Nr. ince.

$$
1376
$$

Szafa:
Pblket

G U.ID E

то

THE STUDY OF INSECTS,

AND A TAELTISE ON THOSE

INJURIOUUS AND BENEFICIAL TO OROPS:

FOIS THE USE OT:

COLLEGLS, FARI-SCHOOLS, AND AGRICULTURISTS.

BY

A. S. PACKARD, JR., M. D.

wftil eleven plates and six ilundored and fiety wood-cuts.

S ALEM:
NATURALIST'S BOOR AGENCT.
London: trǘbier \& CO.
1869.

Entered according to Act of Congress, in the year 1809, by
A. S. PACKIRD, Je
in the Clerke Ofice of the District Court of the District of Massachusetts.

PREFACE.

This introduction to the study of insects is designed to teach the beginner the elements of entomology, aud to serve as a guide to the more elaborate treatises and memoirs which the advanced student may wish to consult. Should the book, imperfect as the anthor feels it to be, prove of some service in inducing others to study this most interesting and useful branch of natural history, the object of the writer will have been fully attained.

In order to make it of value to farmers and gardeners, whose needs the writer has kept in view, and that it may be used as a text book in our agricultural colleges, concise accounts have been given of insects injurious or beneficial to vegetation, or those in any way affecting human interests.

When the localities of the insects are not precisely given, it is to be understood that they occur in the Eastern Atlantic States from Maine to Pennsylvania, and the more northern of the Western States. When the family names occur in the text they are put in spaced Italics, to distinguish them from the generic and specific names which are Italicized in the usual way.

The succession of the suborders of the hexapodous insects is that proposed by the author in 1863, and the attention of zoollogists is called to their division into two series of suborders, which are characterized on page $10 \frac{1}{2}$. To the first and highest may be applied Leach's term Metabolia, as they all agree in having a perfect metamorphosis; for the second and lower series the term Hererometabolia is pro-
posed, as the four suborders comprised in it differ in the degrees of completeness of their metamorphoses, and are all linked together by the structural features enmmerated on page 104.

The classification of the lymenoptera is original with the author, the bees (Apida) being placed highest, aud the sawtlies and Urocerida lowest. The succession of the families of the Lepidoptera is that now generally agreed upon by entomologists. Loers's classilication of the Diptera, published in the "Miscellaneous Collections" of the Smithsonian Institution, has been followed, with some modifications. Haliday's suggestion that the Pulicidre are allied to the Mycetophilidæ gives a clue to their position in nature among the higher Diptera. Leconte's classification of the Coleoptera is adopted as far as pablished by him, i.e., to the Bruchidie. For the succeeding families the arrangement of Gerstaecker in Peters and Carns' "Mandbuch der Zoologie" has been followed, both being based on that of Lacordaire. The Hemiptera are arranged according to the author's rews of the succession of the families. The classification of the Orthoptera is that proposed by Mr. S. H. Sculder. This succession of families is the reverse of what has been given by recent authors, and is by fill the most satisfactory yet presented. The arrangement of the Neuroptera (in the Linnean sense) is that of Dr. Hagen, published in his "Synopsis," with the addition, howerer, of the Lepismatidx, Campodex and Poduridx.

The usual classification of the Arachnirla is modified by placing the Phalangidre as a family among the Pedipalpi, and the succession of families of this suhorter is suggested as being a more natnral one than has been previonsly giren.

The arrangement of the Araneina, imperfect as anthors lave left it, is that adopted by Gerstaecker in Peters and

Carus' "IIandbuch der Zoologic." In the succession of the f:milics of the Acarina, the suggestions of Claparecle, in his "Studien der Acariden," have been followed, and in the preparation of the general account of the Arachnids the writer is greatly indebted to Claparede's elaborate work on the "Erolution of Spiders."

In the preparation of this "Guide" the anthor has consulted and freely used Westwood's inraluable "Introduction to the Modern Classification of Insects:" Gerstaecker's "Arthropoicn" in Peters and Carus" "Handbuch der Zoologie ;" Siebold's "Anatomy of the Invertebrates" (Burnett's translation, 185t) ; Newpori's Article "Insecta" in Tocld's Cyclopædia of Anatomy and Physiology; and Dr. T. W. Harris' "Treatise on Insects injurious to Vegetation." He would also acknowledge lis indebtedness to Professor L. Agassiz for many of the general ideas, acquired while the author was a student in the Museum of Comparative Zoōlogy at Cambridge, regarding the arrangement of the orders and classes, and the morphology of the Articulates.

For kind assistance rendered in preparing this book, the anthor is specially indebted to Baron R. yon Osten Sacken, who kindly read the proof sheets of the chapter on Diptera; to Mr. F. (r. Sanborn for the commmication of many specimens anid facts; and also to Messis. Edward Norton, S. H. Scndder, J. H. Emerton, C. T. Robinson, A. R. Grote, G. D. Smith, E. T. Cressonl, P. R. Uhler, C. V. Riley, Dr. J. L. Leconte, Dr. Hagen, TV. C. Fish, and E. S. Morse. For mach kind assistance and rery many favors and suggestions, and constant sympathy and encouragement during the printing of the work, he is under special obligation to his ralued friend, Mr. F. W. Putnam. The types of the nerv species noticed here are deposited in the Museum of the Peabody Acadeny of Science. He would also express his thanks to
the American Entomological Society, the Society of Natural History at Boston, the Secretary of the Massachusetts Board of Agriculture, the Essex Institute, the Smithsonian Institution, the Secretary of the Maine Board of Agriculture, and to Mr. R. Hardwicke, the publisher of "Science-Gossip," Prof. Sanborn Tenney, the author of "A Manual of Zoölogy," and to his coeditors of the "American Naturalist," for the use of many of the cuts, a list of which may be found on the succeeding pages.

Peabody acadeait of science,
Saley, Nov. 10, 1869.

ACKNOWLEDGEMENTS.

Figs. 3, 4, 6, 7, 8, 33, 34, 35, 38, 39, 40, 84, 86, 87, 91, 93-100, 124, $120,130,131,132,142,144,146,151,180,191-196,201,202,204,205$, $206,207,2085,209,212,215,215,219,220,221,224,225,226,246,256$ $-260,267,320,321,332,333,379,404,408,409,421,422,442,455,450$, 481, 484, 485, 487, 493, 500, 501, 502, 509, 513, $518,519,521,531,584$, $535,552,561,562,576,579,593,601$ and 651 , were borrowed from the American Eutomological Society, at Philadelphia.

Figs. 2, 14, 15-24, 27, 48, 63-67, 69, 181, 216, 217, 222, 230, 231, 233 $-235,247,369,389,420,424,427,435,436,438,497,308,578,630$ and 631 were loaucd by the Boston Society of Natural History.

Figs. 25, 36, 37, 55, 83, 123, 130, 237, 242, 269, 350, 352-357, 362, 368, $372,373,380,511,512,514,542,543,544,545,546,556,585-587,589$, $590,591,594,602,608,60 \pm$ and 605 , were borrowed from the report of the Massachusetts State Board of Agriculture for 1862.

FIGS. 155-165, 169-179, 270, 271, 285-996, 800, 303-306, 345゙-348, 355, $359,632,633$ and 634, were loaned by the Smithsonian Institution.

Figs. 1, 5, 8, $10,30,31,32,51,52,57,53,62,64,68,72,79,80,81,82$, $85,89,92,110-121,127,185,186,227,228,230,248,250,252,262,263$, $273,278,298,307-314,317-319,322,324-327,329-331,354-343,361$, $363 a, 375,387,412,413,425,426,428,430,432,433,437,439,447-40 ̆ 1$, $456-458,463,464,474,475,50 \pm, 516,576,57 \pi, 580-584,588,592,603$, $613,615,627,636,637,638,639,641,642,646-649$, were taken from the "American Naturalist."

FIGS. $41,70,71,88,129,138,148,152,200,232,249,258,255,349$, $492,554,618$, and 645 were borrowed from the "Report of the Maine Board of Agriculture for 1862. ."

Figs. 78-78, were kindly loaned by Prof. Jeffics Wyman.
FTGS. 570, 571, 574, 575, 617 and 635, were loaned by the Illinois Geological Survey.

I am also indebted to Prof. Samborn Tenney for the ase of Figs. 189, 190, 198, 315, 323, 563-567, from his "Manual of Zōlogy."

The publishers of Hardwick's "Science-Gossip," Loudon, afforded me stereotypes of Figs, 517, 557, 569, 573, 606, 607, 609-611, 616, 620 -622, 628, 629 and 640.

Electrotypes of Figs. 119, 261, 281, 281c-284, 328, 344, 351, 360, 363, $367,374,376,414,429,434,452-454,466,468-471,477,479,494,506{ }^{1}$, $506^{2}, 510,522-526,530,532,533,536-541,547-551,564,568,595-598$, Were purchased of the publishers of the "American Entomologist."

The following figures were engraved expressly for the work, viz: Figs. 11, 12, 13, 26, 28, 29, 42, 43-47, 49, 50, 53, 54, 56, 59-61, 80, 107-
$109,122,123,125,133-135,137,139-141,145,1+8-151,100-168,182-$ $184,187,185,197,208,208,210,211,214,218,223,236,243,244,254$, $26 \pm-206,272,280,297,299,301,302,305,310,364-366,370,371,377$, $378,381-306,355,390-397,399-403,405-407,410,411,415-410,423,431$, $440,441,443-446,450-462,405,467,472,473,466,476,45^{2}, 483,485 a, b$, $488,409,490,491,405,496,498,490,503,505,507,515,520,527-529$, $55 \overline{5}, 558-560,565,552,549,600,612,614,619,623-626,643,6+4$ and 650. Of these, 119 were ciraw from nature, mostly by Mt. J. H. Emerton, and it few by Messrs. C. A. Walker and L. Trouvelot. Those are numberetl: $11,12,13-20,26,25,29,42,51, ~ 52,57-68,64-67,79-82,90,107-$ $100,122,123,125,133,137,139,141,145,148,149-151,166,167,168$, $182-104,187,158,107,203,208 \mathrm{a}, 6,210 \mathrm{a}, 211,214,218,230,254,265$, $266,299,301,303,316,364-366,378,383,38 \pm, 386,392,393,396,397$, $400,402,403,405,413,410,419,423,431,443,441,443-446,465,473$, $476,482 a, 483,485 a, b, 489,430,491,496,498,490,503,505,507,515$, 520, 525, 560, 565, 599, 600, 612, 614, 619.

Of the remainder, Figs. $184,459-462,495$, 506 , were copied from IIaruis; 43,45 , from Leidy; $46,47,49,50$, from Strans-Durckleim; $44,53,54$ and 650 , fron Newport; 135, 140 , from Fitch; 223, 243, 244, 528, 529, from Glower; 264, 407, from Curtis; 623-626, from Claparèle; 643, 644, from Doyère; 50 from Gerstaecker; 297 , from Mecznikow; 302, from Brancr; 417, 418, from Lepricur; 527,558559 , from Guctrin-Mencrille; 5.2 from Dohru; 394 , from Blisson; 368 , from Cancléze; 377, $381,382,385,390,391,395,390,401,406,407,410$, 472 and 488 , from Chapuis and Cancléze.
P^{3} ates $1,2,3,4,6,7,9,10$ and 11 , were taken from the "American Natmalist." Plates 5 and 8 , are original, and drawn from nature by Mr. J. H. Emerton.

Explanation of Plate 8.

Ftg. 1. Empretin stimulea; $1 a$, larva.
Fig. 2. Teucania mapunctat ; $2 a, 1$ arva.
Fra. 亏. Santhontera вemuctocea.; 8 a, larfa.
FIG. 4. Catocila nitronia; ta, Iarsa.
Fir. 5. Inrerona erocatatia, male; 5 a larva.
Fig. 6. Funomos subsimuaria; larva.
Jirg. 7. Semalocampa dilamentaria; 7π, larva (enlarged twice).
Tify. B. Abraxas ribeatia, male.
Fig. 8. Abraxas ribentia, male.
Fir. 10. Cirlaria divervilineata; 10α, larva.
F't'f. 11. Galleria rereana.
Fror. 1?. Tozntreuin rosaceana; 12a, larva.
Fiar. 1:3. Penthina promiana.
Fra. 14. Dempesarin robiniella.
[its mine.
Frg. 17. Jithocolletis qemintella; a, larva; b, pupa (eularged three times), $15 c$,
Fig. 1s. Buerulatrix promifoliella,
Fir. 37. Coleophora; larra.
Fir. 18. Tronetia sacuatella: 18 a. larra: 18 b case (enlarged).
Fra, 19. Lit'ocolletis nidificinsella (enlarged); $19 a$, cocoon.
FTr. 20) A rlnesa emprealis.
Fr. 21. Anいlivlopera raccininna.
Fir, 92. Penthina vitivorana (enlarcerl).
FIG. 23. Pterophorus periscelidactylus; a, larpa; δ, pupa (enlarged three times).

GUIDE TO THE STUDY OF INSECTS.

THE CLASS OF INSECTS.

Tilat branch of the Animal Kingdom known as the Articdlata, is so called from having the body composed of rings or segments, like short cylinders, which are placed successively one behind the other. Cuvier selected this term because he saw that the plan of their entire organization, the essential features which separate them from all other animals, lay in the idea of articulation, the apparent joining together of distinct segments along the line of the body. If we observe carefully the borly of a Worm, we shall see that it consists of a long cylindrical sac, which at regular intervals is folded in upon itself, thus giving a ringed (annulated, or articulated) appearance to the body. In Crustaceans (crabs, lobsters, etc.) and in Insects, from the deposition of a peculiar chemical substance called chitine, the walls of the body become so hardened, that when the animal is clead and dry, it readily breaks into numerons very perfect rings.

Though this branch contains a far greater number of species than any other of the animal kingdom, its myriad forms can all be reduced to a simple, ideal, typical figure; that of a long slender cylinder divided into numerous segments, as in Fig. 1, representing the larva of a Fly. It is by the unequal development and the various modes of grouping them, as well as the differences in the number of the rings themselves, and also in Fig. 1. the changes of form of their appendages, i.e. the feet, jaws, antemme, and wings, that the various forms of Articulates are produced.

[^0]Articulated animals are also very distinctly bilcteral, i.e. the body is symmetrically divided into two lateral halves, and

Fig, 2,* not only the trunk but the limbs also show this bilateral symmetry. In a less marked degree there is also an anteroposterior symmetry, i.e. ench end of the body is opposed, just as each side of the borly is, to the other.* The line separating the two ends is, however, imaginary and rague. The antemix, on the anterior pole, or head, are represented by the caudal, or anal, stylets (Fig. 2), and the single parts on the median line of the body correspond. Thus the labrum and clypeus are represented by the tergite of the eleventh seginent of the abdomen.

In all Articulates (Fig. 3) the long, tubular, alimentary canal occupies the centre of the body; above it lies the "heart," or dorsal vessel, and below, upon the under side, rests the nerrous system. The breathing apparatus, or "lungs," in Worms consists of simple filaments, placed on the front of the head; or of gill-like processes, as in the Crustaceans, which are formed by membranous expansions of the legs ; or,
 as in the Insects (Fig. 4), of delicate tubes (trachea), which

* Professor Wyman (On Symmetry and Homology in Limbs, Proceedings of the Boston Society of Natural History, 1867) has shown that antero-posterior symmetry is very tuarked in Articulates. In the adjoining figure of Jow (Fig. 2) the longitudinal lines illustrate what is meant by bilateral symmetry, ant the transverso lines "fore and aft" symmetry. The two antero-posterior halves of the body are Fery symmetrical in the Crustacean gencra Jcera, Oniscus, porcellio, and other Crustacea, and also among the Myriapods, Scutigera, Polyrcsmbs, "in which the limbs are repeated oppositely, though with diferent degrees of incquality, from the centre of the body backwards and forwards." "Leuckart and Van Beneden have shown that Mysis has an ear in the last segment, and Schmidt has described an eye in the same part in a worm, Amphicora."-From IFfnan.

Fig. 3 represents an ideal section of a Worm. f indicates the skin, or mus. cular body-wall, which on each side is produced into one or more fleshy tubercles, usually tipped with bristles or hairs, which serve as organs of locomotion, and
ramify thronghout the whole interior of the animal, ancl connect with breathing pores (stigmata) in the sides of the body. They do not breathe throngh the mouth as do the higher animals. The trachere and blood-vessels follow closely the same

course, so that the aeration of the blood goes on, apparently, over the whole interior of the body, not being confined to a single region, as in the lungs of the rertebrate animals.

Thus it is by observing the general form of the body-walls, and the situation of the different anatomical systems, both in relation to themselves and the walls of the borly, or crust, which surrounds and protects the more delicate organs within, that we are able to find satisfactory characters for isolating, in our defintions, the articulates from all other anmals.

We shall perceive more clearly the differences between the three classes of Articulates, or jointed animals, namely, the Worms, Crustaceans, and Insects, by examining
often as lungs. The nervons cord (a) rests on the floor of the cylinder, sending a filament into the our-like feet (f^{\prime}), and also around the intestine or stomach (b), to a supplementary cord $\{(l)$, which is situated just over the intestine, and under the heart or dorsal yessel (c). The circle e and e is a diagram of the circulatory system; c is the dorsal vessel, or heart, from the side of which, in each ring, a small vessel is sent downwats and around to e, the ventral vessel. - Original.

Fig. 4. An ideal section of a Bee. Here the crnst is deuse and thick, to which strong muscles are attached. On the upper side of the ring the wings grow out, while the legs are inserted ncar the under side. The trachere (d) enter throngh the stigma, or breathing pore, situated just under the wing, and their branches subdivide and are distributed to the wings, with their live principal veins as indicated
their young stages, from the time of their exclusion from the egg, until they pass into mature life. A more careful study of this period than we are now able to enter upon would show us how much alike the young of all articulates are at first, and how soon they login to differ, and assume the shape characteristic of their class.

Most Worms, after leaving the egg, are at first like some infusoria, being little sac-like animalcules, often ciliated over
 nearly the entire surface of the infinitesimal body. Soon this sac-like body grows longer, and contracts at intervals; the intervening parts become unequally enlarged, some segments, or rings, formed by the contraction of the body-walls, greatly exceeding in size those next to them; and it thus assumes the appearance of being more or less equally ringed,

Fig. 6. as in the young Terebella (Fig. 5), where the cilisa are restricted to a single circle surrounding the body. Gradually (Fig. 6) the cilie disappear and regular locomotive organs, consisting of minute paddles, grow out from cach side; feelers (antemre), jaws, and eyes (simple rudimentary eyes) appear on the few front rings of the body, which are grouped by themselves into a sort of hedd, though it is difheult, in a large proportion of the lower worms, for unskilled observers to distinguish the head from the tail.

Thus we see throughont the growth of the worm, no attempt at subdivicling the body into regions, each endowed with its peculiar functions ; but only a more perfect system of rings, each relatively very equally developed,

[^1]but all becoming respectively more complicated. For example, in the Earth-worm (Lumbricus), each ring is distinguishable into an upper and under side, and in addition to these a wellmarked side-area, to which, as for example in marine worms (e.g. Nereis), oar-like organs are attached. In most worms eye-spots appear on the front rings, and slender tentacles grow out, and a pair of nerve-knots (ganglia) are apportioned to each ring.

In the Crustaceuns, such as the fresh-water Crawfish (istencus), as shown by the German naturalist Rathke; and also in the earliest stages of the Insect, the body at once assumes a worm-like form, thus beginning its embryonic life from the goal reached by the achult worm.

The young of all Crustaceans (Fig. 7) first begin life in the egg as oblong flattened worm-like bodies, each end of the body being alike. The young of the lower Crustaceans, such as the Barnacles, and some marine forms like the Jerer and some lowly orgmized parasitic species inhabiting the gills of fishes, are hatched as microscopic embryos which would readily be mistaken for young mites (Accrina). In the higher Crustacems, such as the fresh-water Crawfish, the young, when hatched, (loes not greatly differ from the parent, as it has jassed through the worm-like stage within the egg.

Fig. 7 represents the young of the freshwater Lobstcr (Crawfish) before leaving the eg'g. The body is divided into ring's, ending in lobes on the sides, which are the rudiments of the limbs. b is the rudiment of the eye-

Fig. 7. stalk, at the end of which is the eye; a is the fore antennæ; c is the hind antennæ; d is one of the maxilla-feet; e is the first pair of true feet destined in the adult to form the large "claw." Thus the eye-stalks, antenna, claws, and legs are moulded upon a common form, and at first are scarcely distin-

[^2]guishable from each other. Here we see the embryo divided into a head-thorax and a tail.

It is the same with Insects. Within the egg at the dawn of life they are flattened oblong bodies curved upon the yolkmass. Betore hatching they become more cylindrical, the limbs bud out on the sides of the rings, the head is clearly demarked, and the young caterpillar soon steps forth from the egg-shell ready armed and equipped for its riotons life.

As will be seen in Fig. 8, the legs, jaws, and antenna are first started as buts from the side of the rings, being simply

Fig. 8. elongations of the body-wall, which burl out, become larger, and finally jointed, until the buds arising from the thorax or abdomen become legs, those from the base of the head become jaws, while the antenne and palpi sprout out from the front ring's of the head. Thus while the bodies of all articulates are built up from a common embryonic form, their appendages, which are so diverse, when we compare a Lobster's claw with an Insect's antema, or a Spidcr's spinneret with the hinder limbs of a Centipede, are yet but modifications of a common form, adapted for the different uses to which they are put by these ammals.

Frg. 8. A Caddis, or Case-fis (Mystaciles) in the egg, with part of the yolk (x) not yet inclosed within the body-walls. a, anteme; between a and b the mondibles; b, maxila; c, habium; d, the separaie eye-spots (oceli), which afterwarts increase greatly in number and unite to form the compound ere. The "neck" or junction of the had with the thorm is seen at the front part of the yolk-mass: r. Whe thee pairs of legs, which are fohled once on themselves; f, the pair of anal leg attached to the tenth ring of the abromen, as seen in caterpillars, which form long antema-like filaments in the Cockroach and May-fy, ete. The rings of the body are but partially formed; they are eylindrien, giving the body a worm-like form. Here, as in the other two higures, though not so distinctly seen, the antemax, jaws, and last pair of abdominal less are modidications of but a single form, and grow out from the side of the boly. The head-apmentages are directed fowards, as they are to be adapted for sensory and feening purposes; the legs are directed downwards, since they are to support the insect while walking. It appears that the two ends of the body are perfected before the midfle, and the under side before the upper, as we see the yolk-mass is not yet inclosed and the rings not yet formed above. Thus all articulates differ from all vertelmates in having the yolk-mass situated on the lack, instead of on the belly, as in the chick, log, or human embryo. - From Zaddach.

The Worm is long and slender; composed of an irregular number of rings, all of very even size. Thus, while the size of the rings is fixed, their number is indeterminate, varying from twenty to two hundred or more. The outline of the body is a single cylindrical figure. The organs of loconotion are fleshy filaments and hair's (Fig, 2, f) appended to the sides.

In one of the low intestinal worms, the Tape-worm (Tcenia), each ring, behind the head and "neck," is provided with organs of reproduction, so that when the body becomes broken up into its constituent elements, or rings (as often oceurs naturally in these low forms for the more rearly propagation of the species, since the young are exposed to many dangers while living in the intestines of animals), they become living independent beings which "move freely and somewhat quickly like Leaches," and until their real mature was known they were thought to be worms. This and other facts prove, that, in the Worm, the vitality of the animal is very equally distributed to each ring. If tre cut off the head or tail of some of the low worms, such as the Flat Worms (Planaria, etc.), the pieces will become a distinct animal, but an Insect or Cral) sooner or later dies when deprived of its head or tail (abdomen).

Thas, in the Morm the vital force is very equally distributed to each zoological element, or ring of the body; no single part of the hody is much honored above the rest, so as to subordinate and hold the other parts in subservience to its peculiar and higher ends in the animal economy.

The Crustacean, of which the shrimp (Fig. 9) is a trpical example, is composed of a determinate number (21) of rings which

Fis. 9. are gathered into two regions; the head-thorax (cephalothorax) and hind-body, or ablomen. In this class there is a broad distinction between the anterior and posterior ends of the body. The rings are now grouped into two regions, and the hinder division is subordinate in its structure and

[^3]uses to the forward portion of the body. Hence the nervous power is transferred in some degree towards the heal; the cephalothorax containing the nervous centres from which nerves are clistributed to the abdomen. Nearly all the organs performing the functions of locomotion and sensation reside in the front region; while the vegetative functions, or those concerned in the reproduction and nourishment of the animal, are mostly carried on in the hinder region of the body (the abclomen).

The typical Crustacean cannot be said to have a true head, in distinction fiom a thorax bearing the organs of locomotion, but rather a group of rings, to which are appended the organs of sensation and locomotion. Hence we find the appendages of this region gradually changing from antenne and jars to foot-jaws, or limbs capable of eating and also of locomotion; they shade into each other as seen in Fig. 9. Sometimes the jaws bccome remarkably like claws ; or the legs resemble jaws at the base, but towards their tips become claw-like; gill-like bodies are sometimes attached to the foot-jaws, and thins, as stated by Professor J. D. Dana in the introduction to his great work on the Crustacea of the United States Exploring Expedition, the typical Crustaceans do not have a distinct head, but rather a "head-thorax" (cephalothorax).

When we rise a thind and last step into the world of Insects, we see a completion and final development of the articulate plan which has been but obscurely hinted at in the two lowest classes, the Worms and Crustaceans. Here we first meet with a true head, separate in its structure and functions from the thorax, which, in its turn, is clearly distinguishable from the third region of the body, the abdomen, or hind-boty. These three regions, as seen in the Wasp (Fig. 10), are each

Fig. 10. prorided with three distinct sets of organs, each haring distinct functions, though all are governed by and minister to the brain foree, now in a great measure gathered up from the posterior rings of the body, and in a more concentrated form (the brain being larger than in the lower articulates) lodged in the head.

Here, then, is a centralization of parts headwards; they are
Fig. 10. Philanthus ventilabris Fabr. A Wood-wasp.-From Say.
brought as if towards a focus, and that focus the head, which is the meaning of the term "cephalization," proposed by Professor Dana.* Ring distinctions have given way to regional distinctions. The former characterize the Worm, the latter the Insect. In other words, the division of the body into three parts, or regions, is in the insect, on the whole, better marked than the division of any one of those parts, except the abdomen, into rings.

Composition of the Insect-crust. Before describing the composition of the body-wall, or crust, of the Insect, let us briefly review the mode in which the same parts are formed in the lower classes, the Worms and Crustaceans. We have seen that the typical ring, or segment (called by authors zoönule, zoönite, or somite, meaning parts of a body, though we prefer the term arthromere, denoting the elemental part of a jointed or articulate animal), consists of an upper (tergite), a side (pleurite), and an under piece (sternite). This is seen in its greatest simplicity in the Worm (Fig. 2), where the upper and ventral ares are separated by the plewal region. In the Crustacean the parts, hardened by the deposition of chitine and therefore thick and unyrielding, have to be farther subdivided to secure the necessary amount of freedom of motion to the body and legs. The upper are not only covers the back of the animal, but extends down the sides; the legs are jointed to the epimera, or flanks, on the lower arc ; the epistermom is situated between the epimerum and sternum; and the sternum, forming the breast, is situated between the legs. In the adult, therefore, each elemental ring is composed of six pieces. It should, however, be borne in mind that the tergum and ster-

[^4]num each consist, in the embryo, of two lateral parts, or halves, which, during development, unite on the median line of the body. Typically, therefore, the crustacean ring consists primarily of eight pieces. The same number is found in all insects which are wingless, or in the larva and pupa state ; this applies also to the Myriapods and Spiders.

In the Myriapoda, or Centipedes, the broad tergum overlaps the small epinera, while the sternum is much larger than in the Spiders and Insects. In this respect it is like the broad flat under-surface of most worms. Hence the legs of the Centipede are inscrted very fir apart, and the "breast," or sternum, is not much smaller than the dorsal part of the erust. In the Julus the dorsal piece (tergum) is greatly developed over the sternum, but this is a departure from what is apparently the more typical form of the order, i.e. the Centiperle. In the Spiders there is a still greater clisproportion in size between the tergum and the sternum, though the latter is very large compared with that of Insects. The epimera and episterna, or side-pieces of the Spiders, are partially concealed by the orer-arching tergum, and they are small, since the joints of the legs are very large, Audouin's law of development in Articulates showing that one part of the insect crust is always developed at the expense of the adjoining part. In the Spider we notice that the back of the thorax is a single solid plate consisting originally of four riugs consolidated into a single hard piece. In like manner the broad solid sterual plate results from the remion of the same number of sternites corresponding, originally, to the number of thoracic legs. Thus the whole upper side of the head and thorax of the Spider is consolidated into a single hard homy immovable plate, like the upper solid part of the cephalothorax of the Crab or Shrimp. Hence the motions of the Spiders are very stiff compared with those of many Insects, and correspond to those of the Crab.

The crust of the winged insect is modified for the performance of more complex motions. It is subdivided in so different a manner from the two lower orders of the class, that it would almost seem to have nothing in common, structurally speaking, with the groups below them. It is only by examin-
ing the lowest wingless forms such as the Louse, Flea, Podurc, and Bark-lice, where we see a transition to the Orders of Spiders and Myriapods, that we can perceive the plan pervaling all these forms, uniting them into a common class.

A segment of a winged six-froterl insect (Hexaporl) consists typically of eight pieces which we will now examine mure leisurely. Figure 12 represents a side-riew of the thorax of the Telea Polyphemus, or Silk- $p t$ worm moth, with the legs and wings removed. Each ring consists primarily of the tergum, the two side-pieces (epimerum and episternum) and the sternum, or breast-plate. But one of these

scm ptm
Fig. 11. pieces (sternum) remains simple, as in the lower orders. The tergum is divirled into four pieces. They were named by Audouin going from before backwards, the prossutum, scutum, scutellom, and postscutellem.

The scutum is invariably present and forms the larger part of the upper portion (tergum) of the thorax; the scutellum is, as its name indicates, the little shield so prominent in the beetle, which is also uniformly present. The other two pieces are usually minute and
 crowded down out of sight, and placed between the two opposing rings. As seen in Fig. 11, the prescutum of the moth is a small romeled piece, bent vertically down, so as not to be seen from above. In the lowly organized Mepialus, and some

Frg. 11. Tergal view of the middle segment of the thorax of Telea Polyphemus. prm, prescutam; ms, scutum; scm, scnteIlum; ptm, postscutellum; pt, patagium, or shoulder tippet, covering the insertion of the wings. - Original.

Fig. 12. Side view of the thona of T. Polyphemns, the hairs removed. 1, Prothomax; 2, Mesohmax; 3, Metathorax, separated by the rider black lines. Tergum of the prothorax not represented. ms, mesoscutum; scm, mesoscutelhm; ms", metascutum; scm"', metascutehum; h_{1} a smplementary piece near the insertion of patagia; u, pieces situated at the insertion ot the wings and surrounded by membrane; em, ofimerum of prothorax the long upright picce above being the episternum; epm", episternum of the mesothoras: em", cpimerum of the same; epm", episternm of the metathorax; em", epimerum of the same, divided into two pieces; $c^{\prime}, e^{\prime \prime}, c^{\prime \prime}$, coxd; té, le, le", trochantines; tr, tr, tr, trochanters. - Original.

Neuroptera, such as the Polystocchotes (Fig. $13 a$), the priescutum is large, well developed, triangular, and wedged in between the two halves of the scutun. The little piece succeeding the scutellum, i.e. the postscutelltum, is still smaller, and rarely used in descriptive entomology. Thus far we have spoken of the ${ }^{3}$ middle, or mesothoracic, ring, where these four pieces are most equally developed. In the first, ${ }^{a 1}$ or prothoracic, ring, one part, most probably the scutum, is well developed, while the others are aborted, and it is next to inpossible to trace them in most insects. The prothoras in the higher in-

Fig. 13. sects, such as the Hymenoptera, Lepidoptera, and Diptera is very small, and ofteu intimately soldered to the succeeding or meso-thoracie ring. In the lower insects, however, such as the Coleoptera, the bugs (Hemiptera), grasshoppers and their allies (Orthoptera), and the Nearoptera, the large broad prothorax consists almost entirely of this single piece, and most writers speak of this part under the name of "thorax," since the two posterior segments are concealed by the wings when the animal is at rest. The metathorax is usually very hroad and short. Here we see the soutum split asunder, with the preescutum anrl scutellum wedged in between, while the postscutellum is aborted.

On the side are two pieces, the upper (epimerum) placed just beneath the tergum, which is the collective name for the four tergal, or dorsal, pieces enumerated above. In front of the epimerum and resting upon the sternum, as its name implies, is the episternum. These tro parts (pleurites) compose the flanks of the elemental ring. To them the legs are articulated. Between the two episterna is situated the breast-piece (sternum), which shows a tendency to grow smaller as we ascend from the Neuroptera to the Bees.
In those insects provided with wings, the epimera are also subdivided. The smaller pieces, hinging upon each other, as it were, give play to the very numerous muscles of flight

[^5]needed by the insect to perform its complicated motions while on the wing.

The insertion of the fore wing is concealed by the "shoulder tippets," or patagiel (Fig. 11), whirh are only present in the mesothorax. The external opening of the spiracles just under the wing perforates a little piece called by Audouin the peritreme.

A glance at Figures 11 and 12 shows how compactly the various parts of the thorax are agglutinated into a globular mass, and that this is due to the diminished size of the first and third rings, while the middle ring is greatly enlarged to support the muscles of flight. There are four tergal, four pleural, two on each side (and these in the Hymenoptera, Lepidoptera, and Diptera subdiride into sereral pieces), and a single sternal piece, making nine for each ring and twentyseven for the whole thorax, with eight accessory pieces (the three pairs of peritiemes and the two potagia), making a total of thirty-five for the entire thorax ; or, multiplying the four tergal pieces by two, since they are formed by the union of two primitive pieces on the median line of the body, we have thirty-nine pieces composing the thorax.

Table of the Paits of the Thorax afplied to the Pro-, Meso-, and Metatiorix, respectiviliy.

We must remember that these pieces are rarely of precisely the same form in any tro species, and that they differ. often in a very maked way, in different genera of insects. How simple, then, is the typical ring, and how complex are the vat rious subdivisions of that ring as seen in the actual, living insect, where each part has its appropriate muscles, nerves, and trachew!

We have seen how the thorax is formed in Insects generally, let us now adrert to the two types of thorax in the six-footed
insects. In the higher series of suborders, comprising the Diptera, Lepidoptera and Hymenoptera, placing the highest last, the thorax shows a tendency to assume a globular shape; the upper side, or tergum, is much arched, the pleural region bulges out full and round, while the legs conceal at their insertion the sternum which is minute in size.

In the lower series, embracing the Coleoptera, Hemiptera, Orthoptera, and Nemroptera, the entire body tends to be more flattened ; in the thorax the tergum is broad, especially that of the prothorax, while the pleurites (episterna and epimera) are short and bulge out less than in the higher series, and the stermum is almost invariably well developed, often presenting a large thick breast-plate bearing a stout spine or thick tubercle, as in Edipodu. We can use these characters, in classifying insects into suborders, as they are common to the whole order. Hence the use of characters drawn from the wings and mouthparts (whica are sometimes wating), leads to artificial distinctions, as they are peripheral organs, though often convenient in our first attempts at classifying and limiting natural gronps.

The abdomen. In the hind body, or third region of the trunk, the three dirisions of the typical ring (arthromere), are entire, the tergum is broad and often not much greater in extent than the sternum ; and the pleurites also form either a single piece, or, dirided into an epimerum and episternum, form a distinct lateral region, on which the stigmata are situated. The segments of the abdomen have received from Lacaze-Duthiers a still more special name, that of urite, aud the different tergal pieces belonging to the several rings, but especially those that have been modified to form the genital armor have been designated by him as tergites. We have applied this last term to the tergal pieces generally. The typical number of abdominal segments is eleven. In the lowest insects, the Neuroptera, there are usually eleven; as we have counted them in the abdomen of the embryo of Diplax. In others, such as the Hymenoptera and Lepidoptera, there may never be more than ten, so far as present observation teaches us.

The formation of the sting, and of the male intromittent organ, may be observed in the full-grown larva and in the in-
complete pupa of the Humble-bee, and other thin-skinned Hymenopterons larye, and in a less satisfactory way in the young Dragon-flies.

If the larva of the Humble-bee be taken just after it has become full-fed, and as it is about to enter upon the pupa state, the elements

(stemo-rhabdites LacazeDuthiers), or tubercles, destined to

Fig. 16.
form the oripositor, lie in separate pairs, in two gromps, exposed distinctly to riew, as in Figures 14-18. The oripositor thus consists of three pairs of slender non-articulated tubereles, situated in juxtaposition on each side of the mesial line of the borly. The first pair arises from the eighth abolominal ring, and the second and thircl pair grow out from the ninth ring. The cuds of the first pair scarcely reach beyond the base of the third pair. With the growth of the semi-pupa, the end of the abdomen decreases in size, and is

Fig. 1t. Rudiments of the sting, or ovipositor, of the Humble-bee. 8, 9, 10, sternites of eighth, ninth, and tenth abdominal rings in the larvi. a, first pair, situatel on the eighth sternite; b, second and inner pair; and c, the outer pair. The lettering is the same in figutes $14-22$. The inner pair (b), dorns the true ovipositor, throngh which the eggs are supposed to pass when laid by the insect, the two outer pairs, a and c, sheathing the innev pair.

Fig. 15. The same a little farther adyanced.
Fig. 10. The same at a later stage, the three pairs approximating.
Fid. 17. The three pairs now appear as if together growing from the base of the ninth segment: $17 a$, side view of the same, showing the end of the abdomen growing smaller though the diminution in size of the under side of the body.

Frg. 18. The three liairs of rhabdites now nearly equal in size, and nearly ready to unite and form a tube; $18 a$, side view of the same; the end of the abdomen still more pointed; the ovipositor is situated betweon the seventh aud tenth rings, and is partially retracted within the body.
gradually incurved toward the base (Fig. 18), and the three pairs of rhabdites approach each other so closely that the two outer ones completely ensheath the inner, until a complete extensible tube is formed, which is graclually withdrawn entirely within the body.

The male genital organ is originally composed of three pairs
 (two pairs, apparently, in AEschna, Fig. 19) of tubercles all arising from the ninth abdominal ring, being sternal outgrowths and placed on each side of the mesial line of the body, two be${ }^{2}$ ing anterior, and very unequal in size, and the third pair nearer the base of the abdomen. The exFig. $19 . \quad$ thind pair nearer the base of the
mal genital organs cannot be considered as in any way homologous with the limbs, which are articulated outgrowths budding out be-
 tween the sternal and pleural picces of the arthronere.*

This riew will apply to the genital armor of all Insects, so far as we have been able to observe. It is so in the pupa of AEschna (Fig. 21), and the pupa of Agrion (Fig. 22), which completely repeats, in its essential features, the

Fig. 22. structure of the ovipositor of Bombus. Thus in Eschna and Agrion the ovipositor consists of a pair of closely appressed ensiform processes which grow out from under the posterior edge of the eighth abdominal ring, and are embraced between two pairs

* This term is proposed as better defining the ideal ding, or primary zoological element of an articulated animal than the terms somite or zoünite, which seem too vague; we also propose the term arthroderm for the outer crust, or body walls, of Articulates, and arthropleura for the pleural, or limb-bearing region, of the body, being that portion of the arthromere situated between the tergite and sternite.

Fig. 19. The rudiments of the male intromittent organ of the pupa of Eschna, consisting of two flattened tubereles sitnated on the ninth ring; the outer pair large and rounded inclosing the smaller linear oval pair.

Fig. 20. The same in the Itumble-bee, but consisting of three pairs of tubercles, $x, y, z ; 8,9,10$, the last three segments of the abdomen.

FIg. 21. The rudimentary ovipositor of the pupa of EEschan, a Dragon-fly.
Frg. 22. The same in pupa of Agrion, a small Dragon-fiy. Here the rudiments of the eleventh abdominal ring is seen. d, the base of one of the abdominal false gills,-Figs 14-22 original.
of thin lamelliform picees of similar form and structure, arising from the sternite of the niuth ring. These sternal outgrowths do not homologize with the filiform, antenne-like, jointed appendages of the eleventh ring, as seen in the Perlidæ and most Nemoptera and Orthoptera (especially in Mantis tessellata where they (Fig. 23) closely resemble antenne), which, arising as they do from the arthropeural, or limbbearing region of the body, i. e. between

Fig. 23. the sternum and episternum, are strictly homologous with the abdominal legs of the Myriapoda, the "false legs" of caterpillars, and the abdominal legs of some Neuropterous larve (Corydalis, Phyganeida, etc.).

It will thus be seen that the attenuated form of the tip is produced by the decrease in size of certain parts, the actual disappearance of others, and the perfection of those parts to be of future use. Thus towards the extromity of the body the pleurites are absorbed and disappear, the tergites overlap on the sternites, and the latter diminish in size and are withdrawn within the body, while the last, or eleventh sternite, entirely disappears.* Meanwhile the sting grows larger and

Fig. 21. larger, until finally we have the neatly fashioned abdominal tip of the bee concealing the complex sting with its intricate system of visceral ressels and glanits.
The ovipositor, or sting, of all insects, therefore, is formed on a common plan (Fig. 24). The solid clements of the arthor

[^6]
mere are modified to form the parts supporting the sting alone. The external opening of the ovidnet is always situated between the eighth and nintl segments, while the anal opening lies at the end of the eleventh ring. So that there are really, as Lacaze-Duthiers observes, three segments interposed between the genital and anal openings.

The varions morffications of the ovipositor and male organ will be noticed under the different suborders.

The Strecture of the Head. After studying the composition of the thorax and abdomen, where the constituent parts of the elemental ring oceur in their greatest simplicity, we may attempt to uravel the intricate structure of the head. We are to determine whether it is composed of one, or more, segments, and if several, to ascertain how many, and then to learn what parts of the typical arthromere are most largely cleveloped as compared with the development of similar parts in the thorax or abclomen. In this, perhaps the most difficult problem the entomologist has to deal with, the study of the head of the arlult insect alone is only gnesswork. We must trace its growth in the embryo. Though many writers consider the hearl as consisting of but a single segment, the most eminent entomologists have agreed that the head of insects is composed of troo or more segments. Savigny led the way to these discoveries in transcendental entomology by stating that the appendages of the head are but modified limbs, and homologous with the legs. This view at once gave a clue to the complicated structure of the hearl. If the antenne and biting organs are modified limbs, then there must be an elemental segment present in some form, however slightly developed in the mature insect, to which such limbs are attached. But the best observers have differed as to the supposed number of such theoretical segments. Burmeister believed that there were two only; Cartus and Audouin thonght there were three; McLeay and Newman four, and Straus-Durckheim recognized seven. From the study of the semipupa of the Humble-bee (Bombus)

[^7]and several low Neuropterous forms, as the larva of Ephemera, but chiefly the embryo of Diplax, a dragon-fly, we have concluded that there are seren such elemental segments in the head of insects.

That there are four corresponding to the jointed appendages, i.e. the labium, or second maxillæ, the first maxillæ, the mandibles, and the antemre, scems indisputable. But where else are we to look for jointed appendages in an insect's head? We must go out of the class of Insects and study the stalk-eychl Crustacea, such as the Lobster, where the eye is supported on in two-jointed stalk, which has been homologized with the limbs. While, therefore, the eyes of insects are never "stalkecl," as in the Lobster and Shrimp, they are evidently developed, as in the Crustacean, upon a separate segment (or its rudiments), which may be called the "ophthalmic ring," and which is, therefore, the fifth cephalic ring. In adrance of the eyes are normally placed the three ocelli, though in the highest Insects (the Diptera, Lepidoptera, and Hymenoptera) they appear to be situated in the rear of the eyes.

Each of these three ocelli is situated upon a distinct piece; but we most consider the anterior single ocellus as in reality formed of two, since in the immature pupa of Bombus the anterior ocellus is differently shaped from the two posterior ones, being transversely ovate, resulting, as I think, from the fusion of two originally distinct ocelli, and not round like the other two. There are, therefore, two pairs of ocelli, and hence they grow from the rudiments of a sixth and serenth ring respectively.

Now, since the arthropleural is the limb-bearing region in the thorax, it must follow that this region is largely dereloped in the head, to the bulk of which the sensory and "digestive organs bear so large a proportion; and as all the parts of the head are subordinated in their derelopment to that of the appendages of which they form the support, it must follow logically that the larger portion of the body of the head is plearal. and that the tergut, and especially the sternal, parts are either very slightly developed, or wholly obsolete. Thns each region of the boly is characterized by the relative development of the three parts of the arthromere. In the abdomen the upper
(tergal) and under (stermal) surfaces are most equally dereloped, while the pleural line is rechuced to a minimum. In the thorar the pleural region is much more developed, cither quite as much, or often more than the upper, or tergal portion, white the sternal is reduced to a minimm. In the head the pleurites form the main bulk of the region, the stcmites are reduced to a minimum, and the tergites may be identified in the occiput. the clypeus, and labrum.

Table of the Sigheyts of the Heid and their Appexdages, BEGLNNING WITH THE MOST ANTFLLOR.*

Incoral.		
(Hypothetical),	Tergal,	$\begin{aligned} & \text { Labrum, epipharyus, cly- } \\ & \text { peus. } \end{aligned}$
First Semment (First Ocellary),	\}PleuraI,	$\left\{\begin{array}{l} \text { Auterior ocellus (originally } \\ \text { double). } \end{array}\right.$
Second Segment (Second Oceliury),	$\} \text { Pleural }$	Two posterior ocelli,
Third Segment (Ophethamic),	$\} \text { Plemral }$	Eyes.
Fourth Segment (.1utenuary).	$\} \text { Pleural, }$	Antennæ.
Postoral		
Fifth Segment (Mandibular),	$\text { \}Ploural, }$	Mandibles.
Sixth Serment (First Maxillary),	\}Pleural,	First maxillw.
Seventh Segment (second Ifexillary, or Labict),	$\left\{\begin{array}{l} \text { Tergal } \\ \text { Pleural } \\ \text { Stermal } \end{array}\right.$	$\left\{\begin{array}{c} \text { Second maxillæ } \\ \text { (Lablimm) } \end{array}\right.$

The Appendages. We naturally begin with the thoracic appendages, or legs, of which there is a pair to each ring. The leg (Fig. 25) consists of seven joints, the basal one, the coxa, in the Hymenoptera, Lepidoptera, and Diptera, consisting of two

* In the first column are enumcrated the seven rings, or segments, composing the fead. The tergal parts (i,e. the labrum, epipharynx, and clypeus), situated in front of the ocelli, are left ont in enumerating the seven segments, as they are not supposed by the author to belong to either of those segments.
In the first column tho seven rings are named (in brackets) aceording to the sort of appendages they beat. In the second column is given the part, or parts, of the ideai eegment supposed actually to exist in an insect's head; and in the third columm are to be found the bames of the organs attached to their corresponding segments, begiming with the front and going back to the base of the head.
pieces, i.e. the coxa and trochantine (see Fig. 12) ; the trochunter; the femur; the tibia, and, lastly, the torsus, which is subdirided into from one to five joints, the latter being the normal number. The terminal joint ents in a pair of claws between which is a cushion-like sticker called the prbeitlus. This sucking disk embles the Fly to walk upside down and on glass.

In the larwa, the feet are short and hormy, and the Fig. 2 u . joints can be still distinguished. In Myriaporls, each segment of the abdomen has a pair of feet like the thoracic ones. Te must consider the three pairs of spimerets of Spiders, which are one to three-jointed, as homologous with the jointed limbs of the higher insects. In the six-footed insects (Ilexapoda), the abdominal legs are deciduous, being present in the Coleopterous grul), the Dipterous maggot, the catcrpillar, and larva of the Saw-fly, but disappearing in the pupa state. They are often, as in most magoots, either absent, or reduced in mumber to the two anal, or terminal, pair of legs; while in the San-thes, there are as many as eight pairs. These "false" or "prop-legs" are soft and flesly, and withont articulations. At the retractile extremity is a cromn of hooks, as scen in caterpillars or the hind-legs of the larva of Chironomus (Fig. 26), in which the prothoracic pair of legs is rectuced to inarticulate flestry leg's like the abdominal ones.

The position of the different pairs of legs cleserves notice in comection with the principle of "antero-posterior symmetry." The forelegs are directed forwards like the homan arms,

Fig. 26. but the two hinder pairs are directed backwards. In the Spiders. three pairs of abrlominal legs (spimnerets) are retained throughont life: in the lower Hexapods, a single pair, which is appended to the elerenth segment, is often retained, but under a form which is rather like an antenna, than limb-like. In some Nemropterous larre (Phogumen, Corydatus, ete.) the anal pair of limbs are very well makerl; they constitute the "anal forceps" of the adult insect. They sometimes become true, many-jointed appendages, and are then remarkably like

Fig. 2. A. coma; D, trochanter; C, femur; D, tibia; F, tibial spurs; E, tarsus, divided into live tarsal joints, the fifth ending in a claw. - From Sanborn.
antennæ, as in the instance of Mantis tessellata described by Lacaze-Duthiers (Fig. 23). In the Cockroach these appendages, sometimes called "anal cerci," resemble the antenna of the same insect. In the Lepidoptera and Hymenoptera they do not appear to be jointed, and are greatly aborted.

The Trings. The wings of insects first appear as little soft rascular sacs permeated by tracheæ. They grow out in the preparatory stages (Fig. 27) of the pupa from the side of the

Fig. 97. thorax and above the insertion of the legs, i.e. between the epimerum and tergum. During the pupa state they are pad-like, but when the pupa skin is thrown off they expand with air, and in a few minutes, as in the Butterfly, cnlarge to many times their original size. The wings of insects, then, are simple expansions of the crust, spread over a framework of horny tubes. These tubes are really double, consisting of a central trachea, or air tube, inclosed within a larger tube filled with blood, and which performs the functions of the veins. Hence the aeration of the blood is carried on in the wings, and thus they serve the double purpose of lungs and organs of flight.

The number and situation of these veins and their branches (veinlets) are of great use in separating genera and species. The typical number of primary veins is five. They diverge outward at a slight angle from the insertion of the wing, and are soon dirided into veinlets, from which cross veins are thrown out connecting with others to form a net-work of veins and reinlets, called the venation of the wing (Figs. 28, 29). The interspaces between the veins and veinlets are called cells.

At a casual glance the renation seems rery irregular, but in many insects is simple enongh to cnable us to trace and name the veinlets. The five main reins, most usually present, are

Fig. 27. The semipupa of bombus, the larva shin having been removed, showing the two pairs of rudimentary wings growing out from the mesothorax (k), and metathorax (m). n and the seven succecding dots represent the eight abfominal stigmata, the inst one (m) being in the pupa situated on the thorax, since the first ding of the abdomen is in this stage joined to the thorax. - Original.
called, going from the costa, or front erlge, the costal, subcostal, median, sibmedian, and internal, and sometimes the median divides into two, making six yeins. The costal vein is undivided; the subcostal and median are divided into screral branehes, while the sulmedian and internal are usually simple.

The renation of the forewings affords excellent marks in scparating genera, but that of the hind wings varies less, and is consequently or less use.

The wings of many insects are divided by the reins into three well-marked areas; the costul, median, and internal. The costal area (Fig. $31 b$) forms the front elge of the wing and

Fig. 28.
 is the strongest, since the reins are nearer together than elsewhere, and thus afford the greatest resistance to the air

Fig, 20.

Fig. -s. Fore and hind wings of a Butterfy, showing the venation. I. fore wing: a, costal vein; b, sulbcostal vein; $b 1, b 2, b 3, b+b, b$, , five subcostal reinlets; c, independent rein (it is sometimes a branch of the subeostal, and sometimes of the median vein); d, medan vein ; $a 1, d 2, d 3, d t$, four median veinlets ; e, snbmedian vein; f, internal vein; h, interno-median veinlet (rarely found, accorling to Doubledar. except in Papilio and Morpho); b and a are situated in the "discal cell; " g, η, g, g, the upper, middle, and lower diseal veinlets. In the Bomberdæ and many other moths $g g^{1}$ and g^{2} are thrown off from the subcostal and median veins respectively, medting in the middle of the cell at g^{2}. They are sometimes wholly absent.
II. The hind wing; the lettering and names of the veins and veinlets the same as in the tore wing. - Slightly changed from Dozbleday.

Fic. 29. Fore wnm of a Hymenopterous insect. c, costal vein; sc, subcostal vein; m, median vein; $s m$, submetian vein; i, internal rein; $c, 1,2,3$, the first, second, and thind costal cells; the second frequently opraque aud then called the pterostigma. sc, $1,2,3,4$, the four subcostal cells; $m, 1,2,3, \pm$, the median cells; $s m, 1,2,3$, the three sulmedian cells; $i 1$, the internal cell; this is sometimes divided into two cells, and the numbers of all but the costal cells is inconstant, the outer row of cells $(t, 4,3)$ being the flrst to disappear.

The costal edge extends from c to c; the outer c, the apex; the outer edge extends from the apex (c) to a, and the inner ealge extends from a, the inner angle, to the insertion of the wing at i. - Original. Figs. 30-32 from Scudder.
during flight. The median area (Fig. 31 a) is the largest. It is in the grasshoppers and crickets sometimes modified to form a

Fig. 31. musical organ, being chom-tike, as in the Cecenthus (Fig. 30), or rasp-like, as in Aicleptera (Fig. 31a). The intermal area (c) is the smallest, and less clistinctly marked than the

Fig. 30. two other regions; the musical file-like organ of Orchelimum vulgure, a common grasshopper (Fig. $32 d$) is situated on this area.

The limits of the erlges of the wing vary in almost every genus, and their comprarative length afford excellent generic characters. The front edge (Fig. 29) is callect

the costal, its termination in the outer angle of the wing is called the apex; the outer ealge is situated between the aper and the imner angle between which and the base of the wing is the inner, or intemat, edge. These distinctions are of most use in describing the butterflies and moths.

The Appendages of Fig. sla. the Head. These organs are divided into two groups, the first of which comprise the sensory organs, i.e. the ocelli,

Fig. 32. eyes, and antemae, which are attached to the region in front of the mouth, or preoral region of the head. The second group consists of the sensorio-tigestive appendages, combining the power of finding and seizing the food and preparing it for digestion. They are inserted behind the mouth and belong to the postoral region of the head.

We will first describe the ocelli, groing backwards to the basal appendages, the labium (second maxilla) being the hindermost.

The simple eye, Ocellus, or Stemma, is the simplest form of the ere. Its most elementary form (seen in the larra of the Bot-fly and the Cecidomyian larva of Miestor") is that of a brown spot, or group of pigment-cells lodged mater the skin and against which a nerve-filament impinges. Orer this spot Newport states that the tegument is transparent and convex, resembling a true cornea, or eye-lens. A well-dereloped ocellus consists, according to Newport, of a "very convex, smooth, single comea, beneath which is a spherical crystalline lens, resting upon the plano-consex surface of the expanded ritreons homor, the analogue of the transparent cones of the compound eyes." Muller believes that the function of the ocelli is the perception of nearer objects, while that of the compound eyes is to see more clistant objects. The ocelli constitute the only visual organs in the Myriapods (except Comatia), the Arachnida, and the larra of many Six-footed Insects; they are usually from one to six on a side. In adult insects they are gencrally three in number, and are gencrally present except in the large majority of Coleoptera. Their normal site is in front of the eyes, hat they are manally
 thrown back, during the growth of the insect, behind the eyes, on the rertex, or topmost part of the heud (Fig . 33).

The Campound. Eyes are a congeries of simple eres. During the growth of the insect the simple eyes of the lara increase
 in mmber, and finally coalesce to form the compound eye, or compound cornea, the sulace of which is Fig. 3t. very convex and protuberant in the predaccons insects, or those requiring an extented fiek of vision.

The number of facets, or comea, vary from fifty (in the Ant) to 3,650 , the latter number being counted by Geotfory in the ere of a Butterfly. These facets are usually hexagonal, as in the Dragon-fly (Fig. 34), or, rarely, chadrangular.

Fic. 33. Ocelli of three species of Sand-wasps, Pompilus, - From Cressom.
Fig. 34. Thece hextgonal facets of the emponnet eye of a hossil Imagon-liy, greatly maguilied-Erom Dauson.

The Antennce (Figs. 35, 36) are inserted usually in the adult insect between, or in front of the eyes, though normally the
 antemary is posterior to the ophthalmic ring. It is normally a long, filiform, slender, manyjointed appendage, undergoing great changes in form. When it is highly specialized, as in Coleoptera and Hymenoptera, it is divided into three parts, the basal or scope, the middle or pedicel, and the terminal part or fuggellum,
 Fis. 35. or clavola, which usually comprises the greater part of the antemna.

It is believed by some that the sense of hearing is lodged in the antenne, though Siebold has discovered an auditory apparatus situated at the base of the ablomen of some, and in the fore-legs of other species of Grasshoppers.

Mr. J. B. Hiclis has marle the latest studies on the auditory apparatus. According to lim "it consists first of a cell, sac, or earity filled with fluid, closed in from the air by a membrane analogous to that which closes the foramen ocole in the higher animals; second, that this membrane is, for the most part, thin and clelicate, but often projects above the surface, in either a hemispherical, conical, or canoe-shaped, or even hairlike form, or variously marked ; thirdly, that the antemal nerve gives off branches which come in contact with the inner wall of the saes; but whether the nerve enters, or, as is most probable, cucts in the small interually projecting propilla which I have shown to exist in many of these sacs, it is very difficult to say. The principal part of the nerve proceeds to these organs, the remaining portion passing to the muscles, and to the roots of the hairs, at least to those of the larger sort." On the other hand, Lefebrre, Leydig, and Gerstaecker regard this so-called "aulitory apparatus" as an organ of smell.

The antemæ have also the sense of touch, as may readily be observed in Ants, Bees, and the Grasshopper and Cockroach. "The Honey-bce, when constructing its cells, ascertains their proper direction and size by means of the extremities of these

Fig. 35. Filiform antenna of imphizor. - From Horn.
Fra. 36. A, lamellate antema of a Lamellicorn Bectle; B, antenna of a Fly, with the bristle thrown off from the terminal joint; C, bristle-like antenna of a Dragon-fly, Libellula. - From Sanborn.
organs; while the sime insect, whell evidently affected by somnds, keeps them motionless in one direction, as if in the act of listening." (Newport.)

After cutting off one or both antenme of the June bectle, Lachosterna, the insect loses its power of directing its flight or steps, wheeling about in a scnseless manner. Dr. Clemeus ohserved that the Cecropia moth was similarly affected after losing its antennw.

The Mandibles (Fig. 37) are inserted on each side of the mouth-opening. They usually consist of but a single joint,

Fig. 37.
representing probably the basal part of the ideal limb. This part, however, is often subdivided by two longitudinal furrows into three parts, each ending in a "tooth" of mnequal size for tearing and cutting the food. This tripartite form of the mandibles, to which attention has been called by Mr. Sender, is more fully carried out in the maxilia, where each portion is highly specialized. The mandibles rary greatly in form and size. The two cutting edges are usually opposed to each other, or frequently overlap in the carnivorous forms. Their base is
 often concealed by the clypeus and labrum. Their motion is transrerse, being the reverse of the motion of the jaws of Vertebrates.

The Maxillce (Figs. 38b, 39) are

Fig. 39. much more complicated organs than the mandibles. They are

Fig. 37. Different forms of mandibles. A, mandible of Cicindela properea; B, Phylloptera, a green grasshopper; C, Libclutio trimaculate; D, Tespe maculata, or paper-making Wasp; E, "rostrum" or jointed sucker or' the Bed-bug, Cimex Jectularius, consisting of inandibles, maxillz, and labium; \mathbf{F}, proboseis, or sucker, of it Mosquito, Culex, in which the mandibles are long and bristle-like. - Erom Sraborn. G, mandible of Amphinoa; II, mandible of Alcratus, a genus of Cockchafers.-From Horn.

Fig. 38. a, mentum and labial palpi; b, one maxilla, with its palpus, of Acrat tus. - From Form.

Fig. 39. Maxilh of Amphizoa, with the two lobes (stipes and lacinia), and the palpifer beating the four-jointed palpus. - From form.
inserted on the under side of the head and just behind the mouth. The maxilla consists of a basal joint, or cerdo, beyond which it is sulddivided into three lobes, the stipes, or footstalk; the prolpifer, or palpus-bearer; and the lacinia, or blade. The stipes forms the outer and main division of the organ. The lacinia is more membranaceous than the other parts, and its mpper surface is coveret with fine hairs, and forms a great part of the side of the month. It is divided into two lobes, the superior of which is called the guten, or helmet, which is often a thick double-jointed organ edged with stiff hairs, and is used as a palpus in the Orthoptera and many Coleoptera. The inferior lobe is attached to the internal angle of the lacinia. It terminates in a stiti minute claw, and is densely covered with stout hairs. The maxillary petpi are long, slender, one to four-jointed organs, very Hexible and sensitive.

The maxilla vary greatly in the different groups. Their office is to seize the food and retain it within the month, and also to aid the mandibles in comminuting it before it is swallowed. This function reminds us of that of the tongue of vertebrate animals.

The labium, or second maxillee (Fig. 40), is placed in firont of the frik, which forms the under part of the head, and is bounded
a on each side by the gence, or cheeks, and

Fig. 40 posteriorly by the occiput. The genze are bounded laterally by the epicranium and the under sitle of the eyes. In front are situated the basal parts of the labium, or second maxillæ, which embraces the submentem and mentime (or labium proper). The labial palpi are inserted into the mentum, but ofteu the latter piece is differentiated into two, the anterior of which takes the name of polpiger. called by Dr. Leconte (Smithsonian Miscellaneous Collections) the Iigula, and the palpi originate from them. The ligula is the front edge of the labium. being the piece forming the under lij. It is often a fleshy organ, its imner surface being continuons

Fig. 40. Ligula and labial palpi of Amphizod, an aquaric beelle. It is quadrate and without pareglossa; a, mentum of the same, being deeply incised, and with a tooth at the bottom of the excaration. - From Horm.
with the soft membrane of the mouth. In the Bees, it is enormonsly developed and covered with soft hairs. It is often confounded with the palpiger. In Hydrous it is divided into two loles. In most of the Carabida and Bees it is divided into three lobes, the two outer ones forming the paraglosere (Fig. 41 m), and acting as feelers, while the middle, usually much longer, forms the lingua, or tongue, being the continuation of the ligula. In the bees, where the ligula is greatly developed, it performs the part of the tongue in Vertebrates, and aids the maxilla in collecting nectar and pollen.

The roof of the mouth is formed by the labrom and the epiphargme (Fig. 42c), a small fleshy tubercle concealed beneath the labn'um. It is seen in the bees on turning up the labrum. It probably correspouds to the "labellum" of Schiodte. The laboum (Fig. 41e) is usually transverse and situated in front of the chypeus (Fig. 41b). The shield-like chypens is the broad,

Fig. 41 . visor-like, square piece forming usually the front of the head. Behind it is the clypeus posterior, or suproctypeus, a subdivision of the clypeus, and especially observable in the Hymenoptera. The ppicroniom forms a large prat of the head; it is bounded posteriorly by the occiput, on the sides by the eyes, and in front by the clypeus, and though usually described as a single picce, is really composed of several. The ocelli often appear to be situated upon it, though in reality they are placed upon a distinct piece or pieces. The "epricranial suture" is the line of junction of the two "procephalie lobes" (Huxley).

Fig. 41. Front view of the head of a bee, Anthophora. n, compoumrl eyes; c, three simple eyes, situated upon the epicranimm; b, elppeus; ρ, fabrm; d, antenne; f, mandibles; i, maxilis ; h, maxillary palpi; l, palpifer; j, labial palpi; m, paraglosse; k, ligula.-From N゙euport.
(These lobes will be explained farther on when speaking of their development in the embryo.) Behind the epicra-

Fis. 42. nium is the occiput, or base of the head. It belongs to the labial, or second maxillary segment, and helps to form a complete ring, articulating with the thorax. It is perforated by a formmen to atford a comnection between the interior of the head and thorax. It is sometimes, as in many Coleoptera, Orthoptera, and Hemiptera, elongated behind and constricted, thus forming a "noek." It will be seen beyond, that the labrum and clypens are in the embryo developed fiom a "tongue-like process whose inferior part eventually becomes the labrum, while superiorly it sends a triangular process (the rudiment of the elypens) into the interval between the procephalic lobes."* This part (i.e. the clypeus and labrum) is the most anterior part of the head, and in the embryo, as in the adult, is normally situated in front of the ocelli, and may be compared with the "anal plate," or eleventh tergite, of the larra. \dagger

[^8]In describing Insects the vertea, or crown, of the head is the highest part; and the front is the part usually in front of the insertion of the antemn.

The Muscular Srstrar lies just beneath, and is contimuous with the integument. It consists of numerous "clistinct isolated straight fibres, which are not gathered into bundles united by common tendons, or covered by aponeuroses [or tendinous sheaths] to form distinct muscles, as in the Vertebrata, but remain separate from each other, and only in some instances are united at one extremity by tendons." (Nemport.) These minute fibres form layers, which Newport regards as separate muscles. "Each fibre is composed of a great number of very minute fibrillæ, or fasciculi of fibrillæ," ant has been observed by Wagner and Newport to be often striated as in Vertebrates. The muscular system is simplest in the lower insects and the larye of the higher forms, and is more comples in the head than elsewhere, and more complex in the thorax than in the abdomen. These minute muscles are excessively mumerous. "Lyonnet, in his immortal work on the anatomy of the larva of Cossus ligmiperda, found two hundred and trenty-eight distinct muscles in the head alone, and, by emmerating the fibres in the layers of the difierent segments, reckoned 1,647 for the body, and 2,118 for the internal organs, thus making together 3,993 muscles in a single larva. In the larva of Sphina ligustri we have found the muscles equally numerons with those discovered by Lyonnet in the Cossus." (Newport.)

The muscular system corresponds to the jointed structure of insects, as do the other intermal systems of organs. Of the muscles belonging to a single ring, some stretch fiom the front edge of one segment to the front edge of the next, and others
of the Scorpion, whose mode of development appears to be precisely similar to that of a telson. In the same category we must rank the labrum in font of the mouth, which in the Crustaced (at least) appears to le developed from the stemum of the antemary, or third somite, the metastoma (or so called labium, or lingua) of Crustacea, ancl the lingua of Insecta, behind the oral aperture.
"Howerer much these appendages may occasionally simulate, or play the part of appendages, it is important to remember, that, morphologicelly, they are of a very different nature, and that the confusing them with thue appendages must tend completely to obscure the beatifnl relations which obtain among the different classes of the Articutata."-Huxley, Linnæan Transactions, vol. xxii. London.
to the hinder edge ; there are also sets of dorsal and rentral muscles going in an oblique or rertical course. 'The muscles are either colorless and transparent, or jellowish white and of a soft, almost gelatinous consistence. In form they are simply flat and thin. straight, band-like, or pyramidal, barrel or feather-shaped. 'They act varionsly as rotators, elecators, depressors, retructors, protrusors, fexors, and extensors.

The muscutar porcer of insects is enormotis. The Flea will leap two hundred times its own height. Certain beetles can support enormous weights. Nemport cites the case of Geobrupes stercomturs which is "able to sustain and escape from beneath a pressure of from twenty to thirty ounces, a prodigions weight when it is remembered that the insect itself does not weigh even so many grains." Some heetles have been known to gnaw throngh lead-pipes, and the Stag-bectle of Europe, Lucanus certus, has, as stated by Mr. Stephens, gnawerl "a hole an inch in cliameter through the side of an iron canister in which it was confined."
"The motions of the insect in walling as in flying are dependent, in the perfect individnal, entirely upon the thoracie segments, but in the larva chicfly upon the abdominal. Although the number of legs in the former is always six, and in the latter sometines so many as twenty-two, progression is simple and ensy. Muller states (Elements of Plysiology, p. 970 , Translation) that on watching insects that move slowly he has distinctly perceived that three legs are always moved at one time, being adranced and put to the ground while the other three propel the body forwards. In perfect insects, those mored simultaneously are the fore and hind feet on one side, and the intermediate foot on the opposite ; and afterwards the fore and hind feet on that side, and the middle one on the other, so that, he remarks, in two steps the whole of the legs are in motion. A similar uniformity of motion takes place in the larra, although the whole anterior part of the borly is elevated and carried forwards at regular clistances, the steps of the insect being almost entirely performed by the 'false, or abdominal legs."
"In fight the motions depend upon the meso- and metathoracic segments conjointly, or entirely upon the former. The
sternal, episternal, and epimeral pieces, freely articulated together, correspond in function with the sternum, the ribs, and the claricles of birds.* The thorax is expanded and contracted at each motion of the wings, as in birds and other animals, and becomes fixed at each increased effort as a fulerum or point of resistance upon which the great muscles of the wings are to act, thus identifying this part of the body in function as in structure with that of other animals." (Newport.)

The Nervous System. In its simplest form the nerrous system consists of two longitudinal cords, each with a swelling (nerve-linot, or ganglion,) correspouding to each segment (Fig. 43). This cord lies on the ventral side of the body, but in the head it passes upwards, sending a filament from each side to surround the œsophagus. \dagger As in the Vertebrates, the nervous cord of insects is composed of two distinct columms

Fig. 43. of fibres placed one upon the other. "The under or eatemal columm, which is nearest to the exterior of the body, is that in which the ganglia, or enlargements, are situated. The upper one, or that which is internal and nearest to the viscera, is entirely without ganglia, and passes directly over the ganglia of the under column without forming part of them, but in very

[^9]close approximation to them." Newport also believes that the ganglionless upper, or internal, column of fibres is analogous to the motor column of Vertebrata, while the external, or under one, corresponds to the sensitive colum, thus representing the cerebro-spinal system of the Vertebrata.

From each pair of ganglia are distributed special nerves to the various organs. In the larva of Sphenx the normal number of double ganglia is thirteen, and the nervous cord of the Neuroptera and other lowly organized and attenuated forms of insects corresponds in the main to this number. In the adult insect, especially in the Coleoptera, Diptera, Lepidoptera, and Hymenoptera, the three thoracie ganglia are fused together, following the fusion and general headwise development of the segments of the tegument. Besides the central nerrous cord, corresponding to the spinal cord of the Vertebrates, there is a vagus, or cisceral nerve, representing the sympathetic nerve of higher animals. This nerve "arises, in the larva, from the anterior part of the cerebrum, and, forming a ganglion on the upper surface of the pharynx, always passes backward beneath the brain, along the middle line of the osophagus." In its microscopic structure the nervous cord, like that of Vertebrata, consists of a central "white" substance, and an outer or peripheral part, the "gray" substance.

In the embryo the ganglia are very large and close together, the commissures, or connecting filaments being rery short, and small in proportion.

Organs of Nutrition. These consist of the alimentary canal and its appendages, or accessory glands (Fig. 44). We have already treated of the external appendages (mouth-parts) which prepare the food for digestion. The simplest form of the alimentary canal is that of a straight tube. In the larra of Stylops, and the sedentary young of Bees it ends in a blind sac, as they live on liquid food and expel no solid excretions. When well developed, as in the adult insect, it becomes a long convoluted thick muscular tube, subdivided into different parts which perform different functions and have distinct names, taken from analogous organs in the vertebrate animals. This digestive tube is composed of three coats, the outer, or peri-
toneal; the middle, or muscular; and the inner, or mucous. The mucous coat is variously modified, being plaited or folded; or,

Fig.
as in the Orthoptera and carnivorous Coleoptera, it is solidified and covered with rows of strong horny teeth, forming a sort of gizzard. The alimentary canal is held in place by retractor muscles, but principally by exceedingly numerous branches of the main tracher.

