Title: Evaluating sustainable urban development using urban metabolism indicators in urban design


Europa XXI 34 (2018)



Place of publishing:



29 cm


Urban metabolism is a multi-disciplinary approach to qualitatively and quantitatively evaluate resource flows in urban systems, which aims to provide important insights into the dynamics of cities to make them more ecologically responsible. It has been also introduced into the urban design domain, however most of the attempts concern only tracking of energy and/or material flows to reduce environmental impacts by redesigning closed loops in a specific area. The hypothesis of this paper is that the concept of urban metabolism, and its indicators, could play an important role in advancing the science and practice related to sustainability in urban design and development. At the moment, however we lack indicators to support evaluation of urban design related decisions from the perspective of urban metabolism. The aim of this paper is to explore the application of urban metabolism indicators in urban design based on their characteristics. It reviews development periods of the concept and analytical models of urban metabolism, in order to identify crucial urban metabolism indicators for urban design. Next, these urban metabolism indicators are classified regarding type of analytical model, accounting method, indicator type, and indicator level. Finally, several suggestions are offered on how to integrate urban metabolism indicators into urban design. In addition, directions for future research on the topic are discussed.


Agudelo-Vera C. M., Mels A., Keesman K., Rijnaarts H., 2012. The Urban Harvest Approach as an Aid for Sustainable Urban Resource Planning. Journal of Industrial Ecology, vol. 16, no. 6, pp. 839-850. https://doi.org/10.1111/j.1530-9290.2012.00561.x
Akiyama T., 1989. Urban Metabolism and Sustainability. http://www.kicc.jp/auick/database/apc/apc017/apc01701.html#TOP [21 August 2017].
Alfonso Piña W. H., Pardo Martínez C. I., 2014. Urban material flow analysis: An approach for Bogotá, Colombia. Ecological Indicators, vol. 42, pp. 32-42. https://doi.org/10.1016/j.ecolind.2013.10.035
Baccini P., 1997. A city's metabolism: Towards the sustainable development of urban systems. Journal of Urban Technology, vol. 4, no. 2, pp. 27-39. https://doi.org/10.1080/10630739708724555
Baccini P., Bader H.-P., 1996. Regionaler Stoffhaushalt: Erfassung, Bewertung und Steuerung. Heidelberg: Spektrum Akademischer Verlag.
Baccini P., Brunner P. H., 1991. Metabolism of the anthroposphere. Berlin-Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-662-02693-9
Baccini P., Brunner P. H., 2012. Metabolism of the anthroposphere: analysis, evaluation, design. Cambridge: MIT Press. https://doi.org/10.7551/mitpress/8720.001.0001
Baker L. A., Hope D., Xu Y., Edmonds J., Lauver L., 2001. Nitrogen balance for the Central Arizona-Phoenix (CAP) ecosystem. Ecosystems, vol. 4, no. 6, pp. 582-602. https://doi.org/10.1007/s10021-001-0031-2
Baldasanomanga J. M., Soriano C., Boada L., 1999. Emission inventory for greenhouse gases in the City of Barcelona, 1987-1996. Atmospheric Environment, vol. 33, no. 23, pp. 3765-3775. https://doi.org/10.1016/S1352-2310(99)00086-2
Barles S., 2009. Urban Metabolism of Paris and Its Region. Journal of Industrial Ecology, vol. 13, no. 6, pp. 898-913. https://doi.org/10.1111/j.1530-9290.2009.00169.x
Baynes T., Lenzen M., Steinberger J. K., Bai X., 2011. Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy. Energy Policy, vol. 39, no. 11, pp. 7298-7309. https://doi.org/10.1016/j.enpol.2011.08.053
