. ; 5. Cook B., Puotinen M.L., Borah R., 2009. Ranking habitat patches by contribution to network connectivity: tradeoffs between processing time and spatial realisation. 18th World IMACS /MODSIM Congress, 13-17 July 2009, Cairns, Australia (www.mssanz.org.au/modsim09). ; 6. Cormen T.H., Leiserson C.E., Rivest R.L., 1990. Introduction to Algorithms. Massachusetts Institute of Technology Press, Cambridge, Massachusetts. ; 7. Deo N., 1980. Teoria grafów i jej zastosowanie w technice i informatyce. Wydawnictwo Naukowe PWN, Warszawa. ; 8. Fabre J.-C., Louchart X., Colin F., Dagčs C., Moussa R. i in., 2010. OpenFLUID: a software environment for modelling fluxes in landscapes. LANDMOD2010 – Montpellier – 3-5 February 2010. (www.symposcience.org). ; 9. Foltete J.-C., Clauzel C., Vuidel G., Tournant P., 2012. Integrating graph-based connectivity metrics into species distribution models. Landscape Ecology 27 (4), s. 557-569. ; 10. Foltete J.-C., Giraudoux P., 2012. Graph-based approach to investigating the influence of the landscape on population spread processes. Ecological Indicators 18, s. 684-692. ; 11. Fortin M.-J., James P.M.A., MacKenzie A., Melles S.J., Rayfield B., 2012. Spatial statistics, spatial regression, and graph theory in ecology. Spatial Statistics 1, s. 100-109. ; 12. Galpern P., Manseau M., Fall A., 2011. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biological Conservation 144 (4), s. 44-55. ; 13. Galpern P., Manseau M., Wilson P.J., 2012. Grains of connectivity: analysis at multiple spatial scales in landscape genetics. Molecular Ecology 21 (16), s. 3996-4009. ; 14. Jędrzejewski W., 2009. Sieć korytarzy ekologicznych łączących obszary chronione w Polsce. [w:] W. Jędrzejewski, D. Ławreszuk (red.), Ochrona łączności ekologicznej w Polsce. Materiały konferencji międzynarodowej Wdrażanie koncepcji korytarzy ekologicznych w Polsce", 20-22 XI 2008 r., Białowieża, s. 71-82. ; 15. Jędrzejewski W., Nowak S., Stachura K., Skierczyński M., Mysłajek R.W. i in., 2005. Projekt korytarzy ekologicznych łączących Europejską Sieć Natura 2000 w Polsce. Opracowanie wykonane dla Ministerstwa Środowiska w ramach realizacji programu Phare PL0105.02. Zakład Badania Ssaków PAN, Białowieża. ; 16. Laita A., Kotiaho J.S., Monkkonen M., 2011. Graph-theoretic connectivity measures: what do they tell us about connectivity? Landscape Ecology 26 (7), s. 951-967. ; 17. McGarigal K., Marks B.J., 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure, United State department of Agriculture, Forest Service. Technical Reports, PNW-351, Portland. ; 18. McRae B.H., Shah V.B., 2011. Circuitscape User Guide. ONLINE. The University of California, Santa Barbara (www.circuitscape.org). ; 19. Pinto N., Keitt T.H., 2009. Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology 24 (2), s. 53-266. ; 20. Saura S., Torné J., 2009. Conefor sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environmental Modelling & Software 24 (1), s. 135-139. ; 21. Theobald D.M., Norman J.B., Sherburne M.R., 2006. FunConn v1 User's Manual: ArcGIS tools for Functional Connectivity Modeling. Natural Resource Ecology Lab, Colorado State University, Fort Collins, CO. ; 22. Urban D.L., Minor E.S., Treml E.A., Schick R.S., 2009. Graph models of habitat mosaics. Ecology Letters 12 (3), s. 260-273.

Relation:

Problemy Ekologii Krajobrazu

Volume:

38

Start page:

15

End page:

32

Format:

File size 4,6 MB ; application/pdf

Resource Identifier:

oai:rcin.org.pl:57999 ; 9788361590552

Source:

CBGiOŚ. IGiPZ PAN, call no. 151.035 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Rights Reserved - Free Access

Terms of use:

Copyright-protected material. May be used within the limits of statutory user freedoms

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

This page uses 'cookies'. More information