This canal (Fig. 45) is subdivided into the mouth and pharynx, the osophugus, supplementary to which is the crop, or "sucking stomach" of Dipter"a, Lepidoptera, and Hymenoptera. The proventriculus, or gizzard; the ventriculus, or true stomach succeed, and the intestine consists of the ileum, or short intes-

Flg. 44. Auatomy of Sphinx ligustri. m, i, q, the nervous cord resting on the floor of the body; at e, tho ganglia form a brain-like organ, much larger than the ganglia of the thoras (m) and abdomen (q). From the brain is sent off the subosophageal nerve which surrounds the gullet into which the food is conveyed by the maxilie, or spiral tongue (a), which, when at rest, is rolled up between the labial paipi (b).

From the nerrons cord is also thrown off a pair of nerves to each pair of legs (as at n, o, p) add a braneh, d, is sent of from above, distributing nerves to the museles of flight.

The heart, or clorsal vessel (e, f), lies just beneath the median line of the body, and is retained in place by muscular bands (as at f) as well as by small tracheal branches.

The adineutary canal (h, i, g), forms a straight tube in the head and thorax $; h$, the crop, or suching stomach, which opens into the osophagus; j, the true, chyleforming stomarin, which contracts posterioliy, and then dilates near its anal outlet into a cloace (indicated at g, but not distinctly, as it is concealed by the numerous urinary vessels). The urinary vessels also indicated at g, form long tubes (which correspond to the kidneys of Vertebrates), opening into the prlorie end of the stomach. The position of the testes ($/ 2$) is the same as that of the ovary, and the dotted line l shows the course of the efferent duct (vos deferens) and also of the oviduet of the female.

The numerals indicate the number of segments of the body, which in the Lepidoptera, consists of twenty, the 21st, or 11 th abdominal, being absent. - From Newport.
tine, and the colon and rectum. The latter part, as well as the crop and proventriculus, is sometimes alssent.

Of the appendages of the canal, the first are the salicaty glands, which are usually long simple tubes, which in the larw, according to Nervport, form the silh vessels. They "empty themselves by a single duct through the spimeret on the floor (abium) of the montl.". In the Ant-lion (Mymeleon) the silk is spun from "a slender telescopiclike spimeret, placed at the extremity of its body," and Westwood also states that the larva of Chrysopa spins a cocoon "from the spinneret, at the extremity of the body."

These silk glands when taken out of the larra, just as it is abont ready to transform, are readily prepared as "gut" for fish-lines, etc., by drying on a board.

In the Bees these glands are largely developed to produce a sufficient amomet of salivary fluid to moisten the dry pollen of flowers, before it enters the assophagus. "Bee-bread" consists of pollen thus moistened and kneaded by the insect. The IIoney-bee also clissolves, by the aid of the salivary fluid, the was used in making its cells. Newport belieres this fluid is alkaline, and forms a solveut for the otherwise brittle wax, as he has seen this insect "reduce the perfectly transparent thin white scales of nowly secreted wax to a pasty or soapy consistence, by leneading it between its mandibles, and mixing it with a fluid from its month, before applying it to assist in the formation of part of a nerv cell."

Insects have no true licer; its functions being performed "by the walls of the stomach, the internal tunic of which is composed of closely-agrgegated hepatic cells." (Sicbold.) In the Spiders and Scorpions, however, there is a liver distinct from the digestive canal. In the Spiders it is very large, enveloping most of the other viscera.

Fig. 45. Alimentary tube of Corydalus cornutus. a, esophagus; b, proventriculus; c, ventriculus; a, large intestine; e, urinary tubes; f, cocum; g, testis ar ovary.-From Leidy.

Siebold states that in some insects the ileum has glandular appendages whose product is perhaps analogous to the pancreatic fluid. In the larva of insects is found the corpus adiposum, or fat-body, in the form of large lobes of fat-cells which spread through the intervals of the viscera in the general cavity of the body. It is interpenetrated and retained in place by numerous tracher.

The Circulatory System. The vascular, or circulatory, system is not a closed sac as in the Worms aud Vertebrates. The organs of circulation consist of a contractile, articulated dorsal ressel, or su-called "heart," which terminates in a cephalic aorta. The dorsal vessel receives the reinous current through the lateral valvular openings and pumps the blood into its prolongation or cephalic aorta, whence it escapes, traversing the body in all directions, in regular currents, which do not have, however, vascular walls. "In this way, it penetrates the antenne, the extremities, the wings, and the other appendages of the body, by arterial currents, and is returned by those of a veinous nature. All the reinous currents empty into two lateral ones, rumning towards the posterior extremity of the body, and which enter, throngh lateral orifices, the dorsal vessel." (Siebold.)
"The blood of the Insecta is usually a colorless liquict, though sometimes yellowish, but rarely red. In this liquid are suspended a few very small, oval, or spheroidal corpuscles, which are always colorless, have a granular aspect, and are sometimes nucleated.
"The dorsal cessel, which is constricted at regular intervals, is always situated on the median line of the abdomen, being attached to the dorsal wall of its segments by several triangular muscles whose apices point outwards. Its walls contain both longitudinal and transverse fibres, and, externally, are corered by a thin peritoneal tunic. Intermally, it is lined by another very fine membrane, which, at the points of these constrictions, forms valvular folds, so that the organ is divided into as many chambers as there are constrictions. Each of these chambers has, at the anterior extremity on each side, a valyular orifice which can be inwardly closed. The returning
blood is accumulated about the heart and enters into it during the diastole of each of its chambers, through the lateral orifices (Fig. 46i). It then passes, by the regularly successive

Fig. 47.
Fig. 46 .
contractions of the heart, from behind forwards into the aorta, which is only a prolongation of the anterior chamber. This worta consists of a simple, small vessel, situated on the clorsal surface of the thorax (Fig. $44 e, f^{\prime}$), and extending even to the ceplatic ganglion, where it either ends in an open extremity, or divides into several short branches which terminate in a like manner. The length of the dorsal vessel depends, in all the three states of insects, upon that of the abdomen. The number of its chambers is very variable, but is, most usually, eight.
"The blood, after leaving the aorta, traverses the body in currents which are also extravascular, and in this way bathes all the organs. The newly-prepared nutritive fluid passes through the walls of the digestive canal in which it is found, into the visceral cavity, and thence directly into the blood. Latterly, this extravascular circulation has been called in question, but its presence may be easily and directly observed

Fig. 40. Part of the dorsal vessel or heart of Lucamus cervers ; a, the posterior chambers (the anterior chambers are coverel by a part of the ligaments which hold the heart in phace). i, the auriculo-ventricular openings; g, g, the lateral muscles fixed by the prolongations h, h, to the upper side of the abdomen, - From Straus Durchheim.

FIG. 47. Interior of the dorsal vessel; a, the inner walls with their circular flechy filures; c, the aurienlo-ventricular opening; with its semilmar valve (c), in front of which is d, the interventricular valvule- From Straus Durcliheim.
with very many perfect Insecta and their larve. The vascular walls, supposed to have been seen at certain points, arc, undoubtedly, the result of some error of observation or interpretation. This is also true of the pulsatile organs supposed to have been observed in the legs of many water-bugs, and which were thought to affect the circulation."

Blanchard and Agassiz believe in a "peritracheal circulation," and other observers agree that the com'se of the circulation is along the trachee, i.e. that the blood circulates in the space between the loose peritoneal envelope and the trachea itself. Professor H. J. Clark oljects to this view that the blood disks are too large to pass through such an exceedingly minute space as the distance between the trachea and its enveloping, or peritoneal, wall.

Newport thinks that there are actual blood vessels distributed from the heart and "passing transversely across the dorsal surface of each segment in the prpa of Sphina: If they be not vessels distributed from the heart, it is a somewhat curious circumstance that the whole of the blood should be first sent to the head of the insect, and the viscera of the abdominal region be nourished only by the returning blood, which has in part passed the round of the circulation."

Newport also describes in Sphina the supra-spinal, or great ventral yessel which hes in the abdomen just orer the nervous cord, and which is also found in the Scorpion and Centipede. He believes "this vessel to be the chief means of returning the blood from the middle and inferior portion of the body to the posterior extremity of the clorsal vessel or heart." He strongly suspects that anteriorly this great ventral vessel is connected with the aorta. The circulation of Insects, therefore, is probably as much a closed one as in the Myriapods, for he states that the "hlood certainly flows in clistinct vessels, at least in some parts of the hody in perfect insects, and that vessels exist even in the larva." Ohservations on the vascular system are exceedingly difficult from the delicate structure of the ressels, and the subject needs renewed observations to settle these disputed points.

The blood is forced through the vessel into the body by regular pulsations. Herold counted thirty to forty in a minute in a
full-grown eaterpillar ; we have comnted about sixty a minute in the recently hatched larra of Diplax. During exeitement, the number of pulsations increases in rapidity. Newport found the pulsations in a bee, Ahthophora, when quiet, to be eighty a minute; but when "the insects were quite lively, and had been exposed to the sun for an hour or two, the number of pulsations amounted to one hundred and forty."

He found that the number of pulsations decreased after each moult of the larva of Sphina Fignestri, but increased in fonce; when it was full grown and had coased feeding it was thirty. "After it had passed into the pupa state the number fell to twenty-two, and afterwards to ten or twelve. and, during the period of hibernation, it almost entirely ceases; hut in the perfect insect it rose from forly-one to fifty, and when excited by flight around the room it was from one hardred and ten to one hmedred and thirty-nine."

Organs of Respilation. All insects breathe air, or, when they live in the water, respire, by means of branchia, the air mixed mechanically with water. Respiration is carried on by an intricate system of tubes (pul-

Fig. 45. monary trachere) which open by pores (spiracles or stigmata) in the sides of the boly; or, as in aquatic insects, by branchis, or gill-like flattened expansions of the body-wall penctrated by trachere (branchial tracheæ).

There are sometimes eleven spiracles, or breathing-holes (Fig. 48), on each side of the borly; each consisting of an oral horny ring situated in the peritreme and closed by a valve, which guards the orifice (Fig. 49). Within this ralve is a chamber closect within by another valre which covers the entrance into the trachere. The air-tube itself (Fig. 50) consists of "an external

Fig. ds. Larra of the Ifumble-bee just begiming to change to a pupa, showing eleven pairs of stigmata. In the afult bee, only the fourtlo pair is apparent, the remaining pairs locing concealel from riew, or in part aborted. In most insects there are usually only uine pairs of stigmata. - Original.
serous, and an internal mucous membrane, inclosing between them a spirally convoluted fibre, thus giving great strength and flexibility to the tube."

Nearly all the air enters through the thoracic and first abclominal spiracles, so that on pinching most insects on the thorax they can be

Fig. 49. easily deprived of breath and killed.
"In some aquatic larve such as those of Dyticida, Eristalis (Fig. 51, pupa), and Ephydra, and also in some perfect insects, as in Nepa and Ranatra, the parts supporting the stigmata are prolonged into slen-

Fig. 50. der tubes, through which the insect, on rising to the surface, breathes the atmospheric air.

Agrion (Fig .52) affords a good instance of branchice or gill-like expansions of the crust, or skin. It is supposed that these false gills, or branchia, "absorb the air from the water, and conver it by the minute

Fig. ol . ramifications of the tracheal vessels, with which they are abunrlantly supplied, and which terminate in single trmks, into the main trachere, to be distributed over the whole body, as in insects which live in the open atmosphere." (Nemport.)

Of branchiae there are three kinds. The first, as in the lawe ant pupæ of Gnats, consist of slender filamonts arranged in tufts arising from a single stem.

Fig. 52. In the larra of Gyrinus and the aquatic caterpillar of a moth,

FIG. 49. Chamber leading into the trachea; a, a, external valve protecting the outer opening of the stigma, of breathing hole; b, c, c, inner and more complicated valve elosing the entrance into the trachea (l, k); m, conical occlusor muscle closing the inner orifice. - From Straus Durcheim.

Fig. 50. Portion of a trachea divester of its peritoneal envelope. a, spirally convoluted fibre, closely wound around the trachea, as at e; c, origin ot a secondary tracheal branch. - From Strons Durelhein.

Frg. 22. One of the thee gill-like apmendages to the abdomen of the larva and pupa of Agriom entarged, consisting of a broal leat like expansion, permeated by trachex which take up by ondosmosis the air contained in water. - Original.

Hydrocampa stratiolata, they form short stiff bristles placed along the side of the body. Agrion and Ephemera, in their larval stages, afford the second kind of branchiz, and Libelluld the thind kind, or internal gill, situated in the colon. The Mosquito breathes both by branchise which form large chulbshaped organs, and by lateral filaments.

In those insects that fly, most of the trachere are often dilated into ctir-cesicles, so that by filling and emptying them of air the insect can change its specific gravity. That their use is also to lighten the body is shown by their presence in the heary mandibles and head of the male of Lucanus cervos. In the arlult Humble-bee there are two very large vesicles at the base of the ablomen. These vesicles are not found in the larve, or in the adult forms of creeping insects.

The act of respiration consists in the altemate diation and contraction of the abrlominal segments, the air entering the body chiefly at the thoracic spiracles. As in the Vertebrates the frequency of the acts of breathing increases after exertion. "When an insect is preparing itself for flight, the act of respiration resembles that of birds under similar circumstances, At the moment of elerating its elytra and expanding its wings, which are, indeed, acts of respiration, the anterior pairs of spiracles are opened, and the air rushing into them is cxtended over the whole body, which, by the expansion of the air-bags, is enlarged in bulk, and rendered of less specitic gravity; so that when the spiracles are closed at the instant the insect endearor's to make the first stroke with and raise itself upon its wings, it is enabled to rise in the air, and sustain a long ant porverful flight with but little muscular exertion. In the pupa and larva state respiration is performed more equally by all the spiracles, and less especially by the thoracic ones."

During hibernation the act of breathing, like the circulation of the blood, almost entirely ceases, and the heat of the body is greatly lowered. Indeed Newport has shown that the decelopment of heat in Insects, just as in Vertebrates, depends on the "quantity and activity of respiration, and the rolume and velocity of the circulation." The Humble-bee, according to Newport, possesses the voluntary poucer of generating heat by breathing faster. He says, confirming Huber's observations,
"the manner in which the bee performs her incubatory office is by placing herself upon the cell of a nymph (pupa) that is soon to be developed, and then leginning to respire at first very gradually. In a short time the respirations become more and more frequent, until at length they are increased to one hundred and twenty, or one hundred and thirty per minnte. 'Ihe body of the insect soon becomes of a ligh temperature, and, on close inspection, is often found to be bathed with perspiration. When this is the case the temperature of the insect soon becomes reduced, and the insect leaves the cell, and another bee almost immediately takes her place. When respiration is performed less riolently, and consequently less heat is evolved, the same bee will often continue on a cell for many hours in succession. This extreme amount of heat was evolved entirely by an act of the will in accelerating the respiratory efforts, a strong indication of the relation which subsists between the function of respiration and the development of animal heat."

Organs of Secretion. The urimary vessels, or what is equivalent to the kidneys of the higher animals, consist in Insects of several long tubes which empty by one or two common secretory ducts into the posterior or "pyloric" extremity of the stomach. There are also odoriferous glands, analogous to the cutaneous glands of vertebrates. The liquid poured out is usually offensive, and it is used as a means of defence. The Bees, Wasus, Gall-fies, etc., and Scorpions, have a poison-sac (Fig. $\tilde{y} 4 g$) cleveloped in the tip of the abdomen. The bite of the Musquito, the Horse-fly, and Bed-long is thought by Newport to be due to the simple act of thrusting their lancet-like jaws through the skin, and it is not known that these and other insects which bite sererely eject any poison into the wound. But in the spiders a minute drop of poison exudes from an orifice at the end of the mandibles, "which spreads orer the whole wound at the instant it is inflicted." This poison is secreted by a gland lodged in the celphalo-thorax, and which is thought by Audouin to correspond in position to the salivary apparatus and the silk glands of the Winged Insects.

Organs of Generation. We have already described the external parts. The internal parts of the male insect consist,
first, of the ductus ejacudutorius, which opens into the external intromittent organ. This duct extends backwards, comecting

Fig. 53. with the resicule seminales, which lead by the vasa differentia to the testes (Fig. 53). The latter are usually rounded glandular bodies, sometimes, as in Melolontha and Luconus, numbering six on a side. These organs lie in the abdominal cavity, usually above and on each side of the alimentary canal.

The sperm, or fertilizing fluid, contains very actire spermatic particles which are developed in large cells in the testes, where they are united into bundles of varions forms.

In the female, the internal reproductive organs (Fig .54) are more simple than those of the other sex. The extemal opening of the female is sitmated at the end of the oviduct, that leads by two tubes to the ovary, which consists of two or more

Fig. 54. tubes (in the Queen Bee one hundred and sixty to one hundred and eighty) in which the ora are developed. On the upper side

Fif. i3. Male organs of Athalia centiolio. h, the penis, or external portion, in which the durtus ejoculatorius (f) teminates, whieh extends hackivarls, and is convected with the vasirule geminoles (e), amd wast differmtia (d) whirh are connected with the pididymis (b), and the tastes (a). i and , two pairs of homy plates, surrounded by a homy ring (k). i, homy prehensife hooks attarhed to k. m, two elongated museular parts inclosing the penis (h). - From Arempatt
 ovarial tubes oriminating from each of the two ovidurts (e), and containing the immature eqas: f, the spermatheca; g, poison-sac, the poison being secreted in the secretory vessel: h. The poison lows through the ovintuct into the sting and thence into the wound made by the stimg. 10 , the terminall ginglia of the borvols cord. - From Sewport.
of the oviduct are from one to five appendages, the most important of which is the spermutheca (the others being sebaceous glands), which receives the fertilizing flut of the male cluring sexual mion, and in which, accorting to Darwin, the male element "is enabled to keep alive four or five years."

Insects bisexual. With the exception of the Tardigrades, which are doubtfully referred to the Mites (Actrina), there are no hermaphrodites among Insects, that is, there are no indivicluals having both male and female organs, and capable of selfimpregnation. On the contrary, the sexes are distinct; Insects are bisexual.

Hermophrodites, so-called. C'ases not unfrequently occur in which from arrest of development of the embryo, the sexual organs are imperfectly developed, so as to present the appearance of being both male and female. "Siebold has investigated some hermaphrodite Honey-bees belonging to the Italian race, obtained from a Dzierzon hive at Constance. He found in many of them a combination of sexual characters, not only in the external parts, but also in the generative organs. The mixture of the external characters is manifested sometimes only in the anterior or posterior part of the body, sometimes in all parts of the borly, or only in a few organs. Some specimens present male and worker characters on the two sides of the body. The development of the internal organs is singularly correlated with these peculiarities of external organzation. The sting, with its vesicle and gland, is well developed in hermaphrodites with the abdomen of the worker; soft in those with the droneabdomen. The seminal receptacle, when present, is empty. The ovaries contain no ova. In the hermaplurodites with the drone-abdomen, the male sexial organs are well developed, and the testes contain spermatozoids. Frequently with testicular and ovarian organs present on each side, the epididymis and copulatory apparatus are well developed, and an imperfect poison-apparatus exists. In these cases the tulje contains spermatozoids, but there are no ova in the ovaries. The hermaphrodites are thrown out of the cell by the workers as soon as they emerge, and speedily perish. Siebold ascribes the production of these hermaphrodites to an imperfect fecundation of the orum." (Zeitschrift fur Wissenschaftliche Zoologie, 1864, p. 73. See Günther's Zoological Review for 1864.)

Mr. Dunning describes a specimen of Fidonia pimiaria, "whicli was sexually a female, and the abdomen was apparently distended with eggs ; the general color was midway between the colors of the ordinary male and female, but the size and markings were those of the male. (Transactions Entomologieal Society, London, Ang. 7, 1865.) Professor Westmood states that "he had an Orange-tip Butterfly (Anthocharis cardomines), which was female in every respect, except that, on the tip of one fore-wing were about a dozen of the bright orange scales which characterize the male."

Tine Estg. Professor II. J. Clark (Mind in Nature) defines an egg to be a globule surrounded by the vitelline membrane, or yolk-envelope, which is protected by the chorion, or eggshell, consisting of "two kinds of fluid, clbumen and oil, which are always situated at opposite sides or poles." "In the earliest stages of all eggs, these two poles shade off into each other," but in the perfectly developed egg the small, or albuminous pole, is surrounded by a membrane, and forms the Purkinjean (germinal) vesicle; and thirdly and last, the innermost of the three globules is dereloped. This last is the Wagnerian resicle, or germinal dot. The oily matter forms the yolk. Thus formed, the egg is the initial animal. It becomes an animal after contact with the male germs (unless the product of organic reproduction), and the egg-shell or chorion is to be considered as a protection to the animal, and is thrown off when the embryo is hatched, just as the larva throws off its skin to transform into the pupa. So that the egg-state is equivalent to the larva state, and hence there are four stages in the life of an insect, i.e. the egg, the larva, the pupa, and the imago, or adult state.

The egg is not always laid as a perfect egg (Clark). It sometimes, as in the Ants, contimues to grow after it is laid by the parent, like those of frogs, which, aceording to Clark, "Are laid before they can hardly be said to have become fully formed us egy/s." Again, others are laid some time atter the embryo has begun to form ; and in some, such as Melophagues and Braula, the larva is fully formed before it is expelleal from the oviduct.

Eggs are usually small in proportion to the size of the parent; but in many mimute forms (i.e. Pulex, Pediculus, etc.) they are proportionately much larger. In slape eggs are either spherical or oblong. In some there are radiating appendages at one end, as in those of Nepa and Ranatra; or they are provided with a single stalk, as in Chrysopa, Cymips, and Ophion.

The eggs of most Hymenoptera, Diptera, and many Coleoptera are usually cylindrical; those of Lepidoptera are more generally spherical. The eggs of the Mosquito are laid in a boat-shaped mass, which floats on the surface of quiet pools, while those of the Chrysona, or Lace-winged Fly (Fig. 55), are supported on long pedicels. They are almost invariably laid near or upon objects destined to be the food of the

Fig. 55. future larra. Thus the Copris, or "Tumble-bug," places its egg in a ball of dung which it rolls away to a secure place; the Flesh-fly oriposits on meat; and all vegetable-feeders lay their eggs on the food-plant where the larra, upon its exit from the egg, shall readily find an ample supply of foor.

The posterior end of the egg is more often the fixed one, and it may thus be distinguished from the anterior pole. In the eggs of some Diptera and Orthoptera, the ventral side of the embryo, according to Gerstaecker, comesponds to the convex side of the egg, and the concare side of the latter corresponds to the dorsal region of the embryo.

The surface of the chorion, or egg-shell, which is clense and brittle, is often covered by a mosaic-work of more or less regular facets. In many small eggs the surface is only minutely granulated, or ormamented with ribs and furows, as in those of many Butterflies.

The Micropyle. On the anterior end (though sometimes at both euds) of the egg is one or more pores of exceeding minuteness, through which the spermatozoa (more than one of which, according to Darwin, is requisite to fertilize an ovule) enter to fertilize the egg-contents. In some cases these micropyles are scattered orer the whole surface of the egg. Fig. 56 a represents the micropyles of Nepa cinerea, consisting
of a whorl of long bristles. Those of Locustce vividissima (Fig. 56) slightly resemble toorlstools. Fig. 56 c represents the an-

F1g. 56. terior pole of the egg with the micropyles of Pymocoris "pterus. - (From Gerstuccker.)

This contact of a male sperm-cell with the rolk is the fertilization of the cug. From this moment begins the life of the embryo. Fertilization of the female germ by means of the male sperm, through the eongress of the sexes, is the rule with bisexmal anmals, but there are exceptions among insects. An embryo may start into being without the interposition of the male; to this mode of generation has been applied by Lenckart the term

Pruthenogenesis. Among certain species of insects there are some indiviclual.s which, by a sort of budding process, and without the aid of the male element, throw oft summer broorls, consisting of "ascxual" inclivicharls, which, as winter approaches, are succeeded by a brood of true males and females, the latter of which lay eggs. This phenomenon, called by Steenstrup "alternation of generations," las been observed among a comparatively few species, and the apparent desion of such an anomalous mode of reprociuction is to afford an immense number of individuals, thus providing for the contimance of the species. The individuals in whom this budding process takes phace are called "asexual" because, though they may resemble the female sex outwardly, their sexual organs are only partially dereloped. This burdding process is the same in kind with that obscrvable in the Jelly-fish, which throw off by parthenogenesis, or alternations of generations, summer broods of immense extent, but in winter propagate by true eggs. Huxley has studied the development of Aphis by parthenogenesis, the anomalous nature of which has previously been discosered by Bonnet, Trembly, Lyonet, Degeer, Kyber, and others, and arrives at the following conclusions:
"1. Ova deposited by impregnated female Aphides in autumn are hatched in the spring.
2. From these ora viviparous, and, in the great majority of cases, apterous forms proceed.
3. The broods to which these give rise are either winged or apterous, or both.
4. The number of successive broods has no certain limit, but is, so far as we know at present, controlled only by temperature and the supply of food.
5. On the setting in of cold weather, or in some cases on the failure of nourishment, the weather being still warm, males and oriparous females are produced.
0. The males may be cither winged or apterons.
7. So far as I am aware, there is no proof of the existence of any exception to the law that the oriparous female is apterous.
8. Viviparons Ankides may hybernate, and may co-exist with oviparous females of the same species." (Limman Transactions, xxii, p. 198.)

The origin of the viviparous, aseanal, or agamic (from the Greek a, without; game, marriage) individual, as it may be more properly called, is, up to a certain stage, the same as that of the true egg, i.e. until the germ (psertorum) of the former is detached from the false ovary (pseudovarium). "From this point onwards, howerer, the fate of the pseudorum is different from that of the ovum. The former begins at once to be converted into the germ ; the latter accumulates yelk-substance, and changes but little. Buth bodies acquire their membranous investment rather late; within it the pseudorum becomes a living larva, while the ovum is impregnated, laid, and remains in a state of rest for a longer or shorter period.
"Although, then, the psendowum and the ovum of A phis are exceedingly similar in structure for some time after they have passed out of the condition of indifferent tissue, it cannot be said that the sole difference between them is, that the one requires fecundation and the other not. When the ormm is of the size of a pseudorum which is about to develop into an embryo, and, therefore, long before fecundation, it manifests its imherent plysiological distinctness by beconing, not an embryo, but an orum. Up to this period the influence of fecundation has not been felt; and the production of ova, insteal of
pseudora, must rlepend upon a something impressed upon the constitution of the parent before it was brought forth by its riviparons progenetrix." (Huxler.)

Siebold has also shown that the "ova of the Queen-hee produces females or maless, according as they are fecundated or not. The fecundated orm produces a queen or a neuter according to the food of the law and the other conditions to which it is subjected; the unfecundated ovum produces a clrone." This is analogous to the agamic reproduction of Aphis, and "demonstrates still more clearly the impossibility of drawing any absolute line of demarcation histologically between ova and buds."

This process of reproduction is not known in the Myriapods. It occurs among the mites (Acarima), and occurs in isolated gencra of Hemiptera (Aphis, Chermes, Lecontum, and Aspidiotus according to Gerstaecker).

Among Lepidoptera the Siliz-moth sometimes lays fertile eggs withont previous sexmal mion. This very darely happens, for M. Jourdain found that, out of about 58,000 eggs lain by mimpregnated silk-moths, many passed through their early embryonic stages, showing that they were capable of self-development, but only twentr-nine out of the whole number prodnced caterpillars. (Darwin.) Several other moths* hare been found to lay fertile egogs withont previons sexual mion, and among Hymenoptera, Vemotus ventricosus. Cymips, Nemoterus, perhaps Apophyllis (according to Gerstaccker), and Cymips spongifica (according to Walsh, Proceedings of

[^10]the Entomological Society of Philadelphia). Parthenogenesis, or agamic reproduction, is, then, the result of a budding process, or cell-growth. This process is a common mode among the Radiates, the low Wrorms, and the Crustaceans. Metamorphosis is simply a series of marked stages, or periods, of growth; and hence growth, metanorphosis, and agamic reproduction are morpholngically identical. All animals, therefore, as well as plants, grow by the multiplication of cells.

After hearing the surprising revelations of Bonnet, Reaumur, Owen, Bumett, and Huxley on the asexual mode of generation in the Aphis, we are ealled to notice still a new phase of reproduction. None of the observers just mentioned were accustomed to consider the virgin aphis as immature, but rather as a wingless cudult Plant-louse. But Nicolas Wagner, Professor of Zoology at Kasan,* supported by able vouchers for the truth of his assertions, both in Russia and in Germany, who have repeated and thoroughly tested his observations, has observed an asexual reproduction in the lara of a Cecidomyian fly, Miastor metraloas Meinert, and Memert has observed it in this species and the Oligarces paradoxus Meinert.

Says Dr. R. Leuckart, whose article \dagger we have drawn largely upon in the present account, "This reproduction was said to commence in autumn, to continue through the winter and spring, giving origin, during the whole of this period, to a series of successive generations of larvæ, until, finally, in June, the last of them were developed into perfect and sexually mature animals. The flies, then, as usual, after copulation, lay eggs, and thas recommence the developmental cycle just described."

Professor Lenckart has observed these facts anew in the larve of a species of dipterons gall-fly, and which he believes. distinct from the Russian species, found under the bark of a half dead apple-tree that was attacked by fungi. The young are developed within the body of the larva-like parent from a

[^11]"germ-ball" essentially agreeing with the ovary, and the asexual larve begin life as egg-like bodies developed from this germ-ball, just as eggs are developed in the little tubes of which the ovary is an aggregation. Hence these worms bud out from the germ-stock, just as we have seen in the case of the Aphides. Leuckart and Wagner farther agree, that "the so-called chorion never being formed in either of them, the vitellus [yolk] remains without that envelope which has so remarkable and peculiar a development in the true egg of insects." "The processes of embryo-formation agree in all essential points with the ordinary phenomena of derelopment in a fecundated egg, exactly as has been proved (by Huxley) to be the case in the Aphides." "The only difference consists in the germ-chambers of the Cecidomyide larve separating from the germ-stock, and moring about freely in the carity of the body, whilst in the Aphides they remain permanently attached, and constitute an apparatus which, in its form and arangement, reproduces the conditions of the female organs."

Thus we can neither pronounce these so-called larve to be larve so long as they produce young, neither are they actual males or females; they are what Leuckart calls asexual forms, which produce false-eggs (pseudova of Huxley, as restricted by Leuckart). This is paralleled by the asexual Aphides, and among Hymenoptera by the worker Ants, and worker, or, as they were formerly called, neuter Bees, the latter of which have been known to produce young without the interposition of the male; thus the two sexes, at least the females, are dimorphic, i.e. for certain exigencies of life they are specialized into two distiact forms, one (as in the asexual Aphis) to produce an unlimited number of young during the summer; the other and sexual, normal form to produce in the autumn a comparatively limited number of eggs.

Dimorphism is intimately connected with agamic reproduction. Thus the asexual Aphis, and the perfect female, may be called dimorphic forms. Or the perfect female may assume tro forms, so much so as to be mistaken for two distinct species. Thus Cynips quercus-spongifica occurs in male and female broots in the spring, while the fall brood of females were
described as a separate species, C. cucmlatr. Mr. P. D. Walsh considers the two sets of females as dimorphic forms, and he thinks that O. aciculata lays egres which produce C. quercusspongifica.

Huber supposes there are two sizes of the three forms (i.e. male, female, and morker) of Bombus, one set being a little larger than the other.

Alfred Wallace has discorered that there are two forms of females of Papilio Memmon of the East Indies: one is normal, having its wings tailed and resembles a closely allied species, Papitio Coon, which is not dimorphous, while the other is tailless. resembling its tailless male. Popilin Pammon has three sorts of females, and is hence "trimorphic." One of its forms predominates in Sumatra, and a second in Tava, while a third, (described as P. Romulus) abounds in India and Ceylon. P. Ormenus is trimorphic, as Mr. Wallace obtained in the island of Waignon, "a third female quite distinct from either of the others, and in some degree intermediate between the ordinary male and female." Much the same thing' occurs in the North American P. Tomus. Popilion Glaucus is now known to be a dimorphic form of the former butterfly, both having, according to Mr. Uhler, been bred from the same batch of eggs. The ordinary form of the female of P. Twnus occurs north of lat. 36°, while the climorphic form, P. Glancus, oceurs south of 42°.

The male sex also presents dimorphic forms. Mr. Pascoe (Proceedings of the Entomological Society of London, 1862, p. 71) states that there are dimorphic forms of Authribide; that they occur in the male of Stenocerus and Hicoceros. Six species of Dytiseus have two female forms, the most common having the elytra deeply sulcate, while in the rarer forms the elytra are smooth as in the male.

There is a tendency, we wond observe, in the more abnormal of the two sexual forms, to revert to a lower type. Thus the agamic Aphis is more generally wingless, and the tailless female hutterfy mimics the members of a lower genus, Pionts. The final canse of Dimorphism, like that of agamic reproduction, is the contimance of the species, and is, so fiur as yet known, an exceptional occurence.

Wimetic forms. Many insects often resemble, in a remark-
able manner, those of other groups. They are called mimetic forms. Insects are related to each other by analogy and affinity. Thus the truly tailless species of Papilio, i.e. those where the tail is absent in both sexes, are related by affinity to Pie: ris, which has rounded hind wings. They also stand next to Pieris in the system of Nature. But there are, on the other hand, mimetic forms, which borrow the features of groups far above them in the natural system. Thus the Sesia resembles a Bee, Bombytius and Laphria resemble Bombus; the Syrphus flies are easily mistaken for Wasps. So in the second series of suborders of Insects, Forficula resembles the Staphylinus; Termes resembles the true Ant ; Psocus, the Aphis; Ascalaphus resembles Papilio ; Mantispa recalls the Orthopterous IFantis, and Panorpa reminds us of the Tipulce (Bittacus being strikingly analogous to the Dipterous Bittucomompaci). Thus these lower, more variable groups of insects strive, as it were, to connect themselves by certain analogous, mimetic forms, with the more stable and higher groups.

Comprehensive types are mimetic forms which combine the characters of other and generally higher gromps. Thus each Neuropterous family contains mimetic forms which ally them strongly with some one of the six other suborders of insects. The early fossil insects are remarkable for combining the characters of groups which appear ages after. The most remarkable comprehensive type is a Carboniferous insect, the Eugereon Boechingi mentioned farther on.

Hybridity. Hybrids are sometimes produced between different species, but though it is known that different genera unite sexnally, we know of rery few authentic instances of the production of hybrids thercfrom. One is related by Mr. Midfork, who exhibited at the March 4 th (1861) meeting of the London Entomological Socicty, hybrids produced from a male Phigalia pilosaria, and a female Nyssia hispidaria. "The males resemble N. hispidcria, but in color have the lighter and greener tint and transparency of wing of P. pilosaria."

The Development of Insects. Immediately after the fertilization of the egg, the first act in the organization of the
future embryo is the formation of the germinal layer, or blecstoderm (from the Greek, meaning primitive skin). This layer is formed at the surface out of a surface-layer of larger, often nucleolated, cells which nearly encompass the yolli-mass. At one point there is a break in this cellular layer, and the yolk granules reach to the surface, so that it appears darker than the other parts of the egg. This cellular layer is soon resolved into the blastoderm, or germinal layer, which thickens and narrows, forming a longitudinal band. This is the first stage of the embryo, which lies as a thin layer of cells mpon the onter surface of the yolk. Both ends of the body are alike, and we shall atterwards see that its back lies next to the centre of the egg, its future ventral side looking outwards. 'The cmbryo is thus bent on itself backwards.

In the next stage the blastoderm divides into a certain number of segments, or joints, which appear as indentations in the body of the embryo. The head can now be distinguished fiom the posterior end chiefly by its larger size, and both it and the tail are folded back upon the body of the embryo, the head especially being sumk backwards down into the yolk-mass.

In a succeeding stage, as we have observed in the embryo of Diplax, a Dragon-fly (Fig. $\mathbf{\text { D }}$), the head is partially sketched

out, with the rudiments of the limbs and mouth-parts; and the sternites, or ventral walls, of the thorax and of the two basal rings of the head appear. The anterior part of the head, including the so-called "procephalic lobes" overhangs and con-

Fig. 57. Side view of embryo. The procephalic lobes are not shown. 1, antemæ; 2, mandibles; 3, maxilla; 4, second maxilæ (labium); $5-7$, Jegs. These numbers and letters are the same in all the figures from 5 - -60 . The under-side (stemum) of six segments are indicated. Fig. 58 . Ventral view of the same.
ceals the base of the antenne. It is probable that more careful observation would have shown the end of the abdomen folded back upon the dorsal region, as ustal at this period in the embryos of those insects whose embryology has been studied.

The antemx, mandibles, and maxilla form a gronp by themselves, while the second maxillae (or latimm) are rery much larger and turned backwards, being temporavily grouped with the legs.

There are traces only of the two basal stema of the abdomen. This indicates that the basal abdominal segments grow in succession from the base of the abdomen, the middle ones appearing last. The post-abdomen (Fig. 99 A) has probably been developed synchronous with the procephatic lobes, as it is in all insect and crustacean embryos yet observed. As stated hy Zaddach, these two lobes in their development are exact equivalents; antero-posterior symmetry is rery clearly demarked, the two ends of the body at first looking alike. But in this stage, after the two ends of the body have been evolved from the primitive cell-layer, development in the post-abdominal region is retarded, that of the head progressing with much greater rapidity.

In the next stage (not figured) the yolk is completely walled in, thongh no traces of segments appear on the back or side of the embryo. The revolution of the embrro has taken place; the post-abtomen being curved bencath the body, aud the back presenting outwards.

The rudiments of the eyes appear as a darker, rounded mass of cells indistinctly seen through the yolk-granules, and situated at the base of the anteme. They consist of a few epithelial cells of irregular form, the central one being the largest.

The second maxillae are a little over twice the length of the first maxille and are grouped with the legs, being curved backwards. They are, however, now one-third shorter than the anterior legs. The second maxillary sternum is still risible.

The tip of the alotomen (or post-abdomen) consists of four segments, the terminal one being much the larger, and obscurely divided into two obtuse lobes.

The abdominal sternites are now well marked, and the ner-
vous cord is represented by eight or nine large oblong-square (seen sideways) ganglia, which lie contiguous to each other.

The formation of the eyes, the post-abdomen, the sternites, and median portion of the nervous cord seems nearly symehronous with the closing up of the dorsal walls of the body, though the division of the tegument into segments has not apparently taken place orer the yolk-mass.

The succeeding stage (Fig. 59) is signalized by the appearance of the rudiments of the intestine, while the second maxillæ are directed more anteriorly.

In form the body is ovate-cylindrical, and there is a deep constriction separating the post-abolomen from the anterior part of the abdomen.

The terminal (elerenth) ring is
 immensely disproportioned to its size in the embryo just previous to hatching (see Fig. 61, where it forms a triangular piece
 situated betreen its appendages. the anal stylets). At a later period of this stage two more abclominal segments have been added, one to the end of the main boty of the abdomen, and another to the post-abdomen. They have been apparently interpolated at the junction of the post-abrlomen to the abdomen proper. Should this observation be proved to be correct. it may then be considered as a rule that, after reaching a certain number of segments, all additional ones are interpolated between the main body of the abdomen and its terminal segment or segments. This is the law of increase in the number of segments in Worms, and in Aryriapods (Inlus, according to Newport's observations), in Arachnids (Claparede), and Crustacea (Rathke).

The next stage (Fig. 60), is characterized by the differentia-

[^12]tion of the head into the rudiments of the ophathalmic ring, and the supraclypeal piece, and elypens, together with the approximation of the second pair of maxilhe, which, when united, form the lalnum, the extremities of which are now situated in the middle of the bouly.

The antennre now extend to the middle of the labium, just passing beyond the extremities of the mandibles and maxillæ. The asophagus can now be seen going from the mouth-opening situated just beneath the labium. It curves around just behind the eres. There are at this period no appearances of movable hoorl-disks or of a dorsal vessel.

The abdomen is now pointed at the extremity and divided into the rudiments of the two anal stylets, which form large,
 acute tubercles. The yolk-mass is now almost entirely inclosed within the body walls, forming an oval mass.

Another cmbryo, observed July 27 th, had reached aloont the same stage of growth. The front of the liead, inclucling the antemnary segment, is farther adranced than before. The entire head is divided into two very distinct regions; i.e. one before the month-opening (the preoral regrion, including the ocellary, or first and second segments; the ophthalmic, or third segment, and antenatay, or fourth segment of the head) ; and the other behind the mouth (postoral, cousisting of the mandibular, or fifth segment, the first maxillary, or sixth segment, and the second mawillary, or labid, being the serenth and last cephalic ring.

At a later period the embryo is quite fully formerl, and is about ready to leave the egg. The three regions of the body are now distinct. The articulations of the tergum are present, the yoll-mass being completely inclosed by the tergal walls.

Fig. 61. The embryo taken from the egr, but nearly realy to hatch. t, the fotted tine crosses the main trachea, going through the yolk-nass, now restricted to the thotacic region. At x , the trachere send off numerous branches around an enlargement of the intestine (colon), where the bloon is acrated; better seen in fig. 62. The abdomen consists of eleven segments, the last being a minute triangular piece.

The body is so bent upon itself that the extremities of the second maxillie just overlap the tip of the abdomen.

The two limbs of the labium are now placed side by side, with the prominent spinons appendage on the onter edges of the tip. These spines are the rudiments of the labial palpi.

The general form of the embryo at a still later period (Fig. 61), on being taken from the egg and straightened ont, remints us strikingly of the Thysanura, and, in these and other respects, tend to prove that the Poduree and Lenisma, and allicd genera, are embryonic, degraded forms of Nenroptera, and should therefore be considered as a family of that suborcler. Scen laterally, the body grachually tapers from the large head to the pointed extremity. The body is flattened from alore dommwards. At this stage the appendages are still closely appressed to the body.

Just before the exclusion of the embryo, the legs and mouthparts stand out freer

Fig. 62
fion the boxly. The labimm, especially, assumes a position at nearly right angles to the body. The antenna, mandibles. and maxilla have taken on a more definite form, being like

Fig. 62. The larra just hatched and swimming in the water. x , ventral cord or nerrous ganglia; D , dorsal vessel, or "heart," divifed into its chanmers. The anal valves at the ent of the abdomen, which open and shat huring respiration, are represented as being open. Both of the doted lines cross the trachere, x , net. work of the trachea, surrounding the clowea.
that of the young larva, and stand out free from the body. The head is much smaller in proportion to the rest of the body, and bent more upon the breast.

Fig. C3.

The Larva (Fig. 62) when hatched is about five hundredths of an inch in length. The head is now free and the antenna stand ont free from the front. The thomas has greatly diminished in size, while the abdomen has become wider, and the limbs very long; and the numerous minute tubercles, seen in the preceding stage, have given origin to hairs. The dorsal vessel can now, for the first time, be seen. When in motion, the resemblance to a spider is most striking. The flow of blood to the head, and the return currents through the lacunar or venous circulation along the side of the body were easily observed. The vessels were not crowded with blood disks, the latter being few in number, only one Fig. ci. or two passing along at a time. Two currents, passing in opposite directions, were observed in the leg's.

[^13]On review it will be seen how remarkable are the changes in form of the insect before it is hatched, and that all are the result of simple growth. We have seen that the two ends of the body are first formed, and that the under side of the body is formed before the back; that the belly is at first turned outwarls, and afterwards the embryo reverses its position, the back presenting outwrards. All the appendages are at first simple protrusions from the body-walls, and new segments are interpolated near the tip of the abdomen. These changes take place very rapidly, within a rery few days, and some of the most important and earlicr ones in a few hours. We can now better understand that the larva and pupa stages are the result of a similar mode of growth, thongh very maked from being in a different medium, the insect having to seek food and act as an independent being.

Traxsformations of the insect. We have seen that during the growth of the embryo, the insect undergoes remarkable changes of form, the result of simple growth. The metamorphoses of the animal within the egg are no less marked than those which ocour after it has hatched. It will also be seen that the larva and pupa stages are not always fixed, definite states, but only pauses in the development of the insect, concealing beneath the larva and pupa skins the most important changes of form.

The process of hotching. No other author has so carefully described the process of hatching as Newport, who observed it in the larva of Meloë. "When the embryo larva is ready for its change, the egg-shell becomes thinned and concare on that side which covers the ventral surface of the body, but is much enlarged, and is more conver on the dorsal, especially towards the head. 'The shell is then burst longitudinally along' the middle of the thoracic segments, and the fissure is extended forwards to the head, which then, together with the thoracic segments, is partially forced throngh the opening, but is not at once eutirely withdrawn. The antenme, parts of the mouth, and legs are still inclosed within separate envelopes, and retain the larva in this covering in the shell. Efforts are then made to detach the posterior segments of the body, which
are gradually released, and with them the antennae, palpi, and legs, and the larra removes itself entirely from the shell ant membranes. In this process of exolution the young Moloe throws olf two distinct coverings: first. the shell with its lining membrane, the analogue of the membane in which, as 1 hare elsewhere shown,* the young Myriaporl is inclosed, and retained several days after the bursting of the ovum, aurl which represents in the Articulata, not the allantois. but apparently the ammion, of Vertebrata; next, the first, or lietal deciduation of the tegment, analogors probally to the first change of skin in the Myriapod, after it has escaped from the amnion, and also to the first change which the young Arachnidan invarially mudergons a few days after it has left the egg, and before it can take food. This tegument, which, perhaps, may be analogons to the remix cuseosa of Yertebrata, thrown oft at the instant of birth, is left by the young Meloe with the ammon in the shell; and its separation from the boty, at this early periont, seems necessary to fit the insect for the active life it has commencet." (Linn. Trans. xx. p. 306, ete.)

The lara state. The larva (Latin leriat, a mask) was socalled because it was thought to mask the form of the perfect insect. The larve of Buttertlies and Moths are called coterpillars; those of Beetles, grubs ; and those of the two-winged Flies (Diptera) maygots; the larve of other groups lave no distinctive common names.

As soon as it is hatched the larva feeds romeiously, as if in anticipation of the coming period of rest, the pupa state, for which stores of fat (the fatty bodies) are developed for the supply of fat globules out of which the tissues of the new boty of the prpa and mago are to ke formet.

Most lara moult, or change their skin, four or five times. In the inactive thin-shimed larva, such as those of Bees, Wasps, and Gall-fies, the moults are not apparent; as the larra increases in size it ont-grows the old skin, which comes off in thin shreds. But in the active larva, such as caterpillars, grasshoppers, and grubs, from the rapid deposition of chitine in the outer layers of the skin, just before the change,

[^14]it becomes hard and dry, and too small for the growing insect, and is then cast off cutire.

A scries of bee-larve can be selected showing a graduation in size and form from the egg and recently hatched larva up to the full-grown lara. In the caterpillar and other active larve, there are usually four or five stages, each shoming a sudden and marked increase in size. Newport states that the caterpillar of Sphinx ligustri moults six times, and at the last moult becomes a third larger than at any earlier period ; the larra of Arctia caja moults from five to ten times.

A few days before the assumption of the pupa state, the larva becomes restless, stops eating, and deserts its food, and ustally spins a silken cocoon, or makes one of earth, or chips, if a borer, and there prepares for the change to the pupa state.

During this semipupa period (lasting, in many insects, only for a day or several days, but in some Saw-flies throngh the winter') the skin of the pupa grows beneath that of the quiescent larva. While the wom-like larra eahilits no trivegional distinctions, the muscles of the growing pupa contract and enlarge in certain parts so as to modify the larva form, until it gradually assumes the triregional form of the adult insect, with the differentiation of the body into a head, thorax, and abdomen.

In a series of careful studies, abundantly illustrated with excellent plates, Weismann has recently shown that Swammerdam's idea that the pupa and imago skins were in reality already concealed under that of the larva is partially founded in troth. Swammerdam states, "I can point out in the larra all the limbs of the future nyymph, or Cutex, concealed beneath the skin," and he also observed beneath the skin of the larve of bees just before pupating, the antemm, mouth-parts, wings, and limbs of the adult. (Weismann.)

During its transformations the pupa skin is developed from the hypodermis, or imner layer of skin. This peals off, as it were, from the inner layer of the old larva skin, which soon dries and hardens, and is thrown off. Meanmhile the muscles of the body contract and change in form, thas causing the original segments of the larva to infold and contract at certain parts, gradually producing the pupa form. If, during this period, the
insect be examined at intervals, a series of slight changes of form may be seen, from the larra to the imago state. In some cases each change is accompanied by a moult, as in the "active" Ephemera, where Lubbock comted twenty moults.

As a general rule, then, it may be stated that the body of the larva is transformed into that of the imago; ring answering to ring, and limb to limb in both, the head of the one is homologons with that of the other, and the appendages of the larva are homologous with the appendages of the imago.

Weismann has shown that in the larva of the Meat-fly, Musca romitoric, the thorax and head of the imago are developed from what he calls "imaginal clisks." These disks are minute isolated portions of the hypodermis, which are formed in the embryo, before it leares the egg, and are held in place within the body-cavity of the larva by being attached either to nerres or trachea, or both. After the outer layer of the larra skin dries and hardens, and forms the cask-shaped proparium, the use of which corresponds to the cocoon of moths, etc., these imaginal clisks increase in size so as to form the tegument of the thorax and head. The abdomen of the Meat-fly, howerer, is formed by the direct conrersion of the eight hinder segments of the body of the larva, into the corresponding segments of the imago.

Accompanying this change in the integument there is a destruction of all the larral system of organs; this is either total or effected by the gradual destruction of tissues. Now we see the use of the "fatty body;" this breaks up, setting free granular globules of fat, which, as we have seen in the embryo, produces by the multiplication of cells the new tissues of the pupa. Thus the larra-skin is cast aside, and also the softer organs within, but the formation of new tissues keeps even pace with the destruction of the old, and the insect preserves its identity throughout. The genital glands, howerer, are indicated eren in the embryo, and are gradually developed throughout the growth of the insect, so that this histolysis, or destruction of tissues, is not wholly complete. The quescent pupa-state of Musea is long-continued, and its vitality is latent, the acts of respiration and circulation being almost suspended. (TVeismann.)

In the metamorphosis of Corethra, a Mosquito-like Fly, which is active both in the larva and pupa states, "the segments of the larva are converted directly into the corresponding segments of the body of the imago, the appendages of the head into the corresponding ones of the head of the inago; those of the thorax are produced after the last moult of the larva as diverticuld of the hypodermis round a nerve or trachea, from the cellular envelope of which the formation of tissue in the interior of the appendages issucs. The larval muscles of the abdoninal segments are transferred unchanged into the imago; the thoracic muscles peculiar to the imago, as also some additional abdominal muscles, are developed in the last larval periods from indifferent cellular cords which are indicated even in the egg. The genital ghands date back to the embryo, and are gradually developed; all the other systems of organs pass with little or no alteration into the imago. Fatty body none or inconsiderable. I'upa-state short and active." (W cismann.)

As the two types are most clearly discriminated by the presence or absence of true inaginal disks, Weismam suggests that those insects which undergo a marked metamorphosis might be divided into Insecta discota (or Insects with imaginal disks), and those without, into Insecta udiscota.

The metamorphosis of Corethra may prove to be a type of that of all insects which are active in their preparatory stages: and that of Hused typical of all those that are quiescent in the pupa-state, at least the Lepicloptera and those Diptera which have a coarctate * pupa, together with the Colcoptera and those Neuroptera in which the metamorphosis is complete, as Phryganea, Hemerobius, cte.

The transformations of the Humble-bee are easily onserved by taking a nest after the first brood have matured, when we shall find individuals in all stages of development from the larra to the imago state. The figures below show four stages, but in reality there is every gradation between these stages.

[^15]Fig. $6 t$ shows what we may call the semipripa, concealed by the larval skin. 'There are eleven pairs of stigmata, three thoracic and eight abdominal. The head of the semi-pupa lies under the head (a) and prothoracic ring (b). The basal ring of the abdomen (c), or fourth ring from the head, is anchanged in form. This figure also will suffice to represent

Fig. 64.

Fig. 66.

Fig. 65.

Fig. 67.
the larra, though a little more produced anteriorly than in its natual form.

In another stage (Fig. 65) of the semi-pupa, the larval skin is entirely sloughed off, the two pairs of wing-pads lying parallel, and rery equal in size, like the wings of Neuroptera. The thoraco-abdominal ring, or propotenm (c), is distinguished by its oblong spiracle (ia), essentially diftering from those on the abdomen. At this point the body contracts, but the head
and thorax together are yet, as still more in the previous stage, much sualler than in the pupa, and there is still a continuons curve from the tip of the abdomen to the head. (y, antemna; h, lingua, maxillæ, and palpi ; i, fore-legs ; j, middle legs ; k, meso-scutum ; l, meso-scutelhum; n, spiracle of the propoderm.)

In a succeeding stage (Fig. 66) of the semi-pupa, the head and thorax together nearly equal in size the ablomen, and the propodem (c) hats become entirely tranferred to the thorax. The head has become greatly entarged ; the rings are rery unequat, the hinter pair are much smaller, ant overlaid by the anterior pair' the three terminal pair of abdominal rings, so large in Fig. 65, have been absorbed, and partially inclosed in the carity of the abdomen; and there has been a farther differeutiation of the ring into the sternite (d), pleurite (e), and tergite (f). ((1 , eye; h, lingua; o, oyipositor, two outer rhabdites exposed to view.) The abdominal spiraches in Figs. Go and 6b, are represented by a row of dots. In the pupa they are concealed by the tergites, which overlap the sternites.

Fig. 67 represents the pupa state, where the body has become much shorter, and the appendages of the head and thorax greatly differentiated; the external genital organs are wholly retracted within the carity of the abdomen; the head is freer from the body, and the whole bulk of the head and thorax together, including the appendages, greater than that of the abdomen. These changes of form, assmmed by the insect in its passage from the larva to the pupa state, are nearly as striking as the so-called "hypermetamorphosis" of Meloe and Sitaris described by Newport and Fabre. (7 , mesoscutellum; p, clypeus; q, maxilla with the palpi ; r, lingua.)

We have also observed similar changes in the semi-pupa of a Tineid larva, which we fomn in the mud-cells of Odynerus abophuteratus. There were over a dozen specimens in different stages of growth from the larva to the pupa, which were but partially paralyzed by the well-directed sting of the intelligent wasp, so that some continued to transform into perfect pupee.
'The following changes were noticed: the larva straightened out, and became a little shorter, the prothoracie ring remaining the same; the head of the pupa being beneath it; the meso-
thoracic ring enlarged, swelling and romding above and on the sides, and with this increase in size drawing the meta-thorax forwards. The first risible portion of the pupa beneath is the meso-thorax. The thoracic legs of the larva are now constricted at their base, and hare become useless.

In the next stage, the most important change noticed is in the meta-thorax, which now becomes broally heart-shapect. In a succeeding stage, the whole thorax bulges out, and is much larger and clearly distinguished from the head and abdomen. The prothorax of the larva disappears, and that of the pmpa takes its place. The occiput of the pupa, just before the laryaskin is thrown off, can be distinctly seen under the larval occiput, pushing aside each half of the latter.

In the last stage of Bombus just before the imago leaves its cell, the body and limbs are surrounded by a thin pellicle. This pellicle also envelops the moth, just before it leaves the pupa, and which is cast off when it moults the pupa-skin. This is probably identical with the skin cast by the active sulbimago of Ephemera, soon after it has taken its flight. Westwood also considers this subimago skin identical with that covering the bodies of coarctate Diptera, as in Eristalis.

Newport states, that when the imago of Sphinx is about to cast off the pupa-skin the abdominal segments are clongated beyond their original extent, this being the first part of the insect that is entirely freed from its attachment within the propa-case. After this the thorax slits down, and the body is drawn out of the rent. In the Butterfly the wings mature in a few moments, but those of Sphinx being thicker, require two or three hours.

Newport (Philosophical Transactions, London, 1832 and 1834) has detailed with great minuteness the internal changes of Sphinz ligustri while transforming. The most marked changes are in the nervous and digestive systems.

Several anomalous modes of metamorphosis have been observed, one in Diptera and the other in Sitaris and Meloë. The development of the latter insect will be noticed bejond.

Sir John Lubbock has described the singular metamorphosis of Lonchoptera, which he considers to be allied to Scrorpus, though the adult stages differ greatly. The larta is oblong
orate, flattenerl, with four long setre in front and two behind, with the sides of the body emarginate and spinulated. They were found under logs. "When the larva is full grown, it detaches itself from the skin, which retains its form, and within which the insect changes into a white opaque fleshy grub consisting apparently of thirteen segments which gradually diminish in size from one end to the ather. There are no limb-cases. According to analogy the pupa should be 'incomplete;' it is probable, therefore, that the legs and wings make their appenrance at a later stage. If this be so the perfect form is only attained after passing through three well-marked stages. I regret, however, that the specimens at my disposal did not enable me to decide this point." (Trans. Ent. Soc. London, Third Ser. i, 1862.)

Haliday states that Thrips goes through a propupe and pupa stage. There are five well-defined stages in the Homopterous Typhlocyba, and more than three in Aphis. Yersin has noticed sereral stages in the development of Gryplus campestris, and the genus Psocus has four such stages.

The duration of the different stages vary with the changes of the seasons. Cold and damp weather retards the process of transformation. Réaumur kept the pupa of a Butterfly two years in an ice-house before, on being removed to a warm place, it changed to a butterfly. Chrysalids survive great alternations of heat and cold ; they may be frozen stiff on ice, and then, on being gradually exposed to the heat, thaw out and finish their transformations.

Retrograde Development. There are certain degradational forms anong the lowest members of each group of Insects which imitate the group beneath them. The Tardigrades (which are considered by some authors to be allied to the Mites) are mimicked by the low parasitic worm-like Demodex folliculonum; the low Neuroptera, such as Lepisma, imitate the Myriapoda; and the wingless Lice remind us of the larva of the Neuropterous Ifemerolius.

Among the Coleoptera, the history of Stylops affords a striking example. The active six-footed larva is transformed into the strange bag-like female which takes on the form of a cyindrical sae, the head and thorax being consolidated into a
minute flattened portion. The process of degralation here seems carried out to its furthest limit.

Thms the degraded forms of the lower series of Hexapods take on a Myriapod aspect. In the more highly cephalized Diptera, Lepidoptera, and Hymenoptera the degraded forms are modelled on a higher articulate type. The idea of a division into three regions is involved. Thus the wingless forms of Flies, sucll as the Pird-lonse, Nirmus; the Bat-tick, Nycteribu; the Bee-louse, Bruula; and Chionea resemble strilingly the liregional Arachmids.

In the wingless female of Orgyia and the Canker-worm moth, the head is free, but the thorax is merged into the abdomen. The resmblance to the lower insects is less striking. The worker ants and wingless Ichnemmons, Pezomachus, still more strictly athere to the type of their suborder, and in them the triregional form of the body persists. Among the first of the examples here cited we have seen the workings of a law, by which most degraded forms of insects (and this law is exerted with greater force in Crustacea) tend to revert to the morm-like, or, as we may call it, the arehetypal, form of all Articulata.

We have seen that many winged forms mimic the groups alove them, whereas the wingless degraded species revert to a worm-like form. In cither case, the progress is towards a higher or a lower form. The latter is the more exceptional, as the evolution and growth of all animals is upwards towards a more specialized, differentiated form.

The Imatg. After completing its transformations the adult insect immediatcly seeks to provide for the propagation and continuance of the species. The sexes meet, and, soon after, the male, now no longer of use in the insect economy, perishes. The female hastens to lay her eggs either in, upon, or near what is to be the food of the foung, and then dies. This period generally occurs in the summer and atutum, and during the winter the species is mostly represented by the egg alone. Rarely does the adult insect hibernate, but in many species the pupa hibemates to disclose the adult in early summer. The larva seldom, as such, lives through the winter.

Réaumur kept a virgin butterfly for two years in his hothouse. From this it would seem that the duration of the life
of an insect may be in this way greatly prolonged. Most insects live one year. Hatching from the egg in early summer, they pass through the larva state, and in the autumn become prpre, to appear as imagos for a few days or weeks in the succeeding summer. Many Lepidoptera are double-brooded, and some have even three broods, while the parasitic insects such as Lice and Fleas, and many Flies, keep up a constant succession of broods. Warinth, Mr. R. C. R. Jordan remarks in the Entomologists' Monthly Magazine, has much to do with rapidity of development, as insects may be forced artificially into having a second brood during the same scason. Some Coleoptera, such as the Lamellicorns, are supposed to live three years in the larva state, the whole time of life being four years. The Cockchafer (Melolontha) of Europe is three years in arriring at the perfect state, and the habits of the Goldsmith Beetle (Cotalpa lenigera), aceording to Rev. Samuel Lockwood (American Naturalist, vol. 2, p. 186), and of the June Bectle, and allied gencra, are probably the same.

Geggraphical Distribution. The insect-fauna of a comptry comprises all the insects found within its limits. The Polar, Temperate, and Trupical zones each hare their distinct insect-fana, and each continent is inhabited by a distinct assemblage of insects. It is also a curious fact that the insectfruma of the east coast of America resembles, or has many analogues in, that of the Eastern hemisphere, and the west coast of one repeats the characteristics of the west coast of the other. Thus some California insects are either the same species or analognes (i.e. representative species) of European ones, and the Atlantic coast affords forms of which the analogues are found in Eastern Asia and in Inclia. This is correlated with the chmatic features which are repeated on alternate sides of the two hemispheres.

The limits of these faume are determined by temperature and natural boundaries, i.e the ocean and mountain ranges. 'Thus the insect-fauna of the polar regions is much the same in Europe, Asia, and North America; certain widely spread polar species being common to all three of these continents.

When we ascend ligh mountains situated in the temperate
zone, and whose summits reach near the snow-line, we fint a few insects which are the same or very similar to those of the polar regions; such an assemblage is called an Alpine fauna.

The insect-fauna of each great continent may be divided into an Arctic, or polar, a Temperate, and a Tropical fauna, and an Alpine fauna if there are mountains in the warm latitudes which reach near the snow-line. Momentin barricrs, inland seas, desserts, and peculiarities in the flora (or collection of plants peculiar to a certain district), are boundaries of secondary importance in limiting the distribution of species.

On the other hand insects are diffused by winds, rivers, oceanic currents, and the agency of man. By the latter innportant means certain insects become cosmopolitan. Certain injurious insects beeome suddenly abundant in newly culcivated tracts. The balance of nature seems to be disturbed. and insects multiplying rapidly in newly settled portions of the country, become terrible pests. In the course of time, however, they seem to decrease in mombers and moderate their attacks.

Insect-faume are arot limited by arbitrary boundaries, but fade into eacli other by insensible gradations corresponding in a general way to the changes of the temperature of different portions of the district they inhabit.

The subject of the geographical distribution of insects, of which we have as yet lut given the rudiments, may be studied to great adrantage in North America. The Arctic insect-fauna comprises Greenland, the aretic Ancrican Archipelago, and the northern shores of the continent beyond the limit of trees. A large proportion of the insects found in this region oceur in arctic Europe and aretic Asia, and are hence called circumpolar, while other species are indigenons to each country. Again, the arctie fauna of Labrador and Huclson's Bay differs from that of the arctic portions of the region about Behring's Straits, certain species characterizing one side of the continent being replaced by representative species which inhabit the opposite side.

The Alpine fauna of the White Mountains consists, besides a very few peculiar to them, of cireumpolar species, which are now only found in Labrador and Greenland, and which are
supposed to be relics of a glacial fauna which formerly inhabited the northern part of the temperate zone, and in former times followed the retreat of a glacial, or arctic climate from the low-lands to the alpine summits. These patches, or outliers, of an arctic fama, containing however a preponderance of subcretic furms, also oveur in the colder parts of New England.

The subarctic fanna is spread over Pritish N゙orth America, stretching north-westerly from the interior of Labrador and the northern shores of the St. Lawrence, following the course of the isothermal lines which run in that direction, and north of which no cercals grow. There are subaretic forms which inhahit the shores of the Bay of Fundy, especially about Eustport, Maine, where the fogs and cold arctic marine currents lower the climate.

Dr. J. L. Leconte, in a paper on the Colcoptera of Kansas and Eastern New Mexico (Smithsonian Contributions to Enowledge), thus subdivides the Coleopterous fama of the United States, and gives a useful map to which the reader is referrect.
"The whole region of the United States is divided by mericlional, or nearly meridional lines into three, or perhaps four, great zoological districts, distinguished each by numerous peculiar genera and species, which, with but few exceptions, do not extend into the contiguous districts. The castern one of these extends from the Atlantic Ocean to the arid prairies on the west of Iowa, Missouri, and Arkansas, thus embracing (for convenicnce mercly) a narrow strip near the sea-coast of Texas. This narrow strip, however, belongs more properly to the eastern province of the tropical zoulogical district of Mexico.
"The central district oxtents from the western limit of the eastern district, perhaps to the mass of the Sierra Nevada of California, including Kansas, Nebraska, Utah, New Mexico, Arizona, and Texas. Except Arizona, the entomological fauna of the portion of this district west of the Rocky Mountains, and in fact that of the mountain region proper, is entively unknown; and it is very probable that the region does in reality constitute two districts bounded by the Rocky Mountains, and the southern continnation thereof.
"The restern clistrict is the maritime slope of the continent to the Parific, and thus includes California, Oregon, and Wrashington Territories.
"These great districts are divided into a number of provinces, of uncqual size, and which are limited bey chages in climate, and therefore sometimes distinctly, sometimes vaguely defined."
"The method of distribution of species in the Atlantic and Pacifie districts, as already observed hy me in varions memoins, is entirely ditlerent. In the Atlantic district, a large number of species are distributed orer a large extent of country ; many species are of rare occurrence, and in pasing orer a distance of several lumdred miles, but small variation will be fomel in the species obtaned. In the Pacific district, a small number of species are confined to a small region of comntry; most species occur in consideralile numbers, and in travelling even one hundred miles, it is found that the most abundant species are replaced hy others, in many instances very similar to them; these small centres of distribution can be limited only after carefal collections have been made at a great number of localities, and it is to be hoped that this rery interesting and important subject of investigation may soon receive proper attention from the lovers of science of our Pacific shores.
"In the Central district, consisting, as it does to a very large extent, of cleserts, the distribution seems to be of a moderate number of species orer a large extent of comntry, with a consirlerable admixture of local species; such at least seems to be the result of observations in Kansas, Lpper Texas, and Arizona."

There are a very few species which range from New England to Brazil, and fewer still (Xyfoutes robinio, according to Boisduval. is fombl in California) range from New England to California. Jumonia cemiu, accorting to authors, is found both in the Southern States and California, and Pyrrhameta isabella of the Lastern States would be ensily confounded with P. Califormica.

Jorialion. Islands afford more rariable forms than continents; the Madeiran insects and those of Great Britain vary more than the same species found on the continent of Europe.

A species spread through two zones of temperature also varies; many Europurn species, according to MeLachlan, becoming "melanized" in going northward, while others become paler. Such varieties have heen deseribed as different species.

Mr. Alfeel Wrallace finds that the most constant forms of species are those the most limited in their geographical range as to a particula island, while those species, which range over a latge part of the Malayan Archipelago, vary very considerabiy. It is a general rule throughout the anmal and regetable work, that the most widely spread species are those capable of withstanding the greatest climatie changes, and aulapting themselves to the greatest diversities of topography.

While the nost widely distributed species are thought to be the most variable, Mr. Scudder fints in the genus Chionobas that C. semifea, restricted to the summit of MI. Wrashington varies almost as much as C. Deno, which is cireumpolar, being found both in Labrador and Northern Enrope.

Mr. Wallace (Transictions of the Linnzan Society, xxr, 1865, p. 14) mentions the following facts "as showing the special influence of locality in giving a peculiar facies to the several disconnected specics that inlabit it."
"On extmining the closely allied species, local forms, and varicties distributed orer the Indian and Malayan Jegions, I find that larger or smaller districts, or eren single istands. give a special character to the majority of their Papilionide. For instance: 1. The species of the Indian region (Smatra, Jara, and lonneo) are almost invariably smaller than the allied species inhabiting the Celebes and Moluceas: 2. The species of New Guineal and Australia are also, though in a less degree, smaller than the nearest species or varieties of the Moluceas; 3. Tn the Moluccas themselves the species of Amboyna are largest ; 4 . The species of Celebes equal or eren surpass in size those of Amboyna; $\check{0}$. The species and varieties of Celebes possess a striking elianacter in the form of the anterior wings, differing from that of the allied species and varieties of all the surounding islands; 6. Tailed species in India or the Lindian region become tailless as they spread eastward through the archipelago."

Fraiety breeding. Varietics may be produced artificially: thus negro rarieties of insects may be raised • from parents
more or less tainted with melanism, and according to Knaggs, there is a "frequent recurrence of indivicluals wanting a hindwing, which may be noticed even at large in Macaria motuta." ${ }^{6}$ Few species are liable to the same extent of marion, and many apparently to none at all." Certain species vary "according as they may have repronluced, generation after generation, on a challiy, peaty, gravelly, or other soil." Food also exerts an influence in inducing variation, according as caterpiilars of the same species feed on diiferent plants; this occurs most commonly in the Micro-lepicloptera. (Knaggs, in the Entomologist's Monthly Magazine, Lonton.)

Introrluced species of insects, like those of plants. often thrive more vigorously than the native forms. This is instanced by native insects which abound in unsual mombers in newly cleared districts where the former presence of forests and their natural foes kept them under. The Potato-bectle, Can-ker-worm, and Chisiochmpa must have lived formerly in moderate numbers on our native plants, where now countless hosts affect our introduced plants. Anong species introduced from a foreign country we have only to instance the Hessian Fly, the Wheat-midge, the Coddling-moth, the Clothes-moth, the Apple Bark-louse, and the Grain-weeril. Mr. W. T. Brigham informs us that some of the most abundant insects in the IIawaiian Islands are introduced speries carried by vessels from Europe. Tanessa Antiopa, Pyrameis cordut, and P. Atcolontci, so abmudant in this country, are supposed to be introduced butterflies. Aphodins fimetarias, found by us living in dung on Mt. Washington, is one of our most common beetles, and the Asparagus-beetle, introduced from Europe a few years since, is common in gardens in Eastern New York, while Mr. Wralsh has recorded the appearance of the European Goosebery Saw-Fly, which ravages the Goosehery and C'urrant. Pieris rapor, the Cabbage-butterfly, introduced from Europe into Quebee about 1859 , soon became abmulant within a circle of forty miles radius about that city, and has eren spread into Maine and Vermont along the railroads leading from Quebec.

Insect lears. There are insect years as well as "apple years," seasons when insects most albound. Every collector linows that there are certain years when a particular species of
insect is tunsually common. The Army-worm, Lenconia unipuncte, swarms in conntless numbers in a summer following a dry and warm spring. After a cold and rainy spring, insects are less abundant. Mr. F. Smith remarks that in England the summer and autumn of 1860 were musually wet, which disabled the bees, wasps, and fossorial hymenoptera generally, in building their nests. We know how ants are hindered from boilding thejr nests by rain, and in a very rainy season numbers probably die. A sucession of rainy seasons cunsed the Andrenx, or Spring bees, to disappear from the vicinity of London. While a severe winter, if the cold be continnons, is not injurions to insects, mild periods in winter, when it is warm enough to rouse them from torpidity, are as fatal to insects as to vegetation, should severe cold immediately fullow.