Beloin-Saint-Pierre D., Rugani B., Lasvaux S., Mailhac A., Popovici E., Sibiude G., Benetto E., Schiopu N., 2015. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. Journal of Cleaner Production, vol. 163, suppl., pp. S223-S240. https://doi.org/10.1016/j.jclepro.2016.09.014
Browne D., O'Regan B., Moles R., 2012. Comparison of energy flow accounting, energy flow metabolism ratio analysis and ecological footprinting as tools for measuring urban sustainability: A casestudy of an Irish city-region. Ecological Economics, vol. 83, pp. 97-107. https://doi.org/10.1016/j.ecolecon.2012.08.006
Chen B., Chen S., 2014. Eco-indicators for urban metabolism. Ecological Indicators, vol. 47, pp. 5-6. https://doi.org/10.1016/j.ecolind.2014.09.021
Chrysoulakis N., Lopes M., San José R., Grimmond C. S. B., Jones M. B., Magliulo V., Klostermann J. E. M., Synnefa A., Mitraka Z., Castro E. A., Goználes A., Vogt R., Vesala T., Spano D., Pigeon G., Freer-Smith P., Staszewski T., Hodges N., Cartalis C., 2013. Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landscape and Urban Planning, vol. 112, no. 1, pp. 100-117. https://doi.org/10.1016/j.landurbplan.2012.12.005
Codoban N., Kennedy C. A., 2008. Metabolism of Neighborhoods. Journal of Urban Planning and Development, vol. 134, no. 1, pp. 21-31. https://doi.org/10.1061/(ASCE)0733-9488(2008)134:1(21)
Conke L. S., Ferreira T. L., 2015. Urban metabolism: Measuring the city's contribution to sustainable development. Environmental Pollution, vol. 202, pp. 146-152. https://doi.org/10.1016/j.envpol.2015.03.027
Decker E. H., Elliott S., Smith F. A., Blake D. R., Rowland F. S., 2000. Energy and Material Flow Through the Urban Ecosystem. Annual Review of Energy and the Environment, vol. 25, pp. 685-740. https://doi.org/10.1146/annurev.energy.25.1.685
Dinarès M., 2014. Urban Metabolism: A review of recent literature on the subject. Documents d'anàlisi Geogràfica, vol. 60, pp. 3, pp. 551-571. https://doi.org/http://dx.doi.org/10.5565/rev/dag.134
Douglas I., Hodgson R., Lawson N., 2002. Industry, environment and health through 200 years in Manchester. Ecological Economics, vol. 41, no. 2, pp. 235-255. https://doi.org/10.1016/S0921-8009(02)00029-0
Duvigneaud P., Denaeyer-De Smet S., 1977. L'Ecosystéme Urbs: L'Ecosystéme Urbain Bruxellois, [in:] P. Duvigneaud, P. Kestemont (eds.), Productivité biologique en Belgique, Traveaux de la Section Belge du Programme Biologique International. Bruxelles: Duculot, pp. 581-597.
Engel-Yan J., Kennedy C., Saiz S., Pressnail K., 2005. Toward sustainable neighbourhoods: the need to consider infrastructure interactions. Canadian Journal of Civil Engineering, vol. 32, no. 1, pp. 45-57. https://doi.org/10.1139/l04-116
European Commission, 2010. ECO-URB - Analysing Urban Metabolism and Ecological Footprint - A Multi-Scale Approach to Urban Sustainability Accounting and its Policy Implications. Beer-Sheva, http://ordis.europa.eu/project/rcn/94598_en.html [21 August 2017].
European Commission, 2016a. REPAiR - REsource Management in Peri-urban AReas: Going Beyond Urban Metabolism. Delft, http://cordis.europa.eu/project/rcn/203259_en.html [21 August 2017].
European Commission, 2016b. Urban-Wins - Urban metabolism accounts for building Waste management Innovative Networks and Strategies. Cremona, http://cordis.europa.eu/project/rcn/203270_en.html [21 August 2017].
Ferrão P., Fernandez, J. E., 2013. Sustainable Urban Metabolism. Cambridge-London: The MIT Press, http://site.ebrary.com/id/10752785 [21 August 2017].
Fischer-Kowalski M., 2002. Exploring the history of industrial metabolism. [in:] R. U. Ayres, L. Ayres (eds.), A Handbook of Industrial Ecology. Cheltenham-Northampton: Edward Elgar, pp. 35-45.