Cieological Distribction. The geological distribution of insects eorresponds generally with that of other animals, though insect-remains are few in number, owing naturally to the difliculty with which their firgile forms are preserved in the rocks. Professor C. F. Hartt has discorered near St. John, New Brunswick, the oldest insect-remains in the world. They occur in some plant-beds of the Cpper Devonian formation, and consist of six species of Neuroptera. Mr. Scudder, who has referred to them in rol. 1 of the American Naturalist, states that with the exception of one or two Ephemeridre, or May-flies, they mostly represent fimilies which are now extinct. He lescribes a gigantic May-fly, Plutephemera antiqua (Pl. 1, fig. 3) ; Lithentomum Hortii (P1. 1, fig. ă) ; Homothetus fossilis (Pl. 1, fig. 7) ; and Menoneurd antiquorum which is supposed to bear a stridulating organ like that of the Grasshoppers, so that he "is inclined to believe there were chirping Neuroptera in those days."

Ascending to the Carhoniferous rocks, insect-remains appear more abunrlant. At Morris, Illinois, have been collected some remarkable forms. Among them are Niania Bronsonii Dana (1ll. 1, fig. 1), allied to the White Ants and Hemeristia occidentalis Dana, allied to Hemerobius and Chrysopa; with these oceurred remains supposed by Professor Meek to be those of a caterpillar (Fig. 68).

In the Coal-beds of New Brmaswick and Nova Scotia, Dr: Dawson, Mr. Barnes, and I'rofessor O. C. Marsh have discovered

Hig. S8. several interesting Neuropterous and Orthopterous insects; among them a Cockroach, Anchimulucris Acedtica (Pl. 1,* fig. 2). In Europe, C'urboniferous insects have been cliscorered at Wettin, Saubrück, etc.

The insects from these tro formations show a tendency to assume gigantic and strange shapes. They are also comprehensive tomes, combining the characters of different fimilies and even different suborders. The most remarkable instance is the Engereon Boeckingii Dolrn, ftom the Coal Formation of Germany: It has been referred by Dr. Hagen, with some doubt, to the Memiptera, liom its long immense rostrum into which all the month-parts are produced, the labum ensheathing them as usual in the Itmiptera. Its forelegs are large and raptorial ; but the filiform many-jointed tutemen, and the net-reined wings are Nemropterous characters. Hence Dohrn considers it as a comprehensive type uniting

* Ex゙PLANATON OF PLATE 1.

Fig. 1. Nicmiar Bronsoni. A Neuropterous ingect found in iron-stone coneretions in the Carboniferons leds at Momis, llhmons. The digure is magntfed onethind, and has all its parts restored; the rotted fines indieate the parts not existing on the stonc. Reduced from a figure in the Memoirs of the Doston Society of sat. uml Hiscory, Yol. I.

Fig. 2. Archinutacris Acalica. Wing of a Cockroach observed by Mr. Barmes in the cond fommation of Nova Scotia.

Fig. 3. Platephemera antiquen. A gigantic May-lly obtained by Mr. Nartt in the Deronian rocks of Jew Brunswick.

Fig. 4. Tylobins sifillome. The Mrriapod (or Golly-trom) found in the eontfomation of Nora sentia, by e. W. Dawson. Copned from a jigme in Dr, Jawson's Air-breathers of the Coal-period. Magnified,

Fig. 5. Lithritomum IIartio. \& Nearopterons insect, the specimen first dis. covered by Nr. Hartt in the Devonian rocks of Sew Bronswiek. Jhis fossil, and those accompanying it, are the oldest invect-remains in the world.

Fig. (i. Three facete from the ere of an msect, eonsidered ber Dr. Dafeson a Dragon-aly. It was found in coprolites of reptiles in the rocks contaning the Myriapod, represented in Fig. 4. Copied from Inr. Dawson's figure, suratly marnilied.

Fig. 7. Momothetus fossilis, A Nemropterous insect from the Devonitm rocks of New Brunswick; it was discorerra by Mr. Farth.

Fig. s. Hoplophlubim Bomesii. A curions Nemopterons insert, of large size, probably allied to our May-ilies; taken by Mr. Banes from the coal of Cape Bretoll.

These figures, with the exception of 1,4 , and B, are of life size, and bormow from the new edition of Dr. Dawson's Acadian Geology.

Fig. 1

Fig. 2.

Fig. 3.

Fig. 7.

Fig. (
©

Fig. 3.

the characters of the Neuroptera and Hemiptera. It is gigantic, spreading eight or nine inches; its body must have measured six inches in length.

In the Mesozoic rocks, the eelebrated Solenhofen locality in Bararia is rich in Liassic insect-remains. Dr. Hagen (Entomologist's Ammal, London, 1862) states that among the Solenhofen fossils the Neuroptera and Orthoptera are most largely represented; as out of four hundred and fifty species of insects, one humbred and fifty are Neuroptera, of which one humbed and thirty-six are Dragon-flies, and besides "there is a Cor"yctulus, one Cltrysopu, a large Apochryst, and a beatiful Nymplies. The last two genera, which do not seem rery remote from Choysopa, are now found only in the Southern Hemisphere, Tymphes is peculiarly an Australian genus."

The Lias of England is very rich in fossil insects, especially the Purbeck and Rhoetic Beds (sce Brodie's Work on Fossil Insects and also Westwood in the Geological Joumal, etc. Tol. X.).

In the Trias, or New-Red Sandstone of the Comnecticut Valley, Professor Hitchcock has fomnd numerous remains of the larsa of an aquatic insect.

The insects of the Tertiary formation more closely resemble those of the present day. The most celebrated European locality is Ciningen in Switzerland.

Accorting to Professor O. Iteer, orer five thousand specimens of fossil insects late been found at Eningen, comprising $84 t$ species, of which $\overline{6} 18$ are Coleopterons. From all Tertiany Euroje there are 1,322 species, as follows: 166 Hymenopterin, 18 Lepirloptera, 166 Diptera, 660 Coleoptera, 217 Hemipter'a, 39 Orthoptera, and 56 Neuroptera.
"If we inquire to what insect-fama of the present period the Tertiary fana is most analogous, we shall he surprised to find that most of the species belong to genera actually fomed in the old and the new world. The insect-fama of (Eningen contains 180 genera of this category, of which $11 \pm$ belong to the Coleoptera. Of these last, two (Iinentes and Caryborus) remain in Enrope, while all the others are now found living both in Europe and in America. The whole number of Coleopterous genera furnished by Geningen, and known to me amount to

158 ; those that are common to both hemispheres forming then more than two-thinds of the whole number, while of the actual Coleopterons fama of Europe, according to the calculation of M. Lacordaire, there is only one-third. The genera found to-day in both parts of the world have then during the Tertiary epoch played a more important part than is the case now; honce the knowledge of the character of the fauna is rendered more difticult. We find at Eningen but a very small number (five) of genera exclusively European; seventeen are found to-day in Europe, in Asia, and in Africa, but not in America. For the most part they belong to the Mediterranean fama (comprising eight genera) and give to the insect-fanna of Cningen a strong proportion of Mediterranean forms. In this fana I only know of one exclusively Asiatic gents ; two are peculiar to Africa, and two others (Anoplites and Neupactus) are American.
"There are now living', however, in Europe cortain genera which, without being exclusively American, since they are found in Asia and in Africa, belong more peculiarly to America; such are Belostomum, Hypselonotus, Diplonychus, Evagorus, Stenoporda, Plecia, Coryborus, and Dineutes. . . . The genera peculiar to our fauna of Tertiary insects amount to forty-four, of which twenty-one belong to the Coleoptera; among the Orthoptera there is one, and six Hymenoptera, six Diptera, and cleren Hemiptera, 'They comprise 140 species." (Heer.)

An apparently still richer locality for Tertiary insects has been discovered by Professor Denton west of the Rocky Momtains, near the junction of the White and Green Rivers, Colorado. According to Mr'. Scudder "between sixty and seventy species of insects were brought home, representing neary all the different suborders; about two-thirds of the species were Flies, - some of them the perfect insect, others the maggot-like larra, -bot, in no instance, did both imago and larva of the same insect occur. The greater part of the beetles were quite small ; there were three or four liuds of Homoptera (allied to the tree-hoppers), Ants of two different genera, and a poorly preserved Moth. Perhaps a minute Thrips, belonging to a group which has never been fond fossil in any part of the world, is of the greatest interest."

He thus sums up what is known of American fossil insects.
"The species of fossib insects now known from North Anerica, number eighty-one: six of thesc belong to the Devonian, nine to the Carboniferons, one to the Triassic, and sixty-five to the Tertiary epocls. The Hymenoptera, IIomoptera, and Diptera occur only in the Tertiaries; the same is true of the Lepistoptera, if we exclude the Morris specimen, and of the Coleoptera, with one Triassic exception. The Orthoptera and Myriapols are restricted to the Carboniferous, while the Neuroptera occur both in the Devonian and Carboniferons formations. No fossil Spiders have yet been found in America." (American Naturatist, rol. 1, p. 630.) One species of Spider has been found in the Coal-measures of Europe, and a large number in Prussian Amber.

Tine Diseases of Insects have attracted but little attention. They are so far as known mostly the result of the attacks of parasitic plants and animals, though epidemics are known to break out and carry off myriads of insects. Dr. Shimer gires an account of an epidemic among the Chincla bugs, which "was at its maximan cluring the moist warm weather that followed the cold rains of June and the first part of July, 1865."

Species of microscopic plants luxuriate in infinitesimal forests within the almentary canal of some wood-derouring insects, find cortain fungi attack those species which are exposed to dampness, and already enfeebled by other causes. Among the true entophyta, or parasitic plants, which do not however ordinarily occasion the death of their host, Lrofessor Leidy deseribes Enterobryus elegans, E. spiralis, E. alternatus, Arflromitus cristatus, Cladophytum comatum, and Corymodadus vadiatus. which live mostly attached to the mucons walls of the interior of the intestine of Julus marginatus and two other species of Jelus, and Pessthus comutus. Eccrince longa Leidy, lives in Polydesmus Tirginiensis; and E. moniliformis Leidy in P. grambutes.

But there are parasitic fungi that are largely destructive to their hasts. Such are Sphederia and Iscurit. "These fungi grow with great rapidity within the body of the animal they attack, not only at the expense of the mutritive fluids of the liatter, but, after its death, all the interior soft tissues appear
to be converted into one or more aerial receptacles of spores." (Leidy.) These fungi, so often infesting caterpillars, are hence called "caterpillar fungi." They fill the whole body, distending even the legs, ank throw out long filaments, sometimes longer than the larva itself, giving a grotesque appearance to the insect. Leidy has found a species which is very common in the Serenteen-year Locust, Cicata seytendecim. He found "among myriads of the imago between twelve and twenty specimens, which, though living, had the posterior third of the ablominal contents converted into a dry, powdery, ochreousyellow, compret mass of sporuloid bodies." He thinks this Cicada is very suloject to the attacks of these fungi, and that the spores enter the anal and genital passages more readily than the mouth; thus accounting for their development in the abdomen.

The most formidable clisease is the "Muscordine," cansed by a fungus, the Botrytus Bussiana of Balsamo. It is well known that this disease has greatly reduced the silk crop in Europe. Balbiani has detected the spores of this fungus in the egos of Bombye mori as well.as in the clifferent parts of the body of the insect in all stages of growth. Extreme cleanliness and care ngainst contagion must be observed in its prevention.

Among plants a disease like Muscardine, due to the presence of a minite fungus (Mucor mellitophomes), fills the stomach of some insects, including the Honey-bee, with its colorless spores, and greatly weakens those affectect. Another fungus, Sporendonema musca, infests the common Iouse-fly.

Another bilk-worm disease called "Pebrine," carries off many silk-worms. Whether it is of pathological or vegetable origin is not yet settled.

There are also a few intestinal morms known to be parasitic in insects. The well-known "Hair-wom" (Gorctins) in its young state lives within the borly of various insects including the Spiders. The tadpole-like young differs greatly from the parent, being short, sac-like, ending in a tail. Upon leaving the egg they work their way into the body of insects, and there live on the fatty substance of their hosts, where they undergo their metamorphosis into the adult hair-like worm, and make their way to the pools of water in which they live
and beget their species, and lay "millions of egegs connected together in long cords." Leidy thus writes regarding the halits of a species which infests grasshoppers.
"The number of Gordii in each insect raries from one to five, their length from three inches to a foot; they oceupy a position in the risceral cavity, where they lie coiled among the riscera, and often catend from the end of the abdomen forward though the thorax even into the head; their bulk and weight are frequently greater than all the soft parts, including the muscles, of their living habitation. Nerertheless, with this relatively immense mass of parasites, the insects jump about almost as freely as those not infested.
"The worms are milk-white in color, and undivided at the extremities. The females are distencled with ova, but I have never ouscred them extruded. When the bodies of Grasshoppers, containing these entozoa, are broken and lain upon moist eartl, the woms gradually creep out and pass below its surface."

Goureau states that Filaria, a somewhat similar wrom, inhabits IIberma lomata and Vanessa prorsa. (Ann. Ent. Soc. France.)

Siebold describes Gordius subbifurcus which infests the Honey-bee, especially the (lrones, though it is rather the workers, which frequent the pools where the Gordii lire, that we would expect to find thas infested. Another entozoan is Mermis albicans of Siebold, which is a very slender whitish worm much like Gordius, and about five inches long. It is found in the drone of the honey-bee and in some other insects.

Deformities of Insects. Numerons instances of supernmmerary legs and antenus are recorded. The antemme are sometimes double, but more commonly the legs. "Of these Asmuss has collected eight examples, and it is remarkable that in six of them the parts on one side are treble." Newport, from whom we have quoter, states that "the most remarkable example is that given by Lefelvere of Scarites I Brachomon in which from a single coara on the left side of the prosternum two trochanters originatecl. The anterior one, the proper trochanter, supported the true prothoracic leg; while the posterior one, in the form of an oulong lanceolate body, attached to the base of
the first, supported two additional legs equally well formed as the trine one."

The wings are often partially aborted and cleformed; this is especially noticeable in the wings of buttertlies and moths. Mi. F. G. Sanborn has described and

Fig. 69. figured a wing of a female of Jibellula luctuosa Burm. (Fig. 69), in which among other deformities "the pterostigma is shorter and broader than that of the opposite wing, and is situated about one-eighth of an inch only from the nodus, only one cubital vein ocuring between them, instead of fourteen as in the opposite wing. (Proceedings of the Boston Society of Natural History, vol. xi, p. 326.)

Directions for Comecting ANd Preserving Insmets. Insects differ sexually in that the female generally appears to have one abdominal ring less (one ring disappearing cluring the semi-pupa state, when the oripositor is formed), and in being larger, fuller, and duller colored than the males, while the latter often differ in sculpture and ornamentation. In collecting, whenever the two sexes are found united they should be pimed upon the same pin, the male being placed highest. When we take one sex alone, we may feel sure that the other is somewhere in the ricinity; perhaps while one is flying about so as to be easily captured, the other is hidden under some leaf, or resting on the trunk of some tree near by, which must, be examined and every bush in the vicinity vigoronsly beaten by the net. Many species rare in most places have a metropolis where they occur in great abundance. During seasons when his favorites are especially abundant the collector should lay up a store against years of scarcity.

At no time of the year need the entomologist rest from his labors. In the winter, under the bark of trees and in moss he can find many species, or on trees, etc., detect their eggs, which he can mark for oluservation in the spring when they hatel out.

He need not relax his endeavors day or night. Mothing is night employment. Skunks and toads entomologize at night. Early in the morning, at sumrise, when the dew is still on the leaves, insects are sluggish and easily taken with the hand;
so at lusk, when many species are found flying, and in the night, the collector will be rewarded with many raritics, many species flying then that hide themsclves by day, while many caterpillars leare their retreats to come out and feed, when the lantern can be used with success in searching for them.

Wollaston (Entomolorrist's Annual, 1865) states that sandy clistricts, especially towards the coast, are at all times preferable to claycy ones, but the intermediate soils, such as the loamy soil of swamps and marshes are more productive. Near the sea, insects occur most abundantly bencath pebbles and other objects in grassy spots, or else at the roots of plants. In many places, especially in Alpine tracts, as we have found on the summit of Mrt. Washington and in Labrador, one has to lay down and look carefully among the short herbage and in the moss for Coleoptera.

The most adrantagcous places for collecting are gardens and farms, the borders of woods and the banks of streams and ponds. The deep, clense forests, and open, treeless tracts are less prolific in insect life. In winter and early spring the moss on the trunks of trees, when carefully shaken over a newspaper or white cloth, reveal many beetles and IIymenoptera. In the late summer and autumn, toadstools and various fungi and rotten fruits attract many insects, and in carly spring when the sap is ruming we lave taken rare insects from the stumps of freshly cut hard-wood trees. Wollaston says, "Dead mimals, partially-dried bones, as well as the skins of moles and other vermin which are ordinarily hung up in fields are magnificent traps for Coleoptera; and if any of these be placed aronnd orchards and inclosures near at home, and be examined every morning, various species of Nitidula, Silphide, and other insects of similar habits, are certain to be enticed and captured.
"Planks and chippings of wood may be likewise employed as successful agents in alluring a vast number of species which might otherwise escape our notice, and if these be laid down in grassy places, and carefully inverted every now aud then with as little violence as possible, many insects will be found adhering beneath them, especially after dewy nights and in showery weather. Nor must we omit to urge the importance
of examining the under sides of stones in the ticinity of ants' nests, in which position, during the spring and summer months, many of the rutest of our native Coleoptera may be oceasionally procurecl." Exerementitions matter always contains many interesting forms in varions stages of growth.

The trunks of fallen and decaying trees offer a rich harrest for many wool-boring larve, especiatly the Longicorn beetles, and weevils can be found in the spring, in all their stages. Numerous carnivorous Coleopterous and Dipterous Larve drell within them, and other lave which eat the dust made by the borers. The inside of pithy plants like the elder, raspberry, blackberry, and syringa, are inhabited by many of the wild bees, Ormia, Ceratima, and the wood-wasps, Crabro, Stigma, ete., the habits of which, with those of their Chalcid and Ichneumon parasites, offer endless ammement and study.

Ponds and streams shelter a vast throng of insects, and should be diligently dredged with the water-net, and stones and pebbles shonk be overturned for aquatic beetles, Mcmiptera, and Dipterous larw.

The rarions sorts of galls shonld be collected in spring and autumn and placed in vials or boxes, where they may be reared, and the rafters of out-honses, stone-walls, etc., should be carefully searched for the nests of Mud-wasps.

Collecting Apparatus. First in importance is the net. This is made by attaching a ring of brass wire to a handle made to slide on a pole six feet long. The net may be a foot in diameter, and the bag itself made of thm gauze or musquitonetting (the finer, lighter, and more durable the better'), and should be about twenty inches deep. It should be sewed to a nariow border of cloth placed around the wire. A light net like this can be rapidly turned upon the insect with one hand. The insect is captured by a dexterous twist which also throws the bottom over the mouth of the net. The insect should be temporarily held between the thamb and fore-finger of the hand at liberty, and then pimed through the thorax while in the net. The pin can be dram through the meshes upon opening the net. The beating-net should be made much stouter, with a shallower cloth bag and attached to a slorter stick. It is used for beating trees, bushes, and herbage for beetles and Hemiptera
and rarions larve. Its thorough use we would recommend in the low regetation on mountains and in meadows. The waternet may be either ronnd or of the shape indicated in Fig. 70. The ring should be made of brass, and the shallow net of grass-eloth or course millinet. It is used for collecting aquatic insects.

Vatious sorts of foreeps are indispen-

Fig. 70.
sable for handling insects. Small delicate narow-bladed forceps with fine sharp points in use by jewellers, and made either of steel or brass, are excellent for handing minute specimens. For larger ones long curved forceps are rery convenient. For pinning insects into boxes the forceps should be stout, the blades blunt and enived at the end so that the insect can be pinned without slanting the forceps much. The ends need to be broad and finely indented by lines so as to firmly hold the pin. With a little praetice the forceps soon take the place of the fingers. 'They will have to be made to orter by a neat workman or surgical-instrument maker. Some persons nse the ordinary form of pliers with curred handles, but they should be long and slender. A spring set in to separate the handles when not grasped by the hand is a great conrenience.

Various pill-boxes, vials, and bottles mist always be taken, some containing aleohol or whiskey. Many collectors use a wide-mouth bottle, containing a sponge saturated with ether, chloroform, or benzine, or bruised laurel leares, the latter being pounded with a hammer and then cut with scissors into small pieces, which give out exhalations of prussic acid strong enough to kill most small insects.

Besides these the collector needs a small box lined with corn-pith, or cork, and small enough to slip into the coatpocket; or a larger box carried by a strap. Most moths and small flies can be pinned alive without being pinched (which injures their shape and rubs off the scales and hairs), and then killed by pouring a little benzine into the bottom of the box.

Filling Insects for the Cabinet. Care in killing affects very sensibly the looks of the cabinet. If hastily killed and distorted by being pinched, with the scales rubbed off and otherwise mangled, the ralue of such a specimen is diminished
either for purposes of study or the neat appearance of the collection.

Besides the vapor of ether, chloroform, and benzine, the fumes of suphur readily kill insects. Large specimens may be lizlled by inserting a pin dipped in a strong solution of oxalic acid. An excellent collecting bottle is made by putting into a wide-month bottle two or three small pieces of cyanicle of potassium, which may be covered with cotton, about halffilling the bottle. The cotton may be covered with paper lightly attached to the glass and pierced with pin-holes; this keeps the insect from being lost in the bottle. For Dipter:a, Loew recommends moistening the bottom of the collecting box with creosote. This is excellent for small flies and moths, as the month of the bottle can be placed over the insect while at rest ; the insect flies up into the bottle and is immediately suffocated. A bottle well prepared will, according to Labouibine, last several months, even a year, and is vastly superior to the old means of using ether or chloroform. He states, "the inconrenience of taking small insects from a net is well known, as the most valuable ones usually escape; but by placing the end of the net, filled with insects, in a wide-mouthed bottle, and putting in the cork for a few minutes, they will be suffocated."

Piming Insects. The pin should be inserted through the thorax of most insects. The Coleoptera, however, should be pinned through the right wing-cover; many Hemiptera are best pinned through the scutellum. The specimens should all be pinned at an equal height, so that about one-fourtly of the pin sloould project abore the insect.

The lost pins are those made in Berlin by Klager: They are of five sizes, No. 1 being the smallest; Nos. 1, 2, and 5 are the most convenient. For very minute insects still smaller pins are made. A very good but too short pin is made by Edleston and Williams, Crown Court, Cheapside, London. Their Nos. 19 and 20 may be used to impale minute insects upon, and then stuck through a hit of cork, or pith, through which a No. 5 Klager pin may be thrust. Then the insect is kept out of the reach of devouring insects. Still smaller pins are made by cutting off bits of very fine silvered wire at the right length, which may be thrust by the forceps into a piece of pith, after the insects have been impaled upon them.

Small inscets, especially beetles, may be mounted on cards or pieces of mica through which the pin may be thrust. The French use small oblong bits of mica, with the posterior half covered with green paper on which the number may be placerd. The insect may be gummed on the clear part, the two sexes together. The under side can be seen through the thin mica.

Others prefer triangular pieces of card, across the end of which the insect may be gummerl, so that mearly the whole under side is risible.

Mr. Wollaston adrocates gmmang small Coleoptera upon cards. Instead of cutting the pieces of cards first, he gums them promisenonsly upon a sheet of card-board. "Haring grmmed thickly a space on your card-board equal to, at least, the entire specimen when expanded, place the beetle upon it, drag out the limbs with a pin, and. leaving it to dry, go on with the next one that presents itself. As the card has to be cut afterwards around your insect (so as to suit it), there is no admantage in gumming it precisely straight upon your frame, - though it is true that a certain amount of care in this respect lessens your after labor of cutting-off very materially, When your frame has been filled, and yon are desirous of separating the species, cut out the insect with dinely pointed scissors."

For mending broken insects, i.e. gumming on legs and antemme which have fallen off, iuspissated ox-gall, softened with a little water, is the best gum.

For gumming insects upon carchs Mre. Wollaston recommends a gum "composed of three parts of tragacantl to one of Arabie, both in powder ; to be mixed in water containing at grain of corrosire sulblimate, without which it will not keep, until of a consistency just thick enough to run. As this gum is of an extremely absorbent nature, nearly a fortnight is required before it can be properly made. The best plan is to keep autding a little water (and stirring it) every few days until it is of the proper consistency. It is advisable to dissolve the grain of corrosive sublimate in the water which is poured first upon the gum."

Preservatice Fluids. The best for common use is alcohol, diluted with a little water; or whiskey, as alcohol of full strength is too strong for caterpillars, etc., since it shivels them
u_{i}. (rlycerine is excellent for preserving the colors of caterpillars, though the internal parts decay somewhat, and the specimen is apt to fall to pieces on being ronghly handerd.

Laljoulbene recommends for the preservation of insects in a fresh state plunging them in a presermative fuid consistins, of alcohol with an excess of arsenic acid in fragments, or the common thite arsenic of commerec. A pint and a half of a]cohol will take about fourteen grains (troy) of arsenic. The living insect, put into this preparation, absorbs about Ton of its own weight. When soaked in this liguor and dried, it will be safe from the ravages of Moths, Anthenus, or Dermestes. This liquil will not change the colors of bhe, green, or red leeetles if dried after soaking from twelve to twenty-four hours. Hemiptera aut Orthoptera cam be treated in the same way.

A stay of a month in this arsemiated alcohol mineratizes the insect, so that it becomes yery hard, and, after drying, becomes glazed with at white rleposit which can, however, be washed off with aleohol. In this state the specimens beeome too havd for dissection and study, but will do for cabinet specimens designed for permanent exhilition.

Another preparation recommented by Latoulbene is alcohol containing a variable duantity of corrosive sublimate, but the latter has to be weigher, as the alcohol craporates casily, the licuor becoming stronger as it gets older. The strongest solution is one part of corrosive sublimate to one handred of alcohol; the weakest and best is one-tenth of a part of corrosive sublimate to one humdred parts of alcohol. Insects need not remain in this solution more than two hours before drying. Both of these preparations are rery poisonons and shoukd be handled with care. The last-named solution preserves specimens from mould, which will attack pinned insects during danp summers.

A very strong brine will prescrve insects until a better liquor can be procured. Professor A. E. Verill reeommends two simple aurl cheap solutions for preserving, among other specimens, the larme of insects "with their natural color and form remarkably perfect." The first consists of two and a laalf pounds of common salt and four ounces of nitre dissolvel in a gallon of water, and filtered. Specimens should be prepared for permanent preservation in this solution by being previously inmersed
in a solution consisting of a quart of the first solution and two ounces of arseniate of potash and a gallon of water. (Proceerlings Boston society Nat. IIist. Vol. 10, p. 257.)
'The nests, cocoons, and chrysalits of insects may be preserved from injury from other insects by being sanket in the arseniated alcohol, or dipped into benzine, or a solution of carbolic acid or creosote.
liepuring Insects for the Cabinet. Driod insects may be moistened by laying them for tweive or twenty-four hours in a hos containing a layer of wet sand, covered with one thickness of soit paper. Their wings can then be easily spread. Selting-bourds for spreading the wings of insects may be made by sawing decp grooves in a thick board, and placing a strip of pith or cork at the bottom. The groove may be deep enough to allow a quarter of the length of the pin to project above the insect. The setting-board usually consists of thin parallel strips of hoard, learing a groove between them wide enough to receive the body of the insect, at the bottom of which a strip of cork or pith should be glued. The end of the strips should be nailed on to a stonter strip of wood, raising the surface of the setting-hourd an inch and a half so that the pins can stick throngh withont touching. Several setting-boards can be made to form shelves in a frame covered with wire ganze, so that the specimens may be preserved from dust and destructive insects, while the air may at the same time have constant access to them. The surface of the board should incline a little towards the groore for the reception of the insect, as the wings often gather a little moisture, relax and fall down after the insect is dried. Moths of medinm size shoald remain two or three days on the setting-board, while the larger thick-bodied Splinges and Bombycidee require a week to dry. The wings can be arranged by means of a needic stuck into a handle of wool. They shoald be set horizontally, and the front margin of the fore-wings drawn a little forward of a line perpendicular to the boty, so as to free the imer margin of the hind wings from the body, that their form may be distinctly seen. When thus arranged, they ean be confined by pieces of card pinner on the board as indicuted in the figure 71, or, as we prefer, by square pieces of glass laid upon them.

After the insects have been thoroughly dried they should not be placed in the cabinet until after having been in quarmane

Fig. 71. to see that no egrs of Dermestes or Anthrenus, etc., have been depositerl on thenn.

For prescrving dried insects in the cabinet Labonlbene recommends placing a rare insect (if a beetle or any other hard insect) in water for an hour until the issues be softened. If soiled, an insect can be clansed under water with a fine lair-pencil, then submit it to a bath of arseniated alcolol, or, better, aleohol with corrosise sublimate. If the insect becomes prone-colored, it should be washed in pure aleohol several times. This method will do for the rarest insects ; the more common ones can be softened on wet sand, and then the immersion in the arseniated alcohol suffices. After an immersion of an how or a quarter of an hour, according to the size of the insect, the pin is not affected by the corrosive sublimate, but it is better to umpin the insect previons to immersion, and then pin it when amost dry.

For cleaning insects ether or benzine are excellent, rubbed on with a hair-pencil ; though care shoukd be taken in using these sulostances which are rery inflammalble.

After the specimens are placed in the cabinet, they should be farther protected from destructive insects by placing in the drawers or boxes pieces of camphor wrapped in paper perforated by pin-holes, or bottles contanng sponges saturated with benzine. The collection should be carefully examined every month; the presence of insects ean be detected by the dust beneath them. Where a box of insects is much infested with destructive insects, benzine shonld be ponred into the bottom of the bos or drawer, when the fimes and contact of the benzine with their bodies will kill them. The specimens thenselves should not be soaked in the benzine if possible, as it renders them brittle.

Insect-cabinet. For permanent exhibjion, a cabinet of shallow drawers, protected by doors, is nost useful. A drawer may be eighteen by twenty inches square, and two inches deep in the clear, and provided with a tight glass cover. For constant
use, bores made of thin, Tell-seasoned wood, with tight-fitting covers, are indispensable. For Coleoptera, Dr. Leconte recommends that they be twelve by une inches (inside measurement). For the larger Lepidoptera a litte larger box is preferable. Others prefer boxes made in the form of books, which may be put away like books on the shelres of the calbinet, though the corer of the box is apt to be in the way.

The boxes and drawers should be lined with cork cut into thin slips for soles; such slips come from the cork-cutter about twelve by four inches square, and an eighth of an inch thick. Λ less expensive substitute is paper stretched upon a frame. Mr. E. S. Morse has given in the American Naturalists (Vol. 1, p. 106) a plan which is very neat and useful for lining boxes in a large museum, and which are placed in horizontal show-cases (Fig. 72). "A box is made of the required deppth, and a light frame is fitited to its interior. Upon the upper and under surfaces of this frime, a sheet of white paper (drawing or logpaper answers the purpose) is securely ghed.

Fig. 72. The paper, haring been previously dampened, in drying contracts and tightens like a drum-head. The frame is then sectured about one-fourth of an inch from the bottom of the box, and the pin is forced down through the thicknesses of paper, and if the bottom of the bor be of soft pine, the point of the pin may be slightly forced into it. It is thus firmly held at two or three different points, and all lateral movements are prevented. Other adrantages are secured by this arrangement besides firmness; when the box needs cleauing or fumigation. the entire collection may be removed by taking out the frame, or camplior, tobacco, or other material can be placed on the bottom of the box, and concealed from sight. The annexed figure represents a transwerse section of a portion of the side and buttom of the box with the frame. \mathbf{A}, A, box ; B, frame ;
P, P, upper and under sheets of paper; C, space between lower sheet of paper and bottom of box."

Other substitutes are the pith of various plants, especially of corn ; and pahn wook, and "inodorous felt" is used, being cut to fit the bottom of the box.

Leconte recommends that "for the purpase of distinguishing specimens from different regions, little disks of varionsly colored paper be ased ; they are easily made by a smatl punch, and should be kept in woolen pill-hoxes realy for use; at the same time a key to the colors, showing the regions cmbraced by each, shoukt be made on the fly-leaf of the catalogne of the collection." He also strongly recommends that the "specimens should all be pinned at the same height, since the ease of recognzing species allied in characters is greatly increased by haring them on the same lerel."

He also states that "it is better, even when numbers with reference to a catalogue are employed, that the name of each species should be written on a label attached to the first specimen. Thus the eye is familiarized with the association of the species and its name, memory is aided, and greater power given of identifying species when the cabinot is not at hand." For indicating the sexes the astronomical sign δ (Mars) is used for the male, and of (Venus) for the female, and of for the worker.

Trensportation of Insects. While travelling, all hard-bodied insects, comprising many Hymenoptera, the Coleoptera, Hemiptera, and many Nemoptera should be thrown, with their larre, etc., into bottles and vials filled with strong alcohol. When the bottle is filled new liquor shond be poured in, and the old may be saved for colleeting purposes; in this way the specimens will not soften and can be preserved indefinitely, and the colors do not in most cases change. Leconte states that "if the bottles are in danger of being broken, the spocimens, after remaining for a day or two in alcohol, may be taken out, partially dried by exposure to the air, but not so as to be brittle, and these packed in layers in small boxes between soft paper; the boxes should then be carefully closed with gumpaper or paste, so as to exchude all enemies."

Lepidoptera and Dragon-flies and other soft-bodied insects may be well preserved by placing them in square pieces of pa-
per folded into a triangular form with the edges overlapping. Put up thus, multitudes can be packed away in tin boxes, and will bear transportation to any distance. In tropical climates, chests lined with tin should be made to contain the insectboxes, which can thus be preserved against the ravages of white ants, etc.

In sending live larw lyy mail, they should be inclosed in litthe tin boxes, and in sending dry specimens, the box should be light and strong, and directions given at the post-oflice to stamp the box lightly. In sending boxas by express they should be carefully packed in a larger box, haring an interspace of two inches, which can be filled in tightly with hay or crumpled bits of paper. Beetles can be wrapped in picees of soft paper. Labcls for alcoholie specimens should consist of parchment with the locality, clate of capture, aud name of collector written in ink. A temporary label of firm paper with the locality, etc., written with a pencil, will last for several yen's.

Preseration of Larce. Alcoholic specimens of insects, in all stages of growth, are very useful. Few collections contain alcoholic specimens of the adult insect. This is a mistake. Many of the most important characters are effaced during the drying process, and for purposes of general study alcoholie specimens, even of Bees, Lepidoptera, Diptera, and Dragon-flies are very necessary.

Larece, generally, may be well prescrved in tials or bottles of alcohol. 'They should first be put into whiskey, and then into alcohol. If placed in the Iatter first, they shrivel up and become listorted. MIr. E. Burgess preserves catcrpillars with the coiors unchanged, by inmersing them in boiling water thirty or forty seconds, and then placing them in equal parts of alcohol and water. It is well to collect larve and pupa indiscriminately, ewen if we do not know their aulult forms ; we can approximate to them, and in some cases tell rery exactly what they must be.

Rearing Larve. More attention has been paid to rearing Catorpillars than the young of any other suborder of insects, and the following remarks apply more particularly to them, but
very much the same methods may be pursued in rearing the larre of Beetles, Flies, and Hymenoptera. Subterranean larve have to be kept in moist earth, Elduatic larve must be reared in aquaria, and camivorous larve most be supplied with flesh. The larræ of Butterflies are rare; those of moths occur more frequently, while their imagos may be scarce. In some years many larre, usually rare, at other times occur in abundance, when the shouk be reared in mumbers. In lunting for caterpillars bushes should be shaken and beaten over newspapers or sheets, or an umbrella; lierbage shouk be swept, and trees examined carefully for leaf-rollers and miners. The best specimens of motlis and butterflies are obtained lyy rearing them from the egg, or from the larya or pupa. In confinement the food should be kept fresh, and the box well ventilated. Tumblers covered with gauze, pasteboard boxes pierced with holes and fitted with glass in the covers, or large glass-jars, are very convenient to use as cages. The bottom of such vessels may be corered with moist sand, in which the fool-plant of the larva may be stuck and kept fresh for several days. Larger and more airy boxes, a foot square, with the sides of ganze, and fitted with a door, through which a bottle of water may be introduced, serve well. The object is to keep the food-plant fresh, the air cool, the larra out of the sun, and in fact everything in such a state of equilibrium that the larva does not feel the change of circumstances when kept in confinement. Most caterpillars change to pupse in the autumn ; and those which transform in the earth should be covered with earth, kept damp by wet moss, and placed in the cellar until the following summer. The collector in seeking for larve should carry a good mumer of pill-boxes, and especially a close tin box, in which the leaves may be kept fresh for a long time. The different forms and markings of caterpillars shouk be noterl, ant they shonld be drawn carefully together with a leaf of the food-plant, and the drawings and pupa skins, and perfect insect, be numbered to correspond. Descriptions of catcrpillars camot be too carefully made, or too long. The relative size of the head, its ornamentation, the stripes and spots of the body, and the position and number of tubercles, and the hairs, or fascicles of hairs, or spines and spinnles,
which arise from them, should be noted, besides the general form of the body. The lines along the body are called dorsat, if in the middle of the back, subdorsal; it upon one side, laterad, and ventral when on the sides and under surface, or stigmatal if including the stigmata or breathing pores, which are generally parti-colored. Indeed, the whole biography of an insect should be ascertained by the observer; the points to be noted are :

1. Date, when and how the eggs are laid; and number, size, and marking of the eggs.
2. Date of hatching, the appearance, food-plant of larva, and nmmber of days between each moulting; the changes the lara undergoes, which are often remarkable, especially before the last moulting, with clrawings illustrative of these; the habits of the larra, whether solitary or gregarions, whether a day or night feeder; the Ichmeumon parasites, and their morle of attack. Specimens of larre in the different moultings should be preserved in alcohol. The appearance of the larve when full-fer, the date, number of days before pupating, the formation and description of the cocoon, the duration of larve in the cocoon before pupation, their appearance just before changing, their appearance while changing, ant alcoholic specimens of larve in the act, should all be studied and noted.
3. Date of pupation ; description of the pupa or chrysalis; duration of the pupa state, halbits, etc. ; together with alcoholic specimens, or pimed dry ones. Lepitopterons prape should be looked for late in the summer or in the fall and spring, about the roots of trees, and kept moist in monld until the imago appears. Many Coleopterous pupe may also occur in mould, and if aquatic, under submerged sticks and stones, and those of borers under the bark of decaying trees.
4. Date when the insect escapes from the pupa, and methord of escape; cluration of life of the imago ; and the number of broods in a season.

Entomologicat. Woris. The titles of a few of the most important works on Insects are given below. The more advanced student should, however, possess Dr. Hagen's Bibliotheca Entomologica, 8 vo, 2 vols., Leipzig, 1862-3, which contains a
complete list of all entomological problications up to the year 1862. Besides these he should consult the annual reports on the progress of Entomology published in Wiegmann's Archiv fur Naturgeschichte, begun in 1884, and continued up to the present time ; and also Günther's Zoological Record (8vo, Tan Voorst, London), beginning with the year 186t. Oceasional articles are also scatered through the various govermment reports, and those of agricultural societies and agricultural papers.

GENERAL WORKS.

The works of Srammerdam, Arathhighi, Leeuwenhoek, Iyonnet, Serres, Mrechel, Ramtohi; Suckore, Merium, and Horbst.
Reanmur, hene Ant, de. Momoires pour servirallustoire des Insectes. Paris, 1934

Rorsel, Ang. Woh. Der monathoh heransgegeben Insekten-Belustigung, Numberg, 174t-17fil, 4 rols- fto, illustrated.
Geer, Curl de. Memoires pour servir a l'Histoire des Insectes, 1752-17is, 7 vols. 4to.
Imnews, Comolus. Systema Nature, 1783. 12th enlition, 1760-1768.
Fubricius, Joh. Christ. Srstema Entomologia, 1775, Sro.
——. Genera Insectorum, 17̈̆, spo,
-. Speries In-ectormm, 1781.2 vois. 8 wo .
——. Manti*a lnsectormm, 1 IST, 2 vols, 8 ro.
——. Entomologia sytematica, 4 yols. swo. 1792-94.
Cromer, μ. Papllons exotiques des trois parties du monde. 4 vols. ato, 14n-82.
Stom, C'rsper. Supplement to Cramer's Papillons exotiques. 4to, Amsterdam, 178:-91.
Smith, I. E., and Abbot, Jolm. The Natural History of the Rayer Lepidopterous Insects of Cieorgia. Fol. Plates. Lompon, 1 IT.

——. Genera Crustaceorum et Insectorm, 4 vols. Bvo, 1806-1*09.
-. Consideration generales sur l' ordre maturel de - mimatux composant les Clases des Cru-tacés, des Arachaides et des Insectes. In (urier's legne animal, sro, 1810.

- Familles matureltes du Regre animat, svo, 18so.
- Cours d Entomologie, 8vo, 1231.

Febtitus, Otho. Fama Groenlandica. Hamixe, liso, swo. Contains Jibelluta firgo (erroneoush), Phryganen whomben, Termes dirinatorim, ete.
 (ed. Westwond, 18, it). Numerons species are figmed and desmibed.
Trerimenus, $\mathcal{C} . R$. Vermischteschriften anatomischen und physiologiselien Inhalts Bt. 1 u. .2. Gibltingen, 181B-1\%, to.
arac Lefy, Mr. S'. Hote Entomologice 2 vols. Londom, 1819.
Meigen, F. \mathbb{T}. Systematische Beschrehnug der bekannten enropäischen zweiftilgeligen Insecten. 7 rols. Aachen and Lamm, 1818-18:35. (Athough this worls contains muly Emopean speries, many of them are common to hoth continents.)
Say, T. American Eutomolory. 3 vols. With phates. Philadelphin, 1824, 25, 28. - Complete Writings on the Entomology of North A merica, edited by J. $\mathrm{L}_{\text {. }}$ Leconte, M. 1, 2 rols. swo, colored plates. New Tork, 14.59.
Baer, K. E. . . Beitrage zut Kentniss fler niedeyen Thiere. (Extracted from Nova Acta Acad. Leopold, Cirolin, xiii, 2, 182-.)

Palisot de Bearrais, A.J. Insectes recueillis en Arrigue et en Amerique, dans les royaumes if Oware et de Benin, a Saint-Doningue et dans les Etats-Unis, pen-

Serigny, J. C. de. Description de 1 Egypte. Histoire naturelle. Crustacees,
 plication sonnatire tes planches par J. V. Audouin, Paris, 1830, fol.
Curtis, John. Description of the Insects brought home by Commander James Clark. Ross's becoml Voyage. App. Nat. Hist., 1831, Hio, phates. (Several Aretic spectes are lescribed.)
Kirby, IF. 乌" IF. Spence. An Introduction to Entomology; 0r, Elements of the Yatural History of Insects, t vols. 8vo, 1828. Seventh edition (comprisug vols. 3 \& 4 of the culy editions). London, 1856 , post 8 vo.
 102z-30. With plites.
Curtis, John. Finm Insects; being the Natural History and Economy of the Insects injurious to the Field Crops of Great Britain and Irelaud. 8vo. With plates and wool-cuts. Isito.
Cherolat, Aug. Coleopteres du Mexique. Strasbourg, 183t-ŏ.
Stephens, J. F. Lllustrations of British Entomology. London, Svo, 1835. Sevoral species of European Insects mentioned in this work have been fonsd in North America.
Kirby, IF. Fauna boreali-smericana, ete. Norvieh, 1837, tto.
Kollar, Tr. Naturgeschichte der schatedichen Insekten. Wien, 1837, tho. Contatns Termes ftomipes, injurious in the hothouses of Schonbrum and Vionna. This description has been onitied in the transtation of this work by Mr. Loudon, London, 18 ± 0.
Worquart, J. Dipteres Fxotique nouveaux on pen comms. a vols. en 5 partics, et 5 supplements, Piris, 18:- Wis. With numerous plates. (Published originally in

Durmeister, FF. Mamal of Entomology, translated by W. E. Shuckard. London, sro, 1836.
Durmeister, Hermann. Zoologischer Hand Atlas. Berlin, 18:3-43 fol., 41 plates.
Treitmod, r. O. An Introduction to the Monlern Classilication of Insects. 2 vols. Evo. Londnn, 1839-10.
Curier, G^{\prime}. Le hishe inimal distribue d'aprés son Orgmisation. Nouvelle edition, accompagne de blanches grares, representant les types de tous les Genres, etc., publice par un reunion de Disciples de G. Cupier. Paris, 1s49, 8vo. Insectes, Artchnides, Crustaces par Audouia, Blanchard, Doyerc, Milne-Edwards et Dugés. 4 vols. Texte et 4 vols. athas.
Gubin- Iemerille, F. E. [conographie du Jegrie Animal de G. Carier, on representation d'apres nature de l'une des esperes lesplus remarquables et souvent non encove figures rle chaque genre d' animaux, vols. © et 7: Anmelides, Crustaces, Arachniles et Insectes, Paris, J, B. Tailiére, 18? 14,104 pl. Evo.
Goifith, E. The Animal Kingdom, described and arranged in confomity with its organization. London, 1iet-33, Sro. Class Insecta, 2 vols. with $140 \mathrm{pl}, 1832$. Classes Amelida, Crustacea et irachnida. 1 wol. with fopl.
Suites a Bution et Nourelles suites ab Buffon. Formant aree les Exures de cet anteur un Cours complet d'Itistoive naturelle. Paris, Duturt, 1798-1807. Paris, Moret, I834-1sist, 8ro. (Insectes, Crustaces, Arachniles ete., par Latreille, Lacordaire, fingot, Aurlinet-Sortille, Boistlutal, Guénee, Romentr, Lepelctier de St. Froryetu, Macquirt, MiTue-Edwards, Wathenaer, et Gervais).
Gosse, P. II. Cinadian Naturalist. London, 1810 .
Zetierstedt. J. Tr. Insecta Limponica. Lipsiar, 18t0, fto. Several species from Lapland have been foumd in the Aretic regions of North America.
Pictet, F. Histoire naturehe, ete., iles insectes Neuropteres, Part I, Porlides; Part II, Ephemerines. Gentve, 18tl-45, 8ro, with colored plates.

Doubledry, E, amd Trestioorl, I. O. The Genera of Diumal Lepidoptera, 86 colored plates, 2 vols, fol. I,oudon, 184 (ime.
Walker, F. List of the specimens of Lepilopterous, Thipterous, Neuropterous, and Itomopterous Insecis in the Collection of the Ibritish Munemm. London, lsacobi.
Amyot, C., and Sercille, A. JIemipteres, Svo, Paris, lioret, 1sis.
Raticburg. J. T. C. Dic Forstinsekten. 4to, 3 vols. Derlin, 1s:37-14.
Fom der Heven, J. Handuook of Zodogy, English translation. 2 vols. 8vo, 1850.
Gerstaecker, A. Hanmbuch der Zoölogie (in comection with V. Carus), 2 vols. 8v0. (Vol. 2, Arthropark). Leipzig, 1863.
De Selys Longehamps, E. Revne des Otonates ou Libelules d'Ehrope avec la collaboration de H. Hagen. Paris, 1850, Evo. (Acmoir, Soc. R. Science de Liege, Fol. vi.) (Two species, Lib. Hudsomica, p. 5b, and Aypion Doubledtiji, p. 209, are described in this work.)
Ifagen, I. Refne des Olonatés; Monormphie des Calopterygines; Monographie des Gomphines (ci. Selys Longehamps).
Agussiz, L. Lake Superior, its Physical Character, its Vergetation, and its Animals, Boston, 1sion. With Catalogne of Coleopteria, by Dr. J. L. Leconte, and of the Lepidoptera, by Dr. T. W. Harris.
Lacaze-Juthier, \quad If. Recherches sur l'armure genitale femelle des Insectes. Plates. Svo. Paris, lest.
Melshemer, F. E. Catalogue of the described Coleoptera of che United States, Smithsonian Institution. svo, 183:3.
Dallas, W. S. Catalogue of Hemipterous Insects in the British Maseum. 1, 2. Illustrater?. Lourlon, 1853.
Fitch, Ara. The noxious, bencficial, and other Insects of the State of New York. Reports 1-8, 1800-T.
Smith, Fredwic. Catalogue or Hymenontera in the British Musenm. Parts i-vi. Plates. London, 1857-58.
Follen, C. F., Stal, C, and Fieber. Yarious papers on Hemiptera in Scandinavian and German periodicals.
Hübner, ,. Sammlung Exotischer Schmetterlinge. 5 vols. fto. Plates. 1800.
Guené A. Shecies general des Lepidopteres. (Noctuida, Phalenidx and Pyralida) Suite a Buffon. Paris, 8vo, 1852-57.
Stainton, H. T. The Natural IListory of the Tineina. Svo, with many plates. London, vols. 1-8, 1850-61, 8vo.
Lacordaire, J. T. Generades Coleopteres. 8ro, tomes 1-7. Paris, Roret, 1854.
Boiselutal, J. A. ITistoire genemale et Icohographie des Lepirhopteres et des Cho. nilles del'Anerique septentrionale. 8vo. Paris, Roret, 1820-42.
ـ Species generale des Lépidopteres. Svo. Roret, Paris, 1800.
__. Essai sur l' Entomologie horticole. Svo. Paris, lafi.
Practical Entonologist. Entomological Socicty of Philaclelphia. Vols, 1, 2, 4to, 1853-65.
Iforis, T. F. A Theatise on some of the Insects of New England, which are injurious to Vegetation. Third edition, illustraterl. Boston, 1862.
Leconte, f. T. Classillcation of the Coleoptera of Vorth America. Part I, 1861-2. Smithsonian Institution.
——. List of Coleoptera of North America. Syo, 1803-6. Smithsonian Institution.

New Species of Sorth American Coleoptera. Svo. Part I, 1803-6. Smithsontan Institution.
——. Colcoptera of Kansas and Eastem New Mexico. 4to. \% plates. 1859. Smithsonian Institution.
Hagen, H. Synopsis of the Nemroptera of North America. Svo, 1861. Smithsomian Institution.
Morris, J. G. Ctalogue of the described Lepitoptera of North America. Svo, 1860. Smithsonian Institation.

Osten Sacken, R. Catalogue of the described Diptera of North Ameriea. 1858. Smithsonian Institution.
Loew, II, and Osten Sucken, R. Monograph of the Diptera of North America. Parts 1, 2. 8vo, 18t 2 -64. Snithsonian Institution.
Trimble, I. P^{P}. A Treatise on the Insect Enemies of Fruit and Fruit Trees. The Cureulio and Appie moth. tio. Plates. New York, $186 \sigma^{2}$.

MORPIIOLOGY.

Sarigny, J. C. Mémoires sur les Animaux zans Vertebres. 1 Partic. Description et Classification des Animaux invertebes et articulés, 1. Fascicule. Theorie des Organes de la Bouche tes Crustaces et des Insectes. Paris, 1810.
Audouin, J. V. Lecherches anatomiques sur le Thoras des animaux articules et celui des Insectes hexapodes en particulier. (Amales d. Scienc. Hatur. 1, 182t, p. 97 and 416.$)$

Eschschohtz, J. F. Beschreilung des inneren skeletes ciniger Insekten aus verschiedenea Ortnungen. Dorpat, 1820, 8vo, 1 . $24-49,2$ T'at'.
Baer, K. E. V. U'ber das äussere und immere Slelet (Meckel's Archiv. f. Anatom. u. Physiol. 1826, 1). 327-3-4).

Erichson, JF. F. Ueber zoilogische Charaktere der Insekten, Arachniden und Crustaceen. (Entomographien, s. 1-28.) Derlin, 1810, 8vo.
Bưlé, A. Recherches sur les Transfomations des Appendices dans les Articules (Annales des Sciences naturelles, 3. sér. II, 181t, p. 2̄̄1-3itt).
Leuckart, 7. Veber die Morphologie und die Vorwandtschaftsverhältnisse der Wirbellosen Thiere. Braunschweig, 1848 , svo.

ANATOMY AND PHYSIOLOGY.

Strous-Durokheim, H. Considerations generales sur l'Anatomie comparée des Animaux articules, anxquelles on a joint 1' Anatomie clescriptive du Melolontha vulgaris. Patis, 1828 , fo. 10 ph .
Dufour, L. Simerous anatomical papers in the Anvales des Sciences naturelles, Paris.
Siebold, C. Th.v. Lehrbuch der Tergleichenden Anatomie der wirbollosen Thiere. Belim, 1848,8 co. Translated by W, I. Bumett. Boston, 1851 , 8 vo.
Gegenbatr, C. Grmazuige der vergleichemden Anatomic. Leipzig, 1859, Eso.
Geofroy St. Filaire, Etienne. Considerations philosophiques sur la detemination du Systeme solide et du Systeme nerveux des Animaux articules. (Amnal. d. seienc. natur. II, 1824, p. 295 ff . III, p. 199 u. p. 45\% ni.)
Newport, G. On the Strocture, Relations, and Development of the nerwous and dirculatory Systems, and on the existence of a complete Circulation of the Blood in Yessels, in Myriapoda and Macrourous Arachuida. (Philosoph. Transact1s43, p. $243-300$.)
-. On the Strueture and Development of the Blood, I. ser. The Development or the Blood Corpuscle in Insects and other Invertebrata, and its Comparison reith that of Man and the Vertebrata. (Amnals of Nat. Mist. XY, 1845, p. 281-284.)
. On the Nervous System of the Sphinx ligustri Lin. and on the Changes which it undergocs during a I'art of the Metamorphoses of the Insect. (Philosoph. Transact. 1833, p. 383-398, and 1831, 38\%-423.)

- On the Temperature of Insects and it. Comnexion with Functions of Respiration and Circulation in this class of Invertebrated Animals. (Philosoph. Transact. 1837, p. 259-338.)
Bloncharl, E. Recherches anatomiques et zoblogiques sur le Systeme nerveux des Animaux sans vertebres. Du systeme nerveux des Insectes. (Annal. d. scienc. natur. 3. setr. V, 1846, p. 273-378.)

Blancharl, E. Dus ststeme nerrenx chez los Invertebres dans ses rapports arec la Classidication de ces Anmatux. Parts, 184!, Svo.
 et des Animatux. Puris, Masson 18.0.-jt, svo.

EMBRYOLOGY.

Rathive, Π. Chtersuchnngen uber die Bildang und Entwickelung des Flasskrebses, Leipzig, Voss. Ises, Fnl. nit 5 Taf.
——. Zur Morphologie, Reisebemerkungen aus Taurien. Riga, 1837, 410, mit. Tad.
Iferold, I, , Exereltationes de ammalimm vertebris carentimm in oro fomatione I. Degencratione Aranearm in ovo. - Cobersuehtugen bluer die Bilinngsgeschichte der Wirbellosen Thiere im Ei, 1. Th. Fon der Erzengung der Spinnen im Et. Maburs, Krieger, 1sef, fol. mit 4 Taf.
-_. Disquisitiones de animalium rertebris earentium in oro formatione. De generambe Insectorm in ovo. Fase. I, If, Flankfurt a Main, 183. -iss, fol.
Foblher, A. Observationes de primat Insectormm genesi, adjecta articulatormm evolutionis cum vertebratorm comparatione. Dissert. inaug. Turici, Meyer et Zeller, 1842, tto, e. tab. 3.
Zadtach, G. ['atersuchnng üher die Fintwickelumg und den Ban ter Glitederthere. Heft 1. Die Entwickelung des Phrygniden-Eies. Berlin, Remer. 185, to, c. tab. 5.
Leuckart, R. Die Fortpfanzung und Entwickelung der Pupiparen nach Beobachtungen an Melophagtus ovinus. (1 bhund. d. haturf. Gesellsch. zu ITalle IV, 1858, S. $145-2.2(i$.

Huxfey, T. On the agamic Reproduction and Morphology of Aphis (Transact. Limean Soc. of Lomton, XXII, 1). 143-236.)
Lubboch; J. On the Ova and Pseudova of Insects (Philosophical Transactions of the Royal Sos. 18.5, $1,341-369$.

Feismann, A. Ueber the Entatehung des vollenateten Insekts in Laveumd Puppe. Ein Beitrag zur Metamorphose der Insekten, Frankiurt an Man, 1803, fto.

Die Entwickelmeg rev Dipteren im Ei, nach Beobachtungen an Chimonomus, Musea romitoria und Pulex eanis (Zeitschrift fit Wissenschaftiche Zoologie XIII, p. 10 - - -204 .)

- Dienachembyonale Entwickelung der Musoiden nabh Beobarhtungen an Musca vomitoria und Sarcophaga caruaria. (The same, XIY, 1, 18.-330.)

FOSSIL INSECTS.

Giebet, C. Fruna den Forwelt mit steter Beriicksichtigung der lebenden Thiere. 2. BC. Gliederthiere. I. Hohheilung. Die Insekten und Spinnen der Vorweltmit steter Beritcksichtigumg der lelbenden Insekten und Spinnen. Leipzig, 1856, 8vo.
Berendt, C, G. Die im Bernstein befudlichen organischen Reste der Yorwelt, gesammeltund in Ferbindung mit Mehreren herausgegeben. 1. Band. 2, Abth. Die im Thernstein betindichew Crustaceen, Myrisporlen, Arachmilen und apteren der Vorwelt, bearbeitet ron C, L. Koch umd C. G. Berendt. -2. Band. Die im Bernstein befindichen Ifemipteren, Orthopteren, und Keuropteren der Vorwelt, bearbeitet von R. F. Germar, F. J. Pictet, mint II. Hagen. Derlin, 1854-56, fol,
Heer, 0 . Dic Insecten-fauna der Tertinergebilde von Eningen und Radoboj. Leipzig, 1849, 4 to, 2 vols.
Soudner, S. II. An inquiry into the Zoological Relations of the first diseovered Traces of fossil Neuropterons Insects in North America. From the Menoirs of the Boston Society of Natural History, Vol. I, 18\%, with a plate.

PERIODICAL WORKS (now in course of publication).

Eaworls, TF. TF Butterfies of North America. Coloredplates. Commenced 1868.
Amater de ta Societe entomologigue de France, Paris. Commenced lisid.
Trensactions of the Entomolugical Society of Lomvon. Commenced 183n.
L' Insectologie Agricole, Monthly Joumal, Paris. Commeneed 1867.
Zuitung. Entonologische Ferein, Stettin, Commenced 1840 .
Linnced entomologiat. Eutomologische Verem, Benlin. Commenced 1840.
Zeitschirit. Entomolagische Verein, Berlin. Commenced 18.57.
Amales de ia socicté entomologique Belge, Brassels. Commenced 1857.
Proceentings or the icademy or Natural sciences, Philadelphia. Commenced 1819 ,
Journal of the Learemy of Satural Sciences, Philatelphit. Commenced 1×17.
Tibusations of the Imericun Philosophieal Sotiety, New Series. Conmenced lis18.
Procecding of the Doston Society of Natural History, Commenced 1831.
Journal of the Boston Sovety of Natural IIistory. Commenced 1834.
Amats of the Lycoum of Natural ITistory of New Xork. Commenced 182.
Procectings and Transactions of the American Entomological society, Philadelphia. Commencer 1841.
Procedings and Commanications of the Essex Institute, Salem. Commenced 18ts, American Naturalist, Sakem. Commenced March, 1867.

Entomological Joltanal. Every collector should keep a daily journal of his captures and observations, noting down every fact and hint that falls under his notice. In this book, commenced as soon as the season opens in early spring, can be placed on record the earliest appearance, the time of greatest abundance, and the disappearance of every insect in any of its stages. Also the descriptions of larve, with sketches, and observations upon their habits; though dramings had better be kept upon separate pieces of paper for easier reference. The insects, when captured and umamed should be numbered to agree with corresponding numbers in the note-book. At the close of the season one will be surprised to see how much material of this kind has accumulated. He can then make a calender of appearences of perfect insects and larve, so as to have the work of the next season portioned out to him; he will thus know when and where to look for any particular insect or caterpillar.

The Number of Spectes of Insects. Oswald Heer estimates that the Insects comprise four-fifths of the whole animal kingdom. While there are about $\mathrm{o}^{5}, 000$ species of animals known, excluding the Insects, the number of this last single class amounts to upwards of 190,000 known species, according to

Gerstaecker's estimate. IIe reckons that there are at least 25,000 species of Hymenoptera, from 22,000 to 24,000 Lepidoptera, abont 24,000 Diptera, and 90,000 Coleopterar the number of the other suborders cannot be easily estimated. Besides these there are about 4,600 Arachmida, and 800 Myriapods.

Grouphag of Ixsegts into Orders and Suborders. Before beginning an account of the Six-footed Insects, we present the following tabular rierw of the Classification of Tnsects. The idea that the Myriapods, Spiders, and Six-footed Insects formed orders and not classes was first proposed by R. Leuckart in 1818 , and afterwards supported by Agassiz and Dana. The arrangements proposed by these and other authors are put in tabular form on page 106.

Tife Class of Iysects.

Order I. - Segments gronped into three distinct regions; eyes compound and simple; two pairs of IIEXapoda wings: * three pairs of thoracic legs; one pair of $>$ (Six-footed Injointed abdominal appendages. A more or less complete metamorphosis, sects).
Order II. - Segments gronped into two regions, a false cephatothomx tand an abdonen; no antenne; eres simple; wingless : fon pairs of thoracic legs; three pairs of jointed abdominal appendages (spinnerets) often present. No metamorphosis, .
Onder III.-Body cylindrical, worm-like. Segments not gronped into regions (except in the recently hatched young). Heal free; eyes simple; antemne present; wingless; yolk-sac present for a

Arachsida (Spiders). Memlapoda (Cemtipedes). short period after hatching. No metamorphosis, J

The Order of Six-footrid Insects \ddagger (Ifexcpora).

First and higher series. Body usually cylindrical; prothorax small; month-parts more gencrally | Hymexoptera. hanstellate (formed for sucking); metamorphosis >Lipmoptera. complete; pupa inactive; larva usually cylinchi- Dirters cal, very unlike the adult,
Second and lower series. Body usually flattened; prothorax large aud squarish; month-parts usually adapted for biting; metamorphosis incomplete; papa oftell inactive; larva flattened, often resembling the adult,

[^16]The following diagram shows, in a rude way, the relative rank and aflinities of the seven suborders, and of the two series of Six-footed Insects.

Neuroptera.
Through Lepisma, and Porlua which are wingless Neuropterous insects, the lower series is connceted with the Myriapods, the minute degraded myriaporl, Parropus of Lubbock, perhaps forming the connecting link; and through the wingless flies, Branla, Chionea, and Nycteribia, the Diptera, belonging to the higher series, assume the form of the Spiders, the head being small, and smben into the thorax, while the legs are long and slender. The first and highest series culminates in Apis, the Honey-bce; and the second, or lower, in Cicindela, the Tiger-beetle.
regarling the rank and ralue of the minor groups. Professor agassiz extented Leuckart's views in considering the seven grand rlivisions of the orler of Hexapouls as suborders. In lik (How to Observe and Collect Insects, Maine seientife Survey, and Synthetic Types of Insects, Boston Journal of Natural Mistory), we proposet a new elassification of these suborters, by which they are thrown into two man groups headed hy the Itymenoptera and Coleoptera respectively. These two groups, as represented in the dia, mom, are neary equivalent in value, and stand in a somewhat pamallel relation. There is nothing like a linear series in the animal kinglom, but rather a net-work. The higher series of suboriers form nore of a linear series than the lower series, so that in the dagram the Neuroptera, Orthoptera, LIemiptera, and Coleoptera form a more broken series than the Hymenoptera, Lepidoptera, and Diptera. A Bec, Butterty y, and Honse-fly are much more chosely allied to each other than a Beetle, a Squash-bug, a Grasshopper, and a Drngon-fly are among themselses. The Neuroptera are the most inlependent, and stand at the bottom of and between the two series, though by the orthoptera they are very intimately linked with the Hemiptera and Coleoptera.
TABULAR VIEW of the principal Entomological Systems proposed since the time of Ray.

$\begin{aligned} & \text { RAx, } \\ & 170 \overline{5} . \end{aligned}$	$\begin{aligned} & \text { Lixnaus, } \\ & 1735.5 \end{aligned}$	$\begin{aligned} & \text { Fabricies, } \\ & 1 \pi \bar{j} . \end{aligned}$	Fabmelus, 1799.	$\begin{gathered} \text { Latrienles, } \\ 1796 . \end{gathered}$	$\begin{gathered} \text { Agassiz, } \\ \text { 18t9. } \end{gathered}$	$\begin{gathered} \text { Packard, } \\ \text { } 18(6 ;) . \end{gathered}$	$\begin{aligned} & \text { Duxa, } \\ & \text { 1ssi4. } \end{aligned}$
Metemorphota. (Coleoptera, Ancloptera, Diptera, Tetraptera). Ametamorphote (Hexapoda).	Orders 1-6. Coleoptera, Hemiptera, Lepidoptera, Neuroptera, Hymenoptera, Diptera. Order 7. Aptera (sixfooted).	Orders 1. Eleniterata. 2. Llonata. 3. Synistata (in part). (4. Agonata $=$ Crustacea). 5 Unogata (in part). 6. Glossata. 7. Rhyngotal. 8. AutLiata.	Classes 1-5. Eleuterata, Ulonata, Synistata, Piezatil, Odonata. Classes 11-13. Glossata, Rhyngota, Antliata.	Orters 1-10. Coleoptera, Orthoptera, Hemiptera, Neuroptera, Hymenoptera, Lepidopter: Diptera, Suctoria, Thysanura, Parasita.	Suborders 1-7. Lepidoptera, Diptera, Hemiptera, Hymenoptera, Orthoptera, Colcoptera, Neuroptera.	Suborders 1-7. Hymenoptera, Lepicloptera, Diptera, Coleoptera, Hemiptera, Orthoptera, Neuroptera.	1. Ctenopters. Hymenoptera, Diptera, Aphamiptera, Lepidopter:a, Homoptera, Trichoptera, Neuroptera. 2. Ehlytropters. Coleoptera, Hemipteria, Orthoptera. 3. Thysthures.
Anetamorphota polypoda (in part).	Order 7 (in pt.) Aptera (with numerous feet)	Order 5. Unogata (in part).	Class 6. Mitosata.	Order 14. Myriapoda.	Arachnida. Suborders 1-2. Aranea, Acari.	Arachuita. Suborders 1-3. Arance, scorpions, Acarinal.	Arachuilla. Suborders 1-3. Arancoicls, Scorpionoids, Acaroids.
Ametamoriphote octopola.	Order τ (in pt.) Aptera (with 8-14 feet).	Order 5 Unogata (in part).	Class 7. Unogata.	Order 11. Acepliala.	Myriaporla.	Myriaporla. Suborders 1-2. Chilopoda, Chilognatha.	Myriaporla. Suborder's 1-2. Chilopods, Diplopods.

HYMENOPTERA.

The Bees, Wasps, sian-flies, Ants, and other members of this suborder differ from all other insects in having, in the higher and more typieal forms, the basal joint of the abromen thrown forwarl upon and intimately mited with the thorax. The head is large, with large componnd eyes, and three ocelli. The month-parts are well cleveloped both for biting, and feeding on the sweets of plants, the ligula especially, used in lapping. nectar. being greatly developed. The other regions of the body are more distinct than in other insects; the wings are small but powerful, with comparatively few and somewhat irregular veins, arlapted for powerftul and long-sustainetl flights; and the genital appendiges retracted, except in the I chneumon parasites and Saw-flies, within the body, are in the female morlified into a sting.

The transformations of this suborder are the most complete of all insects; the larve in their general form are more unlike the adult insects than in any other suborder, while the pupe, on the other hand, most clearly approximate to the imago. The larra are short, cylinclical, footless (excepting the young of the saw-flies, the lowest family, which are provided with abdominal legs like Lepidopterons lares), worm-like grubs, which are helpless, and have to be fed by the prevision of the parent. The pupat has the limbs free, and is generally contained in a thin silken cocoon; that of the Saw-flies, however, being thick.

The Hymenopterat exhibit, according to Professor Dana, the normal size of the insect-type. "This archetypie size is be-

Note to pare 100. - Ray dividerl the Hexaporiz into Foteoptora and Amelopterce, the later diwision embracing all the ofher suborders except the Colecotera. Itis
 phota prigporte comprise the Myriapols, and the A. octophot the Aracenids. Linneus' fiptera (with numorous feet) are equivalent to the Myriaporls, and his Aptera (with 8-14 feet) to the Amolnids. In Fahrims' system the Eleufherate are equivalent to the Coleoptera; the Eloneto to the Orthoptera; the symistafa to the Ficuroptera; the Piesulte to the Ifymenoptera; the Odmuth to the Libellumide; the Glossata to the Lepidophera; the Rhyngota to the IIemintera; the Antliath th the Diptera. The Mitronctrate the Myriapods, and the tinoghtr, the srambils. In Latreille's system the Surtoria, or Fleas, are now refermet to the Diptera; the Parasita or Lice, to the Fremiptera, and the Thysermare to the Senroptera.
tween eight and twelre lines (or twelfths of an inch) in length, and two and a half and three lines in breadth." This size is probably a smaller average than in any other suborder; thus the Iymenoptera while being the most cephalized, consequently comprise the most compartly moulded insectean forms.

Besides these structural characters, as animals, endowed with instincts and a kind of reason differing. perhaps, only in degree from that of man, these insects outrank all other Artict lates. In the unusual differentiation of the individual into males and females, and, generally sterile workers, with a farther dimorphism of these three sexual forms, such as Huber has noticed in the IImble-bee, and a consequent subtivision of labor among them; in dwelling in large colonies, thus involving new and intricate relations with other insects (such as Aphicles, ant-hilf-inhabiting beetles, and the peeuliar bee-parasites) ; their wonderful instincts, their lising principally on the sweets ant pollen of flowers, and not being essentially camivorous (i.e. seizing their prey like the Tiger-beetle) in their hebits, as are a large proportion of the other suborders, with the exception of Lepidoptera; and in their relation to man as a domestic animal, subservient to his wants, - the Bees, and Iymenoptera in general. possess a combination of characters which are not found existing in any other suborler of insects, and which rank them first and highest in the insect series.

The borly-wall of the llymenoptera is musually dense and hard, smooth and highly polished, and either maked, or corered with hatir as in a large proportion of the bees. The head is large, not much smaller than the thorax, and its front is vertical. The antenne are short, filiform, often geniculate, very rarely pectinated. The mandibles are large, stout, toothed, and the maxillas are well developed into their three subdivisions, the palpi being usually six-jointed; the labial palpi are usually four-jointed, and the prolongation of the under lip, or ligula, is highly developed, heing furnished with a secondary pair of palpi, the paraglosse, while in the pollen-gathering species the ligula is of great length, and thns answers much the same purpose as the spiral tongue (maxillae) of the Lepidoptera.

Reaumur states that the Bee does not suck up the liquid sweots, but laps them up with its long slender hairy tongue.
"Even in the drop of honey the bee bends the end of its tongue about, and lengthens aud shortens it successively, and, indeed, withdraws it from moment to moment." The liquid passes along the upper surface of the pilose tongre, which is withdrawn between its sheaths, the palpi and mixillse, and thus "conveys and deposits the liquid with which it is charged within a sort of channel, formed by the upper surface of the tongue and the sheaths which fold over it, by which the liquid is conveyed to the mouth." (Shuckard.)