Geldermans B., Palestino M. F., Formato E., Varju V., Eder P., Bellstedt C., 2016. Introduction to methodology for integrated spatial, material flow and social analyses. [in:] REPAiR project (REsource Management in Peri-urban Areas: Going Beyond Urban Metabolism). Delft.
Goldstein B., Birkved M., Quitzau M.-B., Hauschild M., 2013b. Quantification of urban metabolism through coupling with the life cycle assessment framework: Concept development and case study. Environmental Research Letters, vol. 8, no. 3. https://doi.org/10.1088/1748-9326/8/3/035024
González A., Donnelly A., Jones M., Chrysoulakis N., Lopes M., 2013. A decision-support system for sustainable urban metabolism in Europe. Environmental Impact Assessment Review, vol. 38, pp. 109-119. https://doi.org/10.1016/j.eiar.2012.06.007
Hanya T., Ambe Y., 1975. A Study on the Metabolism of Cities. [in:] Science for Better Environment. Proceedings of the International Congress on the Human Environment (HESC). Kyoto: Pergamon Press, pp. 228-234. https://doi.org/10.1016/B978-0-08-021948-6.50038-8
Hendriks C., Obernosterer R., Muller D., Kytzia S., Baccini P., Brunner P. H., 2000. Material Flow Analysis: A tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss lowlands. Local Environment, vol. 5, no. 3, pp. 311-328. https://doi.org/10.1080/13549830050134257
Herfray G., Peuportier B., 2010. Life cycle assessment applied to urban settlements. [in:] Sustainable Building 2010 International Conference, Revitalization and Rehabilitation of Districts. Madrid.
Hoornweg D. A., Campillo G., Linders D., Sugar L., Saldivar-Sali A. N., 2012. Mainstreaming Urban Metabolism: Advances and Challenges in City Participation. [in:] World Bank Sixth Urban Research and Knowledge Symposium - Rethinking Cities. Barcelona.
Huang S.-L., 1998. Urban ecosystems, energetic hierarchies, and ecological economics of Taipei metropolis. Journal of Environmental Management, vol. 52, pp. 39-51. https://doi.org/10.1006/jema.1997.0157
Huang S.-L., Hsu W.-L., 2003. Materials flow analysis and emergy evaluation of Taipei's urban construction. Landscape and Urban Planning, vol. 63, pp. 61-74. https://doi.org/10.1016/S0169-2046(02)00152-4
Huang S.-L., Kao W.-C., Lee C.-L., 2007. Energetic mechanisms and development of an urban landscape system. Ecological Modelling, vol. 201, pp. 495-506. https://doi.org/10.1016/j.ecolmodel.2006.10.019
Huang S.-L., Lee C.-L., Chen C.-W., 2006. Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis. Resources, Conservation and Recycling, vol. 48, no. 2, pp. 166-196. https://doi.org/10.1016/j.resconrec.2006.01.005
IABR, Gemeente Rotterdam, FABRIC, JCFO, TNO, 2012. Urban Metabolism - sustainable development of Rotterdam. [in:] The International Architecture Biennale Rotterdam (IBAR). Rotterdam: Municipality of Rotterdam. http://iabr.nl/media/document/original/urban_metabolism_rotterdam.pdf [21 August 2017].
Inostroza L., 2014. Measuring urban ecosystem functions through "Technomass" - A novel indicator to assess urban metabolism. Ecological Indicators, vol. 42, pp. 10-19. https://doi.org/10.1016/j.ecolind.2014.02.035
Kendall A., 2012. Time-adjusted global warming potentials for LCA and carbon footprints. International Journal of Life Cycle Assessment, vol. 17, pp. 1042-1049. https://doi.org/10.1007/s11367-012-0436-5
Kennedy C. A., 2002. A comparison of the sustainability of public and private transportation systems: Study of the Greater Toronto Area. Transportation, vol. 29, pp. 459-493. https://doi.org/10.1023/A:1016302913909