The thorax forms a rouncled compact oval mass, with the prothorax and metathorax rery small, the mesothorax being large, and also the propordem, to which the pedicel of the abdomen is attached. The pleurites are large and bulging, while the sternum is minute. The coxie and trochantines are large, and quite free from the thorax ; and the trochanters are small, while the rather slender legs are sulject to great modifications, as they are devoted to so many different uses by these insects; thus, in the Sand-wasps they are strongly bristlen for the purpose of digging, and in the Bees, the basal joint of the tarsi is much enlarged for carrying honey.
"The manner in which the bee convers either the pollen, or other material it purposes carying home, to the posterior legs, or renter, which is to bear it, is rery curious. The rapidity of the motion of its legs is then rery great; so great, indeed, as to make it very difficult to follow them; but it seems first to collect its material gradually with its mandibles, from which the anterior tarsi gather it, and that on each side passes successively the grains of which it consists to the intermediate legs, by multiplicated scrapings and tristings of the limbs; this, then, passes it on by similar manœurres, and deposits it, according to the nature of the bec, upon the posterior tibize and tarsi, or upon the under side of the abdomen. The evidence of this process is speedily manifested by the posterior legs gradually exhibiting an increasing pellet of pollen. Thus, for this purpose, all the legs of the bees are more or less covered with hair. It is the mandibles which are chiefly used in their boring or excarating operations, applying their hands, or anterior tarsi, only to clear their way; but by the constructive, or artisan bees, they are used both in their building and
minng operations, and are worked like trowels to collect moist clay, and to aply it to the masomry of the he habitations." (Shuckard.)

The four wings are present, except in rare instances. They are small; the hinder pair long, narow, orate, lanceolate. The costal edge of the fore-wing (Fig. 29), is generally straight, becoming a little curvel towards the apex, which is ohtusely subrectangular; the outer edge is bent at right angles, while the inner edge of the wing is long and straight. The reins are often difficult to trace, as in the outer half of the wing they break up into a system of net-veins, which are few in number, yet the continuations of the subcostal, median, and submedian reins can be distinguished after careful study.
In some low Ichnermonide, the Proctotrupidre, and Chalcididre, the reins show a tendency to become obsolete, only the simple subcostal vein remaining ; and in Plerotomus, the reins are entirely obliterated, and the lincar feather-like wings are in one pair fissured, reminding us of the Plumemoths, Preronhorus.

The abdomen is composed in the liura state of ten segments, but in the adult stinging Hymenoptera, of six complete segments in the females, and seven in the males; while in the lower families the number ravies, having in the Tenthredinidde, eight tergites on the upper side and six sternites on the lower side. The remaining scgments are, during the transformations of the insect, aborted and withdrawn within the body. The oripositor and corresponding parts in the male have been described on pp. 1t-18.
'The nerrous system consists in the larve of' eleven ganglia, in the adult fire or six of these remain as abtominal ganglia, while the remainder, excluding the ecphalic ganglia, are plated in two groups in the thorax. The cerebral ganglia are well dereloped, evincing the high intellectual qualities necessary in presiding over organs with such different uses as the simple and compound eyes, the antemm, and lingua and palpi, and mandibles, especially in those sociable species which build complete nests.

The digestive system, in those bees which sip up their food, consists, besides the external month-parts, of a " long exsoph-
agus which dilates into a thin-walled sucking stomach," which in the Apiario and Trespidce may be simply a lateral fold, or, as in many Crubronidce, "attached solely by a short and narrow pedmacle." In Formich, Cynips, Lencospis, and Syphetrict there is a globular uncurved callons gizzard, which is enveloped by the base of the stomach, according to Siebold, who also states that "those Hymenoptera which are engaged during a long and active life in labors for the raising and support of their young, have a pretty long and flexuous stomach and intestine, and the first has, ustally, many constrictions ;" while the Cynipidee, Ichneumonide, and Tenthredinidee, which take no care of their young, have only a short small stomach and intestine. The salivary glands consist of tro rather short ramitied tufts, often contained entirely in the head.

The trachere consist, as in other insects, of two main branches, from which numerous transverse anastomosing branches are giren ofl, with numerons resieular dilatations. Two such resicles of immense volume are situated at the base of the abromen, which accordung to Hunter and Newport "serve chiefly to enable the insect to alter its specific gravity at pleasure during, flight, and thas diminish the muscular exertion required during these movements."

The urinary vessels are very numerous in the Hymenoptera; they are usually short and surround the pylorus in numbers of from twenty to one himbred and ifty.

The two poison glands ($\mathrm{Fig} .54, h, g$) are composed of long ramose tubes, resembling the salirary glands in their minute structure. The poison is poured from these into a pyriform sac longed near the base of the sting, which is provided with a peculiar muscular apparatus for its sudden extension and withdrawal. 'The poison, in the Ants, Bees, and Wasps, consists, according to Will, of "formic acid, and a whitish, fatty, sharp, residum, the former being the poisonous substance." (Burnett.)

Whether the mar-secreting apparatus consists of special glands (as Milne-Erlwards supposes) or not, as Dufour, Siebold, mand others contend, is not jet a settled question. Siebold, the eminent German physiologist, from whose work on the anatomy of Invertebrata we have dramn so largely, suggests that the
wax "is produced by an exudation from the thin membranes which connect the diferent parts of the legs. Moreover, many other Insects (Coccilue and Aphidue, Flate, etc.) have secretory products which trinsude throngh the skin withont the existence of any special glanlular apparatus, and which are hardened by the air like wax. These protucts are usually whitish, pulverulent, filamentons, or flocculent substances, which catch upon the surface of bodies." He also states that there are no such glands (as are strpposed by some to secrete this substance) in the * bee-workers ; but if certain Andrenide are cxaminerl, there will be found, on each sile of their posterior tilixe, a small prizform follicle with an excretory chet, aul which secretes an oily substance." Gerstaeker states that the was is produced on the under site of the ablominal segments. It is formed by chemical changes in the foor during the process of mutrition.

The honcy is elaborated by an unknown chemical process, from the food contained in the proventriculus, or crop, and which is regurgitated into the honey-cells.

The ovaries consist of many-chambered, four, six, or a hmdred, short tubes. "The receptacula seminis is nearly always simple, round or ovoid, and necked, and is prolonged into a usually short seminal duet." The glandola appendicularis consists of a bifurcate tube which opens into the ductus seminalis, and only rarely into the capsula seminalis itself.

In the Tenthredinidee, "this apparatus is formed on a different type; the seminal vesicle is a simple diverticulum of the vagina, and more or less distinct from it, besides it is deficient in the accessory gland. The copulatory pouch is absent in all the IIymenoptera, as are also the sebaceous glands with those females which have a sting and a poison gland," while in other insects the sebaceons glands are present, and it would be naturally inferred, therefore, that the two are homologous, but morlified for diverse functions.

The two testes of the male are "composed of long follieles, fasciculate and surrounded, together with a portion of the torose deferent canal, by a common envelope; but more commonly the two testes are contained in a capsule situated on the median line of the body." (Siebold.)

The eggs are usually long, cylindrical, and slightly curved in
the Bees; in the Wrasps they are more globular, and affixed by their smaller somerwat pedicelled end to the side, near the bottom of the cell in which they are laid. The egos of the lower families tend to assume a spherical form. The egrs of difcrent species of Bombus present no appreciable differences.

The larre of the Bees and Wasps, especially the social species, which live surounded by their food, are of a very persistent form, the various genera differing but slightly, while the species can scarcely be separated. Such we have found to be the case in the Bees and Wasps (Vespidee) and Fossorial Wasps. The sexes of the species with a very thin tegument, such as Apis, Bombus, and Vespa, can be quite easily distinguished, as the rudiments of the genital armor can be seen through.

The Hymenoptera are mostly confined to the wamer and temperate regions of the earth; as we approach the poles, the Bees disappear, with the exception of Bombus, and perhaps its parasite Apathus; a species of Vespa is found on the Labrador const, which has a climate like that of Greenland. No fossorial species of Wasps are known to us to oceur in the aretic regions, while a few species of Ants, and several Chelcididoe and Ichneumonides are not uncommon in Northern Labrador and Greenland. Our appine summits, particularly that of Mr. Washington, reproduces the features of Northern Labralor and Greenland as regards its Hymenopterous fama. The tropics are, however, the home of the Hymenoptera, and especially of the Bees.

There are estimated to be about twenty-five thousand lising species of this suborder, and this is probably a much smaller number than are yet to be cliscovered.

In geological history, the IIrmenoptera do not date far back compared with the Neuroptera and Orthoptera, and even the Coleoptera. Indeed they were among the last to appear upon the earth's surface. The lower forms, so far as the scarty records show, appeared first in the Jura formation; the Ants appear in the Tertiary period, especially in amber.

As we have noticed before, the IIymenoptera are more purely terrestrial than any other insects. None are known io be aguatic in the carly stages, and only two genera have been found
swimming in the adult state on the surface of pools, and they are the low, minute, degradel Proctotrupids, Presiuchidu natans and Polynema natons described by Mr. Lubbock. The Hymenoptera do not imitate or mimic the forms of other insects, but, on the contrary, their forms are extensively copied in the Lepiloptera, and especially the Diptera. A partial execption to this law is seen in the antenne of the Australian genms Thenemutosome, where they are long and slender, and linobbed as in the butterlly, and also in Tetralonia mirabitis of Smith, from Brazil.

The Ifymenoptera, also, show their superiority to all other insects in the form of their degrated wingless species, such as I'ezomatus, the workers of Fomica and the female of Dutilla. In these forms we hare no striking resemblances to lower orders aucl suborders, but a strong adherence to their own Hymenopterons characters. Again; in the degradational winged forms, we rarely find the antennze pectinated; a common oceurrence in the lower suborders. In a low species of the Apiarice, Inmprocolletes cladoceres, from Australia, - that land of anomalies, -the antenne are pectinated. 'This, Mr. F. Smith, the best living authority on this suborder, say"s, "is certanly the most remarkable bee that I have seen, and the only instance, to my knowledge, of a bee having pectinated antenne; such an occurrence, indeed, in the Aculeate Hymenoptera is only known in two or three instances, as in Prammotherme flatbellutce amongst the Mutilliclee, and again in Ctemocemes Mrlugit in the Pompilidere; there is also a morlification of it in one or ${ }^{-}$ two other species of Pompilicla." Among the Tenthredinitre, the male Lopharus has well-pectinated antemme, as also has Cladonacra inderopus of Smith, from New Guinea and Colebes.

The wings of perhaps the most acgraded Hymenoptera, the Proctotrupide, are rarely fissured; when this occurs, as in Pleratomis Putnamii, they somewhat resemble those of Pterophorus, the lowest moth. It is extremely rare that the compound eyes are replaced by stemmata, or simple eyes; in but one instance, the gemus Authopleniobit, are the eyes in the male sex reduced to a simple ocellus. This species lives in the darkness of the cells of Anthophora.

By reason of the permanence of the type, due to the high rank of these insects, the generic and specific characters are founded on very slight differences, so that these insects, and particularly the two higher families, the Wasps (Vespidee) and Bees (A1piarice) are the most difficult insects to study. The easiest characters for the recogntion of the genera, lie in the venation of the wings; though in the fossorial families the legs vary greatly. The best specific characters lie in the sculpturing and style of coloation, but the spots and markings are apt to vary greatly. The great differences between the sexes are liable to mislead the student, and hence large collcetions are indispensable for their proper study. Bees act as 'marriage priests" in the fertilization of plants, convering pollen from flower to flower, and thus insuring the formation of the fruit. It is said that most orchids could not be fertilized without the interposition of Bees.

Their interesting habits deserve long and pationt study ; it is for their observations on the insects of this suborder that the names of Réatunur, the two Hubers, and Latreille will be ever held in special remembrance.

Most Iymenoptera love the sum, and they may be caught while flying about flowers. The nests of bees, wasps, and ants should be sought for and the entire colony captured, together with the parasites. The hairy species should be pinned while in the net, and the naked ones can be put in the collecting-botthe. The larger species may be pinned, like other insects, through the horax ; but the minute Chalcids, etc., should be gummerl, like small Coleoptera, upon cards.

The nests of bees and of wasps and ants and the young in various stages of growth should be collected, and in such numbers as to show their different stages of construction, to serve as illustrations of insect architecture.

Aplabie Latreille (Apidee Leach). This and those families succeeding which are provided with a true sting, were called by Latreille Hymenoptera Aculeata. The male antemme are mostly thintecn-jointed, while in the female they are twelvejointed. The females (and the workers, when they exist) feed the laryæ, which mostly live in nests or cells.

In the social Bees, besides the normal male and female forms, there axe asexual females, whose inner genital organs are partly aborted, though externally only differing in their smaller size from the true females. The male antenma are longer, tapering more towards the tips, and the eyes of the male approach each other closer over the vertex than in the opposite sex, though these are characters which apply to other Hymenoptera. The mouth-parts are in the higher genera greatly elongated, the labium being long, with the lingua of great length, and the lobes of the maxillie long and knife-shaped ; but these parts, as well as the form of the jaws, are subject to great inodifications in the clifferent genera: the labial palpi are four-jointed, and the maxillary palpi are from one to six-jointed. The hind tibia and basal joint of the tarsi are, in the pollen-gathering species, very broal ; the tibia is in Apis and Bombus hollored on the outside, and stiff bristles project over the cavity from each side of the joint, forming the honey-basket (corbiculum), 01 which the "clodden masses of honey and pollen" are convered to their nests. In the parasitic genera, such as Aputhus, the tibia is, on the contrary, convex, rather than concare, though of the usual width; while in Nomada, also parasitic, the legs are narrow, the tibia not being clilated.

In Andrena and its allies, Halictus and Colletes, the mouthparts, especially the tongue, are much shortened, thus affording a passage into the Fespidce. In these generat the tongue is folled back but once between the horny encasement of the maxilla, but in the higher Apiarice the part formed by the mion of the lingua and maxilla is twice bent back, and thus protected by the horny lobes of the maxillæ. The fore-wings liave two or three subcostal (cubital) cells.

There are two thonsand species of this family. The differences between the larrae of the various genera of this family are very slight, those of the parasitic species are, however, readily distinguished from their hosts.

The higher Apiarice, comprising the subfamily Apince, have the ligula long, cylindrical, while the Iabial palpi have two very long, slender, compressed basal joints, and two short terminal joints.

The genus A pis has no terminal spurs on the hind tibie,
while the forewings have three subcostal (cubital) cells, the middle of which is elongated and acutely wedge-slaped. The eyes in the male are united above; the mouth-parts are nearly aborted, and the hind legs are smooth. In the female there are two paraglossa on the ligula, and the maxillary palpi are one-jointed. The worker only differs extermally from the female in the shorter abdomen.

The larra of the Foney-bee closely resembles that of Bombus, but the body is shor'ter', broader, and more flattened, while the head is less prominent, and the lateral tubercles along the body are, perhaps, less prominent than in the young ITumblebee, otherwise the two genera are, in the larval state, much alike. In its natural position, the larva lies at the bottom of the cell doubled upon itself.

Though the larra are said usually to feed upon pollen, Mr. Desborongh states that loney alone is the food of the grub, as he reared 729 larve with no other food than hones. But as with the wild bees they may extract honey from the pollen provided for them. He says the inatured bees may be obserwed feeding at night on the bee-bread (pollen). Langstroth (The Hive and Honey-bee), however, states that "pollen is indispensable to the nourishment of the joung. It is very rich in the nitrogenons substances which are not contained in the honey."

The Honcy-bee, Apis mellifica, is now distributed over the civilized worlt. It was introduced into this country during the seventeenth century, and into South America in 1845 (Gersteccker). The Italian, or Ligurian, bee is considered by F. Smith as being a climatic variety.

The cultiration of the Honcy-bee is rapidly increasing in this conntry, but the German Bee-masters have madle the most progress in theoretical and practical Bee-culture. Convenient hives are now constructed by which all the operations of the bees can be observed at leisure. Gerstrecker thus sums up the habits of the Honey-bee: A fertilized queen which, with a few workers, has wintered over, lays its egge in the spring first in the worker, and afterwards, at a later period, in the chonecells (both arranged in two perpendicular rows of cells). Eirly in summer, the workers construct the larger flask-shaped queen-
cells, which are placed on the edge of the comb, and in these the queen-larve are fed with rich and choice nourishment. As soon as the firist of the new brood of queens is excluded from its cell, which it indicates by a peouliar buzzing noise, it deserts the oll queen, carrying away with it a part of the swarm, and thas forms a new eoloug. The recently exchuled queen then takes its marlage flight high in the air with a drone, and on its return motertakes the management of the hive, and the duty of laying eggo. When another queen is disclosed, the same process of forming a new colony goes on. When the supply of roung queens is exhansted, the workers fall uron the drones and destroy them without merey. The first brood of workers live about six weeks in sumner, and then give way to a new brood. Mr. J. G. Desborough states that the maximum period of the life of a worker is eight months. The queens tre known to live five years, ant during their whole life lay more than a million eggs (V. Berlepsch). Langstroth states that "during the height of the breeding season, she will often, under farorable circumstances, lay from 2,000 to 3,000 eggs a day." According to Von Siebold's discorery only the queens' and workers' eggs are fertilized by spermcells stored in the receptacnlum seminis, and these she can fertilize at will, retaining the power for four or five years, as the muscles guarding the duct, leading from this sjerm-bag are subject to her will. Drone eggs are laid by unfertilized queen-bees, and in some cases even by worker-bees. This last fact has been confirmed by the more recent observations of Mr. Tegetmeier, of London.

Principal Leitch, according to Tegetmeier, has suggested the theory that a worker egg may develop a queen, if thansferred into a queen-cell. "It is well known that bees, cleprived of their queen, sclect several worker-eggs, or very young larve, for the purpose of rearing queens. The cells in which these eggs are situated are lengthench out and the end turned downward." He suggests that the development into a queen was caused by the increased temperature of the queen-cell, above that of the worker-cells.

But Messrs. F. Smith and Woodbury (Proceedings of the Entomological Society of London, Janary 2, 1862) support F.

Huber"s theory, that the change is due to "the quality as well as quantity of food witl which the royal larra is supplied," though Dr. Lecitch objects, that it has been by no means conclusively proved "that the so-called royal jelly differs in any respect from the ordinary food supplied to the worker larva;" and Mr. Woodbury cites the experiments of Dzicrzon, as quoted by Kleine, "that as Huber, loy introducing some royal jelly in cells containing worker-brood, obtained queens, it may be possible to induce bees to construct royal cells, when the Apiarian prefers to have them, by inserting a small portion of royal jelly in cells containing worker-larve." Fkeine takes "an unsealed royal cell-which usually contains an excess of royal jelly-and removes from it a portion of the jelly, on the point of a knife or pen, and by placing it on the imner margin of any worker cell, feels confident that the larre in them will be reared as queens."

Before these points are settled we must study the hahits of the Wild Bees, and of the other soeial Hymenoptera and White Ants, together with the social Aphides more carefully. Mr. F. W. Putnam pertinently states, "at present I cannot believe that the peculiarity of food, or the structure of the cells, produces a difference of development in Humble-bees, for the larve, as has been previonsly stated, were seen to make their own cells from the pollen paste. Is it not more natural to believe, as has been suggested to me by Professor J. Wyman, that the difference in the derelopment of the egos is owing to their being laid at raxions times after impregnation? Thus, if I am right in supposing that the queens are impregnated by the males late in the summer, the eggs, laid soon after, produce the large queen larve ; * the next set of eggs, laid in the spring, produce the workers, or undeveloped females, while from those deposited still later, male bees are principally developed." (Proceedings of the Essex Institute, Salem, vol. iv, 1864, p. 103.)

Referring to Mr. Putnam's statement that there are both small and large queens (besides the workers), Dr. Gerstrecker infers,

[^17]"from the examination of numerous individuals found flying in the spring after hibernation, that these could not be considered as true queens, since their ovaries were only moderately developed, though larger than those of the workers, while in the true queen, captured in the summer, the ovaries were perfectly developed. This corresponds almost entirely to what we fiml in the wasps, whose spring females have only moderately aleveloperl ovaries."

How the Honey-bee builds its cells, and whether they are exactly hexagonal, are questions that have interested the best observers from Laraldi who wrote in 1712, and Réamur, whose Memoires appeared in 1740 , down to the present date. Their solution involves not only the closest observation of the insect while at work, but also the shrewdest judgment to explain the facts observed and deduct a legitimate theory. Docs the bee intelligently plan her mork out beforehand, or does she follow the guidance of what is called instinct? Does she construct hexagoual cells which are mathematically exact, or does she vary the proportions of cach cell, so that it is perfect only in its general ideal form? Again, in making the cell, is the bee actually capable of making such a cell alone, or is it due to the resultant action of several bees? Professor J. Wyman is of the latter opinion, as he thinks "that if left alone to build a single cell, this would most probably be round. In the cells of Melipona, as Hüber's plate shows, they are only hexagonal when in contact with the adjoining cells." (Proceeding's of the Boston Society of Natural History, x, p. 278 , 1866.)

A similar vien is that proposed in 1862 by the Rev. Samuel Haughton, in a paper read before the Natural Mistory Society of Dulblin, where he says, according to Mr. F. Smith, that the heargonal form of the cell "may be accounted for simply by the mechanical pressure of the insects against each other during the formation of the cell. In consequence of the instinct that, compels them to work with reference to a plane, and of the cylindrical form of the insect's body, the cells must be hexagonal."

Mr. G. R. Watcrhouse (Transactions of the Entomological Society of London. Third series, vol. ii, p. 129, 180t) has
proposed what has been called the "circular theory", or what the author himself terms "the principle of working in segments of circles." He contends "that the hexagonal form of the cells of certain bees and wasps may, and does, arise out of this mode of action when under certain conditions; that those conditions are, that the cells are so commenced that their natural circmmferences, as the work proceeds, are either simply bronght into contact with each other, or that the cells are so placed that the (we will say theoretical) circmoferences must intersect. Contaret with adjoining cells, then, is an essential condition to bring about the hexagonal form as I have before pointed out (See Proceedings of the Entomological Society, 1858, p. 17); but for this result it is not necessary that a hexagonal cell should be completely surrounded by other cells."

Is not this theory, after all, too mechanical? Is not our bee more of a free agent? Does it not have a mind to design its work? Mr. F. Smith, who has devoted years to the study of Hymenoptera, especially the higher forms of this suborder, the Bees and Wasps, replies to both theories of Watcrhouse and Hanghton, by bringing in the case of the Wasps which also build hexagonal cells, showing that a solitary wasp will build its cells in rery regular hexagons. Thas the nest of the solitary Tasp, Icraid guttotipennis, "consists of a double row, the number of cells being ten; I now direct your attention to the fact that all the cells are perfectly hexagonal, the exterior planes being as beautifully finished as those in contact with the imer planes of the opposing cells. I have placed a drawing of this nest (Plate 5, Fig. 7) in the box on the talule, and I particularly wish you to observe, that the first cell is carried up in a perfectly hexagonal form above the atjoining cells; a proof that, if W asps never build perfect isolated hexagonal cells, they certannly possess the capability of doing so. The exterior of all the cells, as I before observed, is hexagonal, not cylindrical, until fresh cells are added on the outer side, as was observed to be the case in combs of the Hire-bee, by Mr. Tegetmeier." (Proceedings of the Entomological Society of London. Third series, ii, 186t, p. 135.)

An examination of the cells of three species of Polistes (the female of which begins alone in the spring to build her nest,
the cells of which are afterwards greatly increased in number after the first brood of females appear), convinced us that the Wasp begins with the circular cup-shaped form of cell, and when about depositing an egg in it, changes her mode of operating, builds up the edges into a hexagonal form, and carries up the rim of each cell inclependently to its required height. She thus apparently changes her plan at a certain stage of the work, and is so fur a free agent.

Mr. Smith also exhibited a portion of the nest of another wasp, Tatua Morio (Plate 5, Fig. 9), that proved to his mind the primary intention of the wasp instinctively to build cells with exactly six sides. The figure represents part of one of the flat floors, on which the foundations of the cells are laid in regular hexagons, instead of beginning in hemispherical cups.

Mr. Smith (p. 141) concludes, "that all hexagonal cells are not constructed upon a circular principle, and that the primary idea of all social bees and wasps is not to produce cylindrical cells with hemispherical bases."

In this comection the following extract from Mr. Smilh's remarks is of interest: "It may not be known that in order to expedite the building of honey-combs, it is a common practice with bee-keepers in Germany to furnish hives with artificial foundations for the cells ; these consist of sheets of wax, upon which is impressed a series of pyramidal hollows ; in fact, the counterpart of a comb built by the bees themselves, entively deprived of the cell-walls; and it is from such a piece of comb that the casts for the artificial foundations are obtained. A piece of casting of this description I lay before you, and I particularly call your attention (addressing the members of the Entomological Society of London) to the commencement of the outer cells; you will see, in some instances, a single plane of the hexagonal cell commenced, in others two or three are in progress; here you have a ground-plan suppliect, or, I may say, the foundations of the habitations ready prepared, upon which the laborers are to raise the walls, and yon may see how admirably they have donc it. Instinct emables the bee to construct hexagonal cells without teaching, and, we are told, in one underiating manner. Surely the example before us exhibits an amount of intelligence on the part of the bees in availing them-
selves of such adventitions aid. Must me not henceforth, when speaking of the marrels of the hive or the respiary, erase from our vocabulary such terms as blind instinct ; and must we not cease to stigmatize the bee as a mere machine?"

It the meeting of the same society held Fed. 1, 180t. Mr. F. Smith exhibited a collection of Wasps' nests, - one of Tespa rufu, the rest of I^{F}. edeldaiz; they were in varions stages of formation, the earliest consisting of only a single cup containing the first egg, others consisting of three or four cups, whilst others again were more complete. The whole had been artificially obtained by Mr. Stone. who tempted the wasps to build by exchrating holes in banks and furnishing them with footstallis ; in fact, Mr, Stone appeared to possess the power of inducing wasps to buikl nests of almost any shape he pleasect.

But to retum to the cell of the Bee. It should first be proved that the cells are not exactly and mathematically perfect hexagons, though sufliciently so for the purpose for which they are used. In the Procedings of the American Academy of Arts and Sciences, vol. yii, 1866, Professor TYman has, by a most careful as well as novel and ingenions mode of investigation, proved that the cells are all more or less imperfect, and that a heragonal cell mathematically exact, does not exist in nature, but only in theory.

The form of the cell is liable to marked rariations, chief among which the following may be mentioned, in the author's own words:
"1. The dimneters of workers' cells may so vary, that teu of them may have an aggregate deviation from the normal quantity equal to the diameter of a cell. The arerage rariation is a little less than one half that amome, namely, nearly 0.10 inch, in the same number of cells.
"2. The width of the sides raries, and this generally involves a rariation of the angles which adjoining sides make with each other, since the sides vary not only in length but in direction.
"3. The rariation in the diameters does not depend upon accidental distortion, but unon the manner in which the cell was built.
"4. The relative size of the rhombic faces of the pyramidal base is liable to frequent variation, and this where the colls are not transitional from one kind to another.
"5. When a fourth side exists in the basal pyramid, it may be in consequence of irregularity in the size of the cells, or of incorrect aligment of them on the two sides of the comb."

Sometimes one of the faces is lost, and a new one formert, so that all the basal portion of the cell becomes reversed, as

Fig. 该,

C will be seen by reference to Figs. 73 and 74 ; the first representing the cells when the base is riewed, and the second when looked at perpendicularly to one of the sides. In both figures A indicates the ordinary form of the cell. The whole series of Fig. 74 shows the gradual introduction of the new face, which is seen on the lower border, ant the elimination of one of the original faces, which is seen on the upper border. At B, which is intermediate between the
 tro exime, ris. Tt. two extremes, the four faces consist of two equal rhombs, one of which is the outgoing and the other the incoming one,
 and two equal hexagons. B, Fig. $7 t$, represents the sides of the same cell, which, instead of forming three trapeziums, as at A, a, b, c, now form tro pentagons, a^{\prime} and c^{\prime}, and a parallelogram, b'. At C, Figs. 78 and 7 t, the forms are in all respects the reverse of those of A. A and C are symmetrical with each other, and B is symmetrical in itself. No precise number of colls is necessary for the purpose of making this transition, for it may take place in two or three, or extend through a long series, as in Fig. 73.
"6. Ordinarily, the error of alignment does not amount to more than one or two cliameters of a cell. But occasionally
the rows of cells on one side of the comb may deviate from their true direction with regard to those on the other, to the extent of 30°."
"Thus, if a piece of normal comb be held in the position in which it was built, two of the opposite angles of the hexagon, Fig. 75 , A, (1, will be in the same vertical line, and tro of the sides will be parallel to this. The same is true of the opposite side of the comb; and thos all the corresponding parts of the cells on the two sides will be parallel. In the deviation we are now noticing, the change is like that represented in A, where the cell a is in its true position, while the coll b, which is from the opposite side, and is in contact with a, varies from it by about 30°. If we look at these two cells in the clirection of their sides as at B, the prism a will have one

Fig. 76. of its angles towards the eye, and b one of its sides.

In consequence of this deviation and the continual crossing of the rows on opposite sides, the pyramidal base is not made,

Fig. 77. and the cell is shortened.
" 7 . In curved or bent combs the cells on the concave side tend to become narrower, while those on the other tend to become broader towards their mouths. In Fig. 76 (this and Figs. 77 and 78 are made from impressions obtained directly from the comb and transferred to wood; they represent the form of the cells exactly), as in the central line of cells, there are a variety of hexagons, each resulting from the union
of two cells, the base being double while the mouth is single. That on the line a, b, has three sitles at one end, united by two long sides with one at the other, and thus two of the opposite sides are not paraHel ; at c, t, two sides at

Fig. 78.
either end are united by two long' sides, these last being parallel ; and at e, f, the mouth of the compound cell has seven sides. Each has a partition at lts base, separating the two originally distinct cells, and each was lined with a cocoon, showing that it had been used for rearing young. At g, not only has the partition between the combining cells disappeared, but also three of the sides of each cell."

The bees do not appear to have any systematic way of making a transition from worker to drone cells, which are one-fifth larger than the former. More commonly, they effect it by a gradual alteration of the diameters, thas enlarging a worker into a drone, or narrowing a drone into a worker cell. This alteration is usually made in from four to six rows. In one case

Professor Wyman noticed the transition made with only one cell, as in Fig. 78, but not without destroying the regularity of the two adjoining rows.
"In consequence of the gradual narrowing or widening of the transition cells, the comb tends to become more or less triangular and the cells to become disturbed. The bees counteract this tendency by the occasional intercalation of an additional row, of which two instances are given in Fig. 78, at a and b, where three rows of worker cells are continuous with two of drone cells, c, d and e, f; or, reversing the statement, and supposing the transition, as in the building of the comb, is from worker to clrone-cells, a row of the latter is from time to time omitted as the rows a and b; in this way, the regularity of the comb is preserved."

Honey-cells are formed either by enlarging the ordinary brood-cells, or adding them to others often larger, or by constructing a new comb, devoted entirely to the storing of honey. "While the cells of this last are built unequivocally in accordance with the hexagomal type, they exhibit a range of variation from it which almost defies description."

No Ichnemmon-fies are knorrn to attack the larva of the Honey-bee, nor in fact, with few exceptions, any of the wild bees, owing, probably, to the clifficulty of their gaining access to then, since Anomalon respurum has been reared from the cells of wasps which are more exposed than those of bees. But the Honey, as well as the wild bees, are afflicted by a peculiar assemblage of insect-parasites, some of which have the most remarkable habits. The most formidable pest of the Ilive-luee is the Bee Fly, Phora incrassata, which in Europe sometimes produces the well-known disease called "foulbrood." The Bec-louse, Braula caeca, is, in Europe, sometimes troublesome to the adult bee, while Trichodes apiarius, a beetle, devours the larve. The larve of Meloe and Stylops are known in Europe to infest the Honey-lyee, and among the low intestinal worms Assmus curmerates Gordius subbifureus which infests the drones of the Honey-bee as well as other insects. Professor Siebold has also described Mermis albicans, which is a similar kind of hair-worm, from two to five inches long, and whitish in color. This worm is also found, strangely
enough, only in the drones, though it is the workers which frequent watery places (where the worm deposits its eqgs) to appease their thirst. The Wax-moths, Galleria cereana and Achroit alvectia, do much harm by consuming the wax and thus breaking down the cells, and by filling the hive with their mebs.*
'The genus A pis is incligenons in Sonth America, though the Money-hee has been extensively introluced into the West Indies. Our Honey-bee is replaced in the tropics by the stingless, minute bees, which store up honey and live in far more numerous colonics. The cells of Melipona are hexagonal, nearly approaching in regularity those of the Hive-bee, while the honey-cells are irregular, much larger carities, which hold about one-lialf as much honey as a cell of the Humble-bee. From a paper on the Brazilian Honey-hees, lead by Mr. F. Smith before the Entomological Society of London, March, 1863, he states that the Meliponas are small insects, having wings shonter than the abdomen, the latter being very conrex and oblong; their mandibles never being dentate; while the Trigonas have the wings more ample, and longer than the abdomen, which is short, somewhat triangular, while the mandibles are serrated, denticulate, or sometimes edentate. The Heliponas are restricted to the new world, while Trigona extends into Africa, India, and Australasia.
"All these bees are honey gatherers, but the honey collected by the different species raries greatly in quality: from the nests of some it is excellent; from others, worthless. The honey of the species 'Mombuca' is saik to be black and sour, the quality being dependent on species of flowers from which the honey is collected. This great difference in the honey of the rarions species is apparently confirmatory of the fact that each species confines itself to particular flowers, never risiting any other kind. The different relative length of the tongue in

[^18]Fig. 1.

Fig. 9.

Fig. 10.

Fig. 12.

Fig. 13.
Fig. 3. Fig. ${ }^{2}$.

Fig.

Fig. 11.

2
the species is also confirmatory of the same supposition; indeed, the great diversity in this respect observable in these bees, appears to me to be analogous to a similar diversity in the length of the bills of humming-birds, which, it is well known, are always adapted for reaching the nectaries of the particular flowers which they usually frequent."

In regard to the immense numbers of individuals in a colony, Mr. Stretch, who collected them at Panama, "founcl a nest several feet in length in the hollow of it tree, containing thousands of inclividuals, their numbers being, as he informs me, apparently comntless.
"Gardner, in his travels, gives a list of such species (of Melipona) as he met in the provinces of Piauhy and Goyaz, where he found them numerous; in every honse, he says, 'you find the honey of these bees ;' many species, he tells us, build in the hollow trunks of trees, others in banks; some suspend their nests from branches of trees, whilst one species constructs its nest of clay, it being of large size; the honey of this species, he says, is very good." (Smith.)

In a nest of Trigona carbonaria from Eastern Australia, Smith, of the British Museum, found from 400 to 500 clead workers crammed in the spaces between the combs, but he did not find a female among them. The combs are arranged precisely similar to those of the common wasp. The number of honej-pots, which are placed at the foot of the nest, amounted to 250 .

Smith inclines to the opinion that the hive of Trigona contains several prolific females; "the accounts given of the multitudes inhabiting some nests is too great, I think, to render it possible that one female could produce them all. Mr. Stretch described a hive that he saw, occupying the interior of a decaying tree, that measured six feet in longth, and the multitude of bees he compared to a black cloud. M. Guerin found six females in a nest of Meliponce fulvipes."

Hill states, in Gosse's Naturalist's Sojourn in Jamaica, "that the wax of these bees [Trigona] is very unctuons and dark colored, but susceptible of being whitened by bleaching. The honcy is stored in clusters of cups, about the size of pigeon's eggs, at the bottom of the hive, and always from the
broorl-cells. The broorl-cells are hexagonal; they are not deep, and the young ones, when ready to burst their casement, just fill the whole carity. The mother bee is lighter in color than the other bees, and elongated at the abdomen to double their length." Smith also states that the female of this genus has the abromen greatly distended, reminding one of the gravirl female of the Thinte Ant. (Smith, Proc. Ent. Soc., Lonton, Dec. 7, 1863.)

In North America, our nearest ally, as regards its habits, of the truc Honey-bee, is the Humble-bee (Bombus), of which over forty species are known to inhabit North America.

The economy of the IImble-bee is thus: the queen awakens in early spring from her winter's sleep bencath the leares or moss, or in deserted nests, and selects a nesting-place generally in an abandoned nest of a field-mouse, or beneath a stump or sod, and "immediately," according to Mr. F. W. l"utnam, "collects a small amount of pollen mixed with honey, and in this deposits from seren to fourteen eggs, gractually adding to the pollen mass until the first brood is hatched. She does not wait, however, for one brood to be hatched before laying the eggs of another ; but, as soon as food enough has been collected, she lays the eggs for a second. The eggs [Plate 4, Fig. 2] are laid, in contact with each other, in one carity of the mass of pollen, with a part of which they are slightly covered. They are very soon developed; in fact, the lines are nowhere distinctly drawn between the egg and the larra, the larta and pupa, and again between the latter and the imago; a perfect series, showing this gradual transformation of the young to the imago, can be found in almost every nest.
"As soon as the larva are capable of motion and commence feeding, they eat the pollen by which they are surrounded, and, gradually separating, push their way in various directions. Eating as they more, and increasing in size quite rapidly, they soon make large cavities in the pollen mass. When they have attained their full size, they spin a silken wall about them, which is strengthened by the old bees covering it with a thin layer of wax, which soon becomes hard and tough, thus forming a cell. [Plate 4, Figs. 1, 2.] The larvæ now gradually attain the pupa stage, and remain inactive until their full devel-

1'1. :

opment. They then cut their way out, and are ready to assume their cluties as workers, small females, males or queens.
"It is apparent that the irregular disposition of the cells is due to their being constructed so peculituly by the larve. After the first brood, composed of workers, has come forth, the queen bee derotes her time principally to her cluties at home, the workers supplying the colony with honey and polien. As the queen continnes prolific, more workers are added, and the nest is rapidly enlarged.
"About the middle of summer eggs are cleposited which produce both small females and males." . . . "All eggs laid after the last of July produce the large females, or queens; and, the males being still in the nest, it is presumed that the queens are impregnated at this time, as, on the approach of culd weather, all except the queens, of which there are several in each nest, die." (Putnam, Com. Essex Inst., vol. iv, p. 98, 186t.)

Besitiles Apathus, the larve of vaxions moths consume the honey and wasen cells; the two-winged flies, Volucella and Conops, and the larre of what is either an Anthomyia or Tachina-like fly; several species of Anthrax, the Coleopterous Anobium paniceum of Europe, Meloë, Stylops, and Antherophagus ochraceus are parasitic on Humble-bees.*

The labits of the genus Apathus are not clearly known, but they are supposed to prey, in the larva state, upon the larree of Bombus, being found in their nests; their habits, so far as known, ally them with Nomada. The species are distinguished by the tibix being convex, instead of concare, as in Bombns, while the mandibles of the females are acute, triangular, bidentate, being spatulate and three-toothed in Bombus, and they have no pollenigerous organs. There are males and females only, as in all the remaining genera of the family. Apathus Astitonii (Plate 3, Fig. 1) is found in the Northern States.

[^19]N"yocona, the Carpenter-bee, is "the largest and most bulky of all known bees," but less liirsute than Bombus, while the basal joint of the labial palpi is amost four times as long as the second ; and the maxillary palpi are six-jointed, the mouthparts being very highly organized. The larva of I. Vimginica (Plate 4 , Fig. 3, adult ; Fig. t, larva; Fig. 5, nest) is slenderer than that of Bombus, the body tapering more rapidly towards cach end.

The power of boring the most symmetrical tumels in solid wood reaches its perfection in the large Virginian Carpenterbee (Sylocona Virginica). We have received from Mr. James Angus, of West Farms, N. Y., a piece of trellis for a grapevine, made of pine wood, containing the cells and young in various stages of growth, together with the larro and chrysaIids of Authect sinuosa (Plate 4, Fig. 6, larva; Fig. 7, pupa), a species of fly parasitic on the larva of the bee, and which buries its head in its soft body and feeds on its juices.

Mr. Angus thms writes us regarding its habits, under date of July 19: "I asked an intelligent and observing carpenter yesterday, if he knew how long it took the Xylocopa to bore her tumel. IIe said he thought she bored about one-quarter of an inch a day. I don't think myself she bores more than onehalf inch, if she does that. If I mistake not, it takes her about two days to make her own length at the iirst start; but this being across the grain of the wood may not be so easily done as the remainder, which runs parallel with it. She always follors the grain of the wood, with the exception of the entrance, which is about her own length. The tumnels run from one to one and a half feet in length. They generally run in opposite directions from the opening, and sometimes other galleries are run ahove the first, using the same opening. I think they only make new tumels when old ones are not to be found, and that the same tumels are used for many years. Some of the old tumels are very wide. I have found parts of them about an inch in diameter. I think this is cansed by rasping off the sides to procure the necessary material for constructing their cells. The partitions are composed of woodraspings, and some sticky fluid, probably saliva, to make it adhere.
"The tumnels are sometimes taken possession of by other bees and wasps. I think when this is the ease, the Xylocopa prefers making a new cell to cleaning out the mud and rubbish of the other species. I frequently find these bees remaining for a long time on the wing close to the opening, and bobbing their hearls against the side, as if famning air into the opening. I have seen them thus employed for twenty minutes. Whether one bee, or more, makes the tumel, that is, whether they take turns in boring, I cannot say at present. In opening the cells, more than one are generally found, even at this season. About two weeks ago, I found as many as seven, I think, in one." **

The hoie is clivided by partitions into cells albout seven-tenths of an inch long. These partitions are constructed of the clust or chippings made by the bee in eating out her cells, for onr active little carpenter is provided with strong cutting jaws, moved by powerful muscles, and on her legs are stiff brushes of hair for cleming out the tumel as she descends into the heart of the solid wood. She must throw ont the chips she bites off from the sides of the burrow with her hind legs, passing the load of chips backwards out of the cell with her forelimbs, which she uses as hands.

The partitions are built most elaborately of a single flattened band of chips, which is rolled up into a coil four layers deep. One side, forming the bottom of the cell, is concave, being

[^20]beaten down and smootherl off by the bee. The other side of the partition, forming the top of the cell, is flat and rough.

At the time of opening the burrow, July 8th, the cells contained nearly full-grown larre, with some half cleveloped. They were feeding on the masses of pollen, which were as large as a thick kidney-bean, and occupicd nearly half the cell. Saprga repanda is parasitic in the cells of Xylocopa dioteced of Southern Europe.

The habits and structure of the little Ceratina ally it closely with Xylocopa, as it hollows out the stems of plants, and builds in them its cylindrical cells. This bee is oblong in form, with tridentate madibles, and a slort labrum. The maxillary palpi are six-jointed, and the labial palpi are two-jointed. Cerotinc duplu Say is a common small bright-green smooth-bodied species, which, in the middle of May, according to Dr. Harris' MS. notes, tumels out the stems of the elder or blackbery, syringa, or any other pithy shrub, excavating them often to a depth of six or seven inches, and even, according to Mr. Haldeman (Harris MS.), bores in acorns. She makes the walls just wide enough to admit her body, and of a depth capable of holding three or four, often five or six cells (Plate 4, Fig. 11). The fincly built cells, with their delicate silken walls, are cylindrical and nearly square at each end, thongh the free end of the last cell is rounded off. They are four and a half tenths of an inch long', and a little over one-third as broad. The bee places them at nearly equal distances apart, the slight interval between them being filled in with dirt.

Dr. T. W. Harris* states that, "May 15, 1832, one female laid its eggs in the hollow of an aster-staik. Three perfect insects were disclosed from it July 28 th." The observations of Mr. Angus, who saw some bees making their cells, May 18th, also confirms this account. The history of our little upholsterer is thus cleared up. Late in the spring she builds her cells, fills them with pollen, and lays one or more eggs upon each one. Thus in about two months the insect completes its transformations; within this period passing through the egg, the larmal and chrysalid states, and then, as a bee, living through the winter. Its life thus spans one year.

[^21]The larva (Plate 4, Fig. 10) is longer than that of Megachile, and comparer with that of Xylocopa, the different segments are much more conver, giving a serrate outline to the back of the worm. The pupa, or chrysalis, we have found in the cells the last of July. It is white, and three-tenths of an inch long. It differs from that of the Leaf-cutter bee in having foum spines on the end of the body, and in having a much longer tongue and maxille, both being almost twice as long.

In none of the wild bees are the cells constructell with more nicety than those of our little Ceratina. She bores out with her jaws a long deep well just the size of her bocty, and then stretches a thin delicate cloth of silk, drawn tight as a drumhead, across each end of her chambers, which she then fills with a mixture of pollen and honey.

Her young are not, in this supposed retreat, entirely free from danger. The most invidious foes enter and attack them. Three species of Ichnemon-flies, two of which belong to the Chalcicl family, lay their eggs within the body of the larra, and emerge from the dried larva and pupa skins of the bee, often in great numbers. The smallest parasite, belonging to the genus Anthophorabia (so called from being first known as a parasite on another bee, Anthophora), is a minute species found also abundantly in the tight cells of the Leaf-cutter bee.

The species of Anthidium, according to Smith, are gaily marked with yellow bands and spots; the ligula is almost twice as long as the labial palpi, and acutely pointed; the paraglossa are short, the maxillary palpi are two-jointed, and there are two subcostal cells. The males are longer than the femaies, with an elongated and stoutly toothed abdominal tip. The female lines her nest, situated in any hole convenient for its purpose, with down from woolly-stemmed plants. They pass the winter in the larva state, and the bees do not appear until mid-summer. The species mostly occur in the old world.

In Authophora, which approaches nearer to Bombus in its plump and hairy borly than the two preceding genera, the lig. ula is twice as long as the labial maxillæ, enting in a bristlelike point ; the basal joint of the hind tarsus is thickly hirsute, while the middle tarsus of the males is generally clongated. The species are gregarious, their numerons cells, while indepen.
dent, are crowded together in grassy banks. Species of Melecta are parasitic on them, oripositing in their cells. The larve are infected by the Chalcid dies, Anthophorabia and Monodontomerus, and by a peculiar species of Mite, Heteropus ventricosus, described by Newport. Say has described Anthophora abrupta and A. tawrea fiom Indiana.

In Eucera the antenna are very long, while the body is still plamp and hairy: our more common form in the Middle States is Eucera maculata St. Fargeau. The species are likewise gregarious, and, according to Smith, their habits are precisely the same as those of Anthophora.

In Megachile, the Leaf-cutter Bee, the head is brond, the body stout, oblong, the ligula is about one-half longer than the labial palpi, being quite stout, while the paraglosse are short and pointed; the maxilla are long and sabre-shaped, while their palpi are short and two-jointed. There are two subcostal cells in the fore wing. It is a thick-bodied bee, with a large square head, stout scissor-like jaws, and with a thick mass of dense hairs on the under side of the tail for the purpose of carrying pollen, since it is not provided with a pollen basket as in the Honey and IIumble-bees. The larva is broader and flatter than that of Bombus, the raised pletual region is a little more prominent, and the raised, thickened tergal portion of each ring is more prominent than in Bombus.

The Megachile lays its eggs in burrows in the stems of the elder (Plate 1, Fig. 2), which we have received from Mr. James Angus; we have also found them in the hollows of the locust tree. Mr. F. W. Putnam thus speaks of the econony of M. centuncula is, our most common species. "My attention was first called, on the 26 th of June, to a female busily engaged in bringing pieces of leaf to her cells, which she was builiing under a board, on the roof of the piazza, directly under my window, Nearly the whole morning was occupied by the bee in bringing picces of leaf from a rose-bush growing about ten yards from her cells, returning at intervals of a half minute to a minnte with the pieces which she carried in such a manner as not to impede her walking when she alighted near her hole. [We give a figure of the Leaf-cutter bee in the act of cutting out a circular piece of a rose-lcaf (Plate 4, Fig. 8). She
alights apon the leaf, and in a few seconds swiftly runs her scissors-like jaws around through the leaf, bearing off the piece in her hind legs.] About noon she hat probally completed the cell, upon which she had lyeen engaged, as, during the afternoon, she was occupied in loinging pollen, preparatory to laying her single egg in the cell. For about twenty days the bee continuct at work, buikling new cells and supplying them with pollen. . . . On the 2 exth of July, upon remoring the board. it was found that the bee had made thirty cells, arranged in nine rows of unequal length, some being slightly curver to adapt them to the space under the board. The longest row contained six cells, and was two and threc-quarters inches in length; the whole leaf-structure being equal to a length of fifteen inches. Cpon making an estinate of the pieces of leaf in this structure, it was ascertained that there must have been at least a thousand pieees used. In addition to the labor of making the cells, this bee, unassisted in all her duties, had to collect the requisite amount of pollen (and honcy f) for each cell, and lay her eggs therein, when completed. Upon carefully cutting out a portion of one of the cells, a full-grown larva was seen engaged in spinning a slight silken cocoon about the walls of its prison, which were quite hard and smooth on the inside, probably owing to the movements of the larva, and the consequent pressing of the sticky particles to the walls. In a short time the opening made was closed orer by a very thin silken web. The cells, measured on the inside of the hard walls, were .35 of an inch in length, and .15 in diameter. The natural attitucle of the larva is somewhat curved in its cell, but if straightened, it just equals the inside length of the cell. On the 31st of July, two female bees came out, having cut their way through the sides of their cells." In three other cells "several hundred minute Ichneumons [Anthophorabia megachilis] were seen, which came forth as soon as the cells were opened." (Com. Essex Inst., vol. iv, p. 105, 1864.)

Megachile integer Say MS., according to Dr. Harris (MS. notes), forms its nest of leaves the first of August. This species is twice as large, but closely resembles Megachite brevis of Say. The front of the head is covered with dense ochreous
hairs, becoming shorter and black on the vertex. The nest, preserved in the Harris collection, now in the Museum of the Boston society of Natural History, is made of rose-leares, and is scarcely distinguishable from that of M. centunculdris.

Osmia, the Mason Bee, is another gems of Carpenter or Upholsterer bees. The species are generally bluish, with greenish reflections, with smooth shiny bodies, and the species are of smaller size than in Megachile. The tongue in this genus is three times as long as the labium, tapering from the base to the acute apex, and clothed with short hair.

Mr. F. Smitle states that the Larva of the English species hatch in eight days alter the eggs are laid, feeds ten to twelve days, when it becomes full-grown, then spins a thin silken covering, and remains in an inactire state-until the following suring, when it completes its transformations.

The habits of the little Mason-bees are cuite varied. They construct their colls in the stems of plants and in rotten posts and trees, or, like Andrena, they lunrow in smmy banks. An European species selects snail-shells for its nest, wherein it builds its carthen cells, while other species nidificate under stones. C'urtis found two hundred and thirty cocoons of a British species (Osmia paretina), placed on the under side of a flat stone, of which one-third were empty. Of the remainder, the most appeared between March and June, males appearing first ; thirty-five more bees were cleveloped the following spring. Thus there were three successive broods for three succeeding years, so that these bees lived three years before ariving at maturity.

Mr. G. R. Wraterhouse, in the Trmasactions of the Entomological Society of London, for 1864 (3 ll series, tol. 2, p. 121) , states that the cells of Osmicu lencomelana "are formed of mud, and each cell is built separately. The female bee, hawing deposited a small pellet of mud in a sheltered spot between some tufts of grass, immediately commences to excavate a small cavity in its upper surface, scraping the mut away from the centre towards the margin by means of her jaws. A small shallow mud-cup is thus produced. It is rough and uneven on the onter surface, but beantifully smooth on the inmer. On witnessing thus much of the work performed, I was struck with
three points. First, the rapidity with which the insect worked; secondly, the tenacity with which she kept her original position whilst excavating ; and thirdly, her constantly going over work which lad apparently been completed. . . . The lid is excarated and rendered concare on its outer or upper surface, and is convex and rough on its inner surface ; and, in fact, is a simple repetition of the first-formed portion of the cell, a part of a hollow sphere."

The largest species of Osmia known to us is a rery dark-blue species which seems to be undescribed. We will call it the wood-boring Osmia (Osmia ligniwora). It is larger than the Osmia lignaricu of Say, being just half an inch long. The head is much shorter, and less square than in Say's speecies. The front of the head below the antenne is clothed with dark hairs, but above and on the thorax with yellowish ochreous hairs. The body is deep blackish blue, with greenish reflections. We are indebted to a lady for specimens of the bees with their cells, which had been excarated in the interior of a maple tree several inches from the bark. The bee had industriously tumelled out this elaborate burow (Plate 4, Fig. 12), and, in this respect, resembles the habits of the Carpenter-bee (Nylocopa) more closely than any other species of its genus.

The tumel was over three inches long, and about threetenths of an inch wide. It contracted a little in widtll between the cell, showing that the bee worked intelligently, and wasted no more of her energies than was absolutely necessary. The burrow contained five cells, each half an inch long, being rather short and broad, with the hinder end romnded, while the opposite end, next to the one adjoining, is cut off squarely. The cell is somewhat jug-shaped, owing to a slight constriction just behind the moutl. The material of which the cell is composed is stout, silken, parchment-like, and very smooth within. The interstices between the cells are filled with rather coarse chippings made by the bee.

The bee cut its way out of the cells in Mrarch, and lired for a month afterwards on a cliet of honey and water. It eagerly lapped up the drops of water supplied by its keeper, to whom it soon grew accustomed, and seemerl to recognize.

The female of Osmia lignaria Say MS., according to Dr.

Harris' MS. notes, was found in the perfect state in cocoons within earthen cells under stones, April 15 th. 'The cell she constructs is half an inch long, oral, eylindrical, and contracted slightly into a sort of neck just before the opening for the exit of the bee. From Mr. James Angus I have received the pellets of pollen, about the size of a pea, in which it cleposits its eggs ; the larve were about one-third grown in Angust.

This species is larger than Osmia simillima of Smith, while the male antenne are much paler, being fuscous. The front of the hear is covered with long dense yellow ochreous hairs. The reptex is not of so dark a green as in O. simillima, and is corered with conrse punctures. The thor'ax is heavily clothed with yellow ochreous, thick hairs. The abodomen is yellowish, and much more hairy. The legs are stout, fuscous, with yellowish hairs. Length, thirty-five inches.

Our smallest and most abundant species is the little green Osmia simillima of Smith. It builds its little oral, somewhat urn-shaped cells, against the roof of the large descrted galls of the oak-gall fly (Diplolepis conthentus), placing them, in this instance, eleren in number, in two irregular rows, from which the mature bees issue throngh a hole in the gall (Plate 4,* Fig. 14. From specimens communicated by Mr. F. G. Sanborn). The carthen cells, containing the tough dense cocoons, were arranged irregularly so as to fit the concave rault of the larger gall, which was about two inches in diameter. On energing from the cell the Osmia cuts out with its porrerful jaws an orate lict, nearly as large as one sicle of the cell. Both sexes may be found in April and May in the flowers of the willow

[^22]
and fruit trees which blossom later. The antennæ are black, and the green body is covered with fine white hairs, becoming yellowish above.

In the Harris collection are the cells and specimens of Osmia pacifica Say, the peaceful Osmia, which, according to the manuscript notes of Dr. Harris, is found in the perfect state in earthen cells (Plate 5, Fig. 2) beneath stones. The cell is oral cylindrical, a little contracted as usual with those of all the species of the genus, thus forming an urn-shaped cell. It is half an inch long, and nearly three-tenths of an inch wide, while the cocoon, which is rather thin, is three-tenths of an inch long.

The following genera, called Cuckoo Bces, are parasitic on other bees, laying their egg's in the cells, or nests, of their host. In Colioxys the body is stout, and the bee closely mimics its host, Megachilc. The ligula is very long, being almost three times the length of the labium, and the paraglosse are wholly wanting; the maxillary palpi are short, three-jointed, and the abdominal tip of the male is variously toothed. Coelioxys octodentata Say, is abundant late in the summer about flowers. An allied genus, Melecta, is parasitic on Anthophora, and Epeolus is parasitic on Colletes.

The specics of Nomada are very numerous ; in all, the tongue is long and acute, with paraglosse about one-fourth as long as the tongue; the maxillary pair of palpi are six-jointed; and there are three subcostal cells. The species in their slender, smooth, gaily colored body resemble the wasps. These Cuckoo-bees lay their eggs in the nests of Andrena and Halictus, and, according to English authors, Panurgus and Eucera, where they may be found in all stages of development correspondling to those of their hosts. The females do not sting severely. The species emit sweet, balmy, or lualsamical odors. Shuckard states that these bees should be killed with burning sulphur to preserve their bright colors.

The larve differ greatly from those of their hosts, Andrena, the head being much smaller, the body being smoother and rounder, and belonging to a more degraded, lower type. The whole body is more attenuated towards both extremities. The pupa differs from those of any other genus of this family known to us, except Andrena, by haring three conspicuous
spines on the upper and posterior edge of the orbit, which are also found in the pupa of Stigmus, a Crabronid genus, and which evidently aid in locomotion. Thas the same law of degradation obtains in these highly organized bee-parasites as in the lower parasitic species, though in a much less marked degree.

From specimens found in the nests of Andrena and Halictus, collected at Salem by Mr. J. H. Emerton, and now in the Museum of the Essex Institute, we hare been enabled in great part to clear up the history of this bee. We have found in the nests of Andrena vicina both sexes of Nomada imbricata Smith, and several females of Nomada putchella of Smith; and in the cells of Halictus parallelus Say, specimens of Nomada imbricatca. Both full-grown larvæ and pupæ of different ages, up to the adult Nomada, ready to take leave of its host, were found in the cells of the Andrena ricina. It seems, therefore, that the newly hatched young of Nomada must feed on the pollen mass destined for the Andrena. But there seems to be enough for both genera to feed upon, as the young of both host aurd parasite were found living harmoniously together, and the hosts and their parasites are disclosed both at the same time. Does not this mild sort of parasitism in Nomada throw much light on the probable habits of Apathus, the Humble-bee parasite? It is more than probable that the Apathus larve simply eat the food of the Bombus larre, and do not attack the larre of their hosts. Both Nomada and Apathus in their adult stages live harmonionsly with their hosts, and are seen gathering food fiom the same flowers, and flying about the same nest.

In the second subfamily, Andrenetce, the ligula, or tongue, is for the most part short and broad, and the maxillary papis have four joints of equal size.

In Sphecodes the body is smooth and wasp-like, and in its lhabit of running and flying in dry sandy places, it resembles Sphex, whence its generic name. The abdomen is generally light red, farther aiding in the resemblance to the Sphegidce. The ligula is short, lancet-shaped, fringed with sete; the paraglossa are not so long as the tongue, while the labial palpi are shorter than the paraglossæ, and the maxillæ are broad, lanceolate, with six-jointed palpi. The antennæ of the males are
short and sometimes monil.form. Sphecodes dichroa Harris is our most common species. Mr. F. Smith, from direct observation, states that this genus builts cells, though earlier authors have stated that it is parasitic on Halictus and Andrena.

Prosopis is generally yellow on the face, and is "less pubescent than any of the bees." The tongue is hroad, subemarginate, the paraglossa reach a little beyond the tongne; the labial palpi are as long as the tongue, while there are two sub)costal cells in the fore wings. Smith states that the genus is not parasitical as formerly supposed, as he has "repeatedly bred them" from cells laid in a regular order in the hollow of bramble stems. Mr. S. Saunclers has also raised them in Albania where "they construct their cells in bramble sticks (which they bore in the same manner as Colletes) with a thin transparent membrane, calculated for holding semi-liquid honey, which they store up for their young. The species are much attacked by Stylops." Like Sphecodes and Ceratina, this genus, according to Smith, is umprovided with pollenigerous organs. We have several species in this country of which P. affinis Smith, and P. elliptice Kirby, are found northward. The habits of our species are not known.

Augachlora comprises beautiful shining metallic green species, very commonly met with. The thorax is globose, and the anterior wings have one marginal and three submarginal cells ; the first submarginal cell as long as the second and third united. Augochlora purus Smith is a small, green, rather common species. Mr. J. H. Emerton has found its nests in Salem, near those of Andrena. The month of the hole opened under a stone, and was built up so as to form a tulbe of sand (Plate 5, Fig. 1). The burrow on the 28 th of June was four inches deep.

Andrena is a genus of great extent, and the species are often difficult to distinguish. The lanccolate tongue is moderately long, and the paraglossa are half as long as the tongue itself, while the six-jointed maxillary palpi are longer than the maxillæ themselves. The wings have three subcostal cells, with the rudiments of a fourth one; the second is squarish, and the third receives a recurrent nervure near the middle. The posterior legs "have a Jong curled lock upon the trochanter be-
neath, and the anterior upper surface of the femora is clothed with long loose hair, which equally surrounds the whole of the tibir." (Shuckard.) The abdomen is banded more or less conspicuously with reddish.

The larra (Fig. 79) is stout and thick, with a head of moderate size, and the month-parts are a little shorter than usual, the maxillæ and labium especially. The segments of

Fig. 79. the body are much more conrex (angularly so) than usual, giving a tuberculate outline to the body. It is stouter than that of Halictus, the wings are less conrex than in that genus; while the maxillæ are much stouter and blunter. The pupa is distinguished from the other genera by much the same characters as the imago, except that there are two tubercles on the vertex near the ocelli. From a comparison of all its stages, this genus stands intermediate between those placed above, and Halictus, which, in all its characters, is a more degraded form. The males often differ widely from the other sex, in their broad heads and widely spreading bidentate mandibles.

Mr. Emerton has observed the habits of our most common species, Andrena vicina Smith, which builds its nest in grassy fields. The burrow is sunken perpendicularly, with short passages leading to the cells, which are slightly inclined downwards and outwards from the main gallery. The walls of the gallery are rongh, but the cells are lined with a mucus-like secretion, which, on hardening, looks like the glazing of earthen-ware. In Fig. 80 Mr . Emerton gives us a profile view of natural size of the nest showing the main burrow and the cells leading from it ; the oldest cell, containing the pupa (a) is situated nearest the surface, while those containing larvæ (b) lie between the pupa and the cell (e) containing the pollen mass and egg resting upon it. The most recent cell (f) is the deepest down, and contains a freshly deposited pollen mass. At c is the beginning of a cell; g is the level of the ground. The bees were seen at work on the 4th of May, at Salem, Mass., digging their' holes, one of which was already six inches cleep; and by the 15 th, hundreds of holes were observed. On the 28th of May, in unearthing six holes, eight cells were found to contain pol-
len, and two of them a small lawva. On the 29th of June six full-grown larve were exhumed, and one about half-grown. About the first of Augnst the larra transforms to a pupa, and during the last week of this month the mature bees appear.
In Hutlictus, which is a genus of great extent, the head is transverse, and flattish; the mouthpaits are of moderate length, the tongue being very acate, with acute paraglosse half the length of the tongue, while the labial palpi are not quite so long as the paraglossia. There are three subcostal cells in the wings, with the rudiments of a fourth often present, and the second cell is squarish. The abdomen is oblong ovate, with a longitudinal linear furrow on the tip in the female. In the males the body is longer and the anteme more filiform and slender than usual in this family.

The larve are longer, and with more acutely convex segments than in Andrena. The pupr differ much as the adult bees from Andrena, especially in the shorter mouth-parts.

Fig. 80.

Halictus paralleas Say excavates cells almost exactly like those of Andrena; but since the bee is smaller, the holes are smaller, though as deep. Mr. Emerton found one nest, in a patir, a foot in depth. Another nest, discorered September 9th, was about six inches deep). The cells are in form like those of Andrena, and like then are glazed within. The egg is rather slender and much curved; in form it is-long, eylindrical, obtuse at one end, and much smaller at the other. The larva
(Fig. 81) is longer and slenderer, being quite different from the rather broad and flattened larva of Andrena. The body is

Fig. 81. rather thick behind, but in front tapers slomly towards the head, which is of morlerate size. Its body is somewhat tuberculated, the tubercles aiding the grob in moving about its cell. Its length is 40 of an inch. On the pupa are four quite distinct conical tubercles forming a transverse line just in front of the ocelli ; and there are also two larger, longer tubercles, on the outer side of each of which an ocellus is situated. Figure 82 represents the pupa seen from beneath.

Search was made for the nests on July 16th, when the ground was very hard for six inches in depth, below which the soil was soft and fine, and over twenty cells were dug out. "The upper cells contained nearly mature pupe, and the lower ones larve of varions sizes, the smallest being hardly distinguishable by the naked eye. Each of these small larro was in a cell by itself, and sitnated upon a lump of pollen, which was of the size and shape of a pea, and was found to lessen in size as the larva grew larger. These young were probably the offispring of several females, as four mature bees were found in the hole." (Emerton.) The larva of an English species hatches in ten days after the eggs are laid.

Another brood of bees appeared the middle of September, as on the minth of that month (186t) Mr. Emerton found several holes of the same species of bee made in a hard gravel road near the turmpike. When opened, they were found to contain several bees with their young. September 2, 1867, the same kind of bee was found in holes, and just ready to leare the cell.

Like Bombus, the females are supposect to hybernate, the males not appearing until late in the season. Like Andrena, these bees sufter from the attacks of Stylops, and according to Shuckard, an Ichnemon preys upon them, while certain species of Cerceris, Philanthus, and Crabro carry them off to store their nests with.

In Colletes the females, as Shuckard observes, resemble the workers of the IIoney-bee, while there is considerable disparity between the sexes, the males being much smaller, the tongue and maxille rery short; and the four-jointed labial palpi much shorter than the paraglosse. There are three subcostal cells, with tite rudiments of a fourth. These bees form large colonies, burrowing in the earth eight or ten inches deep, lining their cells "at the farther end with a very thin transparent membranaceous coating, resembling goldbeaters' skin." They thus fumish six or eight cartridge-like cells, covering each with a eap, "like the parchment on a drum-head." Smith, from whom we have been quoting, states that Alitogramma proctata, which is a Tachina-like fly, and the Cuckoo-bee, Epeolus variegatus, have, in Europe, been reared from their cocoons.

Tesparle Latreille, Wasps. In this family, which comprises about 900 species, the body is more attenuated, more cylindrical, with a harder and smoother tegument than in the A piarice. In the species with densely populated colonies, such as Yespa and Polistes, there are workers which are often very mumerous, while in Eumenes and Odynerus, ete., there are only males and females. The antemice are clbowed, the mandibles are large, stout; the maxille and labium of varying length; the maxillary palpi are six-jointed; white on the labial palpi, which are four-jointed, there are well-developed paraglosse. The prothorax is prolonged on each side to the insertion of the wings which are long and narrow, and once folded longitudinally when at rest; the fore pair have two or three subcostal cells; the hind shanks and tibize are smooth. The eggs, when fir'st laid, are globular, soon becoming oral.

The larre of this family are soft, fleshy, with larger heads in proportion to the rest of the body, than in the Apiarice; the antemal tubercle, or rudimentary antenne, are more distinct, and the mandibles are larger. The surface of the body is smoother in Vespa and Polistes, but more tuberculated in the solitary genera, Odynerus and allies, while the end of the body is more acute.

As in the Apiarice the ligher gencra are social, building papery nests, while the lower are solitary and build cells of mud or sand in protected places.

In Fespa, the Paper Wasp, the ligula is squarish, with the paraglossse nearly as long as the tongue, the onter maxillary lobes rounded oval, half as long as the palpi, and the labial maxille are scarcely longer than the tongue. The abdomen is broad at base, acutely conieal. The nests are either with or without a papery covering, supported by a short pedicel.

Such females as have hybernaterl, begin to make their cells in the early part of summer. Smith states that the solitary female wasp "begins by making three saucer-shaped receptacles, in each of which she deposits an egg; she then proceeds to form other similar-shaped receptacles, until the eggs first deposited are hatched and the young grubs require a share of her attention. From the circular bases she now begins to raise her hexagonal cells, not building them up at once, but from time to time raising them as the young grubs grow. (Proc. Ent. Soc., London, 1858, p. 35.)

Waterhouse states that the cells formed by the solitary female carly in the season appear "to be built entirely of glistening, whitish, silk-like threads which I have little doubt are a secretion from the insect, all the threads being firmly attached together as if they had originally been of a glutinous nature." The cells formed later in the season by the workers, differ in consisting of masticated rotten wood. "Almost simultaneously with the commencement of the cells, it appears that the nest-covering is commencerl. At first it has the appearmee of a miniature umbrella, serving to shelter the rudimentary cells." Plate 5, Fig. 3, shows a group of cells surrounded by one layer of paper, and the begiming of mother. As the nest

Fig. 83. grows larger the cells are arranged in galleries, supported by pedicels, and the number of layers in the outside corering: greatly increases in number.

While our common and largest speries, Vespa maulata Linn. (Fig. 83), and the yellow wasp, V. arenaria Fabr., bnild papery nests consisting of several galleries, with the mouth of the cells directed downwards, the East Indian species, V. orientalis,
builds its cells of clay, and, according to Waterhouse, "the work is exceedingly beautiful and true." Another species, according to Smith, makes its nest of sandy loam, the exterior being so hard that a saw used in opening one of its sides was blunted.

The larva of Vespa arenarice is long and aylindrical, not so much curved as in Polistes. Its position in its cell corresponds to its form, as the cell is longer and narrower than that of Polistes. Each segment of the body is posteriorly somewhat thickened, as is the lateral (pleural) ridge of the body. The tip of the abromen is rather blunt, the last sternite being large and transverse. The pupa is provided with a single tubercle on the vertex, where there are two in the Crabronidce and Sphegida.

By the time the nest of V. arenaria is large enough to contain ten full-grown larvæ, and has about fourteen cells in all, being about an inch in diameter, the occupants of the two or three central cells will have changed to pupre, and one wasp "will have been excluded.

In a nest of the same species two inches in diameter, there were a second brood of larve. The outer row of cells were occupied by pupæ, while the central ones, emptied of the first brood, were filled with a second brood of larva. Eridently as soon as an imago leaves its cell, the female deposits an egg therein, as rery minute larva were found occupying cells next to those containing large full-grown larve.

In comparing a number of pupa from a large nest, they will be found to be in all stages of perfection, from the larva which has ceased fceding, and is preparing to transform, to the imago, still reiled by its thin subimago pellicle. It is difficult to draw lines between these stages. Also when compared closely side by side, it is difficult, if not impossible to find any two pupre just aliize, the derelopment proceeding very unequally. Tinus the limbs may be more perfect than the antenux, or certain parts may be less perfect in some than in others, while the limbs may be more highly colored like the imago.

Like the bees, Vespa suffers from numerous parasites, including Rhipiphorous paradoxus, which is a beetle allied to Stylops, and Lebia (Dromius) linearis. The larva of Volucella is said
to feed on the Vespa-larva, and Mr. Stone says that Anthomyia incana is also parasitic in Wasps' nests, while two species of Ichnemmons, one of which is Anomalon vesparum, also infest the larræ. No parasites have been as yet detected in this country.

The Ilomet, V. crabro Limn., has, according to Mr. Angus, become domesticated abont New York. This and the smaller wasps are sometimes injurious by eating into ripe fruit, but the injury is more than counterllanced by the number of flies and other insects they feed their young with.

Indecd, as Sunssure states, the species of Vespa are more omnivorons in their tastes than tay other wasps. They live by rapine and pillage, and have obtained a worse repute than other insects more injurious. In spring and early summer they feed on the sweets of flowers ; but later in the season attack strawberries, plums, grapes, and other fruits, and often enter houses and there help themselves to the dishes on the table. Ther will eat raw meat, and then aid the butcher by devouring the flies that lay their eggs on his meats. They will sometimes destroy Honeybees, attacking them on their return from the fields laten with pollen; they throw themselves upon their luckless victims, and tear the abdomen from the rest of the body, and suck their blood, clevouring only the abdomen. They fall upon Hies amd butterflies, and, biting off their wings, fect, and head, derour the tronk. In attacking insects they use only their powerful jaws, and not the sting, differing in this respect from the fossorial wasps.

Sanssure states that thongh wasps do not generally lay up food, yet at certain periods they do fill the cells with honey.

The females feed their young with food chewed up and reduced to a pulp. Saussure questions whether the larve of one sex are not fed on animal and the other on regetable food, since Huber had shown "what a great influence the lind of food exerts on the sex of Bees." But it is now known that the sexes of some, and probably all insects are determined before the larve is hatched. I have seen the rudiments of the oripositor in the half-grown larre of the Humble-bee, and it is most probable that those rudiments began to develop during embryonic life. It is far more probable that the sexual differences are determined at the time of conception.

Westrood states that the larve, which live head-downward from the reversed position of the comb, retain their position in the cell, while young, by a glutinous secretion, and afterwards "by the swollen front of the body which fills the open part of the cell." "The female cells are mostly placed apart from those of the males and neuters, those of the males being often mixed, but in a small number, in the neuter comls. The egg state lasts eight days, the larva state thirteen or fourteen, and that of the pupa about ten. After the imago has been proonced, one of the old workers cleans out the cell, and fits it for the reception of a fresh inhabitant. The upper tier of cells, being first built, serves for the habitation of the workers ; the females, being produced at the end of the summer, occupy the lowest tiers." When about to transform the larvee spin a thin covering, thus closing over the cell.

In Polistes the paraglossie are slender, and a little longer than the long, or as in one instance noticed by us in P. Candclensis, barrel-shaped ligula, which is split at the end ; the palpi are stouter, while the whole body is much longer than in Yespa ; the abromen is subpedunculate, and the thorax is rather oblong than spherical, as in Vespa.

The larva differs from that of Vespa in its much larger head, and shorter, more ovoid form of the body, which is dilated in front so as to retain the insect in its cell, while the tip is more acute; the antemal tubercles are closer together; the clypens is more regularly triangular and more distinct, while the labrum is much larger and excessively smollen, as are the month-parts generally. The mandibles are bidentate, where in Vespa they are triclentate. The pupa differs from that of Vespa, besides the usual generic characters, in having the tubercle on the head smaller.

The nests of Polistes (Plate 5, Fig. 4, nest of P. amularis Fabr., from Saussure) are not covered in by a papery wall as in Vespa, but may be found attached to bushes, with the mouth of the cells pointed downwards. While at Burksville Junction, Ya., in the last week of April, I had an opportmity of watching three species begiming their cells on the same clump of bushes. They all worked in the same method, and the cells only differed slightly in size. The cells were formed mostly of
crude silk, and the threads could be seen crossing each other, the same structure being observed at the top and bottom of each cell.

In the three-celled nest of Polistes (Plate 5, Fig. 5, 5a) first noticed April 29th, there were but two eggs deposited, the third cell being without an egg, and a little smaller, and the rim not so high as in the other two. The onter edge did not seem to be perfectly circular, thongh stated by Waterhouse to be so in the incipient cells, for in some cases we detected two slight angles, thus making three sides, which, however, would be easily overlooked on casual observation; as there are only two sides within, the cell, from being at its earliest inception hemispherical, or "saucer-shaped," becomes five, and subsequently sis-sided, and thus from being circular, it is converted by the wasps into a hexagonal cell. In some cells, perhaps a majority, both in this and the other species, the newly made rim of the small cells is thinner than the parts below, and slightly bent inwards ; thus being quite the reverse of the thickened rim of the cells of the Hive Bee. It would seem that the wasp plasters on more silk, especially on the angles, building them out, and making them more prominent, in order to complete, when other cells are added, their hexagonal form. The three cells are of much the same size and height when the third egg is laid, as we observed in another nest, that of Polistes Canadensis (Limn.), built at the Defences of Washington, near Munson's Hill, June 9th.

Again, when one or two more cells have been acded to the nest, and there are four or five in all (Plate 5, Fig. 6; 6a, top vien, in which there are four cells), two of them are nearly twice as large as the others, while the fifth has been just begun, and is eggless. The form of the two which run up much ligher than the others is the same as that of the smaller and shorter ones, i.e. they are on one side nearly semicircular, and on the other, partly hexagonal, and the angular sides show a tendency to be even more circular than when the others are built around them, for the little architect seems to bring out the angles more prominently when carrying up the walls of the other cells. Thus she bnikds, as if by design, one and the same cell both by the "circular" and "hexagonal" methods, afterwards allopt-
ing only the latter, and if she derotes her attentions specially to plastering the corners alone, with the design of making the cell six-sided, then we must allow, contrary to Mr. Waterhouse's views, that the wasp builds the hexagon by choice, and not as the mere result of her blindly "working in segments of circles;" for if our point be proved, and the most careful observation of the wasp while at work is needed to prove it, then it may be shown that the wasp is a free agent, and can abandon one method of working at a certain stage of her work, ank adopt a different mode of operating.

The eggs are oval, pointed at the end, and glued to the inside of the cell. They are situated midway from the top and bottom of the incipient cell, and placed on the innermost sides, so that in a group of several cells the eggs are close together, only separated by the thin cellular walls. In a completed cell the egg is placed rery near the bottom.

For several days a Polistes Conadensis was engaged in building its nest in my tent in camp near Washington. When first noticed on June 9th, there were three cells, two of which contained eggs ; and it was not for two days, the 11th, that the third cell was completed, and a third egg deposited in it. The wasp paid especial attention to strengthening the pedieel, going over it repeatedly for an honr or two with its tongue, as if laying on more silken matter, and then proved the work by its swiftly vibrating antenne. It wouk often fly out of the tent, and on its return anxiously examine each cell, thrusting its hearl deep down into cach one. It gradually became accustomed to my presence, but eventually abandoned the nest, without adding more cells. The others, while at work on the bushes, absconded at my approach, and seemed rery wary and distrustful, as if desirous of concealing their abodes. Mr. Smith has found Trigmalys bipustulatus to be a parasite on Polistes lanio Fabr. (P. Cunudensis Linn.), from St. Salvador, S. A.

Saussure arranges the higher Vespidxe into two parallel series. Tespa is offset by Chartergus and Nectarina; lower down we find Tatua and Synoeca, while Polistes is offset by Polybia. These five genera are tropical, and in their habits, the general appearance of their nests, and in the number of individuals represent Vespa and Polistes of the temperate zone. 'The
genus Vectarina is a short plump wasp, somewhat like Odynerus in shape; its distinguishing mark is the concealment of the postscutellum by the scutellum. Necturina mellifica Say, of Mexico, builds a large nest externally like that of a wasp, but it is more irregular, and the papery covering consists of but one layer. The interior of the nest is very different, the galleries of cells, instead of being parallel, being arminged in concentric spheres.

Churiergus has the tip of the clypeus slighterl excavated, and an oral sessile abolomen. C. chartarius Olivier makes an exceedingly thick tongh nest, attached by a broad base to the bough of a tree, about trice as long as thick, and ending in a cone, pierced in the centre by the entrance which pusses through the middle to the basal gallery; the other galleries are formed by a continnation of the sides of the nest, and arrayed in a conical plane.

In Tatua, the abdomen is pedicelled, but the petiole is not enlarged, and the ablomen itself is rery regularly conical. T. morio Cuvier, from Cayenne, forms a nest like that of Chartergus: but the galleries form a flat floor, and each gallery has an entrance from the outside of the nest, where in the latter there is one common entrance. Plate 5, Fig. 9, shows how the bases of the cells are laid out on the edge of a gallery. In Syneect the peculiarly shaped abdomen is cordate and compressed. The curious nest of S. cyanea Fablr. is formed of a single layer of cells inced against the trunk of a tree, and covered in with a dense covering made from the bak of dead trees. Some nests of Synoca are three feet long. In the very extensive genns Pobbia, which resembles Polistes in its general shape, the abdomen is pedicellect, and the mandibles are fom-tootherl. The nests are somewhat like those of Chartergus, but much smaller. Several species occur in Mexico, and in Brazil the number of species is very great. In Apoïca the abdomen is very long, and the third segment is as long as the second. Plate 5. Fig. 11, represents the nest of Aporce pallida Olivior, from Cayenne. It is unprotected, with a conical base, and with a single row of cells.

In Icaria we have an approach to Polistes in the slender series of cells composing the nest, forming two or three rows
only. Plate 5., Fig. 7, represents the nest of I. guttatipennis Saussure, from Senegal ; 8 , ground plan of a similar nest. These wasps are mostly distinguished from Polybia by the petiole ending in a globular mass. Plate 5, Fig. 10, represents the elegrant nest of Mischocyttarns labiatus Fabr, from Cayenne and Brazil, which consists of a few cells supported by a long pedicel. The wasp itself much resembles Polistes, but the petiole is very much longer.

The remaining genera noticed here are solitary, building separate cells, and with only males and females. There are three subcostal cells in the fore wings, and the maxillæ and labium are much elongated.

In Eumenes the abdomen has a long pedicel, being sessile in Odynerus. While authors place Eumenes higher than Odynerus, we wouk consider the latter as a higher, more cephalized form, since the abdomen is less clongated, and the head is larger.

In Odynerus the ligula is long, decply forked at the slender extremity, while the slender paraglossa are shorter, ending in a two-toothed claw-like tip ; the maxillw are slender, and the palpi have an elongated basal joint; the clypeus is nearly circular, toothed on the front edge. The larva cliffers from those of the higher Vesparice, in its more elongated head, the square clypeus, the unusually deep fissure of the bilohate labrom, and in the larger tubercles of the body, as the larya is more active, turning and twisting in its cell, while feeding on its living food; and in this respect it is more closely allied to the young Crabronider. In the pupa of O. albophateratus, the tip is more incurvel than in the pupa of Vespa, so that the hind legs (tarsi) reach to the tip, and the abdomen is rounded orate, while in Vespa it is oblong.

The cells (Plate 4, Figs. 13, 14) of Odymerus albophtuleratus Sauss. have been cletected like those of Osmia in a deserted gall of Diplolepis conttuens, where several were found in a row, arranged around one side of the gall, side by side, with the holes pointing towards the centre of the gall. The cells are half an inch long, and one-half as wide, being formed of small pellets of mul, giving a corrugated, granulated appearance to the outside, while the inside is lined with silk.

We have received from Mr. Angus deserted cells of Ceratina in a syringa stem, in which we detected a pupa of an Odynerus, perhaps O. leucomelcts; the cell was a little shorter than that of the Ceratina it had occupied. The cocoon of the Odynerus was of silk, and almost undistinguishable from the old cocoon of Ceratina. The wasp had dispensed with the necessity of making a mud cell. If future research shows that cither this or any other species makes a mud cell or not at will, it shows the intelligence of these little "free-agents;" and that a blind adherence to fixed mechanical laws does not obtain in these insects.

The larve of Odynerus and Eumenes are carnivorous. I found several cells of O. albophalerutus, June $22 d$, in the cleserted nest of a Clisiocampa, which were storeil with microlepidopterous larve and pupe, still alive, having been paralyzed by the sting of the wasp. The larree of the wasp was short and thick, being, when contracted, not more than twice as long as broad; the rings of the body are moderately convex, and the plenal region is faintly marked. Prof. A. E. Verrill has discovered the cells of an Odynerus at New Haven, forming a sandy mass (Plate 5, Fig. 12) attached to the stem of a plant.

In Eumenes the lingua is very long, being narrower and more deeply dirided than in Odynerus: the second subeostal space of the wings is long and narrow, while in Odynerus it is triangular. The genus is easily recognized by the rery long pedicel of the abdomen. Eumenes fraterna Say constructs a thin cell (Plate 5., * Fig. 15) of pellets of mud, and as large

[^23]
as a cherry. It is attached by a short stout pedicel to bushes, and the cavity is filled with the larve of small moths.

Rephiglosse odyneroides, from Epirus, describerl by S. S. Saunders, makes elongated cells in galleries in briars, storing them with the larve of what he supposed to be weevils. The dark brown dense tough cocoon of a Chrysis was also found in the cells.

In Masaris, which connects the Vesparice with the succeeding fanily, the wings are not completely folded when at rest; there are but two subcostal cells; the maxille are rudimentary ; and the antenne are clavate and eight-jointed. • Maschis respoides Cresson, inhabits Colorado Territory.

Crabroxidex Latreille. Sand-ucasps; Wood-wasps. In the more typical genera the head is remarkably large, cuboidal, while the clypeus is very short, and covered for the most part with a dense silvery or golden pile. The antennre are geniculate, the long second joint being received, when at rest, in a deep frontal vertical groove; the mandibles are large, and of eren width throughont, and the mouth-parts are rather short, especially the lingua, which is often, however, well developed. There is only one subcostal cell, except in the Phitanthina. The thorax is sub-spherical, and the abolomen is either short and stout, or more or less perlicellate. The forefeet are adapted for digging and tunnelling, the forelegs in the females being broad and flat, and in the males, which are supposed to do no work, they are sometimes, as in C.Thyreopus, armed with vexhillate expansions.

The larva is rather short and thick, a little flattened on the under side, but much rounded above; the segments are convex above, the thoracic segments differing from the abotominal segments in not being thickened posteriorly on each ring. They spin either a very slight cocoon, or a thin dense brown oval cylindrical case, geuerally reddish brown in color. The pupre have much the same character as the imago, with prominent acute tubercles above the ocelli.

The members of this family afford, so far as we are acquainted with their habits, most interesting examples of the interdependence of structure and the habits of insects. Most
of the species are woorl-wasps, making their cells in cylindrical holes in rotten wood, or enlarging nail-holes in posts, as is the case with Crabro singularis, according to the observations of Mr. C. A. Shurtlefl, thus adapting them to the requirements of their young. Other genera (Rhopahum perlicellatum, Stigmus fraternus, and Crabro stirpicola) avail themselves of those plants whose stem has a pith which they can readily excarate and refit for their habitations. The females provision their nosts with caterpillars, aphide, spiders, and other insects.

This family is most difficult to classify; it consists rather of gronps of genera, some higher and some lower, though as a general rule those genera with pedunculate abdomens are the lowest in the series. In illustration, we regard Stigmus, with its elongated decephalized body, as inferior to Blepharipus, which again is subordinate to the more cephatized Crabro, where the bouly is shorter, the ablomen sessile, the anterior part of the borly more developed headwards, while its nests are constructed more elaborately. The genus Psen, for the same reason, is lower than Cerceris, of which it seems a degraded form.

Some of the most useful characters in separating the genera of this family are to be found in the form of the clypens, its sculpturing and relative amount of pubescence or hirsutics; in the form and seupturing of the propodeum (Nemman), or tho-racico-abdominal ring of Nerport; while the tip of the abdomen presents excellent generic and also specific characters, depending on its grooved or flattened shape.

The species of this family are mostly found in the north temperate zone, being very abundant in North America and in Europe. The Pemphredonine ocenr far north in abundance, while Cerceris occurs farthest towards the tropies.

The subfamily Philanthince includes the three genera, PhiIanthus, Eucerceris, and Cerceris. In Plilanthus (Fig. 8t, wing), the head is short, transversely suboval, the clypeus longer than broad, with the first joint of the abdomen nearly as broad when seen from above as the succeeding one. Our more common form southward is Philanthus vertilabris Say (Fig. 85). In Europe P. apivorus provisions its nest with honey-hees.

Cresson remarks that Eucerceris (Fig. 86, fore wing of male; a, female) differs from Cerceris in the renation, which differs greatly in the two sexes. E. zonatus Say oecurs in the west.

The species of Cerceris (Fig. 87, wing) have transversely oblong heads, the front of the head is flattened and destitute of hairs, and the rings of the abdomen are contracted,

Fig. st.

Fig. 83.

Fig. 8 i 1 a .

Fig. 87. mon form. In Europe some species are the middle part being unusually convex and coarsely punctured, while the basal ring is nearly one-half nar-
Eig. 85. rower than the succeeding ones. Cerceris deserta Say is our most comknown to store their nests with bees, and the larve of Curcutionidee and Buprestide. Dufour unearthed in a single field thirty nests of C. brpresticida which were filled with ten species of Buprestis, comprising four hundred individuals, and none of any other gemus. Cerceris tubereutata provisions its nest with Leucosomus ophthalmicus; and C. tricincta with Clythra.

In the subfamily Crabronina, there is a great disparity in the sexes, the form of the females being the most persistent. In the male the head is smaller, narrow behind, with shorter mandibles, and a narrower clypeas; the body is also much slenderer, especially the abdomen, and the legs are simple in Crabro, but in Thyreopus varionsly modified by expansions of. the joints, especially the tibia. The species of Crabro (Fig. 88) are readily distinguished by the large cubical head, and the sharp mucronate abdominal tip of the female. The more typical form of this very extensive genus is Crabro sex-maculatus Say, so-called from the six yellow spots

Fig. 88. on the subpedunculate abrlomen. According to Dr. T. W. IIaris (MS. notes), this wasp was seen by Rev. Mr. Leonard, of Dublin, N. H., burrowing in decayed wood, Jume 10th.

Crabro singularis Smith, was discorered by Mr. C. A. Shurtleff boring in a post.

In Thyreopus, the body is slender, and the forelegs are curiously dilated in the males, often forming a broad expansion, ant so clotted as to present a sieve-like appearance, while the head is much shorter, being more transverse. T. lutipes Smith is known by the broad, long, acute, mucronate, shield-like expansion of the fore tibia, which is striped with black at the base.

The species of Rhopatum are usually blackish, without the gay colurs prevalent in the genera before mentioned ; the legs are simple, and the abdomen is long and slender, with a long perluncle. The body of the larta is short and thick, tapering rapidly towards each extremity; the segments are convex, those of the thorax especially being smooth, broad, and regularly convex, while the abdominal rings are provided with prominent tubercles. The tip of the body is quite extensible, and when protruded is subacute, teminating in a small knoblike body, formed by the last ring. The larve of this genus differ from those of the Vesparice and Apiarice known to us by having a few hairs scattered over the body.

In the pupa the antenne, in their natural position, do not quite reach to the second pair of trochanters, and reach only to the tip of the maxillary palpi. The tip of the abdomen is rery acute and elongated unnsually far beyond the oripositor. On the heal, between the ocelli and antennæ, are two very prominent, acute tubercles, and the abdominal segments are dentate on the hind edge. Thus both the larva and pupa would seem, by their anatomy, to be unusually active in their loose, illy-constructed cells, which do not confine their food so closely as in the other wasps, as the insects on which tbey probably feed have a greater range in their rather roomy cells. April 18 th we opened several stems grown in the open air, and found both larwe and pupæ; the latter in different stages of derelopment. The cells were placed in the closely packed dust made by the larva of an Ageria, or directly bored in the pith of the plants. There were six such cells, each with its inhabitant, within a space an inch in length, some laying crosswise, others along the middle. The larvæ spin but a very
slight cocoon, not at all comparable with that of Crabo: the walls of the cell being simply lined with silken threads. Cuder other circumstances, i.e. where the cells are more exposed, it is not unlikely that a more elaborate cocoon may be spun.

Mr. James Angus las bred numerous specimens of Rhopalum pedicellatum Iack., from stems of the Rose, Corcorus, Japonica, and Spirea, gromn in hot-houses at West Farms, N. Y. The larra is a quarter of an inch long.

The following genera belong to the subfamily Pempheredonina:

The genus Stigmis, as its name indicates, may at once be lanown by the very large pterostigma, as well as the unusually small size of the species. The body of the larva is moderately long and slender, cylindrical, tapering slowly towards both extremities. The rings are short, very convex, subacutely so. and the larra is of a beautiful roseate color. Stigmus fratermus Say burrows in the stems of the Syringa, of which specimens have been received from Mr. Angus with the larve and pupe.

In Cemones the front narrows rapidly towarts the insertion of the mandibles, and there is a short triangular enclosure on the propodenm, while the abdomen is shorter and thicker them in Pemphredon, a closely allied genus; the pedicel is also longer. The larre of Cemonus inomatus Ifarris tive in inregular burrows in the elder, like those of Rhopalum from which they have been reared by Mr. Angus. They are known by the broad flattened head and body, scrate sicle and tergum of the body, and large, conspicuously bidentate mandibles, as well as by the peculiarly flattened abdominal tip.

In Passatacus the labrum is very prominent, white the mandibles are rery large, widening towards the tip, and in the common P. mondibularis Cresson they are white, and thus very conspicuous. This species burrows in company with the other wood-wasps mentioned above in the stems of the elder and syringa. The cells are lined with silk. The wasps appear early in June. Their nests are tenanted by Chalcids. The female stores her cells with Aphides, as we lave found them abundantly in stems of plants received from Mr . Angus.

The genus Psen seems to be a degraded Cerceris, but the
abdomen is pedicelled, and differs from Mimesa, a still more slender-bodied genus, in having the tip of the abdomen more or less grooved, while in Mimesa it is flat and not grooved at all.

Psen leucopus Say has a dense silvery pile on the front of the head, with black antenne, and the pedicel is rather short.

Nrssonide Leach. In this family the head is transversely longer and less cubical than in the precerling group; the vertex is higher and more convex, while the front is narrow, the clypens long and narrow, the eyes long and narrow, and the antenne are more clarate than in the Crabromide, and the propodeum is sometimes armed with acute spines, while the enclosed space is smoothly polished or striated. 'The wings are long and narrow, and the abdomen is sessile in the typical genera, where it is obeonic, but clawate when perlicellate.

In Timpoxylon the body is long, with a pedicellate clarate abdomen. In Europe "Mr. Johnson has detected it frequenting the holes of a post pre-occupied by a species of Oclyuerus, and into which it conveyed a small romd ball, or pellet, containing about fifty indivicluals of a species of Aphis; this the Odynerus, upon her return, invariably turned out, flying out with it, held by her legs, to the distance of about a foot from the aperture of her cell, where she horered a moment, and then let it fall ; and this was constantly the case till the Trypoyylon had sufficieut time to mortar up the orifice of the hole, and the Odynerus was then entirely excluded; for although she would return to the spot repeatedly, she never endeavored to force the entrance, but flew off to seek another hole elsewhere."
T. politum Say has purplish wings, and no enclosure on the propodeum.
T. frigitum Smith lives in the stems of Syringa, from which it has been reared by Mr. Angus. The thin, delicate cocoon is long and steuder, enlarging slightly torards the anterior end.

The genus Mellimus (belonging to the third subfamily, Mellinince, is known by its broad front, and slender antennæ, and its perlunculate abdomen, while in Alyson, a slenderbodied genus, it is sessile. Mellimus bimaculatus Say has a black head, with pale tipped antenne, and two ovate jollow spots on the abdomen. Alyson oppositus is black, with two
yellow spots on the abdomen, which has the basal ring yel- . lowish red in the female.
 som, a typical geuns.

The genus Corytes is truly a mimetic form, closely simulating the genus Odynerus, one of the Fesperice. The front of the head is narrow, while the clypeus is larger than usual. The species are mumerous, occurning late in the summer on the Howers of Spirea. Gorites flaticomis Harris is polished russet brown, with narrow yellow rings on the abomen, the propodeum is smooth and polisher, and the basal ring of the abotomen is black. A species has been observed in Europe protruding her sting intu the frotly secretion of Tettigoniz living on grass, and carrying off the insect to provision its nest with.

Oxybelus is a short, stont, black genus, with whitisla abolominal spots, and stout spines on the thorax, while the sessile aldomen is distinetly conical. "Its prey consists of Diptera, which it has a peculiar monte of carrying by the hind legs the while it either opens the aperture of its burow or else forms a new one with its anterior pair. Its flight is low, and in skips ; it is very active." (Westwood.)

Orybelus emarginatus Say has two oval membranons appendages to the metathorax, and is a common black species found alundantly on the flowers of the Virginia Creeper.

In Nysson the body is a little longer, narrow compared with that of Oxybelns, while the teminal joint of the antennee is thickęned, flattened, and excavated beneath. Aysson lateralis say is dull black, with six light spots on the abdomen.

The species of Stizus are of large size and casily recognized by their Lilsute hody, stout legs, triangular silvery clypeus, and the high transverse vertex of the head. 'The propodemm has a faintly marked triangular enclosure. The species are very rapacions, paralyzing grasshoppers and other large insects with their formiclable sting, and carrying them off to provision their nests. Professor S. Tenney has sent us a specimen of the Dog-day Cicata (C. canicularis) which Stizus speciosus had thus stung. Mr. Atkinson has observed the same fact, and has fomn the deep burrows of this species, the hole being threefourths of an inch in diameter. He has observed it feeding on sap running from a tree.

The specties of Lara are smaller, and differ from those of Stizus in the long, narow, rery prominent labrum, the shorter clypens, broader front and longer abdomen, the tip of which is without the broad subtriangular area which is present in Stizus ant the other genera of this family. Lara micincta say is blackish, with a single reddish band on the second abluminal ring.

Bembecide Latreille. We have but two genera, Bembex and Moneduld, which have large heads and flattened bodies, hearing a strong resemblance to Syrphus flies from their similar coloration. The lahrum is very large and long, triangular, like a beak. The species are very active, flying rapidly about flowers with a loud hum. "The female Bembex burrows in sand to a considerable depth, burying rarious species of Diptera (Syrphide, Muscida, etc.), and depositing her ergs at the same time in company with them, upon which the larse, when hatched, subsist. When a sufficient store has been collected, the parent closes the month of the cell with earth." "An anonymons correspondent in the Entomological Aagazine, states that B. rostrata constructs its nests in the soft light sea-sands in the Ionian Islanls, and appears to cateln its prey (consisting of such flies as frequent the sand; amongst others, a bottlegreen fly) whilst on the wing. He describes the mode in which the fomale, with astonishing swiftness, scratches its hole with its forelegs like a dog. Benbex tersuta, according to Latreille, prorisions its nests with Bombylie." (Westrood.) Dufour.states that two Diptera, Panopea carnea and Toxophora fasciata, the latter alliel to Srstrophus, are parasites on Bembex. Mr. F. G. Samburn has noticed the exceedingly swift Hight of our common Bembex fusciata Fabr. on sandy beaches where it is found most abundantly.

Monedula differs from Bembex in its slenderer body, more clavate antenne, and its shorter, rery obtuse labrum. The body is smoother, and most generally more highly colored and more gaily spotter than in Bembex.

Monedula Carolina Fabr. and M. 4-fasciata Say are common southwards of New England.

Larrine Leach. Mr. F. Smith defines this family as having " mandibles notched exteriorly near the base; the labrum con-
carled, with a single spine at the apex of the intermediate tibie ; the abdomen is oroid-conical."

The genus Astata is a large hairy form, with long antenne and palpi and an elongated prothorax. Its spiny legs show its neur relationship to the $S p h e g i d e$. Astata unicolor Say represents the genus in this country.

Tachytes is also of larger size than the following genus. It is covered with long dense golden short hairs, with a trapezoidal front. Tachytes aurulentus Fabr. is rare; it frequents the Howers of the Asclepias, as we have found pollen masses atiacied to the spines of its legs. We figure (x^{9}) a tarsus of a wasp belonging probably to this genus, received from Mr. V. T. Chambers, showing the pollen masses of Asclepias attached to the spines.

The genus Larrada "contains those species which have the marginal cell truncated at the apex and appendiculated, and three submarginal cells, the first as long as the two following; the metathorax [propodeum] truncated posteriorly, elongate, the sides being generally parallel; the mandibles are large and arcuate,

Fis. 89. with a tooth on their exterior towards the base; abxtomen orate-conical, acuminate at the apex." Laroada argentata Beaur. is corered with silvery pile. It is a slender form, with short, nearly unarmed legs.

A Brazilian species of Larada, according to Mr. II. W. Bates, builds a nest composed apparently of the scrapings of the woolly texture of plants ; it is attached to a leaf, having a close resemblance to a piece of German tinder, or a piece of sponge. 'The cocoons were dark brown, and of a brittle consistency. The reporter, Mr. F. Smith, adds: "I am not aware of any similar habit of building an external nest having been previously recorded; our British species of the closely allied gents Tachytes, are burowers in the ground, particularly in sandy situations; their anterior tarsi are strongly ciliated, the claws bifid and admirably adapted for burrowing. On examining the insect which constructed the nest now exhibited, I find the legs differently armed; the anterior pair are not ciliated,
and the claws are simple and slender, clearly inclicative of a peculiar habit differing from its congeners, and how admirably is this illustrated in the nest before us?"

Sphegide Latreille. Smith defines this family as haring "the posterior margin of the prothoras not prolonged backwards to the insertion of the wings, and anteriorly prodnced into a neck, with the abdomen petiolated." The very fossorial legs are long and spiny, the posterior pair being of unsual length. The mandibles are large, curved, narrow, and acute, the base not being toothed externally, and the antemade are long' and iiliform. 'The species are often gaily colored, being ornamented with black and red, brown and red, or are entirely hack, or blue. They love the sumshine, are rory active, restless in their morements, and have a powernd sting.

The sting of these and other wasps which store up insects for their young, penetrates the nervous centres and paralyzes the rictim without depriving it of life, so that it lives many days. A store of living food is thas laid up for the foung wasp. After being stung the caterpiliars will transform into chrysalids, thongh too weak to change to moths. Mr. Gueinzius, who resides in Sonth Africa, observes that "large spiders and caterpillars became immediately motionless on being stung, and I cannot help thinking that the poisonons acid of Hymenoptera has an antiseptic and preserving property ; for caterpillars and locusts retain their color's weeks after being stung, and this, too. in a moist situation nuder a burming sun."

These insects cither make their nests in the sancl, or, like the succeeling family, are '" mnd-taubers," building their cells of mud and plastering them on walls, ete.

The tropical genus Ampulex is more closely allied to the preceding fanily than the other genera. The species are brassy green. Dr. G. A. Perkins has deseribed in the Annerican Naturalist, yol. 1, p. 293, the habits of a wasp, probalily the Ampulex Sibirica Fabr., which inhabits Sierra Leone, and oriposits in the body of the cocliroach. The dead bodies of the cockroaches are often found with the empty cocoon of the wasp occupying the cavity of the abdomen.

A species of this genus, abundant at Zanzibar at certain sea-
sons, was frequently observed by Mr. C. Cooke to attack the cockroach. The cockroach, as if cowed at its presence, immediately yields without a struggle. The Ampulex stings and paralyses its rictim. and then dies away with it.

Chborion is closely allied, containing hilue and metallic green species, often with golden yellow wings. Chlorion cyaneum Dahb., a blue species, is foum in the Southern states.

The genus Priononge "difters from the genms bjhex in haring the chaws quadridentate beneath at their base; the neuration of the wings and the form of the abdomen are the same as in Herpactopns," which is found only in the tropies and Australia. Priononye Thome is found from South Carolina to Brazil, including the West Indies.

The genus Sphex is quite an extensive one. The hearl is as wide as the thorax ; the antemne tre filiform, mandibles large and acute, bidentate within, the teeth notched at their base, forming a rutimentury tooth, the apical tooth being acute. The thorax is elongate-ovate, trmeated behind, with a transvorse collar (prothorax). The fore wings have one marginal and thee submarginal cells; the marginal cell elongate, rounded at its apex; the first snhmarginal cell as long as the two following. The abolomen is pedunculated, conically orate, and the anterior tarsi are ciliated in the females.

Sphex ichneumonea Linn. (Figure 90) is a large rustred species, with a dense golden pu-

Fig. 90. bescence. It is common from Massachusetts southrrards. In the last week of July, and duxing August and early in September, we noticed nearly a dozen of these wasps busily engaged in digging their holes in a gravelly walk. In previons seasons they were more mumerous, burrowing into grassy
banks near the walk. The holes were four to six inches deep. In beginning its hole the wasp dragged away with its teeth a stone one half as large as itself to a distance of cight inches from the hole, while it pushed away others with its heat. In begiming its burrow it ased its large and powerful jaws almost entirely, digging to the depth of an inch in five minutes, completing its hole in ahout half an hour. After having inserted its head into the hole, where it loosened the carth with its jaws and threw it out of the hole with its jaws and fore legs, it woukd retreat backwards and push the dirt still farther back from the mouth of the cell with its hind legs. In cases where the farther progress of the work was stopped by a stone too large for the wasp to remore or dig aromd, it would abandon it and begin a new hole. Just as soon as it reached the required depth the wasp flew a few feet to the adjoining bank and faling upon an Orchelinum vulgare or O. gracile, stung and paralyzed it instantly, bore it to its nest, and was out of sight for a moment, and while in the bottom of its hole must have deposited its egg in its victim. Reappearing it began to draw the sand back into the hole, scratching it in quite briskly by means of its spiny fore tarsi, while standing on its two hind pairs of legs. It thus threw in half an inch of dirt upon the grasshopper and then flew off. In this way one Sphex will make two or three such holes in an afternoon. The walk was havd and composed of a coarse sea-gravel, and the rapidity with which the wasp worked her way in with tooth and nail was marvellons.

Sphex tibialis St. Fargeau is a black, stout, thick insect. Mr. J. Angus lias reared this species, sending me the larve in a carity previonsly tumelled by Xylocopa Virginica in a pine board. The hole was six inches long, and, the oval cylinchical cocoons were packed loosely, either side by side, where there was room, or one a little in adrance of the other. The interstices between them were filled with hits of rope, which had perhaps been bitten up into pieces by the wasp itself; while the end of the cell was filled for a distance of two inches with a coarse sedge arranged in layers, as if rammed in like gun-wadding. The cocoons are eighty to nincty hundredths of an inch long, oval lanceolate, somewhat like those of Pompilus. They
consist of two layers, the outer very thin, the inner tough, parchment-like. The larve hybernate and turn to pupre in the spring, appearing in the summer and also in the antumn.

The larva is cylindrical, with the pleural ridge prominent, and with no traces of feet; the head, which is small and not prominent, and rather narrow compared with that of leloprens, is bent inwarls on the breast so that the mouth reaches to the sternom of the fourth abdominal ring. The posterior half of each ring is much thickened, giving a crenulated outline to the terom. The ahclominal tip is olutuse.

Sphex Lanierii Guerin, according to Smith (Proceedings of the Entomological Society of London, Feb. 7, 1859), constructs its nest of a cottony substance, filling a tumel formed by a large curved leaf. The species of the genus are supposed to burrow in the gromnd, and the two cases above cited show an interesting divergence from this habit. Mr. Smith adds, that in "the Sphex which constructs the nest in the rolled leaf, the anterion tarsi are found to be very slightly ciliated, and the tibize almost clestitute of spines, thus affording another instance proving that difference of structure is indicative of clifference of habit."

The genus Pelopeus is of a slighter form than in Sphex, the body being longer and slenderer; the clypens is as broad as long, triangular above, in front convex, or produced and ending in two teeth. The outer costal cell is lanceolate oral, the second subcostal cell subtrapezoidal, being widest above; it is also somewhat longer than broad. The first median cell is very long and narrow, much more so than usual. The pedicel of the abomen is long, the first joint in the male being often as long as the remainder of the abdomen.

The larra of P. cceruleus Linn. is much like that of $S_{p h e x}$, having a cylindrical body with the rings thickened posterionly. It differs from that of Pompilus in its longer and narrower head, the short broadly trapezoidal clypeus, and the distinctly marked exserted labrum. The mandibles are long and tridentate.

The pupa (of P. flawipes) differs from that of the Tesparice in having the head more raised from the breast; the palpi are not partially concealed, as they may be easily scen for their whole length. The long curved mandibles cover the base of the
maxillx and lingua, and the antemme reach to the posterior coxs. The maxilla are slender, not reaching to the tip of the labium.

The female usually provisions her cells (l'late 5 , Fig. 1f) with spiders. The cells are constructed of layers of mud of unequal length, and formed of little pellets placed in two rows, and diverging from the midule. They are a little orer an inch long, and from a half to thee-ruarters of an inch wite, and are somewhat three-sided, the inner side next the object, either stonewalls or ralters, to which it is attacherl, being flat. As the earthen cells sufficiently protect the delicate larve within, the cocoons are very thin, and brown in color.

The cells of Pelopous flozipes from Brownville, Texas, collected by an Chited States officer and presented to the Boston Society of Natural History, contained both spiders and numerous pupie of a fly, Sareophaga medipemis Loew (MS) which is somewhat ahlied to Tachina. "These last hatched out in midsummer a fer days before the specimens of Pelopaus. It is most probable that they were parasitic on the latter. 'These specimens of P. flavipes were more highly ornamented with yelluw than in those found northwards in the Athantic States, the metathoras being crossed by a broad yellow band.

The genus 1 mmophila is a long slenter form, with a petiolate ablomen, the tip of which is often red. The petiole of the abdomen is two-jointed, and very long and slender, being longer than the fusiform part. In the males the petiole is in some species much shorter. The wings are small, with the apex more obtuse than usual ; the second subcostal cell is pentagonal, and the third is brontly triangular.

Westrood states that \cdot the species inlabit sandy districts, in which L. setmolose forms its burrow, using its jaws in burowing ; and when they are loaded, it ascends backwards to the month. turns quickly aromd, flies to aloout a foot's clistance, gives a sudden turn, throwing the sand in a eomplete shower to about six inches' distance, and again alights at the montli of its burrow."
"Latreille states that this species provisions its cells with caterpillars, but Mr. Shuckard states that he has observed the female chagging a very large inflated spider up the nearly perpendicular side of a sand-bank, at least twenty feet high, and
that whilst burrowing it makes a loud whirring buzz; and, in the Transactions of the Entomological Society of London, he states that he has detected both A. sabulosa and A. hirsute dragging along large spiders. Mr. Curtis observed it bury the caterpillars of a Noctua and Geometra. St. Fargeat, however', states that i. subulusu collects caterpillars of large size, especially those of Noctuæ, with a surprising perseverance, whereas A. arenaria, forming a distinct section in the genus, collects spellers." (Westwood.)

Immophila cementoriu Smith, and A. maria Kluge, are the more common species in this country; they are red and white, while A. luctuosu Smith is a black, shorter, stouter, more hirsute species. They may all be seen flying about hot sandy places, and alighting near wells and standing water to drink.

Tumpline Leach. In this family the body is oblong, the sides often compressed, and the head shorter, when seen from above, being more transversely ovate than in the preceding family. The antemas are long, not geniculate, and in the males are stouter angl with shorter joints than in the females. The eyes are narrow oral, and the maxillary palpi are six, and the labial palpi four-jointed. The prothorax is extended on the sides back to the base of the wings,

Fig. 91. which latter are large and broad, the fore pair having three subcostal cells. The legs are very long and slender, with thick slender spines. The Pompilide, of which about seven humdeed species are known, have a wide geographical range, from the temperate zone to the tropics. Like the Sphegidce, they oviposit in the body of other insects, storing their nests, usually built in the sand, with spiders and caterpillars.

The heal of Pompilus (Fig. 91) is a little longer, seen from
above, than in the other genera; the fiont of the head is about a third longer than broad. The antenne are long and filiform and sometimes crenulate, as in Figure $91 a$, in the males ; the mandibles are stout, broad, sabre-shaped, being much curved, with low flattened teeth, and the maxillary palpi are longer than the labial palpi. The wings are rather broad, with the three subcostal cells lying in a straight row. The abdomen is slightly compressed, and equals in length the remainder of the body. The sting is very large and formidable, and excessively painful, benumbing the parts it enters. 'They Fig. ma. are exceedingly actire, ruming and flying over sandy places like winger spiders.

There are about five hundred species of this genus described. They are usually shining black or decp bluish black, with

Fig. 92.
smoky or reddish wings, and sometimes a reddish abdominal band. This genus is interesting, as affording in its form a mean between the globular thorax and short body of the Apictrice and the elongated body of the Ichneumonida.

The Pompilus formosus Say (Fig. 92), called in Texas the Tarantula-killer, attacks that immense spider the Mrygole Hentzii, and, according to Dr. G. Lincecum (American Naturalist, May,
1867), paralyzes it with its formitable sting, and inserting an egg in its body, places it in its nest, dug to the depth of five inches. There is but a single brood, produced in June, which is killed off by the frosts of November. This species feeds in summer "upon the honey and pollen of the flowers of the Elder, and of Vitis ampelopsis, the Virginia Creeper; but its farorite nourishment is taken from the blossoms of Asclepias quadrifotium." (Lincecum.) P. cy? indricus Cresson (Fig. 93, wing) is one of onn smanlest species, being from three to five lines long. It occurs in the South and West. P. arctus Cresson (Fig. 94, wing) inhabits Colormlo Territory. 1'. Maria Cresson (Fig. 95, of enlarged) is a beautiful and rare species found in Pennsylvania. 'The genus Priscnemis is characterized by the two hind pair of tivie being serrated (q, Fig. 96, a, wing; b, pos-

Fig. 95. terior len ; c, anterior leg'), and by the want of spines on the anterior legs. P. unifasciatus Say is a wide-spread species aml

Fing. 96. readily recoguzed by the deep black color of the body, the yellow antenne and the large yellow spot at the tip of each anterior wing.

The genus Agenia (Fig. 97, a, wing; b, posterior leg) differs in liaving smooth legs. A. brecis Cresson (Fig. 93, wing) is a little species found in Georgia. A. congruus Cresson (Fig. 90, wing) was captured in West Virginia; and A. acceptus Cresson (Fig. 100, wing) in Georgia. The genus Notocyphus (Fig. 101, f,wing) is found in Brazil and Mexico. Planiceps (Fig. 102,
wing') contains a few species, of which P. niger Cresson, an cutirely black species, is found in Connecticut. Aporus (Fig.

Fig. 97. 103, wing) contains a single American speries, A. fusciatus Smith, taken in - Nortli Carolina.

From Mr. F. G. Sanlorn we have received the larva and cocoon of Pompilus finerens St. Farg., a small black species, which builds its nest in fields. The larra is short and broad, with the lateral region rather prominent, and the tip of the abdomen rather acute. It differs from Pelopros in its stonter, rather flattened body, aurl thickened segments, thongh as our specimen is preserved in alcohol these chatacters may lave become exaggerated. It more nearly resembles Pelopreus in its transverse clypets, thin bilobate labrum, and the stout mandibles, which are, however, much stonter than in Pelopans, while the whole head is shorter, broader, and rounder. It is probable that this peculiar form of the head (which as in Sphex is bent bencath the breast), together

Fig, 09.

Fig. 102.

Fig. 103. with the broad transverse clypeus, and broad, short, bilobate, thin, tramsparent labrum, and especially the midentate short broad mandihles are family characters, sep-

Fig. 98.

Fig. 100, arating the larre of this group from those of the sphegidre. The cocoon is orate, long, and slender, much smaller at one end than the other, not being so regularly fusiform as in Sphex.

Ceropales differs from the foregoing genera in its broad head, its much shorter abdomen; and also in the eyes being a little excarated, in the depressed labium, the narow front, which dilates above and below the middle, and in the greatly elongated hind legs, generally banded with red or whitish. Ceropales bipmetata Say is generally distributed throughout the United States. It
is easily recognized by the black borly and legs, and red posterior femora, ant is six lines long. C. Robinsonii Cresson (Fig. 104, ठ) is an elegant species found in West Virginia. An allical genus is Mygrimia (Fig. 105, wing) containing M. Mexicama Cresson and M. ustuleta Dahlls., two Mexican species.

In the gemus Pepsis (Fig 106, wing) the maxillary and labial palpi are of equal length. The species are large, some of them being among the largest of Hymenoptera, and

Fig. 104. are generally indigo-blue in color. Pepsis heros Dahlbom is found in Cuba; it is two inches long. P. cyanea Linn.,

Fig. 105.

Fig. 10 on. which is blackish-blue, with blue abdomen and wing's, the latter reddish at the apex, has been deseribed by Beaurois from the United States, while P. elegans St. Farg. also oceurs in the Southern States.
P. formost Say affords another example of a species common to both sides of the Rocky Mountains, as it has been found both in Texas and Califormia. It is black, with bluish or greemish reflections, with bright fiery red wings, and is thirteen to eighteen lines long.

Scolider Leach. This family forms a group very easily distinguished from the Bembecide or Chrysidida, as well as the Pompilidce, by the broad front, the small indented eyes, and the great sesual differences in the antenm, those of the male being long and slowly thickened towards the tip, while in
the female they are short, thick, and elbowed on the second joint. The clypeus is large, irregularly quadrilateral, becoming shorter in the lower genera, and the labrum is small, scarcely exserted, while the mandibles are, in the female especially, large and broad. The prothorax is very square in front. In the fore-wings are three subcostal spaces. The abdomen in the typical gemus (Seolia) is broad and flat, longer than the rest of the body. The alolomen of Mutilla approaches that of the Chrysidide in haring the second ring much enlarged over the others. The males usually have the anal stylets very prominent, while the sting of the female is very powerful. The body and legs are generally very hirsute, and the first tarsal joint is as long as the tihie.

The genus Supyga is easily recognized by its smooth slender body, being ormamented with yellow, with transverse bands on the ablomen. The head is long, very convex in front, and the antenne are clavate; the prothorax is very brond, giving an oblong rppearance to the thorax. The legs are slender and smooth. It is said to be parasitic, laying its eggs in the cells of Osmia. Sepygg Mertinit of smith is found northward.

The species of Scolia are often of great size, being black and very hirsute, with the labinm composed of three linear divisions; the abdomen alone being banded or spotted with yellow on the sides. They are fomd in the hottest places about strongly seented flowers. In Europe, Scolia bicineta "makes its burrows in sand-banks, to the depth of sixtecn inches, with a very wide mouth;" and it is probable that the nest is stored with grasshoppers.

Scolia quadrimaculata Fabr, is found in the Middle and Southern States. The larva of Scolict farifions was found by lasserini to live in the body of the lamellicorn beetle, Oryctes nasicornis. In Madagascar, Scolia oryctophaga lives on Oryctes simia, according to Coquerel.

Professor Sumichrast states that at Tehuacan (Department of Puebla) the Scolia Azteca Sauss is rery common; and is particularly abundant in the leather tanneries, which leads him to think that the females of this species also deposit their eggs under the epidermis of the larva which abounds in the tan.

Tiphia is black throughout and rather hirsute. The antennæ
are shorter than in Scolia or Myzine ; the clypens is also shorter, While the prothorax is longer. In the fore-wings the onter costal cell is short, broad, angulated, oval; and of the two sulbcostal cells, the outer one is broad and triangular, twice as long as broad, while the first median cell is regularly short rhomboidal, much more so than in the other genera.

The fumales, according to Westwoot, "make perpendicular burrows in sandy situations, for the reception of their egrs ; but the precise food stored up for the larre has not been observed." Tiphia inomata Say is a common species with us, and flies low orer sandy places early in the season.

The short oral heach, the large eyes, short meso-scatom, large meso-scoutellim, and the flattened, rather smooth body, characterize the genus Myzine. The females are very different from the males, the two sexes being for a long time considered as separate genera. The female, especially, differs in the great length of the square prothorax, which is very broad and conrex in front. In the male the eyes are lunate, while in the female they are small, entire, and remote. In its general form the females much resemble Scolia, while the males are long and narrow, with broad yellow bands, especially on the abdomen, and a large exsertch sting-Tike organ. Nyzine seacinctu Fabr. is seen from New Fingland southwards, flying low over hot sandy places. The gemus Elis is closely alliect. Sumichrast (American Naturalist, vol. 2), sumises that Elis costalis St. Farg. lives on certain Scaralmides, which undergo their metamorphosis in the formicary of Crodoma in Mexico.

Mutillarle Latreille. This interesting family is characterized by the fenales alone being wingless, though Morawitz says that wingless males occur in two species; and by the alsence, generally, of the three ocelli. In Mutilla and Myrmosa the thornx is still high, compressed, and oblong cuboilal, and except in the closcly united tergal pieces the females do not greatly recede from the type of the winged males. The species are very equal in size, are black, or black and red, and either smooth or hirsute.

The antennre are inserted low down on the front, the clypeus being rery short and broadly orate (especially in Mrymosa),
or it is indented, as in Mutilla. The tongue is shorter than usuar. The sides of the thorax contract in width, both before and behind. The meso-scutum is squarer than ustal, while the mesosontellum is much narrower and longer, and the propodeum is squarcly truncated behind, thas presenting a full convex surface. The abdomen is not much longer than the rest of the body, being shorter than usual. In all these characters this family shows its affinities to the Auts. The wings are rery clissimilar in the different genera. In Mymosa the neuration closely approaches that of Sapyga, while in the larger, more acute primaries of Mutilla, and especially in the short outer costal cell, and short open pterostigna, the latter genus cliffers fiom the others.

The male of Scleroderma closely minics the Proctotrypidce, the reins of the rings being absent, while the form of the head and abdomen also reminds us of some genera in that family. The wingless female is very different, having more of the form of Mutilla, with a large oblong heal and long acutely conieal abdonen. The species are minute and rarely met with. S. contracte Westwool is found in "Carolina."

In the female Methoca the eyes are very long, and the segments of the abdomen are widely separated, much as in the

Fig. 107. ants. Methocu Conarensis Smith is shining black, and slightly villose.

The species of Mymosa may be known by the very short clypeus, the broad vertex, and the rings of the abdomen of the male being unusually contracted. The abdomen of the female is cylindrical, about twice as long as broad, and thickest on the second ring. The rings are densely hirsute on the hinder' edge. Inymosa unicolor Say (Figs. 107, male; 108 , female) is widely distributed. We have taken this species in Maine, while sexually united, early in June. The wingless female is like an ant, and is pale reddish on the thorax and basal ring of the abdomen,

Fig. 108. and the antemze and feet are concolorous, while the head and remaining abdominal rings are much darker. It is .20 inch long'. The male is .28 inch long and entirely black.

The genus Muttla is a rery extensive one, and enjoys a wide geographical range. It is thronghout stouter than Mymosa, the head is more cubical, and the thorax aud abdomen is shorter, the tip of the latter being somewhat truncated.

The wingless female closely resembles, both in its form and motions, a worker ant. The body is coursely granulated and either naked or densely hirsute, and of a scarlet, black, or pale red, or brown-black color. The females are found runing in hot sandy places, and hide themselves quickly when disturbed, while the males frequent flowers. Wutilla occidentatis is a large species. It is of a beantiful searlet color and is armed with a very powerful sting. Accorling to Professor A. E. Verrill this species was found by him, at New Haven, to construct deep holes in a hard beaten path, storing its nest with insects. This species is also said by

Fig. 109. Kirby to be very active, "taking flies by surprise." (Westwood.) Mr. Verrill noticed that this insect makes a slight creaking noise. The larre of M. Europea are said to live parasitically in IIumble-bees' nests. Mutilla fervugata Fabr. (Fig. 109) is found frequently in New England.

Formoctrife Latreille. The family of ants wonld seem naturally to belong with the truly fossorial IIymenoptera, both from their habits and structure.

Both males and females are winged, but the males are much smaller than the females, while the wingless workers are smaller than the males. In these wingless forms the segments of the thoras become more or less separated, making the body much longer and slenderer, and less compact than in the winged normal sexnal forms, the prothorax being more clevcloped than in the males and females. The workers often consist of two forms: one with a large cubical head, or worker major, sometimes called a soldier, and the usual small-headed form, or worker minor.

The head is generally triangular. The eres are large in the males, smaller in the workers, and in those of some genera (Ponera, Typhlopone, etc.) they are absent; while in the
workers the ocolli are often wanting, though present in the winged individuals of both sexes. The antennæ are long, slonder and elbowed. The mandibles are stout, and toothed, though in those species that do not themselves labor, but enslave the workers of other species, they are unarmed and slender. 'The maxillary palpi are from one to six-jointed, and the labial palpi tro to four-jointed. The fore-wings usually have but a single complete subcostal (culital) cell. The sting is often present, showing that in this respect as well as their fossoriai habits the ants are truly aculeate Hymenoptera. The larsa is short, cylindrical, with the end of the body ohtuse. The rings of the body are moderately conven. The head is rather small and bent mpon the breast. The larve are fed by the workers with food elaborated in their stomachs.

The larrac of the stingless genera usually spin a delicate silken cocoon, while those of the acmleate genera do not. Both Latreille aud Westwood, however, state that sometimes, as in Formict finca, of Europe, the popre are naked, and at other times enclosed in a cocoon.

The colonies of the difrerent speries rary greatly in size. In the nests of Formica sanguinea the number of individuals is very great. The history of a formicarim, or ant's nest is as follons: The workers only (hut sometimes the winged ants) hibernate, and are found carly in spring, taking care of the eggs and larae produced by the antummal brood of females. In the course of the summer the adult forms are dercloped, swarming on a hot sultry day. The little yellow ants, abundant in paths and about houses in New England, generally strarm on the afternoon of some hot day in the first week of September, when the air is fillect fowneds sumset with myriads of them. The females, after their mariage flight in the air, may then be seen euterng the ground to lay their eegg for new colonies, or, as Westwook states, they are often seized by the workers and retained in the old colonies. Haring no more use for their wings they phack them ofi, and may be seen muming about wingless. According to Crould, an early English obserter, the eggs destined to hatch the future females, males and workers, are deposited at three different periods.

The nests of some species of Formica are six feet in cliameter
and contain many thousand individuals. Ants also build nests of clay or mud, and inhabit hollow trees. They enjoy feeding upon the sweets of Howers and the honcy of the Plantlice, which they clomesticate in their nests. Several species of beetles, including some of the Staphytinidre, take up their abode in ants' mests. Ants are useful as scarengers, feeding on decaying animal matter. A good method of obtaining the skeletons of the smaller animals, is to place them on a densely populated ant-hill. The habits of the ants, their economy and slave-making habits, are described in the works of Huber, Latreille, and Kirby and Spence.

Upwards of a thousaud species of ants have already been described; those of this country have still to be monographed.

The first group of this extensive family consists of Dorylus and its allies, and Formica and the neighboring genera, all of Which are distinguished by having only the first abdominal segment contracted, while in the second group (Mymicarice), the two basal rings are contracted into knot-like segments.

The genus Dorglus was, by Latreille, Klug, and others, inchaded in the Mutillarice. The lead is very short, the ocelli are large and globalar. The thorax and abdomen are elongated, the last is cylindrical, with a small, round, basal joint. The legs are short, with broad compressed femora and feather-like tarsi. In the wiugs the outer subcostal cells are wanting. The females are not yet known: Mr. F. Smith says that Dorylas was found by Hon. W. Elliot to live in the manner of ants, under the stone fomdation of a house in India. The society was very numerous. The difference in size of the male and worker is rery remarkable. The males are of large size and are found in tropical Asia and Africa.

Typhopane is an allied genus. T. pallipes Haldeman is found in Pemsylvania.

To the genus Anomma belong the Driver-ants of Western Africa. They mach in vast armies, driving everything before them, so formidable are they from their numbers and bite, though they are of small size. They cross streams, bridging: them by their interlocked bodies. Only the workers are known. Two species only, A. Burmeisten Shuckard, and A. arcens Westwood, are described from near Cape Palmas, West Africa.

The genus Ponera is found distributed throughout the tropics. The females and workers are armed with spines; the abdomen is elongated, the segments more or less diminished in size, the first comparatively large and often cubical. The legs are slender. P. ferrugine Smith is a Mexican species.

The allied genus Odontoncthus springs like some leaping spiders. It uses for this purpose its musually long mandibles, which are bent at right angles. O. clorus Roger lives in Texas.

Formica includes the typical species of ants. Over two handred species of this gemus have been already described. The body is unarmed. The abdomen is short, oral or spherical, the seale-like first segment being lenticular in form, with a sharp upper edge. The subcostal cell of the fore-wings end in a point. Formica songuinea Latr. is one of our most abmand species, making hillocks of sand or clay, according to the nature of the gromel. From the formicury walks, and underground galleries, radiate in all directions. This species has been observed making forays upon each others colonies. We have found a rariety of this species in Labrador, where it is common. It does not throw up hillocks, but tumels the earth.

This species has been observed in Europe by P. Inuber, to go on stave expeditions. They attack a "negro-colony" belouging to a smalker black species, pillaging the nest, and carrying oft merely the larra and pupe. The victors cducate them in their own nests, and on arrising at maturity the negroes take the entire care of the colony. Polyergus rufescens is also a slaremaking ant, and " Latreille very justly observes that it is physically impossible for the rufescent ants (Polyergus rufescens), on account of the form of their jaws, and the accessory parts of their mouth, either to prepare habitations for their family, to procure food, or to feed them." Formica sanguinea sallies forth in immensely long columns to attack the negro ant. Huber states that only five or six of these forays are made within a period of a month, at other seasons they remain at peace. Muber found that the slave-making Polyergus rufescens when left to themselves perish from pure laziness. They are waited upon and fed by their slaves, and when they are talien away, their masters perish miserably. Sometimes they are knomn to labor, cund were once observed to carry their slaves to a spot chosen
for a nest. The F. sangrinea is not so helpless, "they assist their negroes in the construction of their nests, they collect their sweet fluid from the Λ_{p} hides; and one of their most usual ocenpations is to lie in wait for a small species of ant on which they feed; and when their nest is menaced by an enemy they show their ralue for these faithful servants, by carrying them down into the lowest apartments, as to a place of the greatest security." (Kirby.) Pupse of both of the slavemaking species were placed in the same formicary by Huber, where they

Fig. 110. were reared by the "ncgroes," and on ariving at maturity "lived together under the same roof in the most perfect amity," as we quote from Kirby. Darwin states that in England, F. sanguineu does not enslave other species.

Fig. 111.

In this comntry Mr. J. A. Allen has described in the Proceerlings of the Essex Institute, vol. 5, 1866, a foray of a colony of F. sangrinea upon a colony of a black species of Formica, for the prupose of making slaves of them.

Formica Pensyluanica, our largest species, is found in oaks and decaying trees, while F. herculanea Latr. burrows in the earth, its hole opening beneath stones and sticks.

Gould, who wrote in 1747, states that there are two sizes of workers of the common European Formica ruftu, and fata; one set of individuals exceeding the other by about one-third. Kirby states that in his specimens "the large workers of Formica mfa are nearly three times, and of F. flova, twice the size of the small ones." Mr. E. Norton describes F. fuleacea (Fig. 110, wrorker minor), and also Topinoma tomentosa (Fig. 111, workex major' ; antennæ broken off), from Mexico.

The tropical genus Polyphochis includes, according to Smith, all those species that closely resemble Formica, but which
have the thorax and node of the peduncle armed with spines or hooks. They construct small semicircular nests, of a kind of net-work, on the leaves of trees and shrubs. Their communities are small, seldom exceeding twenty individuals. Mr. Norton describes P. arboricola (Fig. 112, worker major) from Mexico. An allied genus is Ectatomma (Fig. 113, worker major. of E. fermainea Norton, from Mexico).

Mr. F. Smith has described at new gents, (Ecophylla, which is allied to Formica. They are green ants, found building in trees

Fig. 112. in the tropics of the old work. The nest of $O E$. smarcagdina Smith is "formed by drawing together a number of green leares, which they unite with a fine web. Some nests are a foot in diameter. They swarm, says Mr. Wallace, in hilly forests in Nery Guinea. Their sting is not very severe. This genus forms a link between Formica and Myrmica; it

Fig. 113. agrees with the former in having a single node to the peduncle, and with the latter in having the ocelli obsolete in the workers, and in being furnished with a sting."

The curious Honey-ant of Texas and Mexico, Miyminecocystus Mexicanus Westwool, has two kinds of "workers of very distinct forms, one of the ustral shape," according to Smith, "and performing the active duties of the formicarium ; the other and larger worker is inactive and does not quit the nest, its sole purpose, apparently, being to elaborate a kind of honey, which they are said to discharge into prepared receptacles, which constitutes the food of the entire population of the commonity. In the honey-secreting workers the abrlomen is distended into a large globose bladder-like form. From this honey an agreeable drink is made by the Mexicans."

The second subfanily, Nymicarice, includes those species in which the two first abdominal segments are contracted and lenticulat. In Nypmica the females aurl workers are armed with spines, and the ocelli are absent in the worlers. The species are rery small, and mostly bright colored. Myrmica molesta Say is found in honses all over the world.
G. Lincecum describes the labits of the Agricultural Ant of Texas, XImmica molofaciens. It lives in populous commmities. "They build payeil cities, constrict roads, and sustain a large military force." In a year and a larlf from the time the colony begins, the ants previonsly living concealed bencath the surfuce, appear above and 'clear away the grass, herbage, and other litter, to the distance of three or four fect around the entrance to their city, and construct a pavement, consisting of a pretty harib crist ahout halt an inch thick," formed of coarse sand and grit. These parements would be inundated in the rainy season, hence, "at least six months previous to the coming of the rain," they begin to build mounds rising a foot or more from the centre of the parement. Within these mounds are neatly constructed cells into which the "eggs, joung ones, and their stores of grain, are carried in time of rainy seasons." No green herb is allowed to grow on the parement except a grain-hearing grass, Aristida stricta. This grain, when ripe, is harvestect, and the chaft renoved, while the clean grain is carefully stored array in dry cells. Lincecum arers that the ants even sow this grain. They also store up the "grain from seweral other species of grass, as well as seels from many kinds of herbaceous plants."

Pheidole is distinguished by having workers with enormons heads. P. notabilis Smith, from the Island of Bachian, Indian Arehipelago, is noted for the enormonsly enlarged, culbical head of the worker major, which is at least six times the size of the abdomen, while in the worker minor, the head is of the ordinary size. An Intian species, P. providens Westrood, according to Col. Sykes, "collects so large a store of grass seeds as to last from January and February, the time of their ripening, till October."

The genus Atta is also well-armed, while the workers have a very large, deeply incised and heart-shaped head, without
ocelli, and the second abdominal knot-like ring is very transverse. A. clypeata Smith is a Mexican species.

Fig. 11t.

In Eciton the mandibles nearly equal the length of the insect itself. This genus is the most ferocions of all the ants, entering the nest of species of Formica and tearing them, limb from limb, and then carrying off the remains to their own houses.

Eciton Mexicana Roger (Fig. 114, worker major, ", front view of head, showing the inmense sickle-like mandibles, and only the two basal joints of the antenne; Fig. 115, worker minor, with a front riew of the head, showing the mandibles of the usual size). This species, with Eciton Srumichusti Norton, (Fig. 116, worker minor') hats been found by Professor Sumichrast at Cordora and Orizaba, Mexico.

The males of Eciton are not yet known. Smith supposes that Lubidus (a genus allied to Dorylus) is the male form, and Sumichrast thinks this conjecture is "snstained by the

Fig. 115.
fact that it is in the season when the sorties of the Eciton are the more frecuent that the Labidus also show themselves."

An allied genus is Psendomyrma. P. bicolor Guérin (Fig. 117) is found in Central America. P. favidula Smith, found in Central and South America, in Mexico lives, according to Sumichrast, within the spines which arm the stems of certain species of Mimosa. These spines, fixed in pairs upon the branches, are pierced fear the end by a hole (Fig. 118 a), which serves for the entrance and exit of the ants.

The genus Ecodoma differs from Alta in having the thorax armed with spines. E.

Fig. 116. Mexicture Smith (Figs. 119, female; 120, worker major) is abundant on the Gulf Coast of Mexico. In many places, according to Sumichrast, the natives eat the females after haw-
 ing detached the thorax. The intelligence of these ants is wonderful. They are seen in immense nombors transporting leaves. Sumichrast states that "the ground at the foot of the tree, where a troop of these 'arveras,' or workers, is assembled for despoiling it of its leaves, is ordinarily strew with flingments cut off with the greatest precision. And if the
Fig. 117. tree is not too lofty, one can satisfy himself that a party of foragers, which have climbed the tree, occupies itself wholly in the labor of cutting then off, while at the foot of the tree are the campers which make the journeys between the tree and the nest. This managemont, which indicates among these insects a rare degree of intelligence, is, perhaps, not a constínt and invariable practice, but it is an ancontestable fact, and one which can be constantly proved."
"It is specially in the argillaceous countries that the CEcodomas build their enormous formicaries, so that one perceives them from afar by the

Fig. 118. projection which they form above the level of the soil, as well as by the absence of vegetation in their immediate neighborhood. These nests occupy a surface of many square
metres,* and their depth varies from one to two metres. Very many openings, of a diameter of about one to three inches, are contrived from the exterior, and conduct to the imner cavitics which serve as storehouses for the eggs and larre. The central part of the nest forms a sort of fumel, designed for the drainage of water, from which, in a country where the periodical rains are often abundant, they coukl hardly es-
 cape without being entirely submerged, if they did not provide for it some outlet.
"The system which reigns in Fig. 119.
these formicaries is extreme. The collection of regetable debris brought in by the workers is at times considerable; lout it is deposited there in such a manner as not to cause any inconrenience to the inhabitants, nor impecte their circulation. It is mostly leares which are brought in from without, and it is the almost exclusive cloice of this kind of vegetation which makes the Ecodoma a reritatble scourge to agriculture. At

Fig. 120. each stcp, and in almost every place in the elerated moods, as on the plains; in desert places as well as in the nelphborhood of Labitations, one meets mumerous columns of these insect * , occupied with an atmirable zeal in the trimsportation of leaves. It semms eren that the great law of the clucision of labor is not ignored by these little creatures, julging from the observations which I have otten hat occasion to make." (Sumichrast.)
"The (E. cephalotes," says II. W. Bates, "from its immense mumbers, etemal industry, and its plundering propensities, becomes one of the most important animals of Brazil. Its inmense hosts are unceasingly occupied in clefoliating trees, and those most relished by them are precisely the uscful kinds. They

* A metre is about thirty-nine (39.37) inches.
have regular clivisions of laborers, numbers mounting the trees and cutting off the leaves in irregularly rounded piecos the size of a shilling, another relay carrying them off as they fall." "The heavily laclen fellows, as they came trooping in, all deposited their load in a heap close to the mound. About the monnd itself were a vast number of workers of a smaller size. The very large-headed ones were not engaged in leaf-cutting, nor seen in the processions, but were only to be seen on disturbing the nest." Bates also says, "I found, after removing a little of the surface, three burrows, each about an inch in diameter ; hali a foot downward, all three united in one tubular burrow abont four inches in diameter. To the bottom of this I could not reach when I probed with a stick to the depth of four or five feet. This tube was perfectly smooth and corered with a rast number of workers of much smaller size than those occupied in convering the leaves ; they were ummixed with any of a larger sizc. Afterwards, on probing lower into the burrow, up came, one by one, several gigantic fellows, out of all proportion, larger than the largest of those outside, and which I could not have supposed to belong to the same species. Besides the greatly enlarged size of the head, etc., they hare an ocellus in the midrile of the forehead; this latter feature, alded to their startling appearance from the carernons depths of the formicarium, gare them quite a Cyclopean character."

Of another species, the $\mathcal{E c}$. sexdentatu, Mr. Smith quotes from Rer. Iiamlet Clark, that at Constancia, Prazil, the proprietor of a plantation ised every means to exterminate it and failed. "Sometimes in a single pight it will strip an orange or lemon tree of its leares; a ditch of water around his garden, which quite keeps out all other ants, is of no use. This species carries a mine mader its bed without any dificulty. Indeed, I have been assured again and again, by sensible men, that it has undermined, in its progress through the comtry, the great river Paraiba, At any rate, without anything like a natural or artificial butige, it appears on the other side and continnes its course." This testimony is confirmed by Mr. Lincecum (Proceedings of Academy of Natural Sciences, Philadelphia. 1867, p. 2t) in an interesting account of the QEc. Texant, which he has observed for eighteen years. He states
that they often carry their subterranean roads for several hundred yards in grassy districts, where the grass would prove an imperliment to their progress. On one occasion, to secure access to a gentleman's garden, where they were cutting the vegetalbles to pieces, they tumelled beneath a creek, which was at that place fifteen or twenty feet deep, and from bank to bank about thirty feet. He also obscrves that the smaller workers which remain around the nest do not seem to join in cutting or carrying the leares, but are occupied with bringing out the sand, and generally work in a lazy way, very differently from the quick, actire leaf-cutters. Also, that the picces of leares are usually dried outside before being carried in, and that if wet by a sudden shower are left to decay withont. He also
 thinks that their lives are dependent upon access to water, and that they always choose places where it is accessible by digging wells. In one case, a well was dug by Mr. Pearson for his own use, and water found at the depth of thirty feet. The ant-well which he fullowed was twelve inches in diancter."
Fig. 121. (Norton, American Naturalist, vol. 2.)
The genus Cimptocerus is remarkable for its flattened head, with the sides expanded into flattened marginal plates, concenling, or partly hiding the eyes. C. multiminosus Norton (Fig. 121) is the most common species about Cordora, Mexico, where they live, according to Sumichrast, within the trunks of trees.

Cimpridide Latreille. In this small group the thirteenjointed antennse are elbowed, the eyes are oral and the ocelli distinct. The maxillary palpi are fire, and the labial palpi threc-jointed. There are about four hundred species known.

These insects are very different from the ants in their oblong compact form, their nearly sessile, oblong abdomen, having only three to five rings visible, the remaining ones being drawn within, forming a long, large, jointed sting-like ovipositor, which can be thrust out like a telescope. The abdomen beneath is concare, and the insect can roll itself into a ball on being disturbed. They are green or black. The sting has no poisonbag, and in this respect, besides more fundamental characters,
the Chrysis family approaches the Ichneumons. They best merit the name of "Cuckoo-fies," as they fly and rm briskly in hot sunshine, on posts and trees, clarting their oripositor into holes in search of the nests of other Iymenoptera, in which to lay their eggs. Their larra are the first to hatch and devour the food stored up by other fossorial bees and wasps. "St. Furgeat, however, who has more carefully examined the economy of these insects, states that the egrs of the Chrysis cloes not hatch until the legitimate inhabitant has attained the greater par't of its growth as a larya, when the larya of the Chrysis fastens on its lack, sucks it, and in a very short time attains its full size, destroying its rictim. It does not form a cocoon, but remains a long time in the pupa state." (Westrood.)
"In the Eitomological Magazine has been noticed the discovery of Hedychrom bidentulum, which appears to be parasitio upon P'sen caliginosus; the latter insect had formed its cells in the straws of a thatcher arhor, as many as ten or twelie cells being placed in some of the straws. Some of the straws, perhaps about one in ten, contained one or rarely two, of the Hedychrum, placed indiscriminately amongst the others. Wralkenaer, in lis Memoirs mon Halictus, informs us that Hedychrum lacidulum waits at the mouth of the burrows of these bees, in order to deposit its egeg therein; and that when its desigu is perceived by the bees, they congregate together and drive it amay. St. Fargean states that the females of Hedychrum sometimes deposit their eggs in galls, while H. regium oriposits in the nest of Megachile muraria; and he mentions an instance in which the bee, returning to its nearly finished cell, laden with pollen paste, fornd the Herlychrum in its nest, which it attacked with its jars ; the parasite immediately, however, rolled itself into a ball, so that the Alegrchile was mable to hurt it ; it, however, bit of its four wings which were exposed, rolled it to the ground and then deposited its load in the cell and flew awar, whereupon the ITelychrum, now being wingless, had the persevering instinct to crawl up the wall to the nest, and there quietly deposit its egg, which it placed between the pollen paste and the wall of the cell, which prevented the Megachile from seeing it." (Westwood.)

In Cleptes the underside of the abdomen is not hollowed out;
it is acutely oral, and with five rings in the male. Cleptes semiaurata Latr'. is fomd in Central Europe. We hare no native species. In Chrysis and the other genera, Stilbum, Panopes, and IFedychrum, the abdomen is hollowed beneath, and the tip is broad and square. (hrysis hitaris Dahlb. (Fig. 122) is a short, thick, bluish green species, 82 inch in length. It is not meommon in New England.

In Hedyedrum the maxillary palpi and ligula are rather short, the last cordate ; the mandibles are three-toothed within. The abdomen is broad and short, ahmost spherical, the second segment being the largest. EI. dimidiatum Say is found in the Middle States.

The European Stibum splenditum, Fabr. according to Dufour, lives in the cells of Peloprens spirifer. It makes oblong

Fig. 122. cocoons of a deep brown, witl rounded ends; they are of great tenacity, being mixed with a gummy matter.

Mr. Guenzins states that in Port Natal 'a species of Stilbum lays its eggs on the collected caterpillars stored up by Fumenes tinctor, which constructs a nest of mud and attaches it to recds, etc., not in a single, but a large mass, in which cells are excarated, similar to the nest of Chalicodoma micraria? F First, it uses its ovipositor as a gimlet, and when its point has a little penetrated, then as a saw or rasp; it likewise feels with its oripositor, and, finding an unfinished or an empty cell it witholiaws it immediately, withont laying an egg."