Kennedy C. A., Cuddihy J., Engel-Yan J., 2007. The Changing Metabolism of Cities. Journal of Industrial Ecology, vol. 11, no. 2, pp. 43-59. https://doi.org/10.1162/jie.2007.1107
Kennedy C. A., Hoornweg D., 2012. Mainstreaming Urban Metabolism. Journal of Industrial Ecology, vol. 16, no. 6, pp. 780-782. https://doi.org/10.1111/j.1530-9290.2012.00548.x
Kennedy C. A., Pincetl S., Bunje P., 2011. The study of urban metabolism and its applications to urban planning and design. Environmental Pollution, vol. 159, pp. 1965-1973. https://doi.org/10.1016/j.envpol.2010.10.022
Kennedy C. A., Stewart I., Facchini A., Cersosimo I., Mele R., Chen B., Uda M., Kansal A., Chiu A., Kim K., Dubeux C., Lebre La Rovere E., Cunha B., Pincetl S., Keirstead J., Barles S., Pusaka S., Gunawan J., Adegbile M., Nazariha M., Hoque S., Marcotullio P. J., González Otharán F., Genena T., Ibrahim N., Farooqui R., Cervantes G., Sahin A. D., 2015. Energy and material flows of megacities. Proceedings of the National Academy of Sciences, vol. 112, no. 19, pp. 5985-5990. https://doi.org/10.1073/pnas.1504315112
Kennedy C., Stewart I. D., Ibrahim N., Facchini A., Mele R., 2014. Developing a multi-layered indicator set for urban metabolism studies in megacities. Ecological Indicators, vol. 47, pp. 7-15. https://doi.org/10.1016/j.ecolind.2014.07.039
Krausmann F., Haberl H., 2002. The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995. Ecological Economics, vol. 41, pp. 177-201. https://doi.org/10.1016/S0921-8009(02)00032-0
Lauver L., Baker, L. A., 2000. Mass balance for wastewater nitrogen in the Central Arizona-Phoenix ecosystem. Water Research, vol. 34, no. 10, pp. 2754-2760. https://doi.org/10.1016/S0043-1354(99)00355-3
Lei K., Liu L., Hu D., Lou I., 2016. Mass, energy, and emergy analysis of the metabolism of Macao. Journal of Cleaner Production, vol. 114, pp. 160-170. https://doi.org/10.1016/j.jclepro.2015.05.099
Li Y., Beeton R. J. S., Halog A., Sigler T., 2016. Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China. Resources, Conservation and Recycling, vol. 110, pp. 87-98. https://doi.org/10.1016/j.resconrec.2016.03.023
Liu G., Yang Z., Chen B., 2011. Four angle model for the urban metabolism integrated analysis. Procedia Environmental Sciences, vol. 5, pp. 81-86. https://doi.org/10.1016/j.proenv.2011.03.052
Lu Y., Geng Y., Qian Y., Han W., Mcdowall W., Bleischwitz R., 2016. Changes of human time and land use pattern in one mega city's urban metabolism: a multi-scale integrated analysis of Shanghai. Journal of Cleaner Production, vol. 133, pp. 391-401. https://doi.org/10.1016/j.jclepro.2016.05.174
Montrucchio V., 2012. Systemic Design Approach Applied to Buildings: Definition of a Co-operative Process. International Journal of Engineering, vol. 5, no. 3, pp. 323-327.
Mullins P., Natalier K., Smith P., Smeaton B., 1999. Cities and Consumption Spaces. Urban Affairs Review, vol. 35, no. 1, pp. 44-71. https://doi.org/10.4324/9780203358733
Munier N., 2006. Introduction to Sustainability: Road to a Better Future. Dordrecht-New York: Springer.
Neset T.-S. S., Lohm U., 2005. Spatial Imprint of Food Consumption: A Historical Analysis for Sweden, 1870-2000. Human Ecology, vol. 33, no. 4, pp. 565-580. https://doi.org/10.1007/s10745-005-5160-3
Newcombe K., Kalma J. D., Aston A. R., 1978. The Metabolism of a City: The Case of Hong Kong. AMIBIO, vol. 7, no. 1, pp. 3-15, http://www.jstor.org/stable/4312330 [21 August 2017].
Newman P. W. G., 1999. Sustainability and cities: Extending the metabolism model. Landscape and Urban Planning, vol. 44, pp. 219-226. https://doi.org/10.1016/S0169-2046(99)00009-2