Tchnevanide Latreille. The Ichneumon-flies are readily recognized by the usually long and slencler body, the long exserted oripositor, which is often very long, and protected by a sheath formed of four stylets of the same length as the true oripositor. The head is mstally rather square, with long, slender, many-jointed antemm whish are not ustally elborted. The maxillary palpi are five to six-jointed, while the labial

[^24]palpi are three to four-jointer. The abrlomen is inserted immediately orer the hind pair of trochanters, and usually consists of seven risible scgments. The fore-wings have one to three sulocostal (cubital) cells.

The larva is a soft, fleshy, cylindrical, footless gruld, the rings of the body being moderately convex, and the head rather smaller than in the foregoing families. The eggs are laid by the parent either upon the ontside or within the caterpillar, or other larva, on which its young is to feed. When hateled it devours the fatty portions of its victim which dies gradually of exhaustion. The ovipositor of some species is very long, ant is fitted for boring through very dense substances; thus M1. Bond, of England, observes that Physsa persuasoria actnally bores through solid wood to deposit its egge in the larre of Sirex; the oripositor is worked into the wood like an armb. When about to enter the pupa state the larva spins a cocoon, consisting in the larger species of an inner dense case, and a looser, thinner, outer covering, and escapes as a fly through the skin of the caterpillar. The cocoons of the smanter genera, such as Cryptus and Microgaster, may be found packed closely in considerable numbers, sitle by side, or sometimes placed upright within the body of caterpillars.

The Ichneumon-flies are thas rery serviceable to the agriculturist, as they must amually destroy immense mombers of caterpillars. In Europe over 2,000 species of this family have been described, and it is probable that we have an equal mmber of species in America; Gerstaecker estimates that there are 4,000 to 5,000 known species.

The Ichneumons also prey on ertain Coleoptera and Lymenoptera, and even on larve of Phryganicta, which live in the water. Iu Europe, Pimpla Faimarii is parasitic on a spider, Clubione holosericea, according to Laboulbenc. Boheman states that P. orivora lives on a spider, and species of limpla and Ifemiteles were also fomd in a nest of spiders, according to Gravenhorst. Bouché says that Pimpla rufata derours, during winter and spring, the eggs of Aranea diadema, and Ratzburg gives a list of fourteen species of Ichmemons parasitic on spiders, belonging to the genera Pimpla, Pezomachas, Pteromalus, Cryptus, Hemiteles, Microgaster, and Mesochorus. Mru.

Emerton informs me that he has reared a Pezomachus from the egg-sac of Attus, whose eggs it uncloultedly devours. They are not even free from attacks of members of their own family, as some smaller species are well known to prey on the larger:

Being cut off from commonication with the external world, the Ichmemmon larva breathes by means of the two principal

Fig. 123. trachea, which terminate in the end of the body, and are placed, according to Gerstaecker, in communication with a stigma of its host. From the complete assimilation of the liquid food, the intestine encls in a cul de sac, as we have seen it in the larta of Humble-bees and of Stylops, and as probably occurs in most other larree of similar habits, such as young gall-flies, weerils, etc., which live in cells and do not eat solid food.

The first sulffamily, the Evaniida, are insects of singular and rery direrse form, in which the antennæ are either straight or elbowed, and thirteen to fourteenjointed; the fore-wings have one to three subcostal (cubital) cells, and the hind wings are almost without reins.

In Eranics and Fonus the abdomen has a very slender perdicel, originating. next the base of the metanotum. The former genus has a remarkably short triaugular compressed abdomen in the female, but ovate in the male. The

Fig. 124. species are parasitic on Blatta and allies. Evania laragote Olivier (Fig. 123, of and propa) is a black species, and is parasitic on the cockroach, Periplaneta, from the eggs of which we have taken the pupa and adult. The eggs of the cockroagch are just large enough to accommodate a single Evania. This species
is widely distributed, and in Cuba, according to Cresson, it derours the cges of Periplaneta Americana.

The genus Allucodes of Cresson, "forms a tery close con-necting-link between the minute Ichneumons and the Evanise." A. nigriventris Cresson (Fig. 12t, a; b, metathorax; c, insertion of the abdomen) lives in Cruba.

Foenus is quite a different genus, as the abdomen is very long and slender. Fonus jaculator Linu is known in Europe to frequent the nests of Crabranidce, oripositing in the larve.

Pelecinus is a familiar insect, the immensely elongated, linear abdomen of the female casily

Fig. 125. distinguishing it. The male is extremely rare; its abctomen is short and clarate. It strikingly resembles Trypoxylon, thongh the abdomen is considerably larger. Pelecims polycerator Drury (Fig. 125, \& and \circ) is widely distributed throughout this country.

The genuinc Iemeumonidce hare long; straight, multiarticulate antemae. The first subcostal (cubital) cell of the fore-

Fig. 126. wing's is zuited with the median cell lying next to it, while the second is very small or wholly wanting. There are two recurrent teins. Mr. Cresson has described the genus Eiphosona (Fig. 120), which he states may be known by the long', slender, compressed abdomen, and the long posterior legs, with their femora toothed beneath the tips. E. cmmulatum Cresson, a Cuban species, is, according to Poey, "parasitic upon a larva of Pyralis." (Cresson.)

In Ophion the antenne are as long as the body, the abdomen is compressed, and the species are honey-yellow in color. O. macrurum Linn. (Fig. 127) attacks the American Silkworm, Telea Polyphemus. Anomalon is a larger insect and usually black. 1. resparum is, in Europe, parasitic on Yespa.

The genus R hyssa contains our largest species, and frequents the holes of boring insects in the trunks of trees, inserting its remarkably long ovipositor

Fig. 127. in the body of the larre deeply embedted in the triunk of the tree. Harris states that Rtoyssac (leimpla) atrata and banctor (Fig. 128, male) of Fabricius, "may frequently be seen thousting their slender borers, measuring from three to four inches in length, into the trunks of trees inhabited by the grubs of the Tremex, and by other woodcating insects; and, like the female Tremex, they sometimes become fastener to the trees, and die without being able to draw their borers out again." The abdomen of the male is very slender.

Pimple has the oripositor half as long as the abolomen. P. pedculis Cresson is a parasite on Clisiocampa.

The genus Troofus leals to Ychmemmon. The antemme are shorter than the body ; the alsdomen is slightly petiolate, fusiform, and the second subcostal cell is quadrangular. Trogus excsorius Brulle is tawny red, and is a parasite of Papilio Asterias.

The genus Ichneumon (Fig. 129) is one of great extent, probally containing orer three hundred species. The abdomen is long and slender, lanceolate ovate, slightly petiolate. The second subcostal cell is fire-sided, and the oripositor is cither concealed or slightly exscrted.
 Ichnewmon suturalis Say is a very common form, and has been reared in aboudance from the larva of the Amy-rorm, Lencania unipuncta. The body is pale ust-red, with black sutures on the thorax. Another common species, also parasitic on the

Army-worm, is the Ichneumon paratus, which is blackish, banded and spotted with yellow.

The singular genus Grotea, established by Mr. Cresson, has a long and narrow thorax (Fig. 130 a), and a very long and petiolated abdomen (c). We have taken G. anguina Cresson, the only species known, from the cells of Crabro in raspberry stems received firom Mr. Angus.

Ciyplus is a genus of slender form, with a long, cyliudrical ablomen, which is petiolate. In the female it is oval with an exserted ovipositor. Cresson figures a wing

Fig. 199. (Fig. 131) of C.? ornatipennis, a Cuban species, which has the wings differently veined from the other species. Westwood remarks that in Europe a species of this genus preys on the larve of the Ptinidce.

Pezomachus is usually wingless, and might at first sight readily be mistaken for an ant. The body is small, the oral abdo-

Fig. 131. men petiolate, and the wings, when present, are very small. The species are very numerous. Gerstæcker suggests that some may be wingless females, belonging to winged males of allied genera.

The third subfamily is the Braconida, containing those genera having long multiarticulate antemm, and with the first subcostal cell separate from the first median, lying just behind it. The second subcostal cell is usually large, and there is only one recurrent vein.

The genus Bracon is distinguished by the deeply excavated clypeus. The first subcostal cell is completely formed behind, wanting the recurrent nerre ; the second cell is long, and four-sided. More than five hundred species, mostly of bright, gay

Fig. 130. colors, are already linomn. The gents Rhopalosoma of Cresson connects Bracon and other minute genera (Braconidr) with the true Ichneumons. R. Poeyi Cresson (Fig. 132) is a
pale honey-yellow species, with a long club-shaped abdomen. It lives in Cuba.

Rogas is a genus differing from Bracon in having the three first abclominal rings long, forming a slender petiole.

In Microgaster, a genus containing numerous species, the antennæ are cigliteen-jointed, and the abdomen is shorter than usual, and clarate. There are two or three

Fig, 182. subcostal cells, the second very small. Microguster nephoptericis (Plate 3, figs. 3, 3a) is parasitic on Nephopteryx Edmandsii, found in the cells of the Humble-bee.

Lhbidius, the parasite of the Plant-lice, is a most valuable ally of man. It is known by its small size, and by having the second and third segments of the abdomen moving free on each other. There are three cubital cells, though the wings are sometimes wanting. Aphiclius (Praön) atena$p^{2} h i s$ of Fitcl, the Oat-louse Aphidins, is black with honeyyellow legs, and is one-tenth of an inch long. Aptidius (Toxares) triticaphis Fitch, the Wheat-louse Aphidius, is black, shining, with thread-like antemne composed of twenty-five joints. Its length is .08 inch. Frequently the large size of the parasite carses the body of the dead Aphis to swell out into a globular form.

Pboctotrypide (Proctotmpii) Latreille. Egg-parasites. In this family are placed rery minute species of parasitic Ich-neumon-iike IIymenopters which have rather long and slender bodies, with straight or elbowed antemm of various lengths, often haired on the joints, usually ten to fifteen, sometimes only eight in number, while the wings are corered with minute hairs and most of the neryures are ahsent. The maxillary palpi are three to six, the labial palpi usually three-jointed. The abdomen has from five to seren joints, and the tarsi are mostly fivejointed, rarely four-jointed. These insects are often so minute that they can searcely be distinguished by the maked eye unless it is specially trained; they are black or brown, and very active in their habits. They may be swept off grass and herbage, from aquatic plants, or from hot saud-banks. They
prey on the wheat-flies by inserting their eggs in their larva, on gall-midges, and gall-flies, and on fungus-eating ties. In Europe, species of Teleas lay their eggs in those of other insects, especially butterflies and moths and hemipters, where they feed on the juices of the larwe growing within the egg, coming out as perfect Icheumons. We probably have many species of these insects in this country. They usually occur in great numbers where they are foum at all. They are almost too small to pin, and if transfixed wonla be unfit for sturly, and should, therefore, be gummed on mica, or put into small vials with alcohol.

In Proctotrupes the antennre are long, featherect, twelvejointed. The fore-wings have the begiming of a cubital cell, and two longitudinal reins on the posterior half. The abdomen is spinde-shaped and very acutely pointed, the terminal joints being tubular in their arrangement, and thus, as Westwood states, approaching the Chiysicticlee. An unknown species (Fig. 133) we have taken at the Glen, in the White Mountains.

The head of Diapria is horizontal and
 longer than broad; the ocelli are moved formard on to the front edge; the long, filiform antemme have a projection on the under sile, with the basal joint much elongated; in the male they are thirteen or fourteen-jointer, with one joint less in the female. The wings are withont stigma or veins. The abrtomen is long, oral, pedicelled. In Europe, D. cecidomyiarum Bonché is parasitic on the larve of Cecidomyia artemisire. Esenbeck considers that this genus is also parasitic on the earth-inhabiting Tipulido.

Gonatomes is a twingless genus, with the head rery broad, transverse, and the front deeply hollowed out, while the tenjointed antenna are long, slightly clavate, and the thorax is much clongated, deeply incised, forming two knot-like portions. Gonatopus lunatus Esenbeck, found in Europe, is one and a half lines long.

Ceraphom has the antennæ inserted near the month; they are elbowed, and eleren-jointed in the male, and ten-jointed in the female. The abdomen has a very short pedicel. The fore-
wings have a very short, bent costal (radial) vein. C. armatum Say was described from Indiana.

The egg-parasite, Telects, has the elbowed twelve-jointed antenne inserted very wear the front of the head, and slightly hairy and simple in the male, but in the female terminated in a six-jointed club. The thorax is short, the legs thickened and adapted for leaping, and the abdomen is pedicelled. Many species have been fonnd in Europe. According to Westwood, "the trpe of this genus is the Ictneumon ovulorwom of Limmeus (Teleas Limuei Esenbek), which Limneus and De Geor obtained from the eggs of moths." It has been raised from the egg's of several Bombycida. "Bouche observed the female deposit
Fig. 13t. an egg in each of the eggs of a brood of Bombyx neustria. He describes the larva as elliptical, white, shining, rugose, subincurved, and one-third of an inch long." (Westwood.)

Of the extensive genus Platygaster over a hundred European species are already known. The body, especially the abdomen, is generally flattened, the antenna are ten-jointed, and in the female clarate. The wing veins are absent; the rather slencler legs are not adapted for leaping, and the tarsi are five-jointed. A species of Platygaster (Fig. 13t) not yet named, oviposits in the eggs of the Cinker-worm moth, Anisopteryx vernata, and by its numbers does much to check the increase of this caterpillar. We have seen several of these minute insects engaged in inserting their eggs into those of the Cankerworm.

Dr. Harris, in speaking of the enemies of the Hessian-fly, states, that "two more parasites, which Mr". Herrick has not yet deseribed, also destroy the Hessian-fly, while the latter is in the flax-seed or pupa state. Mr. Herrick says, that the eggparasite of the Hessian-fly is a species of Platygaster, that it is very abmudant in the autumn, when it lays its own eggs, four or five together, in a single egg of the IIessian-fly. This, it appears, cloes not prevent the latter from hatching, but the maggot of the Hessian-fly is mable to go throngh its transformations, and dies after taking on the flax-seed form. Meanwhile its intestine foes are hatched, come to their growth, spin
themselves little brown cocoons within the skin of their victim, and in due time, are changed to winged insects, and eat their way out." P. error Fitch (Fig. 135) is closely allied to P. tipulee Kirloy, which, in Euroje, destroys great numbers of the Wheat-midge. Whether this is a parasite of the midge, or not, Dr. Fitch has not yet determined.

The habits of the genus Bethylus remind us of the fossorial wasps. Bethylus fuscicomis, according to IIaliday, "buries the larve of some species of Tinea, which feed upon the low tufts of Rosa spinosissima, dragging them to a considerable distance with great labor and solicitude, and employing, in the instance recorded by Mr. Haliday, the loore of a reed stuck in the gromed instead of an artificial fumel, for the cells which should contain the progeny of the Betlyylus, with its store of prorision." (Westwood.)

The genus Inostemma is remarkable for having the basal segment of the aldomen of the females furnished with a thick

Fis. 135. curved horn, which extends over the back of the thorax and head. Dr. Fitch states that I. inserens is supposed loy Kirby to insert its eggs into those of the Wheat-midge. In the genus Galesus of Curtis, the mandibles are so enlarged and lengtheach as to form a long beak, and Westwood firtlicr states that in some specimens the anterior wings have a notel at the extremity. Say's genns Coptera has similar wings. C. polita Say was diseovered in Indiana.

In the very minute species of Mymar and its allies, the head is transverse, with the antenum sinserted above the middle of the face; they are long and slender and elbowed in the male, but clavate in the female. There are no palpi, while the very narrow wings have a very short subcostal vein and on the erlges are provided with long dense cilize. The antennae of Nymar are thirteen-jointed in the male, and nine-jointed in the female; the club is not jointed. The tarsi are four-jointed. and the abdomen is pedunculated. $\mathbf{N y m o r}$ pulchellus Curtis is a quarter of a line long. It is found in Europe. An allied
form Polynema ovulorum Liun. lays numerous egg's in a single butterfly's egrg.

In Anaphes the male antema are twelve-jointed, those of the female nine-jointed, and the alodomen is sulbsessile and oroid. In Ancyrus the male antemma are thirteen-jointed, those of the female nine-jointed, while the tarsi are for-jointed, and the acutely conical abdomen is sessile. No native species are known.

The smallest Hymenopterous insect known, if not the most minute of all insects, is the Pierutomns Putnomit I'ack. (Plate 3, figs. 8,8 a, hind wing'), which we first discoveret on the body of an Anthophorabia in the minute eggs of which it is undoubtedly parasitic. It differs from Anagrus in the olotusely conical abolomen, and the narrower, very linear wings, which are edged with a fringe of long, curved hairs, giving them a graceful, feathery appearance. The fore-wings are fissured, a very interesting fact, since it shows the tendency of the wings of a low Hymenopterous insect to be fissured like those of Pterophorus and Alncita, the two lowest Lepiilopterous genera. It is one-ninetieth of an inch in length.

Chalcidide Westwood. This is a gromp of great extent; the species are of small size; they are olten of shiny colors, as the name of the prineipal genus implies, being either bronzen or metaliic. They hare also elborsed antenne with from six to fourteen joints, and the wings, are often deficient in reins. In some genera, including Chalcis, the hind thighs are thickened for leaping. The differences between the sexes, generally very marked in Hymenoptera, are here especially so. The aldomen is usually seren-jointed in the male and six-jointed in the female, the other rings being aborted. The male of several species has the joints of the antemme swelled and fumished with long hairs above. Some of the species of Pteromalus are wingless, and closely resemble ants. They infest egegs and larre. Some species prey upon the Aphides, others lay their egrgs in the nests of wasps and bees. One species is known in Europe to be a parasite of the common house-fly. Others consume the larere of the Hessian-fly, and those Cecidomyix that produce galls, and also the true gall-flies (Cynips). Some are
parasites on other Ichncumon parasites, as there are species preying on the genus Aphidius, which is a parasite on the Aphis. Mr. Walsh has bred a species of Hockeria and of Glyphe, which are parasitic on a Microgaster, which in turn preys upon the Army-worm, Leucania unipuncta ; and Chalcis allbifrons Walsh, was bred from the cocoons of Pezomachus, an Ichnemon parasite of the same caterpillar.

The pupe of some species are said to lave the limbs and wings soldered together as in Lepidoptera, and the larve seldom spin a silken compact cocoon. We have probably in this country at least a thousand species of these small parasites, nearly twelve hundred having been named and described in Enrope alone. They are gencrally large enough to be pimned or stuck upon cards or mica; some individuals shonld be preserved in this way, others, as wet specimens.

Fig. 136.

Chatcis is linown by the abdomen having a long pedicel, its much thickened, oval thighs, and curred tibix. Chaleis brat cata (Fig. 136), so named by Mr. Sanborn "in allusion to the ornamental and trousered appearance of the posterior feet" is about . 32 inch in length. "Réaumur has described and figured a species of Chalcis, which is parasitic in the nest of the American wasp Epipone nitidulans and which he regarded as the female of that wasp." (Westwood.)

The genus Leucospis is of large size. It is Inown by having the large ovipositor laid upon the upper surface of the abdo-

Fig. 187. men, and leing spotted and banded with Yellow, resembling wasps. One of on more common species is the L. affinis (Fig. 137) of Say. The Cuban L. Poeyb Guérin is parasitic on the Megrachile Pocyi of Gutrin.

The well-known Joint-worm, Eurytoma, is thought by many to produce galls on wheat-stems. The antenna are, in the male, slender and provided with verticils of hairs. The acntely oval abdomen has a short pedicel. The hind legs are scarcely thicker than the fore limbs. E, horde Harris (Fig. 138) is found in gall-like swollings of wheat-stalls. It is still a matter of discussion,
whether it directly produces the galls, or is parasitic, like many of the family, on other gall-insects. Dr. Harris, who has studied the habits of the Joint-worm, states that the body of the adult fly is jet black, and that the thighs, shanks (tibia), and claw-joints, are blackish, while the knees and other joints of the fect, are pale-yellow. The females are .13 inch long, While the males are smaller, have a club-shaped abdomen, aud the joints of the antenng surrounded with a rerticil of hairs. The larra is described by Harris from specimens received from Virginia, as varying from one-tenth to nearly three-twentieths of an inch in length. It is of a pale yellowish white color, with an internal dusky streak, and is destitute of hairs. The head is round sund partially retractile, with a distinct pair of jaws, and can be distinguinhed from the larva of the dipterons gall-flies by not having the r-shaped organs on the segment
 succeeding the head. During the summer, aceorling to Mr. Gourgas's observations reportel by Dr. Ilaris, and when the barley or wheat is about eight or ten inches high, the presence of the young Joint-worms is detected "by a sulden check in the growth of the plants, and the yellow color of their leaves," and several irregular galllike swellings between the second and third joints, or, according to Dr. Fitch, "immediately above the lower joint in the sheathing base of the lear:" or, as IIarris states, in the joint itself. The rarages of this insect have been noticed in wheat and barkey. During Norember, in New England, the worms transform into the pupa state, according to the observations of Dr. A. Nichols, and "live through the winter unchanged in the straw, many of them in the stubble in the field, while others are carried atray when the grain is harrested." In Firginia, however, the larva does not transform until late in Febrary, or early in March, according to Mr. Glover. From early in May, until the first week in July, the four-winged flies issue from the galls in the dry stubble, and are supposed to immechately lay their eggs in the stalks of the joung wheat or burley plants. The losses by this insect has amounted, in Virginia, to over a third of the whole crop. The best remedy
against the attacks of this insidions foc, is to burn the stubble in the antumn or spring for several successive jears. Ploughing in the stubble does not injure the insects, as they can mork their way out of the earth.

It has been objected by Westwood, Ratzburg, and more recently by Mr. Walsh, in the Practical Entomologist, vol. i, that as all the species of this fimily, so far as known, are parasitic, the Eurytoma camot be a gall-producer, and that the galls are made by a dipterons insect (Cecidomyia) on which the Euxytoma is a parasite; but, as they offer no new facts to support this opinion, we are inclined to belicre from the statcments of Harris, Fitch, Cabell, T. Glorel (Patent Ofice Report for 1854), and others, that the larva of the Eurytoma produces the gall. We must remember that the habits of comparatively few species of this immense family have been studied; that the genus Eurytoma is not remotely allied to the Cynipidx, or true gall-flies (which also comprise animal parasites), in which group it has actually been placed by Esenbeck, for the reason that in Europe "several species of Eurytoma hare been observed to be attached to different kinds of galls." (Westrood.) Dr. Fitch also describes the Yellow-legged Barley-fly, Eurytoma flowipes, which produces similar galls in barley, and differs fiom the Wheat Joint-worm in haring yellow legs, while the antenna of the male are not surrounded with whorls of hair. The Eurgtona secalis Fiteh infests rye. It differs from E. hordei in "having the hind pair of shanks dull pale-jellow, as well as the forward ones." We shall also see beyond that several species of Saw-flies produce true galls, while other species of the same genus are extermal fecders, which reconciles us more easily to the theory that the Eurytoma hordei, and the other species described by Dr. Fitch, differ in their habits from others of the family, and are not animal parasites. Indeed the Joint-worm is preyed upon by tro Chalcid parasites, for Marris records fincling the larre, probably of Torymus, feeding on the Enrytoma larve, and that a species of Torymus (named T. Harrisii, by Dr. Fitch, and perhaps the adult of the first-named Torymus) and a species of Pteromalus are parasites on Eurytoma.

In Monodontomerus (Torymus) the third joint of the an-
tenne is minnte, and the hind femora are thick, but not serrated, and beneath armed with a tooth near the dip.

The wings are rudimentary so that it does not quit the cell. Newport states that the larra is flat, very hairy, and spins a silken cocoon when abont to prupate. It is an "external feeding parasite" consmming the proa as well as the larva of Anthophorabia. The imago appens about the last of June, perforating the cell of the bee. It also lives in the nests of Osmia, Anthophora, and Odynerus.

The genus Anthophorabia is so-called from being a parasite on Anthophora. The males difer remarkably from the females, especially in having simple insteal of compound eyes, besides the usual three oceili. A. mergachitis Pack. (Plate 4 ; fig. 7, larva; 7 a, pupa) is a parasite on a species of Megachile. The lara is white, short and thick, cylindrical, with both extremities much alike; the segments are shightly convex, and the terminal ring is orbicular and rather large. Length, $0 \pm$ inch, being one-third as broad as long. On opening the cells of Megachile, we found nearly a dozen containing these parasites, of which 150 lavre were counted clustering on the outside of a dead and dry Megachile larra. In England they oceur, aceording to Nemport's observations, in much less mombers, as he found from thirty to fifty in a cell of Anthophora. A ferw females hatched out in the middle of October, and there were a few pupæ left, but the majority wintered orer in the lava state, and a new and larger brood appeared in the spring.

Perilampus is a beautiful genus, with its shining, metallic tints. The eleven-jointed antennæ are short, lying when at rest in a deep frontal furrow. The head is large, while the abrlomen is slightly pedicolled, being short, contracted, with the oripositor concealed. P. platyguster Say and P. triangzlow is Say were described from Indiana.

The numerous species of Pteromalus often oriposit in the larve of butterflies. In this genus the antenne are inserted in the middle of the front. The abdomen is mearly sessile, obtusely triangular, or acutely orate in form, with the oripositor concealed. The femora are slender. There are about three hundred species known to inhabit Europe. Pieromalus ranessa Harris is a parasite on Vanessa Antiopa. P. clisio-
compae Harris infests Clisiocampa. "Pteromalus apum is parasitic in the nests of the Mason-bee." (Westwood.) A species of this or an allied genus (Fig. 139) infests the eggs of the Clisiocampa Americana. Its eggs are probably laid within those of the Tent-caterpillar moth early in the summer, hatching out in the autumn, and late in the spring or early in June.

An allied gents, Siphomure, is a parasite on galls. It resembles a bectle, Mordella, from its very peculiar scutum.

Fig. 1\%.

The antenne of Semiotellus are twelve-jointed. S. (Ceraphron) destructor Say (Fig. 140), according to that author. destroys the Hessian-fly, while lying

Fis. $1 \notin 0$. in the "flax-seed" state. Fiteh deseribes it as being a teuth of an inch long, black, with a brassy green reflection on the head and thorax, while the legs and base of the ablomen are yellowish.

In Encyries, which comprises over a hundred species already known, usually rather small in size, the body is short and rounded. The eleren-joiuted antenure are inserted near the mouth. The thorax is square behind, and the sessile abclomen is short and broad at the base. Encyotus Bolus and E. Reate are described from North America by Mr. F. Walker. Encogrtus varicornis is in Europe found as a parasite in the colls of Eumenes coarctata.

The antenne of Eutophus are ninc-

Fig. 141. jointed, with a long branch attached to the third, fourth. and fiith joints. The abromen is flattened. sessile. E. basalis Say was described from Indiana. We figure a Chalcid (Fig. 141, δ), allied to Eulopus, which preys upon the American Tent Caterpillar.

A species of Blastophaga (B. grossormm Grav.) is interesting as it is the means of assisting in the fertilization of the Fig
blossoms, which act, as applied to this instance of the fertilization of flowering plants by insects, has been callect by Mr. Westrood "caprification."

Cysipide Westwood. (Diplotepanice Latreille.) Gall-fies. In this most interesting family we have a singular combination of zoollogical and biological characters. The gall-flies are closely allied to the parasitic Chalcids, but in their habits are platiparasites, as they live in a gall or tumor formed by the atbnormal growth of the vegetable cells, due to the irritation first excited when the egg' is laid in the bark, or substance of the leaf, as the case may be. The generation of the summer broods is also anomalous, but the parthenogenesis that occurs in these forms, by which immense numbers of females are produced, is necessary for the work they perform in the economy of nature. When we see as single ouk hung with countless galls, the work of a single species, and learn how numerous are its natural

enemies, it becomes erident that the domand for a great mutmerical increase must be met by extraordinary means, like the generation of the summer broods of the Plant-lice.

The gall-flies are readily recognized by their resemblance to certain Chalcids, but the abdomen is much compressed. and acually rery short, while the second, or the second and thirch segments, are greatly dercloped, the remaining ones being imbricated or covered one by the other, learing the hind edges exposed. Concealed within these, is the long, partially coiled, rery slender oripositor, which arises near the base of the abdomen.* Among other distinguishing characters, are the straight

[^25](not being elbowed) thirteen to sixteen-jointed antennæ, the labial palpi being from two to four-jointed, and the maxillary palpi from four to six-jointed. The maxillary lobes are broad and membranous, while the ligula is fleshy, and either rounded or square at the end. There is a complete costal cell, while the subcostal cells are incomplete. The egg is of large size, and increases in size as the embryo becomes more derelopec. The larra is a short, thick, fleshy, footless grub, with the segments of the body rather couvex. When hatched they immediately attack the interior of the gall, which has already formed around them. Many species transform within the gall, while others enter the earth and there become prore.

- It is well known that of many gall-flies the males hare nerer been discorered. "Ilartig says that he examined at least 15,000 specimens of the genus Cynips, as limited by him, withont ever liscovering a male. To the same purpose he collected about 28,000 galls of Cymips divisa, and reared 9,000 to 10,000 Cynips from them; all were females. Of C. foli, likewise, he had thousands of specimens of the female sex without a single male." (Osten Sacken.) Sicbold supposes in such cases that there is a true parthenogenesis, which accounts for the immense number of females.

Baron Osten Sacken, howerer, thinks that these females are impregnated by males of the same species which are produced from a different sort of gall, existing, however, on the same species of tree. Me reports in the Proceedings of the Academy of Natural Sciences of Philadelphia, July 1861, "an observation, which, if confirmed, would solve the question of the seres of Cyupide. From a singular, spincle-shaped gall on the red oak, I reared a male Cynips, which is similar to the gall-fly, Cynips confuens Ifaris, of the common onls-apple of the red oak, known ly the female sex only, and looks exactly as one might suppose the male Cynips confluens, if known, ought to look. If it is proved that the Cynips of the spindle-

[^26]shaped gall is the male of the Cynips of the oak-apple, and \dot{L}° it is shown, by further observation, that in the genera, supposed to be agamous, by Hartig, the males produced from galls are different from those of the females, then it will be plain how 28,000 galls of the same kind could give 10,000 females and not a single malc.
"A strong proof in confirmation of my assertion is, that in those genera, the males of which are known, both sexes are outained from galls in almost equal numbers; eren the males, not unfrequently, predominate in number (see Hartig, l. c. is, 399). Now the gall-flies, reared by me from the oak-apple, were all females. Dr. Fitch, also, had only females ; and Mr. B. D. Walsh, at Rock Island, Illinois, reared (from oak-apples of a different kind) from thirty-five to forty females, without a single male. This leads to the conclusion that the Cynips of the oak-apples luelongs to the genera hitherto supposed to be agamous."

For an accomt of the habits and many other interesting points in the biology of these interesting insects, we further quote Baron Osten Sacken. "Most of the gall-flies always attack the same kind of oak; thus, the gall of C. seminator Farris, is almays found on the white onk; C. tubicola Osten Sacken on the post oak, etc. Still, some galls of the same form occur on different oaks; a gall closely rescmbling that of C. quercueglobulus Fitch, of the white oak, occurs also on the post oak, and the swamp chestnut oak; a gall very similar to the common oak-apple of the red oak occurs on the black-jack oak, etc. Are such galls identical, that is, are they produced by a gall-fly of the same kind? I have not been able to investigate this question sufficiently. Again, if the same gall-fly attacks different oaks, may it not, in some cases, produce a slightly different gall? It will be seen below, that C. quercus-futilis, from a leaf-gell on the white oak, is very like C. quercus-papillata from a leaf-gall on the swamp-chestnut oak. I could not perceive any difference, except a very slight one in the coloring of the feet. Both gall-flies may belong to the same species, and although the galls are somewhat different, they are in some respects analogous, and might be the produce of the same gallfly on two different trees.
"Some gall-flics appear very carly in the season; Cymips quercus-patustris for instance, emerges from its gall before the end of May; these galls are the earliest of the season; they grow out of the buds and appear full grown before the leaves are dereloped. May not this gall-fly have a second generation, and if it has, may not the gall of this second gencration be different from the first produced, as it would be under different circumstances, in a more adranced season, perhaps on leares instead of buts, ete?
"A remarkable fact is the extreme resemblance of some of the parasitical gall-flies with the true gall-tly of the same gall. Thus, Chnips quercus-futilis, O. Sacken, is strikingly like Aulax? futilis, the parasite of its gall. The common gall on the blackberry stems produces two gall-flies which can hardly be told apart at first glance, although they belong to different genera." (Proceedings of the Entomological Society of Philadelphia.)

Hartig has divided this family into three sections: First, Cynips and its allies, the true gull-flies (Psenides) in which the second (comnting the slender pedicel as the first) segment of the abdomen is longer than half its length, and the subcostal area is narrow, the basal areolet (cell) being opposite the base of the former.

Cymips confuens Harris forms the oak-apple commonly met with on the scrub-oak. There is a spring and summer brood. These galls, sometimes two inches in diameter, are green and pulpy at first, but when ripe have a hard shell with a spongy interior, in the centre of which, loclged in a woody kernel, which serves as a cocoon, the larva transforms, escaping through a hole, which it gnars through both the kernel and shell. We have found the fly ready to escape in June, and Dr. Inaris has found it in October. Two galls are represented on Plate 4 , fig. 13 ; the larger of which has been tenanted, after the gall-flies had eseaped, by an Odynerus. Cymips gallo-tinctorice Olivicr produces the galls of commerce, brought from Asia Minor.

Biorkiza (Apophyllus Hartig) is a wingless genus, and lives beneath the earth in galls formed at the roots of oak trees. Biowiza nigre Fitch is black throughout, including the antennæ and feet, and is but .08 inch long.

Galls are often found on the blackberry, tenanted by another genus, Dicstrophus, which has usually fiftsen-jointerl antemux in the male, and one joint less in the fomale. On opening a gall containing this fly, we often find an inquiline gall-fly, Aulax, "showing the most striking resemblance in size, coloring and seulpture, to the Diastrophus, their companion. The one is the very comnterpart of the other, hardly showing any diúerences, except the strictly generic characters." (Osten Sicken.) These galls are also infested by Chalcid parasites, Callimome (two species), Ormyrus, and Eurytoma.

Osten Sacken emmerates 'eight cynipidous galls on the different kinds of roses of this comntry." The flies all belong to the genus Dhodites, which is distinguished by the under side of the last abdominal segment being drawn out into a long point, while the antenme are fourteen-jointed

Fig. 143. in both sexes: R. rosce produces the bedeguar gall ("fiom the IXebrew beclegruch, said to mean rosc-apple"). It was formerly used as a medicine. The galls form a moss-like mass, encircling the rose branch. Rhodites dichlocens of Harris (Fig. 143), produces hard, woorly, irregular swellings of the branches.

We now come to the second section, the Guest gall-fies (Inquilinae), which are unable to produce galls themselves, as they do not secrete the gall-producing poison, though possessing a well dereloped ovipositor. IIence, like the Nomada, etc., among bees, they are Cuckoo-flies, laying their aggs in galls already formed.

This group may generally, according to Mr. Walsh, be distinguished from the preceding by the sheaths of the oripositor always projecting, more or less, beyond the "dorsal valve," which is a small, hairy tubercle at the top of the screnth abdominal segment. This dorsal valve also projects greatly. In almost all the species, the oripositor projects from between the tips of the sheaths.

Among the Inquiline genera are Synophrus, Amblynotus, Symerges, and Autax, which are guests of rarious species of Cynipides.

In Figites and allies (Figitida), the thincl section of the
family, the second segment is shorter than half the length of the abdomen, being much longer and less high and compressed than in the Cynipides, and the ovipositor is retracted within the abdomen. These insects are true internal parasites, resembling the Chalcids. Ibalia is a parasite on a wood-beetle. This genus has, by Walsh, been placed in the Cynipides. Figites has feather-like antennæ in the male; it is a parasite on the larve of Sarcophaga. The genus Allotria is a parasite on Aphis.

Walsh states that two genera, which he has identified as Ifleidotoma and Eucoila are true Figitido, and "have the wings fringed like a Mymor, and the former has them emarginate at tip with the radial area in my species distinctly open, and the latter simple at tip with the radial area in my species marginally closed by a coarse brown vein." Eucoila is supposed to be parasitic on some insect attacking the turnip.

Tenthiedinide Leach. The Saw-flies comect the Mymenoptera with the Lepidoptera. In the perfect state they conform to the Hymenopterous type, but as larva they wonld often be mistaken for Lepidopterons larve, and in their habits elosely resemble many caterpillars. The three divisions of the body, usually so trenchantly marked in the higher Hymenoptera, are here
 less distinct, since the abdomen is sessile, its basal ring being broad and applied closely to the thorax, while the succeeding rings are very equal in size. The head is broad and the thorax wicle, closely resembling that of the Lepidoptera. The wings (Fig. 144, fore-wing) are larger in proportion to the rest of the body than usual; they are more net-veined, the cells being more numerous and extending to the outer margin.*

[^27]All these characters show that the saw-fly is a clegraded Hymenopter.

The antenne are not clbowed; are rather short and simple, clarate, but in rare instances fissured or feathered. The abdomen consists, usually, of eight external segments, the two last being aborted on the under side, oring to the great development of the ovipositor. The ovipositor or" "saw" (compare Fig. 24) consists of two lamellæ, the lower edge of which is toothed and fits in a groove in the under side of the upper one, which is toothed above, both protected by the ustal sheath-like stylets. On pressing, says Lacaze-Duthiers, the end of the abdomen, we see the sar depressed, leare the direction of the axis of the body, and become perpendicular. By this movement the saw, which both cuts and pierces, makes a gash in the soft part of the leaf where it deposits its eggs.

The eggs are laid more commonly near the ribs of the leaf, in a series of slits, each slit containing but a single edrg. "Some species, on the other hand, introduce their eggs by means of their saws into the edges of leares (Nematus conjugatus Dahlb.), and others beneath the longitudinal ribs of the leares. A few, incleed, merely fasten their eggs upon the onter surface of the leares (Nematus grossularice, etc.), attaching them together like a string of beacls (Réaumur, rol. r, plate 10, fig. 8), whilst a fow place them in a mass on the surface of the leaf (ibid, plate 11, figs. 8, 9)." (Westroocl.) The in'itation set up by the saws in the womnded leaf, canses a flow of sepp which is stated by Westrood to be imbibed by the egg, so that it swells gradually to twice its original size. It is known that the egg of ants increase in size as the embryo develops, and we would

[^28]question whether the increase in size of the eggs of the Sawfly is not rather due to the same canse.

The punctures in the plant often lead, in some genera, to the production of galls, in which the larve live, thus showing the near relationship of this family to the gall-flies (Cynipidæ).

The larve strongly resemble caterpillars, but there are six to eight pairs of abdominal logs, whereas the caterpillar has but five pairs. Many species curl the hind body up spirally when feeding or at rest. They are nsually green, with lines and markings of various colors. They usually moult four times, the last change being the most marked. Most of the larree secrete silk and spin a tough cocoon, in which they hibermate in the larva, and often in the pupa state. The pupa has frec limlos, as in the other families. The eggs are usually deposited in the leaves of plants, but in a ferr cases, according to Norton, in slender or hollow stems. While some are slugshaped, like the Pear-slug, others like Lyda inanitu, mentioned by Westrood, live on rose bushes, and construct a "portable case, formed of bits of rose-leaves arranged in a spiral coil;" and other species are leaf-rollers, like the Tortricids. The larva of Cephus does injury to grain, in Enrope, by boring within the stems of wheat. A remarkable instanco of the care of the saw-fly for her young, is recorded by Mr. R. H. Lewis, who observed in Australia, the female of Perga Lewisii deposit its eggs in a slit next the midribs of an Eucalyptus leaf. They were placed transversely in a donble series. "On this leaf the mother sits till the exchasion of the larve; and as soon as these are hatched, the parent follows them, sitting with outstretehed legs over her brood, protecting them from the attacks of parasites and other enemies with admirable perseverance." (Westwood.)

The species are mostly limited to the temperate zone, but few being found in the tropics. The perfect insects mostly occur in the early summer, and are found on the leaves of the trees they infest, or feeding on flowors, especially those of the umbelliferons plants.

The genus Cimbex contains our largest species, the antemme ending in a knob. C. Americana Leach is widely distributed, and varies greatly in color. The large whitish larva, with a
blackish dorsal stripe, may be found rolled up in a spiral on the leaves of the eln, birch, linden and willow trees. When disturbed it ejects a fluid from pores situated above the spiracles. It constructs a large tough parchment-like cocoon, and the fly appears in the early summer.

The genus Trichiosoma is recognized by its hairy body, and the antemie have five joints preceding the threc-jointed club. T. triangulum Kirby is found in British America and Colorado, and a varicty, I' bicolor Harris, on Mount Washington; it is black, except the tip of the abdomen, with the fourth and fifth joints of the antenne piceous, and the thorax is covered with ash-colored hair.

In Lbia the antenne are seven-jointed, with the club obtuse; the body is villose, the abolomen having a metallic silken hee. The Abia caprifolium Norton (Fig. 145, lavea) is very destructive to the Tartarian Honeysuckle, sometimes stripping the

Fig. 145. bush of its leaves during successive seatsons in Maine and Massachorsetts. It hatches out and begins its ravages very soon after the leares are out, eating circular holes in them. It lies curled up on the leaf and when disturbod emits drops of a watery fluid from the pores in the sides of the body, and then falls to the gromnd. During the early part of August it spins a pale yellowish silken cocoon, but does not change to a pupa, Mr. Riley states, until the following spring. He describes the larva as being common abont Chicago; that it is "bluish green on the hack, ancl yellow on the sides, which are pale near the spiracles, and covered with small black dots. Between every segment is a small, transserse, yellow band, with a black spot in the middle and at eacli end. Head free, of a brownish black above and color of the body beneath." The fly is described by Norton as being black, with faint greenish reflections on the abdomen; there are two white bands at the base of the motathorax, and the wings are banded. It is .36 inch long and the wings expand . 70 inch. The larve can easily be destroyed from their
habit of falling to the ground when the bush is shaken, where they can be crushed by the foot. Dr. Fitch has reared Abia cerasi from one or two cocoons found on the wild cherry, the fly appearing in New York during March.

Itylotoma is a much smaller genus; the basal joint of the antenua is oral, while the secoud is small and round, and the terminal joint is very long. The larra is twenty-footed, and when cating curves the end of the body into the form of an S. The pupa is protected by a garzy, donbly enteloping cocoon. H. McLeayi Leach is wholly black, sometimes with a tinge of blue. It is found throughout the Northern States.

The gemus Pristiphora, closely allied to Nematus, is known by its nine-jointed antenne, and the single costal cell ; the first submarginal (subcostal) cell having two recurrent veinlets. P. identidem Norton has been discovered by Mr. W. C. Fish to be destructive to the cranberry on Cape Cod. He has reared the insect, and sent me the following notes on its habits, while the adult fly has been identified by Mr. Norton, to whom I submitted specimens. The larve were detected in the first week of June, cating the leaves; "they were light or pale yellowish green when first hatched." and grew darker with age. The head of the young was lark, but in the full-grown worm lighter. When full-grown they were about .30 of an inch in length, and had two lighter whitish green stripes ruming along the back from head to tail. They had spun their cocoons by the 20 th of June in the rublish at the bottom of the rearing bottles. On the 29 th of June they came out in the perfect state. We would add to this deseription that the body, in two alcoholic specimens of the larve, was long, cylindrical, and smooth, with seven pairs of abdominal feet. The head is fotl, rounded and blackish, but after the last moult pale honey-yellow. The male is shining black, and Mr. Norton informs me that it is his P. idiota. P. grossularide Walsh is a widely diffused species in the Northern and Western States, and injures the currant and gooseberry. The female fly is shining black, while the head is dull yellow, and the legs are honey-yellow, with the tips of the six tarsi, and sometimes the extreme tips of the hinder tibia and of the tarsal joints pale dusky for a quarter of their length. The wings are partially hyaline, with black veins, a
honey-yellow costa, and a dusky stigma, edged with honeyyellow. The male difers a little in having black toxa. Mr. Walsh states that the larra is a pale grass-green worm, half an inch long, with a black heat, which becomes green after the last moult, but with a lateral brown stripe meeting with the opposite one on the top of the head, where it is more or less confluent; and a central brown-black spot on its face. It appears the last of Jume and early in July, and a second brood in August, They spin their cocoons on the bushes on which they feed, and the fly appears in two or three weeks, the specimens reared by lim tlying on the 26 th of August. P. sycophente Wialsh is an "inquiline," or guest gall-saw-fly, inhabiting a Cecidomyian gall on a willow.

The genus Eutra comprises several gall-making species. It differs fiom the preceding genns in the second, instead of the first, submarginal cell haring two recurent remules. Mr. Walsh has raised E. orbitalis Norton (E. genmina Walsh) from galls found on Salix homilis. This gall is a bud which is found enlarged two or three times its natural size, before it unfolds in spring. The larra is twenty-footed, is from . 13 to .19 of an inch long, of a greenish white color, anct the head is dusky. It bores ont of its gall in autumn, descending an inch into the ground, where it spins a thin, silken, whitish cocoon. The gall of E. salicis-ovm Walsh is found on Salix cordata. The female is shining yellow, while the gromed color of the mate is greenish white. The gall of this species is an oval roundish, sessile, one-chambered, green or brownish swelling, .30 to .50 of an inch long, placed lengthwise on the side of small twigs. The larra is pale rellowish, and the fly appears in A pril. The fly is, according to Wralsh, "absolutely motistinguishable by any reliable character from the guest gall-saw-fy, Euura perturbans Walsh," which inhalits dipterons galls made by Cecidomyian flies on the willow and grape (Walsh). If these two "specics" clo not difier from each other, either in the larva or adult state, "by any reliable characters," then one must question whether the variation in habits is sufficient to separate them as species, and whether E. salicis-orm does not, sometimes, instear of forming a new gall, lay its eggs in a gall readymade by a dipterous gall-fly. We have seen that Odynerus
albophaderatus, which usually makes a mond cell situated in the most diverse places, in one case at least, makes no cell at all, but uses the tumnel bored out by a Ceratina! and yet we should not split this species into two, on account of this difference in its habits. We had written this lefore meeting with Mr. Norton"s remari that "it is difficult to give a learty assent to Mr. Wralsh's inquilines or guest-flies, without further investigation." (Transactions of the American Entomological Suciety, rol. i, p. 194.)

In Yemutus the nine-jointed antenue hare the third joint longest. There is one costal and four subcostal cells, the second cell receiving two recurent veinlets; the basal half of the lanceolate cell is closed; the hind wings have two middle cells, and the tibia are simple.

The larve are hairy with warts behind the abdominal feet. They have twenty feet, the fourth and clerenth segments (counting the head as one) being footless. They are either solitary, feeding' upon the leaves of plants, or social and generally found on pine trees, while some species live in the galls of plants. The pupa, according to Hartig, is enclosed in an egg-shaped cocoon, like that of Lophyrus, but less firm, though with more outside silk. It is gencrally made in the earth, or in leaves which fall to the ground. N. vertebratus Sary is green, with the antenne and dorsal spots blackish, the thorax being trilincate. There are fifty species in this country, of which the most injurious one, the Gooseberry saw-fly, Las been brought from Europe. This is the λ. ventricosus Klug which was undoubtedly imported into this country about the yeur 1860 , spreading mostly from Rochester, N. I., where there are extensive nurscries. It does more iujury to the currant and goosebery than any other mative insect, except the currant moth (Abraxas? tiliaria). Professor Winchell, who has studied this insect in Amn Arbor, Michigan, where it has been rery destructive, observer the female on the $16 t h$ of June, while repositing her eylindrical, whitish and transparent eggs, in regular rows along the under side of the reins of the leares, at the rate of about one in forty-five seconds. The embryo escapes from the egg in four days. It feeds, moults and burrows into the ground within a period of eight days. It remains thirteen days in the ground, being
most of the time in the pripa state, while the fly lives nine days. The first brood of worms appeared May 21, the second brood June 25. Winchell describes the larva as being pale-green, with the head, tail and feet, black, with numerous black spots regularly arranged around the body, from which arise two or more hairs. Figure 146, 1, shows the aggs deposited allong the under side of the midribs of the leaf; 2, the holes bored by the very young larvæ, and 3 , those eaten by the larger worms.

In transporting gooseberry and currant bushes, Walsh recommends that the roots be carefully cleansed of dirt, so that the

Fig. 1 16. cocoons may not be calrried about from one garden to another. The leaves of the bushes should be examined cluring the last week of May, and as only a fery leaves are affected at first, these can be detected by the presence of the eggs and the little round holes in them, and should be plucked off and burnt. The female sawfly is bright honey-yellow, with the head black, but yellow below the insertion of the antemae. The male differs in its black thorax, and the antemme are paler reddish than in the female.*

The genus Emphytus las ninc-jointed antenuæ; the third

[^29]and fourth joints of equal length; the wings have two sulbcostal and three median cells, the first as long as the second, generally longer; the first receiving one recurrent vein, the second two. We have found the larva of E. maculatus Norton on the cultivated strawberry, to which, in the TVestern States, it sometimes does considerable damage, but it can be quite readily exterminated by hand-picking. Mr. Riley has carefully observed the habits of this insect, and we condense the following remarks from his account in the Prairio Farmer: - Early in May, in Northern Illinois, the female saw-fly deposits her eggs in the stem of the plant. They are white and .03 of an inch long, and may be readily perceived upon splitting the stalk; thongh the outside orifice, at which they were introducect, is scarcely perceptible, their presence causes a swelling in the stalk. By the middle of May the worms will have eaten innumerable small holes in the leaves. They arc dinty yellow and

Fig. 147. gray green, and at rest curl the abdomen up spirally. They noult four times, and are, when full-fed, about three-fourths of an inch in length. They make a loose, earthen cocoon in the ground, and change to perfect flies by the end of June and the beginning of July. A second brood of worms appear, and in the early part of August descend into the ground and remain in the larva state until the middle of the succeoding April, when they finish their transformations. The fly is pitchy black, with two rows of dull, clirty white, transrerse spots upon the abdomen. The nine-jointed antenne are black, and the legs are brown, and almost white at the joints. Fig, 147 rep. resents the Strawberry Emplytus in all its stages of growth. 1,2 , ventral and side-view of the pupa; 3, the fly enlarged;

5, the same, natural size; 8, an antema enlarged; 4, the larva while feeding ; 6, the same, at rest; 7, the cocoon; 9, an egg enlarged.

Of the genus Dolerus, known by the second submarginal cell receiving two recurrents, D. arvensis Say, is a common blueblack species found in April and May on willows.

The genus Selandria is the most injurious genus of the family. It embraces the Pear and Rose-slngs, the Vine-slug
 and the Raspberry slug. The flies are small, black, with short and stout nine-jointed antennæ, and broad thin wings. "The larve are twenty and twenty-two-footed, presenting great differences in ajpearance and habit, being slimy, hairy or woolly, feecting in companies or alone, eating the whole leaf as they go, or, remoring only the cuticle of the leaf, and forming sometimes one and sometimes two broods in a year. Selendria vitis, the Vine-slug, is twenty-footed; it has a smooth skin, and the boty is somewlat thickened in the middle but slender towards the tail. "While growing, the color is green above, with black dots across each ring, and rellow bencath, with head and tail black. They live upon the vine and are very destructire, feeding early in August in companies, on the lower side of the leat, and eating it all as they go from the edge inwards. There are two broods in a seavon. The fly is shining black, with red shoulders, and the front wings are clouded." (Norton.)
S. rubi ILaris feeds on the raspberry, appearing in May. The larwa is green, not stimy, and feeds in the night, or early in the morning. S.tilice feeds on the linden. The Pear-slug, S. cercasi Peck (Fig. 1 $\ddagger 8$, larvæ feeding on a leaf of the pear, and showing the surface eaten off in patches; a, cnlarged; b, fiy), is twenty-footed; it narrows rapidly behind the swollen thorax, and is covered with a sticky olive-colored slime. It feeds on the upper side of the leares of both the wild and cultivated cherry and pear trees, and has been found on the plum and
mountain-ash. It appears in June mid September. The fly is shiny black, with the tips of the four anterion femora, and the tibie and tarsi, dull white. An egg-parasite, belonging to the genus Encyrtus, renders, according to Peck, a great number of its eggs abortive.

The Rose-slug, Selandrich rosce Harris, is longer than the Pearslug, the body being scarcely thickened anteriorly, and not covered with slime. It is pale-green and yellowish beneath. It appears in July and Angust, and does great injury in disfiguring and killing the leaves of the rose, which remain dried and withered on the bush. When full-fed, the larva, like the Pear-slug, makes a cocoon beneath the surface of the gromd. The flies are seen in abundance about the rose-bushes as soon

F1g. 149. as the leaves are expanded, when they may be caught with nets, or the hand on cloudy days. Hand-picking, and the application of a very weak solution of carbolic acid, coal oil, whale oil soap, or quassia, are uscful in killing the larre.

On the 20th of July a young friend brought me a large mumber of some remarkable larve (Fig. 149, natural size) of a saw-fly, which I surmised might belong to this genus. It presented the appearance of an animated, white, cottony mass, abont an inch long and two-thirds as high. The head of the larva is rounded, pale whitish, and corered with a snow-white

Fig. 150. powdery secretion, with prominent black eyes. The body (Fig. 150, naked larva) is cylindrical, with eight pairs of abdominal legs, the segments transversely wrinkled, pale pea-green, with a powdery secretion low down on the sides, but above and on the back, arise long, flattened masses of flocculent matter (cxactly resembling that produced by the woolly plant-lice and other Homopterous Femiptera) forming an irregular dense cottony mass, reaching to a height equal to two-thirds the length of the worm, and concealing the head and tail. On the 27 th and 28 th of July the larw moulted, leaving the cast skins on the leaf. They were then naked, a little thicker than before, of a pale-green color,
and were curled on the leaf. They eat out the cdge of the leaf of the butternut tree. Sometime churing August, two

Fig- 151. cocoons were spun between the leaves, but I did not succeed in raising the saw-fly. On describing the larra, in a letter to Mr. E. Norton, he kinally sent me alcoholie specimens of larve (withont the woolly sulsstance, which dissolyes and (lisappears in alcohol) found feeding on the hickory, which are apparently, from the comparison of alcoholic specimens, identical with the Buttermat Selandria. The adult fly (Fig. 151, \&, a, cocoon), he has named S. caryce, of which he has kindly furnished me with the subjoined description.*

Allan+us is closely related to Sclandria, both in its structure and its habits, but differs in having the antenne short and somewhat clawate. A. becitheris say is a common species.

Fim 1.9.

The line saw-fly, Lophyrus, may be knomn by the feathered antenne of the male. L. abietis Harris (Fig. 152, female) infents the fir and pitelpipine. The male is black above and brown bencath, while the female is yellowish brown above,

[^30]with a short blace stripe on cach side of the thoras. The larre are about half an inch long, of a pale dirty green, yellowish beneath, striped with green, and when full-fed yellowish all orer. They are social, and may often be found in considerable numbers on a single needle of the pitch-pine. The larve spin tough cocoons among the leaves, and the flies appear cluring August, but probably in greater numbers in the spring.

These slugs can be best destroyed by showering them with a solution of carbolic acik, petroleum, whale oil

Fig. 153. soap, or tobacen water. Mr. Fish has sent me the larve of a saw-lly, allick to L. abietis, which, in Eatham, Mass, ravaged the young pitch-pines planted in the sandy soil of that region.* The eggs are laill singly in the side of a needle of the pine; though sometimes an eog is inserted on each side of the leaf.

Mr. Riley has described the luabits of the Thite-pine saw-fly,
of an ineh in length when fully grown; dorkest above, and with indi=tinct blackish spots upon the sines. The head is white with a small black dot unon carlo stle.
"Specimens were taken unon the leares July the enth of Juy. The comon is formed neay he surface of the gromber of a litte earth or sam drawn together. Four specimens came forth about August win, all semming very small for so latge larve."

* On senling specimens of the male and femate to Mr. Sonton he writes that this is in untescribed species, of whith he has prepared the followinte description:
"Lophyrns pinurvigith Norton. New speries. Female. Jength, 0.ä; expanse
 buwn, with a blate line juning the ocelh, a bla k stripe down carth of the three hobes of the thoma abose, and the sutures behind; body paler beneath; the trochanters ant base of the tibiae waven; claws wilh an inner tooth near the miditle; winge rers sightly chould ; cross nervure of the lanceolatecell straght. Minle. Length, 0.25 ; expme of wings, 0.55 of an inch; antenme fifteen-jointel, black, quite short, with welve buaches on each side, those at the bace nearly as long as the sixth and seventh; apical joint simple, enlarged at base; color of insent blatk, with the abdomen at apex ambeneath yellow-brown leg the same color at base; below the knees whitish.
L. Ablotii Leach. The flies appear early in June, and there is but a single brood of larve, which remain on the trees, in Illinois, until November, and hibernate before changing to pupa. The fomale is honey-yellow, with pale rufous legs, ancl the male is jet black. Fig. 153 represents, anter Riley, the transformations of this species, whose habits closely resemble those of L. abietis. 1 , is the fly somewhat magnified; 6 , magnified antenna of the male; 7, female antenna; 2 and 3 , pupa; 4, larye in different positions, natural size ; 5 , cocoon. The L. Lecontei Fitch has been found feeding on the Scotch and Austrian pines in New Jersey, ant has been described by Mr. Riley. The larva is an inch long, dinty or yellowish white, with dorsal black marks wider before than behind, and usually broken transversely in the full-grown indirictuals; they are frather apart than in L. Abbotii. "The lateral spots are somewhat square, with an additional row of smaller black marks below them, and the last segment is entirely black abore. The antennæ of the male fly are twenty-one-jointed, and have on one side screnteen large, and on the other seventeen smadl branches, there being eighteen on one side and fifteen on the other in L. Abbotii. The female may at once be distinguished from L. Abbotii by her abdomen being jet-black above, with a small brown patch at the end, and a transverse line of the same color just below the thorax."

There are several allied genera, such as Ctadius (C. isomera Harris), Lyde (L. scripta Say), and Iyela (X . infuscata Harris), which belong here. The last genus, Ceptus, which by some

[^31]authors is placed in the next family, is retained by Norton in the present group. The larva is, in Europe, injurious to rye and wheat, boring in the stems of the plant. Cephus atbrectatus Say is our more typical form, though rarely met with. C. trimaculatus Say is found in New York early in June, according to Dr. Fitch.

Urocerid a Leach. The family of "Horntails" are so-called from the long prominent horn on the abdomen of the males, while the ovipositor or "saw," resembling that of the tre sawflies, is attached to the middle of the abdomen, and extends far beyond its tip. 'They are of large size, with a long eylindrical body and a large head, square next the thoras, but much rounded in front. The antenne are long and filiform. The larve are "cylindrical fleshy grubs, of a whitish color, with a small rounded hormy lead, and a pointed horny tail. They have six very small legs under the fore-part of the body, and are provided with strong and powerful jarrs, wherewith they bore long holes in the trumks of the trees they inhabit. Like other borers these grubs are wood-eaters, and often do great damage to pines and firs, wherein they are most commonly found." Haris farther states that, when about to tansform, the larvee make thin cocoons of silk in their burrows, interworen with little chips made by the larva. "After the chrysalis skin is cast off, the winged insect breaks through its cocoon, creeps to the month of its burrow, and gnaws throngh the covering of bark over it, so as to come out of the tree into the open air."

Diphictria is so-called from the sword-like oripositor, which is much shorter than in the succeeding genera. The body is a little flattened, somewhat turned up belind, and the tip of the abdomen ends in on obtuse point, while the antenne are short, curved and tapering at the end. Xiphidrat abicomis ILarnis is black with yellowish legs and white antemne, with the two lowest joints black. It is nearly three-fouths of an inch long.

The typical genus of the family is Crocerus, which has a large body, with a large oripositor and long, sixteen to twenty-fourjointed antenma, while the body of the male ends in a stout acute horn. U. albicomis Fabricius has white antenne, and the female is of a dcep blue-black color, while the male is black. It is found on pine trees in July. It is an inch in length.

The geuns Tremex is known loy the wings having two margimal and three submarginal cells. Tiremex Columba Limn. infests the elm, pear and loutton-wood. The female is an noh and a half long, rust-red, varied with black, while the abdomen is black with seren ochre-yellow bands on the upper side, all but the two basal ones being interrupted in the middle. They fly during the last of summer.
"Dr. IIarris this describes the habits of this interesting insect. The female, when abont to lay her eggs, draws her borer out of its sheath, till it stands perpendicularly under the middle of her body, when she plunges it, by repeated wiggling motions, through the bark into the wood. When the hole is made deep enough, she then drops an egg therein, conducting it to the place by means of the two furrowed picces of the sheath. The borer often pierces the bark and wood to the depth of half an

Flg. 154. inch or more, and is sometimes driven in so tightly that the insect camot draw it out again, but remains fastened to the tree till she dies. The eggs are oblong oral, pointed at each end, and rather less than onetwentieth of an inch in length.
"The larva, or grub, is yellowish white, of a cylindrical shape, rounded behind, with a conical, homy point on the upper part of the hiuder extremity, and it grows to the length of about on inch and a half. It is often destroyed by the maggots of two kinds of Ichneumon-flies (Rlyyssa atrata and lunator of Fabricius). These flies may frequently be seen thrusting their slender borers, measuring from three to four inches in length, into the trunks of trees inhabited by the grulos of the Tremex, and by other wood-eating insects; and like the female of the Tremex they sometimes become fastened to the trees, and die without being able to draw their borers out again."

We hare noticed the trunk of an elm, at Saratoga Springs, perforated by great numbers of holes, apparently made by these insects. T. latitarsus Cresson (Fig. 1ă ; a, antenna; b, wing; c, hind leg) is remarkable for the expansions on the hind legs. It lives in Cuba.

LEPIDOPTERA.

Butterflies and Moths are readily recognized by their cylindrical, compact bodies; their small head, with its large clypeus; by the maxille being prolonged into a tubular

"tongue;" the obsolete mandibles; and the broad, regularly veined wings, which are covered with minute scales.

Their transformations are complete; the active larve assuming a cylindrical, worm-like form, being rarely footless, and

Fig. 15%.

Tig. 15s.
having from one to five pairs of fleshy abdominal legs, besides the three pairs of corneous jointed thoracic limbs. A large proportion (butterflies excepted) spin silken cocoons before

* For explanation of cuts, 155 to 171 , see pages 233 and 234 .
changing to pupæ (chrysalids, nymphs). In the pupa state the limbs and appendages of the head are soldered together, and the head and thorax tend to form one region, mpon which the third region, or abdomen, is more or less movable. Three

Fig. 150.

Fir. 100

Fig. 101.
or four genera of the lower families are partially aquatic, while, as a whole, the suborder is purely terrestrial.

The three regions of the body are very distinct, bat the head, though free, is smaller and with its parts less equally developed

Fig. 103.
than in the IIymenoptera, and the "proporleum" has now become plainly the first abdominal ring. The abdomen is also longer, with the genital armor partially exserted, thus showing a tendency to decephalization. In fine, the whole body is

Fig. 163.

Fig. 164.
loosened and less compact than in the Hymonoptera. Their broad wings ; obsolete month-parts, with the abnormally developed maxillæ; and active larvæ, with their worm-like shape,
are also characters which show that they are more degraded than the Hymenoptera. There is also a greater disproportion in the relative size of the three thoracie rings. In the abtominal rings the plemites are much larger than in Iymenoptera, where they are partially obsolete. They scarcely use the legs, the fore pair (so remarkably differentiated in the higher Hymenoptera) being partially obsolete in some butterflies (Vanessa, etc.). They are essentially fliers, not having the great variety in the mode of loco-

Fig. 165. motion observable in the Hymenoptera. No parasites are known to oceur in this suborter. They are only social while in the larval state, and then merely because their eggs, in such instances, are laid in bunches, and on distinct food-plants to
 which the larma are confined. The adults rarely take an actire part in the economy of nature, and have but little opportunity for the manifestation of instinct and reason, thongh the larve in seeking for suitable places in which to undergo their transformations often exhibit Fig. $166 . \quad$ wonderful instinct.
The readiest method of determining the natural position of groups is by a comparison of their degradational forms. Thus we find that in the degraded Hymenoptera the tripartite form of the body is preserved; while, on the contrary, in the wingless Lepidoptera (such as the female of Orgria and Anisopteryx) the body is either oral, the head being less free and smaller than in the winged form, and the thorax and abdomen continuous, their respective rings being of much the same size and shape, while the legs are feeble: or, as in the female of (Eketicus,

Fig. 167. the body is elongated, and worm-like. The wingless moths, then, are much lower than the worker ants, the female Scolia,
etc., giving us an unfuiling test of the difference in rank of the two suborders. In their habits and transformations, and

Fig. 168. in their external anatomy, the Lepidoptera vary less than othor insects.

The Lepidoptera, while in the perfect state, can be scarcely said to walk much, compared with beetles and other walking insects, the legs being only used to support them while at rest, and not for locomotion. They move almost entirely by their broad wings, which with them are more highly specialized than in other insects. Their fore wings are usually triangular in form, while their hind wings are some-

Fig. 169.

Fig. 170. What square or rounded. The anterior wings are the most. typical in form and venation.

The surface, from the costa to the inner edge, may be
A

Fig. 171.
divided into three areas, - the costal, median, and internal. There are five principal veins: the costal and subcostal are
grouped together, and form the costa or front edge of the wing ; the median occupies the middle of the wing; and the sal)median and internal, the hinder, or internal, area of the wing. The costal vein is usually simple, and joins the costa near its outer third. The subcostal, near the middle of the wing, is usually subdivided into five branches, which are called renutes, while the median is usually subdiviled into one venule less, and the submedian and internal are simple. The last, or fifth, subcostal vemule, and the first median venule, generally each throw out a small vemule, which meet to form the discal venule, thus enclosing a large central area called the discal area, or cell. There are rarely any cruss renules prescut. Sometimes, as in Hepialus, there is a transterse costal venule, and an interno-submedian venule. They are msually found only in degraded Lepidoptera, and recall the net-reined style of vena-- tion of the Neuroptera.

The legs are slenter, cylindrical, and weak. The coxæ are closely united with the thorax, the trochanters are sphericul,

Figs. 155, 155, give a geneval riew of the body of a butterfy denuded of scales. Froc. 195. u, antema; 1, prothorax; m, pataga, or shoulder-tippets; k, mesoscutum; n, ablomen; Λ, costal edge of fore-wing; I), apex; C, outer edge excavated; I, onler angle: 13, imuer edge; ab, discal cell; am, liscal venules, throwing oft the mudependent vein, al. The dotted lmes indicate the inner, madle and onter third of the wing. Fig. 157 illustrates the mode of ornamentation of the wings of moths ; ab, an and $a t$, the imer, the aridule, and outer thind of the wings. The enpitals are the same as in Fig. low; sat the basal line; sa, the inner line; sp, the onter, and mes, the marginal line variously wared, scalloped and angulated. In most of the Noctuide are the dentilom spot, 16 ; mo, the orbicular, and $m r$, the reniform spots; between the two later often rums the tianswerse shate, um. In Fiar. 15s, hind wing, fir indicates the "lristle" which fits into the "hooks on the fore-wing, miting the tro wngs during flight; cn, situated in the discal cell, indicates the "lunule," and beyond are the outer and margiual dusky bands. Fig. 159, $1 a$, internal vein; $1 b$, sumerlian vein; $2,3,4$, 5 , the fom branches (venules) of the medtan vein (in Frg. 160,5 beemos the indepentent renute); 6 to 12 , branches of the subcostal in Fig. 19il, dii, is the costo-subenstal recurrent penule). In FIG, lis, wings of the Hepialus, the yenation is move incegatar, and in the fore-wing the diseal cell is divided into an anterior and posterior discal cellule, by the disco-longitudinal vein; sfl, x, and s, aceessory cells. In the Tineids the venation is very simple. In Fig. its, the submedian and interual veins have disappeared; 9 is the costal vein; 2,3 , the wo branches of the median vein; \pm to 8 , branches of the cubcostal vein. In Fira. 1ai, the internal vein is sbortencd, and the submedian forked, while the median and subostal are merged together.- From Meinemrnn, in Morris's Synopsis, Smithsonian Miscellaneots Collections. Compare also Fig. 29 on page 23.

Figs. 159 and 165. a, anteman, on one side wholly, and on the other partially, peetinate; b, eve: f. ocellns; h, labial palpus; g, maxille or "tongue;" n, cosa; p, trochnter; q, femur; r, tibia; V, smgle anterine spur; r^{*}, two middle tibial spurs; 2, 3, two pairs of posterior tibial spurs; s, tarsus.
and the fomora, tibia and tarsi, slender and very equal in length. There are usually two tibial spurs. The tarsus is fire-jointer, the terminal joint ending in two slender claws.
'lhe scales corrring the body of Lepidoptera are simply modified hains. In studying the wing of the Cecropia moth, we find the hatrs of the body and base of the wing gradually passing into the forms represented in Fig. 160. They are attached to the wing and laid partially over one another like the tiles on a roof (Fig . 107). They are inserted in sonewhat regular lines, thomgh, as seen in the figme, these liues are often irregular, as shown by the line of scars where the scales lave been removed. The scales are beatiinnlly ormanented with mi(roscopic lines. We find, on removing the scales, that the hear consists of three well-marked pieces,* i.e. the occiput or basal piece which lies behind the ocelli; the epicranium, lying bohind the insertion of the anteniax, and carrying the eyes and ocelli, and the clypeus, which constitutes the front of the head. The latter piece is larger than in all other insects, its size being distinctive of the Lepicloptra. There is a general form of this piece for each family, and it aiforls excellent chameters in the different genera, especially among the butterflies (as Mr. It. Trouvelot has shown us in a series of draming's made by him), and the Zygrenide and Bombywido. It is largest, and most perfectly shield-shaped, in the Attaci. In the Phalcenidce, it is smaller, and square; and in the Tineidce it is smaller still, while the occiput and epicranium are larger.

The labrum is remarkably small and often concealed by the orerhanging clypens. The labium is small, short, triangular, and the mentum is nearly obsolete. The lingua is obsolete, its place being supplied by the tongre-like maxjlite. The labal palpi are feelly developed, sometimes rudimentary, and consist

[^32]of from one to three joints, the terminal one being small and pointed. They are recurved in front of the head, on each side of the spiral tongue, and are covered with hairs; their finction, as touchers or feolers, seeming to be lost. The mandibles are rudimentary, consisting of a pair of horny tubercles, partly concealed by the fiont edge of the clypeus. The maxille, on the other hand, are remakably developed. In

Fig. 172. their rudimentary state, as in Attacus, they form a pair of grooved blades, the hollowed sides being opposed and held

Fig. 173.

Fig. 174.

Fig. 175.
together by a row of minute teeth, thus forming a canal. The insect sucks through this long tube the sweets of flowers.

Fig. 170.

Fig. 177.

Fig. 178.

${ }^{*}$
Fig. 170.

The "tongue" is often nearly as long as the body of the insect itself, and when at rest, is rolled up and held between the palpi. At its base are the minute rudimental maxillary palpi,
which are generally concealed, but are apparent in the smaller and lower moths, Crambus and the Tincids. They are usually from two to three-jointed, and even fire to six-jointed, as in Tinea granella, and longer than the maxillæ, thus resembling the Phryganeida, or Caddis flies.

In seeking for honey with their long maxillæ, the Lepidoptera play an important part in the fertilization of plants, especially the Orchids.
The ocelli are often present, thongh they do not form a triangle on the rertex, as there are only two, the third and most anterior one being absent. The eyes are large and globose, and rary in their distance apart in different families.

The antenne vary greatly ; they are either filiform (Fig. 172, a), or setiform (Fig. 152, b), or fusiform, as in the Splinges (Fig. 172, c), or club-shaped, as in Papilio (Fig. 172, d). They are rarely cutirely naked, but are finely ciliated (Fig. 173), or have a pair of bristles on each joint (Fig. 174), which are sometimes tufted (Fig. 175). The joints are sometimes toothed (Fig. 176), lamellate (Fig. 177), serrate (Fig. 178), or pectinate (Fig. 179).

The thorax in Lepidoptera is remarkable for the small size of the first, or prothoracic ring, the mesothorax being highly developed. In Telea (Figs. 11 and 12, on page 11) the characteristic form is well shown. The tergal arch of the prothorax is almost obsolete, the scutum alone being represented by a corneous piece, while the pleural parts are more developed as supports for the forelegs. In the mesothorax the proscutum is present, but is usually vertical, being bent down and concealed between the two rings, lecoming visible, however, from ahove in Irepialus (Sthenopis), in which respect it strikingly resembles the position and development of the same piece in the nemropterous Polystochotes. The scutum is large, with convex sides, broadest behind the middle, and deeply notched for the reception of the triangular scutellnm, which is about one-fourth the size of the scutum. The postscntellum is transverse, and situated out of sight, unless the tro hinder thoracic rings are separated, under the scutellum. The episterna and trochantines are large, and the whole mesothoracic flanks nearly twice as wide as those of the metathorax. The
metathorax is much compressed antero-posteriorly. The scutum is thrown aside as it were by the scutellim into two lateral, nearly square halves, the remaining tergal pieces being usually obsolete and membranous, but in Sthenopis the proxscutum and scutellun (F ig. 13, page 12) are large, and meet in the middle of the segment, much as in the neuropterous Sialide and Hemerobiide.

The abdomen is oral in Papilio, becoming long and linear in the Tineids. In the Zygcenidee, especially, the basal ring is membranous and is partly adherent to the thorax, and somewhat inflated on each side. The number of abdominal segments varies, being either eight or nine; the rariation occuring, as stated by Lacaze-Duthiers, in closely allied genera; thus the genital and anal openings are placed more usually behind the eightl, but sometimes behiud the ninth segment.

The genital armor is very simple, consisting of two valvelike pieces. The parts beyond (anal stylets, etc.) are aborted, so that the anus and external opening of the oriduct are brought closely together. In the male the parts are more complex, the anal forceps often, as in the Callosamia Promethen, forming long curved looks for clasping the abdomen of the female.

The nerrous system of Lepidoptera, and its changes during the transformations of the larva, have been studied most thoroughly by Herold (in Pieris) and Newport (in Sphinx ligustri and Vanessa urtica). In the imago the ventral cord consists of seven ganglia, while in the larva there are eleven. This decrease in their number is due to the fusion, during the pupa state, of the first, second, third and fourth ganglia of the larva, exclusive of those situated in the front part of the head ; these form the two thoracic ganglia which distribute nerves to the legs and the muscles of the wings. Mennwhile the fifth and sixth ganglia of the larra have either disappeared entirely, or been united with the others.

The digestive system (see Fig. 44, on page 35) of butterflies and moths is modified to suit their peculiar habits. They draw in the sweets of plants through the "tongue" by a sucking stomach which opens into the hinder end of the osophagus. "The ilcum is long, small, and nearly always forms several
convolutions. The colon is constantly of a large size, and is often clilated into a ceecum at its anterior portion." (Siebold.) The salivary glands are composed of two simple tubes, which are very large in the larval state, extencling juto the abclomen.

The respiratory system is normal and well dereloped. In the larva the stigmata are wanting on the second and third thoracic and last abdominal segment. In those species of Sphingide, Bombycide and Noctuide, which have a long-sustained flight there are numerous vesicular dilatations of the tracher.

The urinary tubes are six in number; they are long, free, and open into the stomach by two excretory ducts.

The silk-glauds consist of two long, ferwous, thick-walled sacs, situated on the sides of the body, and opening by a common orifice on the under lip (labium) msnally at the extremity of a short tubular protuberance (sichold). They we most developed when the larva approaches the pupa state.

We once found a larva of Clisiocampa Americana that had just spun its cocoon, and to ascertain whether the silk had been exhansted, we remored the worm from its cocoon, when it spun mother, but thimer one ; and upon remoring it a second time it spun a third very thin cocoon, before the supply of silk was entirely exhausted.

The orary consists of four very long, spiral, multilocular tubes. The receptaculum seminis is priform, and often has a long, spiral ductus seminulis. At its base is situated a large, double sebaceons gland; and there are two small ramose glands, perhaps odoriferons, situated at the orifice of the ragina. The copulatory pouch is a remarkably large, priform reservir, having for the reception of the male intromittent organ a canal, which opens by a special orifice, situated below and behind the external opening of the oriduct. (Siebold.)

The testes form two round or oral follicles, and the two short deferent canals unite with two simple and rery flexuous aceessory glands, to form the long ductus ejaculatorius.

Several interesting cases of hermaphroditism in butterflies and moths have been published by European entomologists. Mr. Edwards has noticed two remarkable instances in the Proceedings of the Philadelphia Entomological Society (rol. ir,
p. 350), the latter of which we have also scen. "A specimen of Papilio Asterias is in my collection, and was captured by Mr. J. Meyer of Brooklyn, L. I., two or three years since. It is a fine instance of a perfect hemaphrodite. The right wings are both male, the left wings both female, distinctly marked upon both surfaces with no suffusion of color. The size is that of the largest specimens of Asterias. The Saturnia Promethea is in the collection of Mrs. Bridgham of New York, and is a curions instance of an imperfect hermaphrodite. The left antenna and left primary are male; the right antemna and left secondary are female ; the right primary is also female, but the right secondary is something between the two, neither male nor female. The color of the upper strface is nearly the same as the under surface of the male. On the under side the color and markings of the left primary are male, but the other three wings are female. The color and markings of the male Promethea are quite different from those of the female, and on this hemmphrodite the confusion of the sexes is conspicuons. It is a bred specimen. The body had been viscerated, so that it is impossible to determine its sex."

The larva of Ctenucha, which resembles that of Aretin, constructs its cocoon out of the hains of its borly, without spimning any silken threads, so far as we could ascertain by microscopical examination. The hairs of this, as of probably most hairy caterpillars, but more especially the Bombycid larre, are thickly armed with minute spinules, so that by being simply placed next to each other, they readily adhere together. The cocoon is finished in about twolve hours. We once noticed a Ctenucha larva just beginning its cocoon. Early in the morning it described an ellipse upon the side of the glass jar in which it was confined, out of hairs plucked from just behind its head. From this elliptical line as a base, it had by eight o'clock bnilt up, rather mequally, the walls of its cocoon, in some places a thitd of the distance up, by simply piling upon each other the spinulated hairs, which athered firmy together. At four o'clock in the afternoon, the arch was completed, and the larva walled in by a light partition, and soon afterwards the thin floor was made. No silk is spun thronghont the whole operaw tion, while in the cocoon of Pyrrhactia isabella there is a slight firame-work of silk upon which the hairs are placed.

Tronvelot states that the Polyphemus larva constructs its cocoon by drawing the leaves together as a support for the threads, forming the foundation of the cocoon. "This seems to be the most difficult feat for the worm to accomplish, as after this the work is simply mechanical, the cocoon being made of regula layers of silk united by a gummy substance. The silk is distributed in zig-zag lines of about one-cight of an ineh long. When the cocoon is mate, the worm will have mover his head to and fro, in order to distribute the silk, ahout two houdred and fifty-four thousand times. After ahout lralf a day's work, the cocoon is so fur completerl that the worm cen hardly be distinguished through the fine texture of the wall; then a gummy, resinous substance, sometimes of a light brown color, is spread over all the inside of the cocoon. The larva continues to work for four or five days, hardly taking a few minutes of rest, and finally another coating is spun in the interior, when the cocoon is all finished and completely airtight. The fibre diminishes in thickness as the completion of the cocoon advances, so that the last internal coating is not half so thick and so strong as the ontside ones."

In those moths which spin a thick cocoon, the pupa, a few days previous to its exit, secretes an acid fluirl from two glands opening into the mouth. This fluid, according to Mr. L. Trouvelot (American Naturalist, vol. i, p. 3:3), in his accomt of the Polyphemus silk-wom, dissolves the hard gummy substance miting the silken threads, until after the expiration of half an hour, the moth is able to push the fibres aside, and work its way out, without breaking a thead.

Trourelot says that the larve of the Polyphemus moth (and this remark will probably apply to all other Lepidopterons larre) seem entirely unable to discern objects with ther simple eyes, but can distinguish light from darkness.

In their adult state butterflies and motles take but little food, consisting of honey, thongh Papilio Tumns, according to a Canadian observer, is attracted to heaps of decaying fish.

Caterpillars grow very rapidly, and consume a great quantity of food. Mr. Trouvelot gives ns the following account of the gastronomical powers of the Polyphemus caterpillar. "I't is astonishing how rapidly the larya grows, and one who has no experience in the matter could hardly believe what an amount
of food is clevoured by these little creatures. One experiment which I made can give some idea of it: when the young silk worm hatches out, it weighs one-twentieth of a grain; when

When a worm is thirty days old it will have consumed abont ninety grains of food; but when fifty-six days old it is fully grown and las consumed not less than one hundred and twenty oak leaves weighing three-fourths of a pound; besides this it has drauk not less than one-half an ounce of water. So the food taken by a single silk-worm in fifty-six days equals in weight cighty-six thousand times the primitive weight of the worm. Of this, about one-fourth of a pound becomes excrementitious matter ; two hundred and seven grains are assimilated and orer five ounces have evaporated. What a destruction of leares this single species of insect conld make if only a one hundrecth part of the eggs laid came to maturity! A few years would be sufficient for the propagation of a mmber large enough to derour all the leaves of our forests." The Lepidoptera are almost withont exception injurious to regetation and are among the chief enemies of the agriculturist.

They are rarely found fossil owing to the delicacy of their bodies. Remains, doubtfully referred to the Lepidoptera, have been found in the Jura formation. A Sphinx-like moth has been discovered in the Tertiary formation of Emrope, and a few minute forms have occured in Amber.

Butterflies are easily distinguisher from the other groups by their knobbed anteme. In the Sphinges and their allies the feelers are thickened in the mirldle: in the Moths they are filiform and often pectinated like feathers. Lepidoptera have also been clivided into three large groups, called Dimmal, Crepuscular and Nocturnal, since butterfies fly in the sunshine alone, most Sphinges in the twilight (some of them, howerer, fly in the hottest sunshine), while the moths are generally night-fliers, thongh many of them fly in the day time, thus showing that the distinctions are somewhat artificial.

The larger Lepidoptera (butterflies and the larger moths)
have been called Macrolepidoptera, while the smaller ones, including the smaller Pyralida, the Tortricida, and the Tineidde, are called Microlepidoptera.

In studying these insects the best generic characters will be found in the antemme, the shape of the head-parts, the venation and proportions of the wings: very slight changes in these parts sparating genera and species. Size and coloration, which are usually very constant, afford good specific characters.

A good method of preserving larvæ dry, adopted at Dresden, is to squeeze out the intestines throngh a hole made near the anal extremity of the larva, then to insert a fine straw, after which it may be placed in a glass vase, itself placed in a tin vessel and held over a lamp; the larval skin is blown while suspended orer the lamp, by which the skin dries faster. It may be done with a small tube or blow-pipe fixed at the end of a bladder, held under the arm or between the knees, so as to leave the hands at liberty ; and the straw which is inserted into the body of the larra may be fastened by a cross-pin stuck through the skin, and thus retained in its proper position throughout the process of blowing. The small larve, such as those of the Tinea, may be put alive into a hot bottle, baked until they swell to the proper extent and dry, when they can be pinned with all their contents inside. (Westwood, Proceedings of the Entomological Society of London, Sept. 7th, 1863.)

Dr. Knagg's has, in the Entomologist's Monthly Magazine, given some directions for managing cateruillars. Very young caterpillars, which will not eat the food provided, and become restless, should be reared in air-tight jam-pots, the tops of which are covered with green glass to darken the interior of the vessel. When small laver hide themselves by mining, entering buds and spimuing together leaves, they should have as sniall a quantity of food as possible. In changing larve from one plant to a fresh one, a slight jar or puff of breath will dislodge them, and they can be transferred to the jam-pot, or the glass cylinder, covered at one end with muslin, can be turned muslin end downwards for them to crawl upon. The duplicate breeding cage, pot or tube, should be "sweetened" by free currents of fresh dry air and then stocked with fresh food.

Dr. Fnaggs advises that "hiding places," or bits of chips,
etc., be provided for such Noctuid larre as naturally lie concealed, such as Orthosia, Santhia, Foctua, etc., "while for Agrotis and a ferw others a considerable depth of fine earth or sand is necessary."
"Larve, which in nature hibernate, must either be stimnlated by warmth and fresh food to feed up umaturally fast, or else through the winter must be exposed to out-door temperature." For such larve as begin to eat before the trees are leaved out, the leares of evergreens must be provided, pine leares, chickreed, grasses and mosses. IFibernating, living larva, must during the winter be kept dry, otherwise the dump seems to hang about their fur, and causes them to be attacked by a white fungrs ; while smooth larver require the natural dampness of the soil. Mr. Gibson strongly recommends that cluring the winter all cages containing larve be placed in front of a mindow facing the cast or north-east, so that the immates may be kept as cool as possible.

When the moth is fairly out of the pupa, as remaried by Mr. Sanborn, their wings often fail to properly expand, on account of the want of moisture, "the insect being unable to expand its wings in a heated, dry room. He has avoiled this difficulty by placing the insect just emerged, or about to come forth, beneath a bell-glass, within which he had placed moistened pieces of bibulous paper."

Mr. Trouvelot has noticed that the difference in size of the wings of moths or lutterfies is due to the fact that some of the fluid thrown into the wings during their development escapes from a break in the surface of the wing, so that this wing is smaller than the other. He las, by pinching a wing while thas developing, caused the fluid to "flow from the puncture, and immediately the wing so wounded ceased to grow, while the three others continned their development to its full extent." "I have sometimes advanced the development of the wings of Tclea Polyphemus. I selected for this purpose, pupe very far advanced in their transformation, as is shown by the looseness of the pupal skin, and by the color of the uings of the moth, which can be seen throngh it. I took carefully the pupal skin from aronnd the moth and suspended the insect in the position that Lepidoptera take when emerging from the
chrysalis. It is very rare that the wings of such an insect are developed, though I have obtained some perfect specimens in this way ; and in one instance the derelopment of the wings took place only three days alter the pupal skin had been removed. Success is more certain if the insect is put under a glass jar with a moistened sponge, and something for the insect to hang from ; the dampoess of the air in the jar will prevent the soft wings from drying too fast, and when the time arrires for the insect to accomplish its transformation, the flut will be active. Such an insect las much analogy with a fertebrate born prematurely; the insect, like the quadruped, remains almost motionless till the natural time for its birth arrives."

Papilionida Latreille. The Butterflies, or Diurnal Lepidoptera, are at once distinguished from the moths by their knobbed antemm, though they are sometimes nearly filiform. The body is small, but there is a greater equality in the size of the three regions than in the moths, the abdomen being much shorter and smaller, as a general rule, than in the lower families. The ocelli are usually wanting ; the spiral tongue or maxilie, are long and well developed; and the wings are carried erect when in repose, and are not held together during: flight by a bristle and sucket as in the moths.

The larve vary greatly in shape and in their style of ornamentation, but they uniformly have, besides the thoracic legs, five pairs of abdominal legs. The pupa is called a "chrysalis" or "aurelian" from the bright golden hues which alorn those of many species. They disappear as the wet tissues beneath the pupa-skin barden just before the fly appears. The pupa is usually argulated on the sicles of the thorax and along the upper side of the abdomen. A few species, such as those of Vanessa, hibernate, while several species, such as Vanessa Antiopa, are social as young larve. The most "perfect state of society is exhibited by a Mexican butterfly (Eucheira socialis Westwood), the caterpillars of which constrict a very strong parchment-like bag, in which they not only reside, but undergo their change to the pupa state." Butterflies also occasionally swarm while in the perfect state, such as species of Colias, Cynthia and Danais, multitudes of which are sometimes seen passing over-
head in long columns. They are truly tropical insects, since Gerstaceker mentions that three times as many species (600) oceur at a single point (Para, Brazil) as in all Germany, where scarcely 200 species live. There are about 5,000 species known; 900 inhabit North America and probably the number will be increased to a thousand, while Mr. Scudder enumerates ninetyfive species which have already been fomd in New England.

The noble genus Omithoptera has very long, slightly knobbed antenna, and a well developed prothorax; while the forewings are very large, clongrated, triangular, and the hind wings are relatively smaller and rounded. O. Priamus Linn. is found. in the Moluceas. There are twenty species known. The larve differ from those of Papilio in having an external forked sheath for the "tentacles." The pupa is sustained by a silken thread on each side, attached to a small Tateral tubercle.

Of the extensive genus Papilio, or "Swallow-tail," orer 300 species are known. The larva is rather short and stont, with a v-shaped scent-organ, or "tentacles." The pupa is supported by a filament passed entirely aroun it. The common P, Asterias Drury appears in New England in June, when it lays its eggs on the leaves of parslcy and other umbelliferons plants. From this brood a new set of butterflies appear in August. The larva is Jellow, striped and spotted with black, and when irvitated, pushes out, from a slit in the prothoracic ling, a r-shaped, yellow, fleshy, scent-organ, used as a means of defence. The chrysalis is free, attached by the tip of the abdomen and supported by a loose silken thread, which is passed over the back. It lives in this state from nine to fifteen days. It has two ear-like projections on each side of the head and a prominence on the back of the thorax.

Mr. W. Saunder's has received from St. John's, Newfoundland, several specimens of a butterfly, one of which I have before me, and which seems to be a very remarkable variety of P. Asterias, rather than a distinct and undescribed species, as supposed by my friend to whose collection it belongs. He writes me, after giving a detailed description, presented below,*

[^33]that "this species resembles P. Asterias, bat differs from it in many points. In P. Asterias the palpi are edged within with yellow; in P. brevicauda they are black. P'. Asterias has two yellow spots abore at the base of the antenne, which are either wanting, or excecelingly faint in the other species. P. Asterias has a spot of bright yellow on the anterior edge of each side of the thorax ; P. brevicanda has a fringe of duller yellow, extending fully half the length of the thorax. On the primaries the discal bar in P. Asterias is much narrower, and the inner row of spots smaller and bright yellow, the upper one in the row being divided; in P. brevicauda the spots are fulvous, the upper
side of the hody black, the abdomen being furnished with two xows of yellow spots corremponding with thoze above, with several additional spots within near the tip; fect hack. Prmaries thove brownish back, with a bur of yellow across the end of the diseal cell; just beyond this is a row of eight spote, extending across the wing nealy parallel with the onter margin; the mper one, whiel rests on the subcostal rein, is yellow, clongated and irregular, with a blackish tot beyond the middle: the lower ones are fulbous; the second and third smaller than the inret and of an dongated, wiangular form, with the apex pointing inwards; the fourth, tith and sixth ate simbar in shape, but harger, the hatter with its apex partally wanting; the seventh spot is wider and slighty concave on both the inner and outer colges, the imer edge is broken; the cighth is long, narow and irregular, with its lower edge close to tho hind margin of the wing. Behind the upper spot in this row is a second rehow spot nearly round. Between these and the onter margin is a second row of spots, eight in mumber, bat much smalier in size. These are all yellow, the three upper ones nealy round, the lower ones more or less elongaterl, the lowest contrated in the midnle as if composed of two spots joinell togethor; the fringe of the wing is aloo spotted with yellow, the spots corresponding in muber and posilinn with those fomming the secomb row.
"Secondarjes above brownish black, with a row of seven large spots nearly conflnent besond the midhe, in continuation of those on primaries, all nore or less triangular in form, the midile ones somewhat clongated; these spots are yellow abore and at the siles, fulvols from near the midule to the outer edge; the fulyous marking is less distinet on the second and third spots; within the margin is a second row, all yellow exephting the upper one which is tinged with fulvous; the up. per spot is oblong, the second nearly round; thind, fourth and dith lunular, nearly equal in size; the sixal similar in form, but mubs smaller; whe the inner one is incgulaly concave above, holding in the cavity the eye-like spot at the aual angle. On the outer enge are six yelicw spots, larger and more striking than those forming part of the fringe on the primaries. The space betmeen the two inner rows of spots is sprinkled with metallie blue atoms. At the anal angle is a round, red spot, with a black dut in it below the middle, and a creseent of bhish atoms ahove; talls reay short, scarcely one-e1ghth of an inch long, - not more than hali the length of those of F . Asterias.
"Cnder surface of wings somewhat paler in color, with spots corresponding to those above. The upper spot of the inner row on the primaries js tinted with fulvous; the spots composing the imer row on the secondaries are more decidedy and uniformly finlyous; the four upper spots in the second row are also streaked with the same color; the bluish atoms between the rows are partially replaced by green oues." Taken at St. John's, Newfoundlaud.
one is undivided. The inner row of spots on the secondaries are also entirely yellow in l^{\prime}. Asterias, smaller and very different in form from those on P. brevicanda. The second row of spots is also smaller in I'. Asterias, and the red spot at the anal angle palcr, with a smaller black dot in it, and a wider crescent of bluish atoms above. The length of the tail, which is one of the most striking points of difference, has already been noticed."

We have compared some interesting rarieties of P. Asterias in the Musem of the Boston Society of Natural History, collected about Boston by Mr. Shurtleff, which approach (in the reddish hue of the spots, usually yellow, especially on the under side, and the shortness of the tail) the Nenfoundland specimen kindly sent us by Mr. Saunders, and strongly suggest the inference, with which Messrs. Scudder and Sanborn agree, that P. brevicauda is a rery remarkable local variety of P. Asterias.
${ }^{\text {The }}$ The yellow Proitio Tumus Linn. flies in June and July through Foods and about lilacs. Its larva feeds on the apple and wild thom; it is green with two eye-like spots on the thorax, and pupates in the middle of August. The black dimorphic of form, P. Glancus, is found in the Southern States. I^{3}. Dounus Boisd. (Fig. 180) originally

Fig. 180. found in Mexico, has been found in Kansas, near the Rocky Mountains, by Mr. James Ridings. Me states that it strikingly resembles P. Turnus, but has longer antemat, mith longer, more curved fore-wings, besides differing in other characters. It expands nearly fire inches. P. Troitus Linn. appears more commonly southward. The larva feeds on the sassafias and lilac trees, and was found by Mr. Saunders feeding, rolled up on a leaf, on the spice bush, August 8d. "Its length was about one and three-lourths inches, the body being thickest from the third to the fifth segments. The head is rather small, flat in front, slightly bilobed, dull flesh color, with a faint tinge of brown. The body is bright pea-green, with a yellow stripe across the anterior part of the second segment; edged behind with dull black. On the fourtla segment are two prominent
eye-like spots, of dull yellowish or yellowish buff, encircled by a fine ring of black, and a large black pupil filling most of the lower portion. The posterior portion of this black pupil is encircled by a shining blush black ring, the anterior portion of which strikes a little beyond the middle of the pupil; there is also a line of black in front of the pupil extending nearly across the yellow portion, and a pale pinkish spot in the upper part of the yellow which is edged with a slightly dorker shade. On the fifth segment are two large, irregular spots of the same color, pale buff, encircled by a faint ring of black, and haring a faint pinkish spot on the anterior portion of each; these spots are nearer to each other than those on the fourth segment, a portion of the space between the firth and sixth segments being deep black; each segment, from

Fig. 181. the sixth to the eleventh inclusive, has four blue dots, encircled with black, those on the seventh, eighth and niuth segments being largest. On each side, close to the under surface, is a wide yellow stripe, gradually softening into the green above, and edged below with blackish brown. Immediately below the spiracles is a row of blue dots edged with black, one on each segment from the sixth to the twelfth inclusive. The minder surface is dull, pale greenish, or yellowish white, having a decided reddish tinge as it approaches the yellow stripe on the sides. The feet partake of the same general color." P. Phitenor Fabr. is black, with a greenish reflection towards the outer border, with whitish spots on the margin, and on the hind wings six whitish lunules. The larva is brown, with two lateral rows of small, redtlish tubercles, and two long tubercles on the prothoracic segment. The chrysalis (Fig. 181, side and dorsal view) is grayish violet, yellowish on the back, with the head ending in a truncated cone.

The genus Parnassius has short, thick antenna, with a rounded club, and the fore-wings are much rounded at the apex; it inlabits mountains. P. Smintheus Doubleday, with three other species, is found in the Rocky Mountains.

The White Turnip, or Cabbage butterfly, Pieris oleracea Harris (Fig. 182 ; a, lava), is well known as being often destructive to cruciferous plants. In this genus, and its allies, the wings are rounded and entire on the edges, and are grooved on the fmer edge to receive the abdomen. The grecnish caterpillars are slender, "tapering a very little toward each end, and are sparingly clothed with a short down which is quite apparent, however, in Pieris oleracea." We have found the larvo of this species on turnip leaves in the middle of August, at Chamberlain Farm in Northern Maine. They are of a dull green, and corered with dense hairs. They suspend themselyes by the tail and a transverse loop; and their chrysalids are angular at the sides, and pointed at both ents. (Harris.) Pieris oleraced is white, with the wings dusky next the body, the tips of the fore-wings are yellowish bencath, and the hind wings are straw-colored bencath. The yellowish, pearshaped, longitudinally ribibed egys, are laid three or four on a single leaf. In a week or ten days the larve are hatched. They live three

Fig. 182. weeks before becoming full-fed. The chrysalis state lasts ten to twelve days. There is an early summer (May) and a late summer (July) broot. Pieris rapee Schrank has been introduced from Europe and is now found in the ricinity of Quebec and the northern parts of New England.
l. Protodice Boisd. and Lec. is found southward. The head of the ehrysalis, kinclly sent me by Mr. Saunders, is prolonged into a tubercle, which is equilaterully triangular, seen in ontline, with two small tubereles near the basc. On the thorax is a high, thin dorsal ridge, edged with red. On each side of the abdomen is a ridge, largest anteriorly, and rising into a thin tubercle on the second ring. There is a thin clorsal ridge on the posterior half of the abdomen. The tip is deeply excarated by a furrow extending the whole length of the terminal ring. There are seven rows of black dets on each ring.

It is pale whitish straw yellow throughout, with thick, black dots on the anterior half of the borly. It is .70 of an inch in length. It also occurs in California.

The Sulphnr-yellow butterflies, Colias, of which C. Phitodice Goclart, our nost common butierfly, is a type, occur every where. There are two broocts, one appearing in April and May, anal the other in July. Mry. Samalers gives me the following history of this butterfy": "The fomale deposited her eggs on the 241 h of July ; they were rery long, tapering at ench cnd, with twelve or fourteen raised, longitudinal ribs, and smaller cross lines in the concare spaces between them. They hatehed on the 31st. The freshly hateled larva is about a thirteenth of an inch long; the head is black, and the body dull yellowish brown. When five-cighths of an inch long, it is nearly the same as when mature; the heal being dark green and slightly downy, with minute hairs, which also give a downy appearance to the whole body, which is also dotted minutely with paler points. There is a yellowish white stripe, on each side close to the uncler surface. Bencath, the body is slighty paler than above. The full gromin larra is an inch long, and cliffers from the young in haring an irregular streak of bright red rmming through the whitish lateral line. It feeds on the clover and lupine, and on the cultivated pea. It is not unlike an sam-fly larsa in its appearance and morements, feeding on the upper surface of the leares and twisting its body into a coil when disturbed. The chrysalis is ahout seren lines long, girt with a silken thread across the greatest diameter of the booly, which is full and bulging on the sides. 'The heat is pointer conically, with a purplish red Jine on each sile, ruming to the tip and margined behind with yellow. The body is pale green, with a yellowish tinge, and a rentral line of a darker shade formed by a succession of minute, yellowish clots; a yellow stripe runs along the side on the five hiuder segments. Beneath, on the serenth, eighth and ninth rings, is a blackish brown liue on each side, deepening in color about the middle of each segment, and a dorsal line of dark green about the same length. It remains in the cheysalis state about ton clays."

Mr. Scudder has described three species of this genus from the north. C. Labradorensis we have taken abundantly in

Labrador. It represents our C. Philodice. C. interior lives north of the Great Lakes, and C. octidentatis ramges from Fort Simpson to the Gulf of Georgia.

The species of a closely allied genus, Terius (T. Liscu and T. Delia), are much smaller and are more tropical.

The genus Domais has antennee with a long and curved knob, the head and thorax are spotted with white, and the wings are round and entive. The caterpillars have projecting, thread-like horns, arranged in pairs on the dop of the sceond and eleventh segments, and the body (D. Archippus) is banded with yellow, black and white. The oval chrysalids are short and thick and decked with golden spots. The larva of D. Archippus Harris feeds on the silk-weed, Asclepias, and matnres in about two weeks, changing its skin three times, while the chrysalis state lasts for ten or twelve days. The butterfly appears from July to September.

A very beatiful and quite aberrant tropical genus is Meliconif, in which the wings are small, very narrow and often very transparent, while the antema are nearly as long as the body. The larve are either long, cylindrical and spinose (Acraea viole), or furnished with several pairs of long fleshy appendages, and the chrysalids are often brilliantly spotted with golden and suspended by the tail.

According to II. W. Bates (Transactions of the Entomological Socicty, 1857), the venation of the wing in many species of Mechunitis and Ithomia, which are alliel to IIeliconia, varies in different indirjtuals of the same species. The scxes have the closest resemblance in color and markings. They are rery gregarions in their labits. The Brazilian 'A. Melpomone raries in a curious manner. I have no doubt they are hybrids (i.e. the varicties), and I can almost point out the species with which it hyloridates. Strange to say, the hybriuls oceur in one district and not in another, and one style of hyl)rids only occur in one district and not in the others, the species being equally abomdant in all the districts."

Arghnis is readily recognized by the numerous round and triangular silver spots on the under side of the hind wings. The very spiny caterpillars have a romd head, and the spines are branched, two of the prothoracic ones being the largest and
reaching over the head. The angular arched chrysalids have the head either square, or sliglitly notched, with a smooth thorax, while on the back of the abdomen are two rows of usually gold colored tubercles. They usually feed on violets, and may be found from May to Joly. Aigymnis Idalia Drury is found the last of smmmer. A. Cybele Fabr. is found in the Middle States, and A. Llldatis Edwards in the White Momtain ralleys and the colder portions of New England.

Mr. C. A. Shurtleff discovered the larva and pupa of the latter, July 1 万th, at Eastport, Maine, and being with him at the time, we made the following deseription of them: The larva is uniformly cylindrical, taporing alike towards each ent of the body. On each side of the vertex of the head is a small low spine, giring the head an oblong shapo when seen sidewise. The front is broad, somewhat square, flaticned, with seattered hairs. On the first and sccond thoracic rings are two large subdorsal spines aud minute lateral warts bearing small bristles, and on the hind edge of these rings are two large spines. On the third thoracic ring are three large spines. On each abdominal ring are six stout spines of the same size and placed equidistant on the upper surface. The bristles on the spines are nearly one-half as long as the spines themselves. Small papilla, giving rise to bristles, are scattered over the body, with a row of them above the abdominal feet. The trimgular anal plate is small, papilliform and prominont. The larra is dark velvety purple, the base of the head being of a pale horn color; the body beneath is scarcely paler than above; the spines are pale livid on the basal half. They were full-fed and ready to pupate July 17th. The head of the pupa is square in front. On the prothorax are two subdorsal spines, and an elerated mesial ridge on the mesothoracic ring, rising lighest behind. At the base of each wing is a sharp, conical, promincut papilla, immediately succeeded by a broad, thin-edged dilatation, constricted and appressed to the base of the abolomen; this is the interual angle of the wings. On the abdomen are two lines of subdorsal sharp papille, one on each side. The wings extend to the fifth abdominal ring, and from this point the abdomen rapidly tapers to the tip. The surface of the body is minkled with conspicuous black spiracles. Its general color is chest-
nut brown, mottled with black; the wings being black at the base. The sexes of the rare and superb A. Diana Cramer differ remarkably, the male being dark velvety brown, with a deep orange border', while the female is blue-black, with lighter blue spots and patches on the border of the wings. It has been taken in West Virginia, Georgia and Arkansas.
A. Aphrodie (Fig. 183*) abounds in the Northern States. According to Scudder, it is donble-brooded, appearing about the middle of June, and fresh specimens late in August. A. Montinus, a more diminntive species, was discovered by Mr. Scudder on the lower half of the barren summits of the White Mountains. Allied to this last species by their size, are \mathcal{A}. Dyrina Cramer and A. Bellona Fabr. found in damp meadows late in summer. A. Myrina has tawny wings bordered with black abore, and expands from one and three-fourths to one and eighttenthe of an inch. A. Bellona differs from the other species by not

Fig. 183. laving any silvery spots on the under side of the wings. Mr. Samelers has reared A. Myrina from eggs deposited June 24th, by a specimen confined in a box. "The egg is pale green, elongated, shaped something like an acorn, with the base smooth, conrex and the circumference striated longitudinally, with about fourteen raised striæ which are linear and smooth; the spaces between are about three times wider than the strix, depressed, concave in the middle, and ribbed by a number of cross lines, fifteen to twenty between each strize, and distinctly indentet. The egg is contracted at the apex, the striae protruding at the tip all around a little beyond the body of the egg. The larva hatched in six or seven days, and when fresh from the

[^34]egg was about one-tenth of an inch long. The head is medium sized, black, and shining ; the body above is dark brown, with transrerse lines of a paler color, especially on the anterior segments ; it is thickly covered with stout hairs of a pale bromish color ; between the first and second moult it is one-fourth of an inch long. 'Lhe head is bilobed, shining, black and hairy, and the body above is greenish black, the greenish tinge most apparent on the sccond and third segments, with a few small yellowish dots along each side, and transterse rows of strongly elevated, black tubercles, emitting numerous short, black hairlike spines.
"The under surface is similar to the upper; the feet are black and shining, and the prolegs are black, tipped with a paler hue. After the second moult there are two fleshy tubercles on the second segment much longer than the others, being three or four times their length, which are covered thronghont with small hair-like spines. The yellowish spots along the sides of the body assume more of an orange tint, and there are one or two faint, longitudinal streaks of the same color along the sides close to the under surface, and between the rows of large, raised tubercles, are many smaller ones which are also black and appear but slightly raised. August 7th the larra was fullgrown. The head is, at this periocl, slightly bilobed, black, shining, and covered with short, fine, black hairs.
"The body above is dark greyish brown, beautifully spotted and dotted with deep relvety black; the second segment, has two long, fleshy horns, yellowish white at base, black above, covered with minute, blackish, hair-like spines. The third and fourth segment, have each four whitish spines tipped with black, those on the sides placed on the anterior portion of the segment, those above abont the middle. All the other segments have six whitish spincs, excepting the terminal one, which has fom. All the spines hare fine branches of a black or brownish black color and are about one-third the length of the fleshy horns on the second segment. A pale line extends along each side from the fifth to the teminal segments close to the under surface. The under surface is brownish black, darker on the anterior segments; fcet black and shining; prolegs brown, with a shining band of brownish black on the ontside.

The cturation of the pupa stage was ten or eleven days." The pupa, received from Mr. Samders, has two large, conical tubercles in front of the insertion of the antenna, and two acute tubercles on the prothorax. The thorax is acutely bituberculated on the sides, with an acute thin dorsal ridge, on each side of which are two small, sharp tubercles. Along the back of the abrlomen

Fig. 184. are two rows of tubercles, those on the third abiominal ring being moth larger. It is half an inch long, and palo ash, with black dots and irregular lines.

Melitcea differs in not having silver spots beneath, while the

Fig. 185. caterpillars are covered with blunt tubercles which give rise to short stiff bristles. They feed on different species of plantain. The chrysalicls are like those of Argymnis, but spotted with black or brown, and not with golden.

Melitcea Placton Drury (Fig. 181) is found in damp bogs. We have taken the young larva less than one-half of an inch long, early in spring under leaves, where it had doubtless hibernated. The mature larva (Fig. 185 , enlarged, the specimen from which the drawing was made, is too contracted, the head being drawn in unaturally; fig. 186, pupa) is cylindrical, and the head is slightly angulated. There are nine rows of black spines which are fleshy and surrounded at the tips with rather long, thickset spinules. The head and thoracic and last three abdominal rings are black; the rest

Fig. 186. of the body being deep orange, with black lines between the spines, and dots along the side. Towards the last of May and early in June it changes to a chrysalis, which is white with a slight bluish tinge, with yellow papillæ, and seattered black
spots, giving it a gay and raricgated appearance. The butterw fly rises from cold, swampy places the last of June and early in July. Its wings are velvety black, with orange red crescents and spots. It expands from two to two and a quarter inches, being our largest species.
M. Tharos Boiscl. and Leconte is a very abundant species in New England. There are two broods, one appearing in June and early in July, and the second one late in August and September. It has short, broad wings which are tawny orange above, with black, irregular lines and spots; it expands from one and three-tenths to one and a half inches.

Mr. Saunders has sent us a remarkable and undescribed butterfly, under the name of Melitaca Packardii Sannlers, with the following description: "It resembles M. Tharos in size, and expands 1.42 of an inch. The palpi are pale brown abore, yellowish below ; antennæ black above, dotted with white and. tipped with red; below white tipped with red. Head, thorax and abdomen, black above, clothed with brownish hairs ; white monderneatlı; feet brownish yellow; wings above brown, with a cupreous tinge, sprinkled with fulvous atoms, with a wide band of dark brown on the outer margin, faintly edged on each side with klack. The primaries have a fulvous macular band a short distance from the base, extending nearly across the wings, and a patch of the same hue a little beyond and towards the front margin. Beyond the middle is a wide band of the same, divided by the reins into a series of seren spots; the upper one is very small, a mere dot with a whitish hue; the second is much larger; the third and fourth are nearly uniform in size, larger and more elongated than the second; the fifth and sixth are the largest and wider and longer than any of the upper ones; the seventh is nearly of the same width as the sixth, but not more than half the length; the fringe is dotted with white, especially about the tip.
"On the secondaries a wide fulyons patch covers the inner part of the wing, extending from near the base to near the middle of the wing, and bounded towards the inner margin by a brown edging; within this patch are three rounded blackish spots, one most distinct about the middle, the others near the inner margin and partly lost in the brown edging of the wing

Beyond this is an imperfect band of fulrons spots, in continuation of those on the primaries; the upper ones faint and inclistinct, and two of the lower ones prominent and nearly round; the last small and linear. The inner margin is edged with fulvous, having a jellowish tinge which encroaches on the outer brown marginal band at the anal angle. The fringe of the secondaries is dotted with dull white. The primaries below are fulvous, with a single wayy, brown line across the wing a short distance within the onter margin; base yellowish, costal margin sprinkled with dark brown atoms, and a streak of the same along the middle of the wing near the hind margin. At the tip is a yellowish patch, occupying the space between the brown line and the margin, and within this, one of silvery white nearly equal in size. Below the white are thee indistinct, yellowish patches, the lower one extending to the outer margin ; a large patch of yellow at the lower comer where the onter and linder margins meet. The secondaries below are yellowish from the base to near the middle, with streaks and spots of brown ; the yellowish color extending down the imner to the hinder margin. Beyond the middle the wings are silvery white, sprinkled with yellow and brown scales, divided hy the brown reins and partially crossed by an irregular streak of brown. There are also two lorown patches on the hind margin, the smaller one nearly round and ocoupying the space between the first and second median venules; the larger being irregular and resting on the median vein, and extending across the third to the sccoud subcostal venule. It was taken near Grimsby, Ontario County, Canada."

Melitaed Enone Scudder is rarely found in Maine and Massachusetts; it is pale fulvous above, with blackish lurown markings, and expands from one and three-fifths to one and four-fifths inches. N. IIarisii Scudder may be readily distinguished from M. Enone by the under surface of the lind wings being cinnamon-red, with bands and spots of white margined with black. It expands one and three-fourths inches and is found in New England, though rather a rare species. The larva has been reared in Norway, Maine, by Mr. S. I. Smith. It feeds on Diplopappus umbellatus, pupating from the middle to the last of June, and remaining in the chrysalis state from ten to
sixteen days; the butterfly appears from June 20th to Aug. 1st. The larra (Fig. 187) has also been discovered in Vermont by Mr. P. S. Sprague, and we describe it briefly from an alcaholic specimen, in the collection of Mr. Sanborn. It is cylindrical, with six acute, small tubercles on each side of each thoracic ring, while on the abdominal rings the four dorsal tubercles are larger and re-
 marizably boot-shaped, the toc being formed by a lateral prolongation of the tubercle, and the heel is also well formed, fiom which arises a short bristle. The specimen is clark, with a lighter stripe along the back on each sicle of the median line of the budy. Its length is 80 of an inch.

Dr. Chutcedon Doubleday is found in California and the Rocky Mountains, while M. Anicia Doubleday, the under side of which is much like that of Chalcedon, occurs not only in California and the Rocky Mountains but also in Kansas. M. Teacuna Edwards is a Texan species expanding one and onehalf inches.

In Tonessa the wing's are notched and angulated on tailed on the hind edges, while the palpi are long and beak-like. The larva is cylindrical and stoutly spined, the spines being long and branched. The caterpillars are gregarions during the early stages. "The head of the chrysalis is deeply notched, or furnished with two ear-like prominences; the sides are rery angular ; in the middle of the thorax there is a thin projection, in profile, somewhat like a Roman nose, and on the back are two rows of very sharp tubercles of a golden color." (Harris.) Vanessa Antiopa Limn. is one of our most abundant butterflies, being much more common in this country than in Europe, whence it has probably been imported. Its wings are purplish brown above, with a broad buff yellow border in which is a row of pale blue spots. The butterfly hibemates, appearing before the snow is oft the ground. It is scen until June, and then not until the middle of August. The larva is black, spotted minutely with white, with a row of eiglat dark, brick-red spots on the back. The chrysalis is dark brown, with large tawny spots around the tubercles on the back. The caterpillar defoli-
ates the willow, poplar and Balm of Gilead. Vanessa Milbertii Godart is much smaller and is rather rare. It occurs about roadsides in May, July and August. The Iarva feeds on nettles. Mr, Saunders informs me that "it was found feeding on the nettle, nearly full grown, July 20th. It was from one to one and one-cighth inches long. The head is black, thickly covered with fine, brownish white hairs, and sprimkled with many mimute whitish dots. The body is black, thickly sprinkled with whitish dots and with small, fine, white hairs, each segment, excepting the second, with a transverse row of branching spincs. A greenish yellow lateral line runs close to the under surface, with a second broken line of a brighter yellow color. All the spines and their branches are black, excepting the lower row on each side from the fifth to the twelfth segment, springing from the greenish yellow lines ; these are of a greenish yellow color. Under surface dull greenish, minutely dotted with whitish dots. There is a wirle, central, blackish stripe covering anteriorly, nearly the whole of the under surface." r.Califormica Boiscl. is bright fulvous, with three black bands on the anterior edge of the fore-wings, and there are no black crescents in the black border of the wings.

The genus Grapta differs from the preceding in its deeply incised wings, its smaller size, and red and brown colors. The under side of the hiad wings has usually a silvery or golden dot and curved line, or both, imitating different punctuation marks. Grapte interpogationis Doubleday is one of the largest species, and has a golden semicolon beneath. It is found in May, August, and in autumn. The caterpillars injure the folinge of the elm and lime trees, and also the hop vine, sometimes defoliating the whole vine. The larva has been found, by Mr. Saumders, feeding on the hop, August 7th. "When full grown its length is one and one-fourth inches. The head is reddish black, flat in front and somewhat bilobed, each lobe tipped with a tubercle emitting five siugle, black, pointed spines; it is covered with many small, white, and several blackish tubercles. The body is cylindrical, black, thickly covered with streaks and dots of yellowish white; the second segment is without spines, but with a row of yellowish tubereles in their place; the third segment has four branching spines, all black,
with a spot of dark yellow at their base; and on the fourth segment are four spines, as there are on all the others, excepting the terminal, which has two pairs, one posterior to the other. The spines are yellow, with blackish branches, excepting the terminal pair which is black; and there is a row of reddish ones on each side. The under surface is yellowish grey, darker on the anterior segments, with a central line of blackish and many small, black dots." The chrysalis state lasts from twelve to fourteen days. It is ash brown, with the head cleeply notched, and cight silvery spots on the back. Grapta c-argenteum Kirby (Fig. 188, G. Progne Marris) is a small species with a silvery L in the middle of the under side of the hind wings. It is our most common species northward. It appears the last of summer. The larva lives on the hop and elm.

Grapta comma Doubleday is more common southward. It is known by haring a silvery comma in the middle of the hinder wings. The caterpillar lives on the hop and elm. Mr. W. H. Edwards has found the larve on the broad-leaved nettle. He says "my attention was first attracted by observing certain leaves drooping, and more or less eaten. On the under side of these I asually found the caterpilar inactive, and never more than one upon the same plant. The half-grown laree were black, with a yellowish stripe along the side from the third segment to the tail, and with yellow stripes across the back, and spots of the same color at the basc of the dorsal spines, which were yellow, tipped with black. The mature larva were white, mottled or striped with grey or ashen, and with red spiracles."

The chrysalis is brownish gray or white, rariegated with pale brown, and ornamented with gold on the tubercles. The Hy appears in May, July, August and September. In the colder and mountainous portions of New England and New York, these species are replaced by the Grapta Funnus of Edwards,
who states that "comparing Fanus with c-album, the former is deeper colored by many degrees; it is one-fifth larger, the black spots and margins much heavier, and, owing to this and the depth of the ground-color, the general hue of the surface is much darker than cither c-album or any of the American species." The under side of G. Fanus is beautifully marbled in several colors.

The genus Pyrameis differs from Vanessa in having the wings simply scalloper, not notched; beneath, they are not marked with metallie colors, and the long, tapering palpi curve upward. The larve are covered with branched spines, corresponding in size, and often wanting on the first and last segments; the head is heart-shaped. They are solitary, hicling: under a rolled leaf or spiming a slight web, and hang by the hind feet alone when about to transform. The chrysalids are angular on the sides, with two or three lateral rows of sharp, golden tubercles, and a short, thick tubercle on the top of the thorax. P. cotcdui Linn. feeds on thistles and the sunflower, the hollyhock, burdock and other rough-leaved plants, in June and July. It remains in the pupa state twelve days, the butterfy appearing in Maine, about the 20th of July. Pyrameis Huntera Fabr. has much the same habits, while P. Atalanta Linn. feeds on the nettle. These species are all doublebrooded, first appearing in May and then in July, August and Scptember.

Junonia is closely allied to Vanessa. J. caenia Boisd. and Lec. is found in the Southern States, the West Indies, Mexico and California.

In Limenitis the antennæ are very slender, and the hind wings are scalloped, while on both wings the discal area is open. The caterpillar and chrysalis are like those of Danais. L. Misippues Falur. (Fig. 189) is tawny yellow above, and of a paler yellow beneath, with a broad, black border, spotted with white, and black reins. It expands from three to three and a half inches and flies from June to September. The larra is pale brown, variegated with white on the sides, and sometimes with green on the back; the prothoracic ring has two slender, blackish, spinulated horns, and on the tenth and eleventh rings are short tubercles. It feeds on the poplar and
willow. The pupa is known by a thin, almost circular, projection standing out from its back. The young larve winter in cases "composed of the leaf of the willow, on which the larva feeds, neatly joined by its longest opposite margins, so as to form a cylindrical tube closed at one end and lined with silk." (Tronvelot.) L. Ephestion Stoll is blue black, with three black lines on the hind edges, and just within the outer border is a row of orange colored spots. It lives on the sciulb-oak (Quercus ilicifolia) in June, and also on the whortleberry and the cherry. Limenitis Atthemis Drury is smaller and has an oblique, broad, white band, crossing both wings. It is common in the White and Adirondack Mountains, where it is donble brooded, ap-

Fig. 189.* pearing late in June, and again late in Algust.

The superb and regal ge1uls Morpho is the Atlas among butterties. The broad wings spread nearly
six inches, and are usually of a brilliant blue abore, and brown beneath, with eye-like spots. Morpho Menelaus Limn., from Brazil, expands five and a half inches. N. Polyphemus Cheuu is a Mexican species. M. Enistrophis Hubner is of a delicate pale green, with two rows of lunate brown spots on the hind wings. The aper of the fore-wings is brown, and the discal spot is conuected with the brown costa. It inhabits Brazil.

The genus Satyrus, and its allies, Chionobas, Hipparchica and Neonympha, are wood brown and ormamented, especially beneath, with eye-like spots, and have the wings entire, with the veins of the fore-wings swelled at their base, aud the discal area open on the hind wings. They have a short, quick, jerky flight. The caterpillars are green and smooth, spindle-shaped, or cylindrical, tapering at both ends; the hind end is notched,

[^35]and the head entire or notched. They live mostly on grasses. "The chrysalis is either oblong and somewhat angular on the sides, with the head notched, and two rows of pointed tubercles on the back, or shott and rounded, with the head obtuse." (Harris). Chionobers is found on Alpine summits and in the Arctic regions and on subarctic mountains. C. semidea Say (Fig. 190; Fig. 191, hind wing') lives on the summit, of Mount Washington. It feeds on lichens.

Mr. Scudder, has in the accompanying figures, closely exhibited the differences between the Alpine and Arctic species

Fig. 100, of Chionobas. C. Jutta Möschler (Fig. 192) we took in Northern Labrador; it extends as far south as Qnebec, according to Edwards. C. Chrivus Doubleday, (Fig. 193) is found on Pike's Peak, Colorado Territory; C. Caluis Scudder (Fig. 194) is found on Alloany River, Hudson's Bay; C. Bore Schiodte (Fig. 195) we have collected in Hopertale, Labrador, as also C. Who Boisd. (Fig. 196).

Satyrus Alope Fabr. is our largest species. It is dark brown, with a broad, ochre-yellow band beyond the middle.

Fig. 192.

Fig-101. It is abmadant in open fields in July and August. The pale
green larva is striped with dark, the lead is round, and the tail is forked. The chrysulis is rather long, rounded on the sides and with the head notched. S. Nephele Kirlyy is the more

Fig. 199.

Fug. 194.

Fig. 195.

Fig. 100.
northern form, and in the upper Middle States, as about the Catskill mountains, oceupies higher ground, according to Mr. Edwards, while S. Alope, which prevails sonthward, is found in the lowlands and valleys. S. Nephele is smaller, darker, and
there is no yellow band on the fore-wings, though, sometimes, each eye-like spot is surrounded by a yellowish diffuse ring.

Neonympha Eurytris Fabr. flies low, with a jerky sort of motion, in thick woods, in June and July. The larva is like that of S. Alope, while the chrysalis is shorter with the head obtusely rounded. The adult is dark brown, with two black eye-spots, pupilled with a lead-colored dot, and surrounded with an oche-yellow ring. On the hind wing is a smaller, similar spot. It expands one and seven-tenths of an inch.

The aborrant genus Libythea, with its long, snout-like palpi, reminds us of the Pyralids. It is small and the wings are irregularly notched. L. Buchmanii of Kirtland is not a common butterfly. It occurs southward, and in Central America and the West Indies.

The small, delicate Theclas and Lycenas are often of great beanty and interest. The palpi are elongated, the wings entire, and the hind pair are often once or double tailed. The larre are slug-like, as when moving on their short feet, sixteen in number, they seem rather to glide than walk. They are oval, flat below and rounded above, both extremities being much alike, with the small head retracter within the body. The short and thick chrysalids are flat bencath, but very convex above and rounded at each end. Chrysophanas Americanus Marris, our most abundant form, is coppery red above. Its green larva feeds on the sorrel, and there are three broods of butterflies in the year. The chrysalis is usmally suspended under a stone. One sent by Mr. Saunders, is smooth, with no fine hairs. The head and thoras, including the wing:s, is dull reddish brown, dotted with black; the alodomen is much lighter cinereous, with very distinct, and irregular black dots, and a lateral row of twin black dots, one dot being a little behind its mate. On the middle of the hack are three rows of smaller black dots. It is 45 of an inch in length. Chrysophomus Thoo Westrood is quite a rare species. Mr. Samders describes the eggs as being" "ncarly round, a little flattened at the aper and flattened also at the base, where it is fastened to the box. They are greenish white, and thickly indented; at the apex is a considerable depression; immediately around this, the indentations are small, growing larger towards the base."

The genus Lycona is azure blue throughout, with dark markings. Lycuna negtecta Edwards (Polyommatus psendargiolus Harris) is very common about the Kalmia and Rhodora in May, and a new brood appears in June and July. It has been reared by Mr. Saunders, from whom I have received the pupa, which is a little hairy, being much smaller than in Thecla Acadica and paler ashy. It is spotted quite thickly with black blotches, and on each side of the abdomen is a sublorsal row of rather large, black, contiguous blotches, more (listinct than in T . Acadica. It is .30 of an inch long.
L. conzyntas Harris is quite common southward. It differs from the other species in having a little tail on the hind wings, at the base of which are two deep, orange-colored crescents. It flies in July and Angust. 'The caterpillar lives on the Lespedeza. It is green with three darker stripes. The brown chrysalis laas three rows of black spots on the back.

Thecla differs from the two preceding genera, in its conspicuous tails and the longer clubs of the antemax and its dusky brown hues. The larve are longer and flatter, and they usually live on trees. Thecla humuli Marris feerls on the hop-rine. It flics in July and August. Thecla niphon Godart, a dusky rust-red butterfly, feeds on the pine. The liuva is green, with a dorsal yellow stripe, and a white one on each side. It changes to a short, thick, greyish pupa, with two rows of blackish dots, and beyond these a row of rust-red ones. Mr. Saunders has sent us the following description of the caterpillar and chrysalis of Thecta Aeadict Edwards, found by him at London, Canada West, feeding on the willow, June 11th and 18 th. "It was .03 of an inch in length, with a very small, pale brown head, withdram within the prothoracic segment, when at rest. The body is rather dark green, and is thickest from the mesothoracic to the sixth abrominal segment. There is a darker green, dorsal line, the dorsal region being flat, rather wide, and edged on each side with a raised, whitish yellow linc, and the sides of the body are inclined at almost an acute angle, and striped with faint, oblique lines, of a greenish yellow. A whitish yellow line borders the under surface, beginning at the anterior edge of the second segment (the head is, for convenience, counted as a single ring, or segment) and
extending entively around the body. The chrysalis is .32 of an inch long, and .15 wide. It is fastened with a silken thread. The abdomen is thickenel and somewhat raised. It is minutely hairy, pale brown, with many dots and patches of a denker color; the upper edge of the wings being quite dark, with a chark rentral stripe, and four or five short, dark lines on the side. It remains in the chrrsalis state eight or nine days, the caterpillar turning dark duly 34, just before pupating." The body, especially the abdomen, is thicker and fuller than in Chrysophanns Americanas.

Thect Mopsus Mübner is found in New England and C'mada. Mr. Saunders sends me the following description of the larta taken June 9th, by beating bushes, at London, Canada. "It was . 40 of an inch in length. The head is small, of a shining black color, with a pale stripe across the frout just abore the mandibles, and is drawn within the second ring when at rest. The botly above is green along the mitdle rings, deep rose color at each extremity, and is thickly corered with short, brown hairs. The second segment is rosy above, greenish yellow at the sides, with an edging of the same color in fiont; the third segment is entirely rose colored; from the third to the tenth segments is a dorsal stripe of rose thich is wide on the fourth, fifth, eight and minth segments, but narrow and linear on the intermediate ones; on the tenth segment the green encroaches on the rose color on the sides of the body, extending more than half-way upon the segment behind the tenth. The body is rose colored with a dorsal streak of a darker shade. The rose color at each extremity is mited by a rosy line along each side close to the under surface which grows fainter on the middle segments. The muder surface is clull green, with a yellowish tint; the feet and proleg's (abctominal legs) are yellowish green. June 24th, the larra has now become quite large and will probably soon go into the chrysalis state. I found it would readily eat the plum and cherry.
"Its length is now . 70 ; its width about .20 of an inch. The head is very small, bilobed, black and shining, with a streak of dull white across the front above the mandibles, which are reddish brown. The body above is dull green, with a yellowish tint, especially on the anterior segments, which are
thickly covered with very short, brown hairs, scarcely visible withont a magnifier ; these lairs arise from small, pale, yellowish dots which appear slightly raised ; there is a dorsal streak of dark green arising from the internal organs showing throngh the semitransparent skin. There is a patch of clull pink, or rosy color, on the anterior segments from the second to the fourth inchusive; it is finint on the second ring, and covering but a single portion of its upper surface, and nearly corering the dorsal crest on the third segment, and reduced again to a small, faint patch on the fourth. On the posterior segments is a much larger rosy patel, extending from the hinder part of the ninth segment to the end of the body. The hinder part of the ninth segment is merely tinged. On the tenth segment it becomes a rather large patch, midening posteriorly. Behind this the body is entirely covered with rosy red. The sides of the tenth segment, close to the moder surface, have a streak of the same color, and there is a faint continuation of this on the ninth segment. The head is drawn within the second segment when at rest. The second segment is smaller than the third; there is a wide dorsal crest, or ridge, from the third to the tenth segments inclusive; belind this the body is suddenly flattened, the sides suddenly sloping. The under surface is yellowish green, with a few very fine brownish hairs; the feet and prolegs are greenish, semitransparent.
"On June 29 th it fustened itself to the lid of the box, changing to a chrysalis July 1st, which was 45 of an inch ing length, and its greatest wilth 20 of an inch. The body is pale brown and glossy, with many small, dark brown or blackish dots distributed over the whole surface; they are thicker along the middle above, with a faint, imperfect, rentral stripe from the seventh to the elerenth segments; the surface is thickly covered with very short, brown hairs, invisible without a magnifier. The imago appearecl. July 13th."

Mr. Sanuders has found the larva of Thecta strigosa Harris, a rare species in Canada and New England, feeding on the thorn, ('ratregrs, July 13th. "The head is small, greenish, with a faint tint of bromn, and a black stripe across the front below the middle, and a patch of white between this stripe and the mandibles, which wre brownish black above. The body is of a
rich velvety green, with a yellowish tinge, slightly paler between the segments, and a clorsal stripe of a clarker shade, centred along the middle segments with a faint, yellowish line. The anterior edge of the second segment is yellowish brown, with a few dots of a clarker color. The body is thickly covered with minute lairs which are brown above and white below, being scarcely visible to the naked cye. The body is flattened above (dorsal crest not bordered with yellow as in T. Acadica), stecply sloped at the sides, where it is striped with faint oblique lines of yellowish, two or three on each segment. The two last segments have a patch of yellowish on each side, making the dark corsal line appear much more prominent. A faint yellowish line close to the under surface from the fifth to the terminal segments. The under surface is bluish green, with a darker patch on the last two segments.
"The chrysalis changed June 19th, and is nearly oval in form. The head-case is rounded, and the body is dark reddish brown, with black markings thickly covered with fine, short, whitish hairs, rather more numerous on the anterior and posterior segments. Anterior segments with many thickly set patches of blackish, and a dark ventral line from the sixth to the twelfth segments. It is bound by a few silken threads on the auterior portion of the first and second segments."

The accompanying cut (Fig. 197) represents the pupa of a Thecla, found in July by Mr. Sanborn, on the Gien road to Mount Washington. The body is smooth and tapers gradually from the mesothorax, and the renation of the wings is very apparent. Another pupa, probably of Thecla, found by Mr. Sanborn, is very different, being much stonter, and thicker throngh the abdomen, by a third of its Fig. ${ }^{197}$ diameter, than the chrysalis figured. It is rough and covered with short, fine, stiff hairs; the tegument is so thick, that there are no traces of the veins of the wing, while the sutures between the segments and the appendages are not nearly as distinct. The larra, according to Mr. Sanborn's notes, was found feeding upon the White Pine, Jnly 13 th. "It was . 45 of an inch long; the head was retracterl, yellowish, and the body pale, transparent green, with forr longitudianl, white stripes, and one transverse, lozenge-shaped
patch, of the same color, on the cleventl segment. The rings were all somewhat elevated in the middle of their diameter and thinly covered with yellowish brown, short hairs." He did not succeed in rearing the butterfly, but this description will be useful to any entomologist who may be fortumate enough to rear it hercafter.

The Hesperians, or Skippers, are a large gromp of small, druk, dun-colored butterflies, whose antemme hare the kuob curved like a hook, or ending in a little point bent to one side, reminding us of the antennze of the Sphinges. They are mothlike in their motions, form, and larval characters. They are stout bodier, with large heads and prominent eyes, and thick palpi, almost square at the end. The larva are spindle-shaped, nakel, and with a remarkably large head. They are solitary, and often hide in folled leaves like the Tortricider, transforming in a rute cocoon of dead leayes or stulbble, held together by siken threads. The pupæ are somewhat conical, like those of moths, smonth and generally covered with a bhish white powder. They are fastened by the tail and a slight band of threads within their rude

Fig. 19s. cocoons. We have many species in this comnty; the largest forms occurring southwards.

Eudamus Tityrus Cramer feeds on the locust and is our largest species northward. E. Buthoflus flies in June and July. It feeds on Glycine and Hedysarom in May and Jone. In Hesperia the knobs are shorter, and end in a point turned sidewise. The upper wings are raised, and the lower'spread out flat when at rest. The chrysalis las a long tongue-case free at the end, in this respect showing a transition to the hawk-moths. They are snuff-brown, with dark spots.

Mr. W. Sauncters has been very successful in raising the larre of H. Hobomoc Harris and other butterfies and motlis, by watching for the fertile eggs in captured specimens, which are often depositect on the sides of the collecting lox. The food-plant of the larve can usually be discovered after experimenting with those plants on which other species of this or allied genera are known to feed. "The egg, deposited June 17th, is nearly round, flattened on the lower side, and of a
pale green color. Under the microscope it appears plainly reticulated, with fine, six-sided markings, strongly resembling the cornea of a fly's eye. The lava on finding its way out, June 2 万th, began to eat the egg-shell at the centre above. It feeds on grass, on the inside of the leaves near the joints, draving portions of the leaves together with silken threads. When placell on a strongly ribbed blate of grass, it spins a few threads from rib to rib, and stations itself belfind the threads. By the $14 . t h$ of July the caterpillars were hlneeeighths of an inch long and resembled those of H . Mystic of the same age." Mr. Saunders did not succeed in raising the caterpillars to maturity as they were unfortunately lost.

The most alondant species in New England is L. Wemsutte Harris (Fig. 198) which fiequents roadsides throughout the summer. According to Mr. Saunders' notes, from "eggs deposited July 10th, the Joung larva was hatched July 24 th, the eggs growing clarker about two or three days previons. The egg is pale greenish yellow, or yellow ish green, strongly convex above, and flattened at the place of attachment. The flattened portion is slightly concave and very faintly reticulated under a power of forty-five diameters.

The young larva, when first hatched, is about the same as that of Mystic and Mobomoc, probably . 10 of an inch, and is scarcely distinguishalile from them, excepting that it is slightly darker in color. The head is lirge and prominent and of a shining black color. The second segment has a ring of brownish back, encircling it above. The borly is dull brownish yellow, very faintly dotted with black, each dot emitting a single, rather long, brownish hair. The under surface is rather paler than the upper.

Mr. Saunders has also reared the larva of H. Mystic Edwards from the egg, which is "strongly convex abore, fattened bolow and depressed in the centre of the flattened portion. Under a magnifying power of eighty cliameters, the surface is seen to be faintly reticulated; it is pale yellowish grcen. The eggs wrere deposited ahout the 20th of June and hatched on the $28 t h$ and 29 th of June. When luatched it was .10 of an inch long, with a large, black head, and was white, becoming yellowish brown, especially towards the end of the body. It feeds
on grass, and at this stage can scarcely be distinguished from the young larva of H. Hobomoc. When an incl long the head is not large in proportion to the body, though it is prominent and wider than the second segment; it is dull reddish brown and black posteriorly. The body above is semitransparent, dull brownish green, with minute, whitish hairs, sinilar to those on the head, with a dorsal line and many darker dots over the surface. The second segment is pale whitish, with a line of brownish black across the upper surface, with a faint, pale, lateral line close to the under surface: the terminal segments are paler than the rest of the body. The feet are whitish, semitransparent. This species is found from Conada to Maryland.

Springide Latreille. The Hawk-moths or Humming-bird moths are among the largest and stontest of Lopidoptera. The body is very stout, spindle-shaped, with narrow, powerful wings. Their flight is, consequently, exccedingly swilt and strong. The antenne are prismatic in form and thickened in the middle. The tongue, or maxilia, is remarkably long, so that the insect is able, while on the wing, to explore the interior of deep flowers. This habit of remaning for a considerable time poised in the air on their rapidly ribrating wings, causes them to be mistaken for humming-lirds. At rest the wings are folded, rooflike, orer the body. The larre have sixteen leas, and on the last segment is an acute hom, sometimes represented by a simple tubercle. At rest they stand with the forepart of the body elerated in a supposed Sphinx-like attitude. The larye descend into the earth and transform, often in rurde, earthen cocoons, moulded into form by the pressure of the body. The tongue-case is usially free.

There are between 300 and 400 species known, a large part of which are tropical American. Mrost of the species fly in June and July. The larve transform in the latter part of August and in September.

In Ellema the body is small. The head is small, narrow and somewhat tufted, and with small eres. It might be passed orer on a hasty view for a Noctuid. The larva of Ellema Harisii Clemens is green, has no candal horn, and lives on the pine.

Mr. Saunders writes me that he has found it feeding on the pine, about the mildle of September. "It is two inches long, the body loeing smooth and nearly eylindrical and thickest in the middle of the body. The head is large, pointed above, flat in front and green, with a yellow stripe on each side. The body is bright green, with a dorsal row of dark red spots on the fifth to the twelftl segments inclusive, with a bright yellow stripe on each side of the reddish spots and a lateral white stripe mixed with yellow." The moth is a very small, ash grey species, only expanding two inches. It frequents flowers at clusk in June.

The genus Sphinx, as now limited by systematists, is much larger bodied, with a long and narrow head, small eyes and long and natrow wings. The head of the larva is rather large, semi-oval and flattened in front. The body is cylindrical, smooth and obliquely banded on the side, with an arching, caudal horn. It transforms in a subterrancan earthen cell. The tongue-case of the pupa is short and free, instead of being sollered to the bodt. Splima gordius Cramer is dark brown, with a roseate tinge, and the thorax is blackish brown above. The larva feeds on the apple.

Sphina kulmice Smith is hoary and rust-red, and on the hind wings are a median and marginal black band. The caterpillar feeds on the lilac and laurel. It is pale green, with seven oblique, lateral, pale yellow bancls, edged above with black, which is again bordered with pale blue. Spheinx drupifercrum Smith has the fore-wings blackish brown, with the discal dot and outer edge of the wing whitish fawn-color. The larva feeds on the different species of plum. The body is pale green, with lateral purple bauds, edged beneath with white. Sphinx chersis Hübner (S. cinerea Harris) is the largest species we have, and is pale ashen, and reddish gray beneath. The larva feeds on the lilac.

The large "potato wrom" belongs to the gents Macrosila, containing our largest species of the family; the head is proportionally large, and the wings are rather broad, with the interior angles dilated. M. cingulata Faln. has pink hind wings and pink spots on the abdomen. It feeds on the sweet potato. M. quinque-maculata Maworth (Fig. 199, moth; a,

larva; b, pupa) is gray; the fore-wings are immaculate at the base, and on the hind wings are two distinct angulated bands. The larva feeds on the tomato and potato vines. It is dark green, with a series of greenish ycllow angular bands on the side. The tongne-case is long and much arched. M. Carolina Lim. is cinereous, with a white spot at the base of the forewing, while the central band of the hind wings are indistinct. The larva (Fig. 200)

Fig. 200. feeds on the tobaceo and tomato. It is dark green with lateral, oblique, white bands, edged above with bluish and short transverse black stripes. The tongue-case is shorter and less curved than in M. 5-maculata. 'The tongue of a Madagascar hawk-moth, M. cluentius, Wallace states, is nine aud a quarter inches long, probably wlapted for exploring the long nectaries of some Orchids.

In Ceratomia the boty is thick, with the head and eyes small ; the thorax is short and round, while the abdomen is rather

Fig. 201. long. The larva is easily known by the four thoracic horns, besides the usual caudal horn. The tongue-case is not free. C. Amyntor Hübner (quadricornis Harris) feeds on the elm.

We now come to the more aberrant forms of the family. Under the name of Cressonia Mr. Grote has separated from the genus Smerinthus, a species in which the wings are more notched than in the latter genus, and the antennæ are slightly pectinated. Cressonia juglandis Smith (Fig. 201, venation) is of a pale fawn-color, and has no eye-like spots on the hind wings, as in Smerinthus. The larva is bluish green, with a row of subdorsal and stigmatal reddish brown spots, and six oblique, lateral, bright yellow bands. It lives on the wild cherry. ?

In Smerinthus the body is stout, the head sunken and the maxillæ are only as long as the palpi, being almost obsolete.

The species are said to fly heavily and only in the night. The head of the larva is semi-oval or pyramidal, acute above, and the thoracic rings are obliquely banded on each side. The pupa is smooth, cylindrical and somewhat conical in form. S. modestus Haris is a very large species, expanding nearly six inches. It feeds on the Lombardy poplar. S. excecatus Smith has the hind wings rosy on the imner angle. The "ocellus" or' eyc-like spot is black, with two or three blue pupils. The larva is apple green, with seven oblique, yellowish white lines on the sides, and a bluish caudal horn. It feeds on the apple and the Rosa Carolina. S. geminatus Say (Fig. 202, renation of the hind wing) is so-called from the two or three blue pupila in the black ocellus. The hind wings are rosy. The pupa has been found at the roots of willows.

In the genus Phitampelus, or lover of the vine, as its name inclicates, the tongue is again as long

Fig. 202. as the body. The antenna have a long hook tapering to the end, bearing cilise in the male. The abdomen is large and thick, and the wings are deeply concave on the inner border. The larva has a tuberele in place of a caudal horn. The tongue-case of the pupa is not free. P. vitis Harris is olive green, with pale green hind wings, which are rose-red towards the inner margin. The larsa is flesh-colored mixed with yellow, and with short, transverse, black lines, and lateral, semioval, yellowish white bands, elged with hlack.

In Deilephila the abolomen tapers suddenly at the tip and the fusiform antemax end in a minute hook. The gaily colored larva has a straight and rather short caudal horn. There are no oblique bands on the sides of the body, but a row of subdorsal spots on each side. Clemens states that the anterior segments are much attenuated, and are capable of being withdrawn or shortened, or much extended. "When disturbed they fall from their food-plants, shorten the anterior segments and bend the head inwards." They transform in a cell excavated from the surface. The tongue-case of the pupa is not free. D. lineata Fabr. is olive green, with six white lines on the thorax. The hind wings are black with a rose colored central band. The larva is yellowish green ; the subdorsal spots consisting of two curved,
short, black lines, with yellow above and beneath. It is double brooded in Texas. The larva feeds on the purslane and turnip, and will, in conflnement, eat the apple. D. chamcenerii Harris has a white line on cach side of the head and thorax. The larva feeds on the willow-herb (Epilobiun angustifolium). It is bronze green, dull red beneath, with nine round creamcolored spots, pupilled with black, and a dull red caudal horn.