Newton P., Flood J., Berry M., Bhatia K., Brown S., Cabelli A., Gomboso J., Higgins J., Richardson T., Ritchie V., 1998. Environmental Indicators for National State of the Environment Reporting - Human Settlements. Canberra: State of the Environment (Environmental Indicator Reports), [21 August 2017].
Niza S., Rosado L., Ferrão P., 2009. Urban Metabolism Methodological Advances in Urban Material Flow Accounting Based on the Lisbon Case Study. Journal of Industrial Ecology, vol. 13, no. 3, pp. 384-405. https://doi.org/10.1111/j.1530-9290.2009.00130.x
Odum E. P., 1975. Ecology, the link between the natural and the social sciences. New York: Holt, Rinehart and Winston.
Odum E. P., 1989. Ecology and our endangered life-support systems. Sunderland: Sinauer Associates.
Odum H. T., 1971. Environment, power and society. New York: Wiley-Interscience.
Odum H. T., 1973. Energy, Ecology and Economics. AMBIO, vol. 2, no. 6, pp. 220-227.
Odum H. T., 1983. Systems ecology: an introduction. New York: John Wiley and Sons.
Oswald F., Baccini, P., Michaeli M., 2003. Netzstadt: designing the urban. Basel-Boston-Berlin: Birkhäuser.
Pincetl S., Bunje P., Holmes T., 2012. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landscape and Urban Planning, vol. 107,pp. 193-202. https://doi.org/10.1016/j.landurbplan.2012.06.006
Quinn D., Fernández J. E., 2005. Urban Metabolism : Ecologically sensitive construction for a sustainable New Orleans. Cambridge: School of Architecture and Planning MIT.
Rapoport E., 2012. Interdisciplinary Perspectives on Urban Metabolism: A review of the literature. UCL Environmental Institute Working Paper, London. https://doi.org/10.1111/j.1530-9290.2012.00556.x
Rosado L., Kalmykova Y., Patrício J., 2016. Urban metabolism profiles. An empirical analysis of the material flow characteristics of three metropolitan areas in Sweden. Journal of Cleaner Production, vol. 126, pp. 206-217. https://doi.org/10.1016/j.jclepro.2016.02.139
Sahely H. R., Dudding S., Kennedy C., 2003. Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Canadian Journal of Civil Engineering, vol. 30, no. 4, pp. 794-794. https://doi.org/10.1139/l03-054
Samaniego H., Moses M. E., 2008. Cities as organisms: Allometric scaling of urban road networks. Journal of Transport and Land Use, vol. 1, no. 1, pp. 21-39. https://doi.org/10.5198/jtlu.v1i1.29
Schremmer C., Weisz H., Pinho P., Davoudi, S., 2009. Sustainable Urban Metabolism for Europe. [in:] CITTA 2nd Annual Conference on Planning Research: Planning in Times of Uncertainty. Porto, p. 5. https://doi.org/10.1081/E-EEM-120053897
Song Y., van Timmeren A., Wandl A., 2017. Defining sustainability-aimed urban metabolism indicators. [in:] A. Gospondini (ed.) Book of Abstracts of the International Conference on Changing Cities III: Spatial, Design, Landscape & Socio-Economic dimensions. Thessaloniki: Grafima Publications, p. 215.
Su M., Yang Z., Chen B., Ulgiati S., 2009. Urban ecosystem health assessment based on emergy and set pair analysis. A comparative study of typical Chinese cities. Ecological Modelling, vol. 220, pp. 2341-2348. https://doi.org/10.1016/j.ecolmodel.2009.06.010
Sun L., Dong H., Geng Y., Li Z., Liu Z., Fujita T., Ohnishi S., Fujii M., 2016. Uncovering driving forces on urban metabolism - A case of Shenyang. Journal of Cleaner Production, vol. 114, pp. 171-179. https://doi.org/10.1016/j.jclepro.2015.05.053
Sustainable Cities International, 2012. Indicators for Sustainability: How cities are monitoring and evaluating their success. Vancouver, http://www.cashewstory.com [21 August 2017].
Swilling M., 2016. Sustainability and infrastructure planning in South Africa: a Cape Town case study. Environment and Urbanization, vol. 18, no. 1, pp. 23-50. https://doi.org/10.1177/0956247806063939
Timmerman P., White R., 1997. Megahydropolis: coastal cities in the context of global environmental change. Global Environmental Change, vol. 7, no. 3, pp. 205-234. https://doi.org/10.1016/S0959-3780(97)00009-5
van Bohemen H., 2012. (Eco)System Thinking: Ecological Principles for Buildings, Roads and Industrial and Urban Areas. [in:] E. M. van Bueren, H. van Bohemen, L. Itard, H. Visscher (eds.) Sustainable Urban Environments: An Ecosystem Approach. Dordrecht-Heidelberg-London-New York: Springer Netherlands, vol. 2, pp. 15-70. https://doi.org/10.1007/978-94-007-1294-2
Wackernagel M., Kitzes J., Moran D., Goldfinger S., Thomas M., 2006. The Ecological Footprint of cities and regions: comparing resource availability with resource demand. Environment and Urbanization, vol. 18, no. 1, pp. 103-112. https://doi.org/10.1177/0956247806063978
Wolman A., 1965. The Metabolism of Cities. Scientific American, vol. 213, no. 3, pp. 179-190. https://doi.org/10.1038/scientificamerican0965-178
Yang D., Gao L., Xiao L., Wang R., 2012. Cross-boundary environmental effects of urban household metabolism based on an urban spatial conceptual framework: A comparative case of Xiamen. Journal of Cleaner Production, vol. 27, pp. 1-10. https://doi.org/10.1016/j.jclepro.2011.12.033
Yang D., Kao W. T. M., Zhang G., Zhang N., 2014. Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis. Ecological Modelling, vol. 272, pp. 40-48. https://doi.org/10.1016/j.ecolmodel.2013.09.014
Yang Z., Zhang Y., Li S., Liu H., Zheng H., Zhang J., Su M., Liu G., 2014. Characterizing urban metabolic systems with an ecological hierarchy method, Beijing, China. Landscape and Urban Planning, vol. 121, pp. 19-33. https://doi.org/10.1016/j.landurbplan.2013.09.004
Zhang Y., 2013. Urban metabolism: A review of research methodologies. Environmental Pollution, vol. 178, pp. 463-473. https://doi.org/10.1016/j.envpol.2013.03.052
Zhang Y., Liu H., Chen B., 2013. Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing. Ecological Modelling, vol. 252, pp. 106-113. https://doi.org/10.1016/j.ecolmodel.2012.08.017
Zhang Y., Yang Z., Yu X., 2009a. Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities. Ecological Modelling, vol. 220, pp. 1431-1442. https://doi.org/10.1016/j.ecolmodel.2009.02.001
Zhang Y., Yang Z., Yu X., 2009b. Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China). Ecological Modelling, vol. 220, pp. 1690-1696. https://doi.org/10.1016/j.ecolmodel.2009.04.002
Zhang Y., Yang Z., Yu X., 2015. Urban Metabolism: A Review of Current Knowledge and Directions for Future Study. Environmental Science and Technology, vol. 49, pp. 11247-11263. https://doi.org/10.1021/acs.est.5b03060
Zucchetto J., 1975. Energy-economic Theory And Mathematical Models For Combining The Systems Of Man And Nature, Case Study: The Urban Region Of Miami, Florida. Ecological Modelling, vol. 1, 241-268. https://doi.org/10.1016/0304-3800(75)90010-1
Zucchetto J. J., 2004. Reflections on Howard T. Odum's paper: Energy, Ecology and Economics, Ambio, 1973. Ecological Modelling, vol. 178, pp. 195-198. https://doi.org/10.1016/j.ecolmodel.2003.12.034


Europa XXI ; Europa XXI



Start page:


End page:



File size 0,3 MB ; application/octet-stream

Resource Identifier:

oai:rcin.org.pl:86608 ; 1429-7132 ; 10.7163/Eu21.2018.34.1


CBGiOŚ. IGiPZ PAN, call nos.: Cz.6406, Cz.6407 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.



This page uses 'cookies'. More information