The genus Thyreus' has a lateral tuft on each sicle of the tip of the flattened, oral abdomen, and the lead is broad and obtuse, while the fore-wings are excarated just below the tips. The body of the
 larra tapers geutly from the first aljdominal ring, and the last
 segment has a lenticular tubercle instead of a true horn. When at zest it throws its head from side to side thus producing a crepitating noisc. It transforms in a cell on the surface. T. Llbotii Swaiuson (Fig. 203 and larva) is dull chocolate brown, with dull sulphureons hind wings, with a dark brown terminal band broken up into short lines on a roseate spot at the inner angle. The larva is reddish brown, with numerons patches of light green. The tuberele is black, encircled at base by a yellowish line and a blackish cordate patch. It feeds on the wild and cultirated grape-vines and on the Ampelopsis quinquefolia, or woodbine.

The Bee-moth or Clear-wing, Sesia, is smaller than the foregoing genera, and the body is flattened, oval and gaily colored with yellow, black and red, while the wings are transparent in the middle. The larva tapers in front, has a dorsal stripe just
above the row of stigmata, and a short recurved horn. It transforms in an imperlect cocoon at the surface of the earth. Sesia diftmis Boisd. is pale greenish yellow, with the abdomen black beneath, and the legs black. The larva is pale green, reddish beneath. Sesia Thysbe Fabr. is a more common species northward. The thorax is decp olive green, with the abdomen reddish beneath, and with whitish legs. It is abundant, flying in June in the hot sum about the lilac and Rhorlora Canadensis.

Under the name of Lepisesia Mr. Grote has separated L. flarofusciuta Bamston (Fig. 204, venation of fore-wing') fomnl in Canada, from the genus Macroglossa, represented in Europe by M. stellatarum Limn Mr. Grote also separates from the latter genus, mader the name of Eury\%hoglossum,

Fig 205. a Cuban moth, which has larger, fuller eyes, and larger hind wings than in Macroglossa. E. Suafa (Fig. 205, venation of fore-wing') is a handsome form described by Professor Poey.

Ageriadaz Farris. These elegant and gaily colored moths, which by the arrangement of their colors and their clear wings, look like bees and wasps, are readily recognized loy their small size, narrow wings, thickened antemre, and by the tufts at the end of the body, which they can spread out fun-like. 'They fly very swiftly in the hottest sunshine. The larve are borers, living mostly in the hollowed stems of plants. They are whitish, cylindrical, with sparse, short, inconspicuons hairs, and they have no anal horns. They transform in a rude, oblong, oral cocoon, constructed of the chips they make in boring out their tumels, cemented by a gummy secretion. The pupx are chestnut-brown, with transverse rows of short teeth on the abdominal rings, by which they make their way out, partly through the hole previously made by the larva for the exit of the moth. The shell of the chrysalis is often left protruding from the hole. This family is, therefore, quite injurious to gardeners.

Agerich exitiosa Say (Fig. 206, ס) the Peach-trec borer, has caused the death of many peach trees and also, according to Fitch, occasionally attacks the plum. It is a slender, dark
blue moth, expanding an inch and a half, or more. The male is much smaller than the female (Fig. 207), expanding one inch. She deposits her eggs near the root of the tree. The larver are hatched and bore in to feed upon the inner bark and sap wood. When one year old they make their cocoon unter the bark or at the root of the tree. Borers of all sizes, Harris states, will be found in the trees throughout the yoar.

The trees should be protected by wrapping sheathing paper around the bottom of the trunk, and putting fiesh mortar around

Fig. 206. the roots. The wounded part may be covered with clay. Ageria pyri Harris infests the pear tree. It is purple black above and golden yellow beneath, with three yellow bands across the abdomen, the middle band being the larger.
The habits of the Grape-root borer, AE. polistiformis Itarris, resemble those of the Peach-tice borer. It sometimes destroys grape-vines in the Middle and Western States, but does not attack the Scuppernong variety. The larva lives under ground, the female, according to Walsh, "depositing her egg on the collar of the grape-vine, close to the earth; the young larre, as soon as they hatel out, immediately descend into the roots." They attack the sap-wood and bark of the roots, eating irregular furrows. The cocoons are oral, and covered

Fig. 207. with bits of wood and dirt. They are found, throngh the summer, in the earth near the roots of the grape, and the moths fly from the middle of Jone until the middle of September, according to Dr. Kron. Harris clescribes the moth as being dark brown, tinged with tawny orange on the sides, and banded with bright yellow upon the edge of the second abdominal ring. The thorax and fouth ablominal ring are faintly tinged with yellow, or tawny orange, as are the palpi, inder side of the antenno, and the legs. The female has a little orange colored tuft on each side of the tail, and the males have two tufts on each side. The wings expand from one to one and a half inches. Another species, A. caudata Harris, inhabits the wild currant.

The currant borer, AEgeria tipuliforme Linn. (Fig. 208; b, larva ; a, pupa, enlarged) has been introduced from Europe, and is a great pest in our gar-

Fig. 208.
 dens, injuring the currant bushes. It is a slender, agile, dark blue moth, found flying in July in the hot sun, about the currant leaves. The larva bores in the stems, and loy splitting them open, in the fall and spring, we shall find the larva, which pupates towards the last of May.

Mr. James Ridings describes from Virginia A. quinque caudata (Fig. 209) which has five filaments at the tip of the abdomen. Its body is blue black, with a transparent spot at the base of the hind wings, while the third abolominal segment is red above.

The Squash-vine borer,

Fig. 210. Mehttia cucurbite Harris (Fig. 210; c, harva), often kills, very suddenly, the squash plant. The moth is orange colored, spotted with black, and its hind legs are fringed with long, orange and black hairs. She oriposits on the vine close to the roots, from the tenth of July to the middle of August. The larva cats out the interior of the vine, and usually transforms in a rude earthen cocoon near the roots, but as we have noticed, within the stem, beginning to spin its cocoon the first of Octolicr.

Zygenide Latreille. This interesting group connects the diurnal with the nocturnal Lepidoptera. Some of the forms (Castnia) remind us strikingly of the butterflies. The group may be recognized by the rather large free lead, and the simple antennæ which are slightly swollen in the middle, or
partially clarate, as in Zygæna. The wings are long and narrow in the typical genera, becoming shorter aud broader in the lower genera, such as Ewemia, from India. The scales are fine, powdery and seattered thinly over the surface, often leaving naked spots on the wings. The species are ustally green or deep blue, with scales of purplish black, or entirely black, alternating with gay colors, such as golden, bronze, or white and red. They fly in the hot smashine.

The sixteen-footed, greenish larvæ are short, cylindrical, the body being olduse at each end. The head is very small and when at rest is partially drawn into the prothoracic ring. The segments are short and convex, with transwerse rows of unequal tubercles which give rise to thin fascicles of very short and evenly cut hairs, which are often nearly absent. The larve are either naked, as in Alypia, Endryas and Castnia, or, as in the lower moth-like species, they are hairy, like those of the Lithosians and Aretians in the next family. Before transforming, the larve ustally spin a dense, silken cocoon, though Eudryas and Castuia make none at all, and Ctenucha a slight one of hairs. The pupa of Zygrena, especially, is intermediate in form between that of Ageria and Arctia, being much stouter than the first, and somewhat less so than the last. The head is prominent, and the tips of the abdomen sub-acnte. Ctenucha is more like Arctia, while Castuia and Alypia are elongate, slender, with the head made especially prominent by a tubercle on the front of the clypens.

In common with the Sphingide and Egeriadce, the Zyganidxe are confined to the temperate and tropical regions. The family type, Zygerac, has its metropolis about the Mediterranean Sea, and thence spreads to the north of Europe, and southward to the Cape of Good Hope. Zygrena exulans is found as far north as Lapland, and in vertical distribution rises 6,000 to 7,000 feet in the Alps of Styria.

Castnia is, however, a tropical American genus. Alypia is the most northern gemus, extending into the Hudson Bay territories. Glancopis and allies, which comprise a large number of species, are almost exclusively tropical American. In Australia, as Klug observes, Castnia is represented by Synemon. The American genus Eudryas is represented by very closely allied South African genera.

Castnia closely resembles the Hesperians , though much larger. The species are of large size and of brjliant hues, and fly in the day time, like the butterflies. The head is, however, much narrower in front, and the antennæ inserted higher up. The larva is a borer, living in the stems of Orchids; it is not known, but probably has the usual form of boring caterpillars, and the pupa is said by Klug to resemble that of Cossus.

Alypia comprises black moths, ornanented with white and yellow patches on the wings. The antenne are long, and a little thickened in the middle. The wings are short and broad. The body of the pupa is not contracted at the base of the abdomen as in Eudryas. The larva feeds on the grape and constructs an earthen cocoon, like that of Fgeria, according to Harris. A. octo-maculata Fabr. is black, with eight spots, two on each wing, those on the fore wing being yellowish, those on the hind wing white.

The gevus Psychomorphice is allied to Alypia, but differs in the broully pectinated antemes, and the shorter palpi, which do not pass beyond the fiont of the head. P. eqimenis Drury (Fig. 211) is found from Connecticat southwards. It is black, with a broad, yellow, white, irregularly lunate patch crossing the outer thirl of the wing, and on the umder side is larger, being triangular,

Fig, 211. with two square black spots comnected with the costa; on the hind wings is a little larger, mostly regular crescent-shaped brick-red spot; it expands 1.10 inches. Doubleday (Harris Correspondence) states on the authority of Abbot, that the larva feeds on Bignonia radicans, in Georgia. "It is pale, with black lines, and though having the full complement of legs, seems to be a semi-looper in its wall, like Brephos."

Eucluyas is a peculiar form, gaily colored, and easily known by the densely tufted forelegs, and the short tufts of metallic scales on the thorax and abdomen. The antenne are filiform, and the abolomen is tipped with hairs. The larva of E. grate Fabre is gaily colored with orange and blue, dotted with black. The body is long and widens tomards the eighth ring, which is homped, from which the body rapidly narrows to the tip.

Across each segment is a row of tubercles which give rise to three fascicles of larirs. The pupa is rather long, with a prominent tubercle on the front of the head, and the abdominal tip ends in four tubercles. The larva feeds on the grape during midsummer and at the end of Angust creeps down, burying itself three or four inches, without making any cocoon. Mr. L. Mitchell of Norwich, Connecticut, has had the kinclness to sent me "a piece of wood burrowed by the E. grata with one of the pupe in position." As E. unio is now known to burrow in the stems of plants, our opinion that Eudryas is allied to Castnia would seem to be confirmed by the habits of the larva which seem, at least occasionally, to bore into wood.

Eudryas wio Hübner according to Mr. Kirkpatrick, burrows in the stems of Hibiscus, thus resembling Castnia in its habits.

Mr. Grote establishes the genus Euscivhopterus for a moth closely allied to Eudryas. E. Pocyi Grote (Fig. 212, fore

Fig. 212. wing; the renation of the hind wing being "almost identical with that of Eudryas") is a brown and yellow Cuban specics.

Zygrena is an European genus, and its characters have been indicated in describing those of the family. The antenne are much thickened towards the end, the wings are long and narrow, and the sperics are usually entirely blue black, or green with red, or white and red bands and spots.

Acoloithus represents the Procris (P' vitis) of Europe, but the wings are longer and nawrower, and the hind wings are very ovate. The gregarious larva of A. Americana is little over half an inch long, being short and thick. It is yellow with a transverse row of black spots on each ring. Before pupating it spins a dense cocoon in crevices. The moth is deep blue black, with a saffron collar. Riley states that the "eggs are deposited in clusters, and in twenty-five to thirty days from the time of hatching, the worms, which then measure rather more than half an inch, spin dirty white, flattened cocoons, mostly in clusters on the leaf. Three days afterwards they become chrysalids, also somewhat flattened, and of a shiny yellowish brown ; while in ten days more the moths issue."

The genus Pyromorpha has thin, oblong wings, very broad at base, the hinder pair being as broad as the fore-pair; with a small, slender body. P. dimidiata Herrich-Schæffer (afterwards described by Clemens under the name of Malthaca perlucidula) is blackish brown, with the basal half of the costal region of both wings yellowish. It expands one inch, and is found sparingly in the Middle States, but has been detected near Boston by Mr. Sanborn.

The species of Glancopis and its allies, abounding in tropical America, are represented in the Northern States by Ctenucha, which has pectinated antennæ, long, slender, acutely pointed palpi, and rather broad wings; the apex of the fore-pair being much rounded. The thick-bodied larva feeds on sedges and grass, and is revy hairy, like an Arction. The pupa is short and thick, and much like that of Aretia. Ctenuche Virginica Chapentier is of a deep indigo blue, with a smoky tinge on the fore wings, a lighter blue abdomen and a saffion collar. It flies in the hottest sunshine. The femate lays her smooth, green, spherical eggs in a broad mass.

Lycomorpha has dentated antemme, the body is unusually slender, and the wings long and narrow. L. Pholus Drury is deep blue, the wings

Fig. 913. being saffron at base. The larra feeds on lichens. From Mr. E. Bicknell I have received the eggs of this moth. The larre hatched August 10th, and closely resembled the larve of the Aretians when of the same age.

The genus Callalucia, according to Grote, differs from its better known ally, Ctenucha, by its antennæ not being so broadly pectinated, its shorter palpi, and by important diferences in the venation of the wings. C. vemiculata Grote (Fig. 213, hind wing) occurs in Colorado Territory.

Bonbycrde Latreille. This large and handsome family comprises some of the largest and most regal of moths. Their thick heary bodies, and small sunken heads, and often obsolete mouth-parts (the maxilla or tongue being especially short compared with other moths), and the broadly pectinated antennæ, together with their broad, often faleate wings and sluggish labits, notrithstanding numerous exceptions, afford good
characters for clistinguishing them. The clypeus is large, the antemæ are inserted higher up than in other moths, so that when in cloubt as to the position of some aberrant forms, a reference to these characters enables us to determine quite readily as to their affinities. The harre are thick, usually more hairy than other moths, or, as in the typical forms, Attacns, etc., are thick, tleshy and with seven longitudinal rows of long tubereles, crowned with spines. The hairs, especinlly of the Arctians, are thickly spinulated, so that the cocoons of the hairy species are rery dense and made with but little silk, while the naked larve, of which the silk-worm is a type, spin very dense cocoons of the finest silk. It is probable that the caterpillars are usually developed in the egg soon after it is laid in antumm. Dr. Burnett has noticed that the embryos of the American Tent caterpillar are developed before winter sets in, and "GuérinMénerille hats fomd that the larre of the Japanese silk-worm (Samia Yamamai) are dereloped in the egg within a few days of their deposition in antum, althongh they are not hatelned until the following spring." (Zoological Record, 1864.)

Several moths of this family (Arctia purica, Setina aurita, Hypoprepia fucosa, etc.) have been known to produce a stridulating noise by rubbing their hind legs over a vesicular expansion situated on the sides of the thorax, and the Death's-head Sphinx has long been known to produce a creaking sound. The pupa are very short and thick and easily recognized by their plump form. "Bar mentions the ocenrence in Cayeme of an aquatic caterpillar, which produces a moth, resembling Bombya phedima of Cramer. This larva lives at the bottom of the water, and feeds on the roots of an abmalant wced." (Bulletin Société Entomologique de France, 1864.)

Jithosid and its allies (Lithosiine) hare rery narrow wings, the antenne filiform, and the body slender. The larree are eylindrieal ant covered with short, spiunated hairs. Some of them do not spin cocoons, so far as we kuow, the pupa of Crom cota being found uncler stones with the dried larva skin still adhering to the tip of the abdomen. Lithosia argillacea Pack. is slate-colored, with yellow palpi and prothorax. The base of the wings and the tip of the abdomen are yellowish.

Lithosia casta Simborn (Fig. 214) is an undescribed species
of great beanty, discovered by Mr. Sanborn at Berlin Falls, N. H., August 10th, and also at Ausable Chasin, N. Y. It is pure milk white, with a slight slate-colored tinge on the hind wings, and is slate-colored beneath, especially on the fore wings, and white on the inner edge of the hind wings. Just bchind the middle of the white abdomen are tufts of tawny hairs, and the tip is white. It expands one and a quarter inches.

Crambidic has still narrower wings. C. pallida Pack. is of an uniform drab color and would be aasily mistaken for a Cramhus. Nudaria has broad wings like a

Fig. 214. geometrid moth, with hyaline spots. The larva is hirsute and makes a thin cocoon of interwoven hairs. N. mundana is a European moth. It is represented in this country by Euphanessa mendica Walk., which has broader wings and longer palpi. The wings have two rows of smoky transparent spots.

Hypoprepia has rather broader wings than Lithosia. II. fucosa Hübner is deep scarlet, with three leaden stripes on the fore wings, the middle stripe situated at the ppex of the wing. The larra, Mr. Saunders informs me, is "spiny and black, sprinkled lightly with yellow dots and short lines; there is a dorsal row of yellow dots fiom the fifth to the twelfth segments. The head is black." Early in May, according to Harris, it

Fig. 215. makes its cocoon, which is thin and silky, and the moth appears twenty days afterwards.

Crocota is red, or yellowish red, throughout, with black margins and dots on the wings. The antenne are filiform and the wings are broad, being triangular in form. Our most common species is Crocota fermiginosa Walk., which is pale rust-red, with two dusky broad bands on the onter half of the wing. A much larger form is Utetheisa bella Limn. (Fig. 215), a beautiful moth, whose yellow fore wings are crossed by bands of white, encircling black dots, white its scarlet hind wings are edged irregularly with black.

The genus Callimomha is still larger, with broad wings. C. Lecontei Boisduval is white, the fore wings being almost entirely bordered with brown. The caterpillars of this genus are usually dark colored, with longitudinal yellow stripes. By day they hide under leaves or stones and feed by night on various shrubby and herbaceous plants. C. intermpto-marginata Beauv. (Fig. 216, fore wing') has an anchor-shaped black spot when the wings are folded, one side of the anchor being seen in the figure.

Arctia and its allies are stout-bodied, with short, moderately broad wings, and .simple or feathered antenne. The hairy larve are covered with dense whorls of long, spinulose hairs. They make a loose cocoon of interworen hairs under the shelter of some board or stone. The pupa is short and thick. Arctia virgo Linn, is an exccedingly beantiful insect. Its fore wings sometimes expand two inches and a half, and are fleshred, streaked thickly with broad, black slashes, and on the vermilion-red hind wings are seven or eight large black spots. The caterpillar is brown. A. Anna Grote
 is allied, but differs in the wholly black abdomen and black hind wings. It was described first from Pennsylvania, and has been detected by Mr. B. P. Mann on the Alpine summit of Mount Washington, N. H.

The common black and reddish, very hairy caterpillar, fond feeding on various garlen weeds, is the young of Pyrrharctia isabelle Smith, a stout-bodied, snuff colored moth. The eaterpillar hibernates, as do most of the others of the group of Arctians, and we have kept it fasting for six weeks in the spring, previous to pupating in the middle of June; it remained twenty-seven days in the pupa state, the moth appearing early in June.

Leucarctic differs from Spilosoma in having narrower wings, and the outer edge much more oblique. Leatcoretia acraed Smith is white and buff colored. Its caterpillar is the salt-marsh caterpillar, which at times has been very injurious by its great numbers. It is yellow, with long hairs growing from yellow warts, and it makes a coarse, hairy cocoon.

Hyphantria textor Harris is entirely white. The caterpillar, or
"fall web worm," is slender, greenish yellow, clotted with black, with thin, silken hairs. It spins a thin and almost transparent cocoon, or almost none at all. H. cunea Drury is white, spotted with black dots. Mr. Saunders informs me that the larva "will feed on Chenopodimm album. The heakl is small, black, shining, bilobate. The body is black, with a slight shade of brown, and sprinkled with rery small, whitish dots. Each segment has a transverse row of shining black tubercles, each giving rise to a tuft of hairs of the same color; on each side of the body is a double row of orange-colored spots from the sixtl to the twelfth segment inclusive."

The "yellow bear" is the caterpillar of Spilosoma Virginica Fabr. The moth is white, with a black discal dot on the fore wings and two black dots on the hind wings, one on the middle and another near the inner angle.

Hulesidota has a more slender body, with longer antenna and palpi, and longer wings than Arctia, being thin and yellowish, crossed by light brownish streaks. The larva is very short and thick, usually white, with dark pencils and tufts of hairs, arising from twelve black tubercles on each ring, placed as seen in the cut (Fig. 217). HI, tessellaris Smith, the "checkered tussock moth," is ochre-yellow, with its partially transparent fore winges crossed by fire rows of dusky spots. H. caryce Harris is light ochreous, with three rows

Fig. 21.7 of white semitransparent spots parallel to the very oblique outer margin. "'The chrysalis, according to Harris, is short, thick, and rather blunt, but not rounded at the end and not downy." Mr. Saunders writes me, that the larva of $I I$. macelata Harris "feeds on the oak. It is 1.30 inches in length; the boly is black, thickly covered with tufts of bright yellow and black hairs. From the fourth to the eleventh segments inclusive is a dorsal row of black tufts, the largest of which is on the fourth segments." The moth appears early in June; it is light ochre-yellow, with large, irregular, light, transverse, brown spots on the fore wings.

These tufted larvae lead to the tussock caterpillars, which, as in Orgyia, have long pencils of hair projecting over the head and tail. The pretty larve of this genus are varionsly tufted
and colored, and feed on the apple tree and various garden vegetables. The males have very broad wings, with very broadly pectinated antennæ, and fly in the hot sunshine in September. The females are wingless and often lay their eggs on the outside of the cocoon, and then die, scarcely moving from their eggs. O. antiqua Och. is tamy brown, while O. leucostigna Smitl is dark brown, with a lunate white spot near the outer angle.

The thick and woolly-bodied, pale yellowish, crinkled-haired Lagoa is an interesting genus. The tip of the albdomen is very broad, and the antemm are curved and broadly pectinated, while the wings are short and broad. The lary a is very densely pilose with short, thick, evenly cut hairs, those at the end being longer and more irregnlar. It is broadly oval, and might easily be mistaken for a hairy Limacodes larva, for, like it, the head is retracted and the legs are so rudimentary as to impart a gliding motion to the caterpillar when it walks. Lagoa crispata Pack. is so named from the crinkled woolly hairs on the fore wings. It is dusky orange and slate-colored on the thoras and low down on the sides. Previous to the last monlt it is whitish throughout and the hairs are much thimer. The larva (Fig. 218) feeds on the blackberry, ant, according to a correspondent in Maryland, it feeds on the apple. The cocoon is long, cylindrical and dense, being formed of the Lairs of the larva, closely woven with silk. The pupa is very thin, and anter the moth escapes, the thin skin is found sticking partially out of the cocoon, as in Limacodes and its allies (Cochlidiae).
Fig. 213. 'This last group of genera is as interesting' as it is anomalous, when we consider the slug-like, footless larrx, which are either nearly hemispherical, boat-shaperl, or oblong, with large fleshy spines, and are painted often with the gayest colors. The pupre are rery thin skimed, and the cocoons are nearly spherical. The moths are often diminutive, the larger forms being stout, woolly-bodied and with short, thick antenne, pectinated two-thirds their length, while the smaller genera with slender borlies hare simple filiform antenne, and closely resemble some of the Tortrices.

Eucled is a very stout and woolly genus; the antemne are
three-fourths as long as the fore wings and pectinated on their basal half. The fore wings are a little shorter than the body and the hind wings reach to the tip of the broarlly tufted abdomen. Euctea Monitor Pack. is cimamon brown, with a large irregular green patch in the middle of the fore wings. We named this species from the striking resemblance of the larva to the iron-chad "Monitor." It is very reg"ularly elliptical, flattened above, and a broad conspictious brown spot in the middle of the back reminds one of the "cheese-box" or turret. Long, fleshy, bristling spines arise from each end of the larva.

Empretia stimulea Clemens (Plate 8; Fig. 1; 1 a, larva) is our largest species of this group. The moth is rarely found by collectors, and is of a rich, deep velvety brown, with a reddish tinge. There is a dark streak along the basal half of the median rein, on which is sitnated a golden spot, while there are two twin golden spots near the apex of the wing. It expands an inch and a half. The larri is thick and clliptical, the body being rounded above, but flattened beneath, and a little fuller towards the head. There is a pair of densily spinulated tubercles on each side of the segments, the subilorsal pair on the metathoracie ring, and a pair on the seventh abdominal ring, being two-thirds as long as the body is wide. There are three pairs of small, but well developed thoracic legs, while there are none on the abdominal segments. The body is reddish, with the upper side green between the two largest pair of spines, centred with a broad eliptical reddish spot, edged with white, as is the green portion along the side of the body. According to Mr. S. I. Smith, of New Haren, from whom the specimen figured was receired, the larya feeds on the raspberry. He states that the hairs sting, as its specific name indicates. The cocoon is rounded, almost spherical, and is surrounded with a loose web, the whole structure being over threc-fourths of an inch in length. The moth appeared June 18th.

Phobetrum has narrow wings, and the male is very unlike the female, which has been raised by Mr . Trourelot, and was confounded by us with the Thyridopterye ephemerceformis of Haworth. Its antenne are very broadly pectinated, and the remarkably long, narrow fore wings are partly transparent. Thysidopteryx nigricans Pack. must be considered as belonging
to this genus. The cocoon of the latter species is tongh, leathery, brown, and nearly spherical. The larva of P. pithecium Smith is broad, ovate, flattened, with six long, tongue-like,

Fig. 219. fleshy lateral appendages. It feeds on the plam, cherry and apple.

In Limacodes the fore wings are oblong, the costa being straight, while the hind wing's scarecly reach to the tip of the abdomen. The fore wings are often crossed by straight lines forming it V. L. scaphe Harris (Fig. 219) is light cimamon brown, with a dark tan-colored triangular spot, lined externally with silver, which is continued along the costa to the base of the wing and terminates sharply on the apes. The larra, as its specific mame indicates, is boat-shaped, boing of the form of a castana mut, and is green, spotted above with brown, and pale beneath, while the sides of the borly are raised, the dorsal surface being flattened. It constructs a dense, oral, spherical cocoon, surromeled by an outer thin envelope.

Fig.

Callochora chloris H-Sch. (Fig. 220) is a pale brown moth, allied to Euclea, and with a broad, pea-green band crossing the fore wings.

Lithacodes (L. fasciola Boisd. Fig. 201) and Tortricodes, strikingly resemble the genus Tortrix, from their narrow wings, slender borlies, and filiform antenne.

The subfamily Psychine, enbraces some remarkably divergent forms. The two genera, Phryganidia and Thazridep-
 tergr, differing so much in the breadth of their wings and thickness of their bodies, are, however, comnected by many intermediate forms occurring in Europe. Psyche is a hairy-bodied moth, with broad and thin wings, the female of which is wingless and closely resembles the larva, and inlabits a case, which is constructed of bits of its food-plant. The female of Psyche helix has been known to produce young from eggs not fertilized by the male. It lives in a case of grains of sand arranged in the form of a snail shell, thus resembling some Phryganeids in its habits, as it does structurally.

The male of Thyridopteryx (T. cphemerceformis Haworth), the "basket-worm," is stout-bodied, with broadly pectinated antenne and a long abdomen; the anal forceps and the adjoining parts being capable of unusual extension in oider to reach the oviduct of the female, which is mingless, cylindrical, and in its general form closely resembles its larva, and does not leare its case. On being hatched from the eggs, which are, so firr as known by us, not extruded from its case by the parent, the young larve immediately build little, elongated, bas-ket-like cones, of bits of twigs of the cedar, on which they feed, and may then be seen walking about, tail in the air, this tail or abdomen covered by the incipient case, and presenting a comical sight. The case (Fig. 222) of the full grown larva is elongated, oval, cylindrical, and the fleshy larva transforms within it, while it shelters the fomale tlwough life. The genus (Eceticus comprises large species, with much the same habits, growing in tropical America and in Australia.

A basket-worm, allied to Wecticus, has been

Fig. 222. cliscorered in Florida, by Mr. Glover, feeding upon the orange, and we give the folloring account of it from the study of his admirable drawings. With much the same labits, it belongs to quite a diffcrent and undescribed genas. The body of the male resembles that of the brond winged Psyche, and

Fig. 223. indeed, this moth may be regarded as a connectiog link between the latter genus and Eceticns. It may be called the Patrecticus Goverii (Fig. 223). Its body is slender, with pectinated antennæ; the wings very broal, irregular, and the hind wings are broad and much rounded, reaching a third of their length beyond the tip of the abdomen. It is dark brown throughout, and expands three-fourths of an inch. The wingless, cylindrical, worm-like female (Fig. 223b) is acutely oval in form, and whitish. The larva (Fig. 223 c) is rather flattened and resembles that of

Thyridopteryx. It constructs an oval cocoon (Fig. 223 d) which hangs to the edge of the leaf.

The genus Perophorct, another sack-bearer (P. Melsheimerii Iarris), is a gigantic Psychid, being about the size of the silkworm moth, which it closely resembles in the inago state. It also lives in a case during the larva state, formed of two oblong pieces of leaf, fastened together in the neatest manner by their edges, and lined with a thick and tongh layer of brownish silk. The larva is cylindrical, as thick as a common pipe-stem

Fig. 224. and light recddish brown in color. The head has extensible, jointed feelers which, when extended, are kept in constant motion, while behind is a pair of antenua-Jike organs, broad and flattened at the end. The tail is widened and flattened, forming a circular horny plate, which like the operenlum of a whelk, closes the the aperture of the case. Before transforming within its case, the larva closes each end with a circular silken lid. The pupa is blunt at the hinder end and with a row of teeth on each ablominal ring. Both sexes are winged. Our species, P. Melsheimerii Haris, is reddish ash gres, sprinkled with blackish points, and with a common oblique blackish line.

Notodonta and its allies (1’tilodontes Hübner) are mostly naked in the larva state, with large humps on the back, and the hind legs often greatly prolonged, as in Cerura, the "fork-tail." The pupa and moths are best described by stating that they bear a close resemblance to the Noctuids, for which they are often mistaken.

Colodasys (Notodonta) wicomis

Fig. 225. Smith derires its specific name from the horn on the back of the caterpillar, and its generic name from the large conical tuft of hairs on the under side of the prothorax. The moth is light brown, with irregular green patches on the fore wings. The cocoon is thin and parchment-like, and the caterpillars remain a long time in their cocoons before changing to pupx. Nerice bidentata Walker (Fig. 224) is a closely allied moth. Edema
callifions Smith (Fig. 225) is known by the costa being white on the outer two-thirds. It feeds on the oak, to which it is occasionally destructive. Mr. Riley (American Entomologist, vol. i, p. 39) describes the larva as being of a "bluish white ground-color, marked longitudinally with yellow bands and fine black lines, with the head and a hump on the eleventh sag. mont cither of a light coral or dark flesh color." It generally elevates the end of the body. It pupates during the last of September, the moth appearing about the middle of April, in the vicinity of Chicago.

Platypteryx, a small geometra-like moth, with its broad fabcate wings, seems a miniature Attacus. Its larva is slender, with fourteen legs, and naked, with several little prominences on the back, and the tail is forked like Cerura. The pupa is enclosed in a cocoon among leaves. P. geniculata Walker, and Dryopteris posed Grote, represent this interesting group. We
 also give a rude sketch, traced from Abbot's drawing's, from the advanced sheets of the Harris Correspondence, of an undescribed species of Dryopteris (Fig. 226, aud its larva). Doubleday

Fig. 226. states that the moth is rose-colored, with a fer w red dots in the yellow portion of the hind wings.

The Chinese silkworm, Bombya mort Linn., has white falcate fore wings, while the hind wings do not reach to the tip of the abdomen, and the anteme are well pectinated. The larva is naked, rather slender compared with those of the next group, and cylindrical ; the second thoracic ring is humped, and there is a long horn on the tail. It is three to three and a half inches long. It is of an ashy or cream color, but "in almost every batch of worms there will be seen after the first moult has occurred, some dark colored, which, at the first glance, appear to be a distinct species," but Captain Hutton, of India, shows that "so far, however, are they from being at mere passing variety that they are actually types of the original species, and merely require to be treated according to the established rules of breeding in order to render them permanent and healthy."
"He attributed the enormous loss of silk-worms by muscardine and other diseases, and the consequent diminution of the crop of silk, to the combined effects of bad and scanty food, want of sufficient light and ventilation, too high a temperature, and constant interbreeding for centuries of a debilitated stock. He asserterl that there was no such thing now in existence as a perfectly healthy domesticated stock of silkworms ; and moreorer, that it was useless to seek for healthy seed, for whether in Europe, Persia, Inclia or China, the worms were all equally degenerated, or, if there were a difference at all, it was in favor of the European race. Me had for several years been experimenting on Bombyx mori, with a viow, if possible, to reclaim the worms, to restore to them a healthy constitution and to induce them to revert from their present artificial and moribund condition to one of vigor and permanent health. The occasional occurrence in a brood of one or more dark grey or blackish-briudled worms- the 'ver's tigrés' or 'vers zébrés' of the French-contrasting strongly with the pale sickly hue of the majority, must have been noticed by all who have had experience in reuring silk-worms ; such oceurrences have been always spoken of as indicating varieties arising from domestication. The anthor hat endeavored, by a series of experiments, to ascertain the cause of this phenomenon, his conviction being, either that the species had at some time or other been crossed by mother of clifferent colors, and that Nature, as sooner or later she always would do, was making an effort to separate them, or that the original color of the worm had been tark, and an effort was being made to recert from a sickly condition to the original healthy starting point. He accordingly picked out all the dark colored worms and reared them separately, allowing the moths to couple only inter se, and the same with the white worms. In the following spring the one batch of eggs produced mearly all dark brindled worms, whilst the other batch produced white worms, sparingly interspersed with an occasional dark one ; these latter were remored into a dark batch, which was also weeded of its pale worms. In the third year the worms were still darker than before, and were always larger and more vigorous than the pale ones, giving' larger and better stuffed cocoons. He finally succeeded in
getting an entire brood of dark worms, which he regarded as a sign of increased health and strength in the larvæ, thus proving that the dark worms were of the original race, which also agrees with the colors of the numerons species of the genus of which he has, with others, made known nearly twenty. The author also considers the white cocoons as a strong sign of degeneraey, arguing that the good quality of the silk produced, was no proof of the general health of the insect, as the maladies atfected rather the quantity produced, and the present great finchess was due likewise to the disaase." (Proceedings of the Entomological Society of London.) The silk-worm is an annual, though some species of thas gromp yield two and three broods in the wamer parts of India. It moults four times, but occasionally only three times.

The cocoon of the silk-worm is white or whitish yellow and is over an inch long and nearly half as broad; 360 cocoons weigh a pound and a half. In France and Italy about thirtysix days elapse between the hatching of the larra and the formation of the cocoon, it taking four clays for the spinning of the cocoon. In England and certain parts of India it requires forty-six days for its formation.

The above remarks apply to Bombyx mori Linn., the Chinese silk-worm, which feeds on the mulberry, originally derived from the mountainous prorinces of China. It is the largest and strongest of the domesticated species. There are, however, as shown by Captain IIutton, twelve species of silk-worms, most of which have been confounded under the name of B. mori, and which belong to the gencra Bombyx of Schrank, Ocinctra of Walker, and Tritocho Moore. There are six domesticated species of Bombyx. There is not silk enough in the cocoon of Ocinura to make it worth cultivating (IInton).

Captain Hutton, speaking of the larve of B. Huttoni, remarks that it "is curions to observe the instinctive knowledge which these worms appear to possess of the approach of a hailstorm. No sooner are the peals of thunder heard, than the whole brood seems to regard them as a warning trumpet-call, and all are instantly in motion, seeking shelter beneath the thicker branches, and even descending the trunk of the tree to some little distance, but never proceeding so low down as to
lose the protecting shelter of the boughs. For rain they care nothing, but appear to be able to clistinguish between the coming of a heavy shower, and the more pitiless pelting of the hail."

Attacus and its allies (Attaci) form the central and most typical gronp of the family. They are among the largest of insects. The genus Attacus is found in China, the East Indies and the South Sea Islands, and in Brazil. Its immense size, falcate wings, with the large triangular transparent spot in the centre, readily distinguish it. A. Atlcts Limn., from China, expands from seven to nine inches. Samia is a smaller genus and with a partially transparent lmate spot in the middle of the wings. Samia Cynthia Limn. has been introduced from China and is a hardy worm, quite easily raised, and the silk is

Fig. 207.
of a good quality. Mr. W. V. Andrews urges, in the American Natmalist (vol. ii, p. 311), the cultivation of the Cynthia silkworm in this comntry, as it is clouble-brooded, our native species bearing but a single crop of worms. It feeds on the ailanthus, and can be reared in the open air. Among many allied forms, generally referred to the genus Attacus but which still need revision, are the A. Myltte (Tussah worm), from China and India; A. Pernyi, from Manchouria, which feeds on the oak, and which has been raised in. France, and the Japanese A. Yama-mait, all of which produce silk, though less reared in Europe than the Cynthia worm. The silk of the Yama-mai moth approaches nearest that of B. mori, and as it feeds on

the oak, and can be raised in the open air, its cultivation has gained much attention in Europe. A. Aurata Beauv, is common in Central and South America. In Brazil it could be raised with success for home use, but is too delicate for a northern climate.

Telea Polyphemus (Pl. 6, male; Pl. 7, female) is brown, with large transparent cye-like spots in the centre of the wings. The thread of which the cocoon is spum is continuons, and is readily unwound. It is coarser than that of the Bombyx mori, but lias a rich gloss and can be used very extensively in commerce. Its larva (Fig. 227), which feeds on the

Fig. 228. oak, is thick, fleshy, striped obliquely with white on the sides, with angulated segments, on which are tubercles giving rise to a few short hairs. The pupa (Fig. 228) is rery thich, and the cocoon (Fig. 229) is regularly oral cylindrical.

Mr. L. Trouvelot gives an account in the American Naturalist (rol. i) of this silk-worm, which is our most hardy native worm. So successful was he in rearing them that in a single season "not less than a million conld be seen feeding in the open air upon bushes corered with a net." The mothis leave the cocoons late in May, appearing until the middle of June. They then lay their eggs, generally singly, on the under side

Fig. 2 of the leaves. In ten or twelve days the caterpillars hatch ; the operation ustally takes place early in the clay. The worm moults five times, the first four moultings occuring at intervals of ten days, while about twenty days clapse between the fourth and fifth moults, this process usually occurring late in the afternoon. It makes its cocoon late in September, and in six or eight days after beginning its cocoon assumes the pupa state, and in this condition passes the winter.

The genus Actias is at once known by the hind wings be-
ing prolonged into a long tail which reaches far behind the tip of the abdomen. Actias Lund Limn. is green and the larva closely resembles that of 'Telea; it is, however, banded obliquely with yellow instead of white, and spins a cocoon that is of much the same shape. It is not so hardy a worm as the Polyphemus caterpillar. It lives on the walnut, hickory and maple. In the Musemm of the Peabody Academy is a closely allied and undescribed species from the west const of Guatemala, which we would call Aeticts Azteca. It cliffers from A. Luna in its much smaller size, expanding only three and a half inches, and in the shorter fore wings, the apex being much rounded and with shorter veins, while the "tails" on the hind wings are only half as long as those of A. Luna. It also differs in having the origin of the first subcostal renule much nearer the cliscal spot than in A. Luna, being rery near that of the second subcostal venule. It is whitish green, with markings not essentially differing from those of A. Luna.

Callosamia is a genus with broader wings and no trausparent eye-like spots. The larva has large tubercles and is very plump. Its characters are intermediate between those of Samia and Platysamia. C. Promethed Drury is a smaller species than the others. Its larva is pale bluish green, with the head, tail and feet yellow, with eight warts on each ring, those on the two first thoracic rings being the largest, much longer than the rest and coral red. The cocoon is hung by a stout silken cord to the stem of the leaf which is then wrapped aromd it. It may be found attached to the twigs of the wild cherry, Azalea and Cephalanthus, or button bush, in winter after the leares have fallen.

Our most common species of this gromp is the Cecropia moth, belonging to the genus Platysamia, which has a broader head and wings than the foregoing genera. The caterpillar of P. Cecropia Linn. is longer, with long spinulated tubercles, especiatly marked on the thoracic rings; the large, very dense cocoon is open at one end and thus the silk cannot be unwound so well as that of the Polyphemus worm, but it is still useful, and Platysamia Eruryate Boisduval is cultivated in California for its silk, though the cultivation of the Chinese silkworm (B. mori) is carried on there very largely.

The next group, the Ceratocampadre of Harris, is composed of large moths, in which the hind wings scarcely extend beyond the tip of the abdomen, and the wings are often ocellated. The large are longer than in the Attach and more hairy.

Eucronia Maidu Drury has a narrow, lunate, curved white line in the centre of each wing ; it expands from two and a half to three inches, and is black with a common, broad, vellowish white band. The caterpillar is elongated, with six long branched prickles on each ring. It feeds on the oak.

Hyperchiria varia Walker (Saturnia Io of Harris) is a little larger than the preceding. The male is yellow and the female reddish brown, with a faint eye-like spot on the fore wing, and on the hind wings a large round blue spot, margined with black and pupilled with white. The caterpillar is green, with spreading tufts of spines, very sharp, stinging severely when the insect Fig. so. is handled, and arising from a tubercle, of which there are six on each ring; the fascicles on the side are as represented in Fig. 230. The pupa is thick, pointed at the tip of the abdomen, and the cocoon is thin, being made under leaves on the ground. It feeds on the corn and cotton, to which it is very harmful southwards, and also on the maple, elm, etc.

Citheronia regalis Hübner expands from fire to six inches, and its fore wings are olive colored, spotted with yellow and reined with broad red lines, while the hind rings are orange red, spotted with olive, green and yellow. The caterpillar is spiny, having four large acute spinulated

Fig. 931 . spines on the anterior thoracic segments. It feeds on the walnut, hickory and the persimmon tree, and spins no cocoon. A second apedies, C. Mexican Grote and Robinson, has been described, as its name indicates, from Mexico: it is more orange and less red, with duller yellow patches. Fig. 231 is a rude sketch (from the Harris Correspondence) of the young larva, with two of the peculiar long hairs next the head magnified. A much smaller species, which expands only 3.10 inches, is the C. seputcralis G. and R., which was discovered at Andover, Mass., by Mr. J. O. Treat. It is purplish brown, without any yellow spots, and with a diffuse discal spot, centred
with reddish scales. Mr. Treat has raised this fine moth from the larva found on the common pitch pine; it resembles that of C. regalis. It also occurs in Georgia, as it has been figured in the unpublished drawings of Abbot, now in the possession of the Boston Society of Natural History.

Eccles imperialis IḦbner has broader wings, expanding from four and a half to over five inches. The wings are yellow with purple brown spots. The larva is but slightly tuberculated, with long, fine hairs. Its chrysalis is like that of Anisota.

The genus Anisota is much smailler than the foregoing, with variously striped laryæ, which are naked, with two long, slender spines on the prothoracic ring, and six much shorter spines on cach of the succeeding segments. They make no cocoons, but bury themselves several inches deep in the soil just before transforming, and the chrysalids end in a long spine, with the abdominal rings very conrex and armed with a row of small spines. The species have much smaller, narrower wings, with less broadly pectinated antenase than in the foregoing moths. A. rubicunde Fibbr. is rose colored, with a broad, pale yellow band on the fore wings. Anisota senatoria Smith is pale tawny brown, with a large, white, round dot in the centre of each fore wing.

The next group of this extensive family embraces the Lachneides of Hablner, in which the moths have very woolly stout bodies, smad wings, with stoutly pectinated antemm, while the larve are long, cylindrical and hatiry, scarcely tuberculated, and spin a very dense cocoon. The pupe are longer than in the two preceding subfamilies. Gastropucha (Fig. 159, hind wing) has soalloped wings, and a singular grayish larva whose body is expanded laterally, being rather flattened. G. Americana Harris is rusty brown, slightly frosted, and with ashen bands on the wings.

In Tolype the wings are entire. T. Vellecla Stoll is a curious moth, being white, clouded with blue gray, with two broad, dark gray bands on the fore wings. The larra is hairy and is liable to be mistaken for an excrescence on the bark of the apple tree, on which it feeds.

The American Tent Caterpillar is the larva of Clisiocampa, well known by its handsome caterpillars, and its large, con-
spicuous webs placed in neglected apple trees and on the wild cherry. The eggs are laid on the twigs, in bunches of from 300 to 400 , placed side by side and corered with a tough gummy matter; they are sometimes infested by chalcid parasites.

The larve of C. Americana Harris hatch out just as the leaves are unfolding and soon form a web, under which the colony lives. They may be destroyed by previously searching' for the bunches of eggs on the twigs before the tree is leared out, and the caterpillars may be killed with a brush or mop dipped into strong soap-suds, or a weak solution of petroleum.

The larye become full grown about the middle of June, then spin their clense white cocoons, under the bark of trees, ete., and the moths appear about the first of July. The larva of C. Americana is about two inches long, hairy, with a dorsal white stripe, with numerous tine crinkled black lines on a yellow ground, united below into a common black band, with a blue spot on the side of each ring. The moth (Fig. 232, and larva)

is reddish brown, with two oblique, dirty white lines on the fore wings. It expands from an inch and a quarteir to an inch and a ladf. The Forest Tent caterpillar, C. disstria Hübner (C. sylvatica Harris) differs in the aper of the fore wings being much longer, with two transverse rust brown, nearly straight, parallel lines. It is sometimes destructive to the apple and oak trees.

The Hepiali are a group of boring moths, the lary boring in the stems of plants or in trees. The wings are narrow, both paiss being rery equal in size, and show a tendency to reenr to the net-veined style of venation of the Nemoptera. Nyleutes is a large moth, with a stout vein passing through the middle of the discal space, and the short antenne hare two rows of short teeth on the under side. X. robinio Peek is gray, with irregular black lines and dots on the wings, and a black line on the inside of the shoulder tippets. The hind wings of the male
(X. crepera Harris) are distinctly triangular and yellow on the outer half. The larva is nearly three inches long, is reddish above and covered with sparse long hairs. It bores in various directions through the red oak and locust, and spins a dense cocoon. The pupa is much elongated, with the suture between the segments well marked, and the head and thorax rather small.

Sthenopis is a gigantic moth, with more falcate wings than in Hepialus. S. argenteomaculata IIarris expands nearly three inches, and is ashy gray, variegated with dusky clouls and bands, with a small, triangular, silvery spot and round dot near the base of the fore wings. Hepialus is smaller, with a larger head and straighter wings. H. hemuli Linn. is injurious to the hop rine in Europe. Our most common species, II. mustelinus Pack., is sable brown, with slight silvery lines on the fore wings. It expands a littlo over an inch and a quarter.

Noctuelitse Latreille (Noctuide). Owlet moths. There is a great uniformity in the genera of this family, which are characterized by their thick bodies, the thorax being often crested, by the stont and well developed palpi, and the simple and sometimes slightly pectinated antenue. The fore wings are small and narrow, and the rather large hind wings are when at rest folded under them, so that the moth looks much smaller than when flying. They fly swiftly at night, and are attracted by light. The fore wings have almost intariably a dot and reniform spot in the middle of the wing, and the moths are generally dark and dull colored. The larve taper towards each end, and are striped and bared in different ways. They hare sixteen feet, except those of the lower genera, such as Catocala and other broad-winged genera, which have fourteen, and look when they walk like the Geometers. They make thin earthen cocoons, and the pupe gencrally live under gromed. In these and other more essential characters, this family is intermediate between the Bombycitre and the Phalænidle. There are about 2,500 species known.

These moths can be taken at dusk flying about flowers, while they enter open windows in the evening, and during the night are attracted by the light within. When alighted on the tatble
mender a lamp a slight tap with a ruler will kill them without injuring the specimens. In warm, foggy evenings, they enter in great numbers. 'The moths fly in July and August, but many species occur only in autumn, while others hibernate and are taken early in the spring. An English writer says, "moths are extremely susceptible of any keenness in the air; a north or east wind is very likely to keep them from venturing abroad. Different species have different hours of fight."

An English entomologist states, that "after dusk the flowers of the willow are the resort of several species of moths (Noctuidae), some of which have hibernated, and others hare just left their pupa state. It is now some fifteen jears since the collectors first took moths in this way, that were likely long to have remained deficient in the collections but for the discovery, by Mr. H. Doubleday, of the attractive powers of the sallow blossoms. I believe it was the same gentleman who found out about the same time that a mixture of sugar and beer [or rum and sugar or molasses, etc.], mixed to a consistence somewhat thimer than treacle, is a most attractive bait to all the Noctwidce. The revolution wrought in our collections, and our knowledge of species since its use, is wonderful."
"The mixture is taken to the woods, and put upon the tronks of trees in patelies or stripes, just at dusk. Before it is dark some moths arrive, and a succession of comers continue all throngh the night, until the first dawn of day warns the revellers to depart. The collector goes, soon after dark, with a bull's-eye lantern, a ring net, and a lot of large pill boxes. He turns his light full on the wetted place, at the same time placing his net underneath it, in order to eatch any moth that may fall. The sugar bait may be used from March to October with success, not only in woods, but in lanes, gardens, and wherever a tree or post can be found to put it upon. The best nights will lee those that are warm, dork and wet ; cold, moonlight, or bright, clear and dry nights are always found to be umproductive. It is also of no arail to use sugar in the vicinity of attractive flowers, such as those of the willow, lime or ivy. Sometimes one of the Geometridee or Tineida comes, and occasionlly a good beetle." The virgins' bower, when in blossom, is a favorite resort of Noctux. Many can be taken by
carrying a kerosene lamp into the woods and watching for whatever is attracted by its light.

Thyatira and Cymatophora are allied by their small, hairy heads, to the Notodontre in the preceding family. In Thyra-

Fig. 233. tira the palpi are long and depressed, and the fore wings are dark, with five or six large light spots, and the larva is like that of the Notodonta, the segments being limperl, and the anal legs raised while at rest, while Cymatophora is pale ashen, the fore wings being crossed by four or five waved lines. The larya is smooth, rather flattened beneath, with a large head. It feeds on trees, between two leaves mited by silk. C. caniplaga Walker describes from Canada. Gramatophora trisignata Doubleday (Fig. 233, fore wing) is a gaily colored specics, greenish, marbled with black, with three large, round, brown spots on the fore wings. The larra (Fig. 234) is humped, giving it a zig-zag outline, and is brown with the third to the sixth abdominal

Fig. 234, rings much paler. It has the musual power of boring very smooth, cylindrical holes in solid pine wood. We have received specimens of its tumels from Mrs. J. Brigham. We have found the larve just moulting on the leaves of the lilac, September 12th.

In Acronycta the head becomes large and broad, the fore wings are broad and short, with dark streaks and a datk mark, like the Greek letter Psi on the imer margin. The larve vary in being humped or cylindrical, downy, slightly hary, or very hairy, and feed exposed on shrubs. The papa lies in a cocoon made in moss or in crevices of bark. A. oblinita Smith (Fig. 235, larva) is whitish gray, with darker streaks on the fore wings.

Apatela Americana Harris is a large, pale gray moth, without black strealss, whose woolly, yellowish caterpillar, with long, slender pencils of black hairs, feeds on the maple.

We have reccived from Mr. Sanborn a singular caterpiller allied to this genus (Fig. 236), which is figured in the Harris Correspondence as Acronycta acris? var. Americana. "It is greenish brown," according to Harris, "cach segment above with a transverse oral greenish yellow spot; the body is beset with a few long black bristles, dilated at the end, which do not grom, as usual, from small warts ; therc are no long bristles on the second and third thoracic, or on the tenth abdominal rings. It moves very quickly, and rests with the fore part of the body

Fig. 238. bent sideways. The chrysalis was found under a log fastened to another with a few threads. The moth appeared June 28th."

In Leucania the fore-wings are short, the outer margin nearly straight, while the hind wings are usually white. Leucania zaipmeta Haworth (Plate 8, fig. 2; a, larra) is the "Armyworm" of the Northern States. Its lara is smooth, cylindrical, tapering rapidly towards each end, and striped with fine, dark, longitudinal İines. It feeds on grasses, and in certain years has greatly ravaged wheat fields. It hikles by day among tufts of grass. The moth is rusty, grayish brome peppered with black scales, and with an oblique row of about ten black dots rumning towards the apex, and a white discal spot. It expands a little over one and a half inches. It constructs, in

Fig. 237 . the middle of August, a rude earthen cocoon, or cell of dry grass. The moth appears the last of Angust northwards. Six species of Ichneumon, and one of Tachina, prey upon this species. To prevent the too great accumulation of this very destructive eaterpillar, the grass land should be burnt over in autumn. When on the march their armies may be kept out by ditching, and hogs and fowl should be turned into fields during the middle of August, while they are transforming, to prevent their attacks the sncceeding year.

Agrotis, the Dart-moth, is known by its crested thorax; the palpi are broad and truncated, level with the front, and the antenne are either somewhat pectinated or distinctly cili-
ated. The dot and reniform spot are very distinct, being sitmated on a black ground, and there is a basal, median, black streak on the fore wing. The apex of the hind wings is much

Fig. 238.
 produced. 'The larvæ, called "cut worms," are thick, with a distinct, horny, prothoracic plate, like that in the Tortrices, or leaf-rollers; they are marked with shining and warty, or smooth and concolorous spots, and often longitudinal dark lines, and iive by day hidden under sticks and the roots of low plants; feeding by night. The pupa is found living under ground. Agrotis tessellate of Harris (Fig. 237) is dark ash colored; the two ordinary spots on the fore wings are large and pale, and alternate with a tringular and a square, deep, black spot. It expands an inch and a quarter. Agrotis

devastator Harris is the moth of the cabbage cut-worm. Another very abundant species, often seen flying over the blossoms of the Golden-rod in autumn is the Agrotis subgothica (Fig. 238). Mr. Riley states that this moth is the "parent of a cut-worm which very closely resembles that of A. Cochrani, but which has the dark side divided into two stripes. The chrysalis remains somewhat longer in the ground, and the moth makes its appearance from four to six weeks later than A. Cochrani."
A. suffusa Den. and Schief. (A. telifera of Harris, fig. 239) is so mamed from the lance-like streaks on the fore wings. It appears late in July, and probably attacks corn, as Mr. Uhler has found the chrysalids at the roots of corn in Marylaud. Riley describes the larva under the name of the Large Black Cut-worm. It is an inch and a half in length when crawling.
"Its general color above is dull, dark, leaden brown, with a faint trace of a dirty yellow white line along the back. The subdorsal line is more distinct, and between it and the stigmata are two other indistinct pale lines. There are eight black, shiny, piliferous spots on each segment ; tro near the subdorsal line, the smaller a little above anteriorly; the larger just below it, and a little back of the middle of the segment, with the line appearing especially light above it. The other two are placed cach side of the stigmata, the one anteriorly a little above, the other just behind, in the same line with them, and having a white shade above it."

While ent-worms have usually been supposed to feed upon the roots of grasses and to cut off the leares of succulent regetables, Mr. Cochran, of Calumet, Tll., has discoveret that one species ascends the apple, pear and grape, eating off the fruit louds, thus doing immense damage to the orchard. Mr. Cochran, in a letter published in the "Prairie Farmer," states that "they destroy low branched fruit trees of all kinds except the peach, feeding on the firuit buds first, the wood buds as a second choice, and preferring them to all things, tender grape buds and shoots (to which they are also partial) not excepted; the miller always prefering to lay her eggs near the hill or mound over the roots of the trees in the orchard, and if, as is many times the case, the trees have a spring dressing of lime or ashes with the view of preventing the operations of the May bectles, this will be selected with unering instinct by the miller, thus giving her larva a fine warm bed to cover themselves with during the day from the observation of their enemies. They will leave potatoes, peas and all other young, green things, for the buds of the apple and the pear. The long, naked, young trees of the orehard are almost exempt from their roracions attacks, but I found them about midnight, of a dark and damp night, well up in the Iimbs of these. The habit of the dwarf apple and pear tree, however, just suits their nature, and much of the complaint of those people who cannot make these trees thrive on a sandy soil, has its source and foundation here, though apparently, utterly unknown to the orchardist. There is no known remedy; salt has no properties repulsive to them; they burrow in it equally as quick as
in lime or ashes. Tobacco, soap and other diluted washes do not even provoke them; but a tin tube, six inches in length, opened on one side and closed around the base of the tree, fitting close and entering at the lower end an inch into the earth, is what the lawyers would term an effectual estoppel to further proceedings.
"If the dwari tree branches so low from the ground as not to leave sin inches clear of trunk ljetween the limbs and ground, the limbs must be sacrificed to save the tree, as in two nights four or five of these pests will fully and effectually strip a four or five year old dwarf of erery fiuit and wood bud, and often when the tree is green utterly clenude it of its foliage. I look upon them as an enemy to the orchard more fatal than the canker worm when left to themselres, but fortunately for nankind, move surely headed off."

Mr. Riley has named this cut-worm Agrotis Cochrani (Fig.

Fig. 240. 240, and larra) and describes the larva which, according to the observations of J. Tomnley of Marcuette, Wis., also ascends standard trees, not confining its injuries to dwarf trees. The cut-worm is 1.07 inches in length. "It is slightly shagreench and the general color is of a dingy ash gray, with lighter or darker shadings. The back is light, inclining to flesh color with a darker clingy line along the dorsum. The sides, particularly along the subdorsal line, are of a darker shade. On each segment there are eight small, black, shiny, slightly elevated points, having the appearance of black sealing-wax, from cach of which originates a small black bristle. The stigmata are of the same black color and one of the black spots is placed quite close to them anteriorly. The head is shiny and of the same dingy color, with two darker marks ; thick and almost joining at the upper surface, becoming thinner below and diverging towards the palpi. The upper surface of the first segment is also shiny like the head. The ventral region is of the same dingy color, but lighter, having a greenish tinge
anteriorly and inclining to yellow under the anal segment. Prolegs and feet of the same color. It has a few short bristles on the anterior and lateral segments.
"The head is light brown, with a dark brown spot on each side and dark brown above, leaving the inverted Y mark in the middle light brown, and having much the appearance of a goblet, as one looks from tail to head. The cervical shield is dark brown, except a stripe above and on each side. There are sparse, short, white bristles laterally and posteriorly. The venter and legs are of a glaucous glassy color, and the feet are light brown."
"The moth in its general appearance bears a great resemblance to IIadena cheropodii, but the two are found to differ essentially when compared. From specimens of IT. chenopodii, kindly furnished me by Mr. Walsh, ank mamed by Grote, I am enabled to give the essential differences, which are: 1. In A. Cochrani, as already stated, the middle area exceeds somewhat in widh cither of the other two, while in II. chenopodii it is but half as wide as cither; 2. In the Agrotis the space between the spots and between the reniform and transerse posterior is clark, relieving the spots and giving them a light appearance, whilst in the Hadena this space is of the same color as the wing, and the reniform spot is dark. The claviform spot in the Hadena is also quite prominent, and one of its rlistinctive features; while in the Agrotis it is just about obsolete.

Another larva is called by Mr. Riley the W-marked cutworm. "It measures one and an cighth inches, and its general color is ash gray, inclining on the back and upper sides to dirfy yellow: it is finely speckled all over with black and brown spots. Along the back there is a fine line of a lighter color shaded on each side at the ring joints with a clarker color. Subdorsal line light sulphur yellow, with a band of dirty brownish yellow underneath. Along the stigmatal region is a wary line of a dark shade with flesh colored markings underneath it; but the distinguishing feature is a row of black velvety marks along each side of the back, on all but the thoracic segments, and bearing a general resemblance (looking from tail to head), to the letter TW. The ventral region
is greenish gray ; prolegs of the same color ; thoracic feet brown black. Head black with white lines in front, resembling an inverted Y, and white at the sides. The thoracic segments ficquently have a grecnish hue."

Still another, of which the moth is unknown, is described by Mr. Riley under the name of the Pale Cut-worm. "It is of the same length as Cochran's cnt-worm, and the gencral color is pale gray, with a lilac colored hue, cansed by innumerable light purplish markings on an almost white ground. There is no particular shading on the back, and it is very slight along the subcorsal line. The stigmatal line, howerer, being destitute of the above mentioned markings, is almost white. Above this line there is a bond of a darker shade than the rest of the body. At first sight this worm appears quite smooth and uniform in color, the most striking feature being the second segment, which is shiny black, with three white lines. One of

Fig. 2it. a these lines is on the top, and continues to some extent on the bead ; the others are placed on each side of this and do not run down as far. The anal segment has aiso tro black shiny marks on its surface. The stigmata are black and the head is gray, below light shiny, and brown abore. Legs and feet of the same color as the mulder side of the body which is nearly white with a glaucons tinge. There are a few sattering hairs new the tail. This worm is smoother than the others."

In Gortyat the antenne are crenulated in the male, and the fore wings are yellow with darker markings. The larva is dull colored with warty spots. That of G. farago, an European species, feeds in the stems of thistles and the burdock, changing to a pupa inside the stem. G. leucostigma attacles the columbine (Harris). The halits of the Dahlia and Aster stalk borer (Gortyua nitela Guenee) have been described by Mr. Riley, who states that the fore wings of the moth (Fig. 241; a, larra) are lilac gray, speckled with minute yellow dots, with a dis-
tinct white band running across them. The catcrpillar is generally of a livid or purplish brown, though varying much as to depth of shading and is darker before than behind. "The young worm latches about the first of July and immediately commences its work of destruction. It works in such a surreptitions manner as to be too often monoticed till the vine is destroyed. The plant does not generally show any signs of decay until the cocoon is about fully grown, when it wilts and is past recovery. This occurs abont a month after the worm is hatched, and it then crawls just under the surface of the ground, fastens a little earth together around itself by a slight web and changes to a chersalis of a very light mahogauy brown color, and three-fourths of an inch loug. The moth comes forth the fore part of september. The eareful culturist need fear nothing from this troublesome insect, as an oceasional close inspection of the plants about the first of July will reveal the hole where the borer has entered, which is generally quite a distance from the ground, and by splitting downmards one side of the stalk with a penknio it may bo found and Filled. If this inspection be made at the proper time the worm will be found but a short distance from the hole and the split in the stalk will heal by being lept closed with a piece of thread." (Prairie Farmer.)

Achatodes differs from Gortyna in not having the fore wings falcate. A. zere, descrived by Harris, is rust-red with gray clouds and bands on the fore wings and yellowish gray hind wings ; it expands an inch and a half. The larva feeds inside the stalks of corn, within which it transforms; it is a little over an inch long, smooth and naked, with the head and the top of the first and last rings of the body black, and with a double row of small, smooth, black dots across each of the other rings. It also infests the dahlia and clder.

The genns Mamestra comprises rather large moths in which the antenne are rather long and simple in the male ; the front of the head is smooth and convex, and the reniform dot is very distinct, while the outer margin of the fore wings is rather oblique. The lava is longer than usual and feeds on the leares of low plants, remaining concenled by day. The pupa is subterranean, the cocoon being made of earth.

Mcmestra arctica Boisd. (Hadena amica) is common north-
ward, and is found in the colder subarctic regions of America and Europe. It cuts off the leaves of roses and other shrubs. Fitch states that the larva, late in May in New York, cuts off the young shoots of the currant. It is an inch and a half long, of a shining livid color, with faint dots, from which arise a very short, fine hair. It remains in the pupa state about a month beneath the gromel, the moth appearing in July. It is found also in Labrador and in Europe. The moth expands an inch and three quarters and is of a decp Spanish brown, variegated with gray, with a very conspicuous reniform chot; the outer edge is bordered with blue gray. Harris also describes M. picta, a reddish brown species, with a conspicnons white Z on the outer edge of the fore wing. The larva is yellow, gaily variegated with three longitudinal stripes. It feeds on garden regetables, and Mr. Fish informs me that it feeds on the cranberry.

The genns Plusia is quite molike the foregoing genera, as the palpi are long and slender, and the fore wings are acnte, with silver marks and lines, usually a dot and dash, like a semicolon; the inner angle is tuited, and the hind wings are triangular.

Our most common species is Plusia precationis Gnenee, the larva of which, according to Mr. Saunders, feeds on the hollyhock in August. "It is one and a half inches long, the body tapering anteriorly and thickening in the middle and towards the ond. The head is small, smooth, shining green, with a black stripe on each side. The boty is green with chull whitish, longitudinal lines above and a whitish stripe somewhat more distinct on each sile near the spiracles. It changed to a chrysalis August 9th." A species of Plusia, like P. precationis, is figured by Mr. Glover in his unpublished plates of insects injurious to the cotton plant. It has a much curved, semicircular discal spot, with a distinct dot just bejond, the two spots arranged thus ∞. The caterpillar is pale green, the body increasing in size from the head to the tail aut with a lateral row of brown dots. "It was found eating the cotton flower in Georgia the last of October." It forms a loose, thin cocoon among the leares, and the pupa is pale green, spotted above with irregular brown spots. Nr. Glover also figures quite a different species of Plusia, which has the same
habits as the species just mentioned. It belongs, however, to a different section of the genus, and on the discal area is an oblique, golden, inregular oval patch, containing two unequal dots. The larva is pale green and has a broal, lateral, white stripe. The chrysalis is brown and protected by a thin, loose cocoon. P. divergens Fabr. lives on the Alps, in Fimmark, and in Labrador. Mr. F. G. Sanborn fomed, July Gth, a closely allied species on the summit of Mount Washington, N. H., which differs from P. divergens in the forked, golden, discal spot being a third smaller, while the two branches of the spot go off at right angles to each other. On the fore wings the second line from the base is acutely dentate on the submedian voin, where in P . divergens it is straght, and the outer line is also dentate, not being so in P. divergens. The hind wings are yellowish at base, with a wide black margin. It may be called Plusia montuna. Mr. Grote has described P. imnea (P . alticola of Walker') from Pike's Peak, which is closely allied to P. divergens. Plusia area Hubner (Fig. 242, side view) is a reddish brown moth, with obscme markings, and without the usual metallic spots. It expands a little over an inch, and is not uncommon in the Northern States.

Anomis is a slender-bodied genus, with triangular Fig. 24. fore wings. A. aylina Say feeds upon the cotton. It is a brown moth with a dark discal oval spot centred by two pale dots. She deposits, according to Mr. Glover, a low, much flaticned, vertically ribbed egg upon the surface of the leat. The larva is a looper, whence it can be readily clistinguished from the army and boll worms, and its body is thickest in the middle, very hairy, green, dotted with black along a subctorsal yellowish line, and with black dots beneath. It matures early in the season, and a second brood becomes fully grown in September and October. When about to transform it gathers a leaf together by a web, thus forming a rude cocoon. (Glover.)

Like our northern army worm (Lencania unipuncta) the Army worm of the South (Fig. 243, and larva, from Glover'), makes its appearance in great numbers in a single day, committing the greatest havoc in a few hours. Professor J. Darby, of Anlurn, Ala., writes me that "Saturday, Septem-
ber 19 th, I was in the field examining the forms (buds before flowering) and the joung bolls (fruit after the floral organs have fallen off). I cxamined all carefully, with no signs of eggs or worms. On Sunday I did not see it. On Monday I passed it as usual and observed nothing unusual. On Tuestay moming I passed it and noticed nothing unnsual. On Tuesday noon every plant in the field was stripped of all its upper leaves; not one remaining as far as could be seen, and the plants were covered with millions of worms. I counted on one plant fortysix worms. They commence at the top of the plant, cating every leaf. When the leares were gone they attacked the young bolls, eating through the perianth and consuming the young cotton. In the course of four days the work was done. They did not toncl the grape or any other plant in the field, so far as I have been able to see. Many left the field and thousands were in the road and on the fences, but not one in a thousand thens escaped. Today, September $28 d$, there is sarcely one to be seen. Their disappearance is as mysterious as their coming. They have left no signs that I can see, either on the stalks or in the ground. They have extended over hmodreds of miles, and mothing has proved a barrier to them, haring been as destructive on islands in the river, as elsewhere. One-third of the cotton crop has been clestroyed. Nothing of the kind has accurred in thirty years past to my knowlectge." The larva is reddish brown, with distinct black spots, the dorsal line being streaked with yellow and black. It hibernates as a moth. The presence of this caterpillar in the West Inclies caused the cultivation of cotton to be abandoned. The same, or another specias, also appears often in Guiana and other parts of South Amcrica. A good remedy against the worm is a mixture of two parts of carbolic acirl with 100 of water, to be sprinkled on the leares of the plant. Heliothis has pubescent antenne, the thorax and abdomen are smooth, and the fore wings slightly acute at tip. The larva is elongated, but not attenuate, with a large head and distinct lines along the body.

It feeds exposed on low plants, preferring the flowers. The pupa is conical and subterranean. H. armigera Linn. (Fig. 24.4; a, larva) is the "boll worm" of the Southern States, so destructive to cotton crops. Riley states that it also feeds on the finit of the tomato, and in Southern Ilimois on the silk and green kernels of corn and also the phlox, tomato and com-stalles, and, according to Mr. T. Glover, it bores into the pampkin. Mr. Riley, in the

Fig. 24.
"Prairie Farmer," describes apparently the same insect under the rame of the "Phlox worm" (Fig. 245, and larva). He states that there are two broods in a jear, the first appearing in July,

Fig. 246. and becoming moths by the middle of August, the second passing the winter in the chrysalis state. The eggs are deposited singly on all portions of the plant, and the caterpillar, when about to become a chrysalis, enters the ground, and interweaves grains of saud with a few silken theads, forming a very slight elastic cocoon." The genus Heliocheilus differs from Heliothis in its broader and shorter wings and its venation. HI. paradoxus Grote (Fig. 216, venntion of fore wing) is a pale testaceons moth, with the fore wings darker. It inhabits Colorado Territory.

Ancrita is rather a small moth, with a hairy body and small head; the fore wings

Fig. 245. are thick and velvety, with confused markings, and the hind wings are yellow or white, often bordered with black. The larra is short and smooth in repose, with the anterior portion of the body bent under the breast. The pupa is enclosed in a
cocoon of silk mixed with earth. The genus is arctic or subarctic, and inhabits Alpine summits. A. algida Lefebvre inhabits Labrador and Lepland. A closely allied and undescribed species, seems to be peculiar to the summit of Mount Washington, N. II., where it has been cletected by Mr. Sanborn.

Xanthoptera semicrocea Guence (Plate 8, fig. 3; a, larva) is brown, with the base of the wings saffion yellow; it expands a little less than one inch. Dr. A. W. Chapman, of Appalachicola, Fla., states in a letter to Mr. Sanhorn, that the larva feeds on the leaves of the Pitcher plant, Sarracenia. It is red and cylindrical, with short black tubercles on the top of each segment, and a black eylindrical spine on each side of the four basal rings of the abdomen, surmomed by fine hairs. It does not spin a cocoon bat hangs loosely by a few silken threads within the pitcher-like leaf, and the moth is the only insect that can get out of the bristly and narrow opening of the "pitcher."

The little slender-bodied genus Ercastria has filiform antennæ and a slender crested abdomen, with the usual lines and dots quite distinct. The larva is smooth and slender, with only three pairs of abdominal legs. The pupa is enclosed in a cocoon among leaves or moss. E. cermeola Guenée is a common species, with the outer edge of the fore wings flesh colored.

In Brephos the hind wings are bright orange, the body is hairy and the antenne are ciliated; the abdomen is slender, and the wings are broader than usual. The larra is smooth, elongate, with sixteen legs, though the first tro abdominal pairs are useless for walking, hence the larva has a semilooping gait. It feeds on trees and makes a slight cocoon in moss or under bark. B. infans Moschler inhabits Labrador and New England. It fles early in April before the snow has left the gromid.

Catocale is a beautiful genus, the species being numerous in this country and of very large size, often expanding three inches or more; the wings are broad, and in repose form a very flat roof. The larva is elongate, slender, flattened beneath and spotted with black, attennated at each end, with fleshy filaments on the sides abore the legs, while the head is flattened and rather forked above. It feeds on trees and rests
attached to the trunks. The pupa is covered with a bluish eifforescence, enclosed in a slight cocoon of sill, spom amongst leares or bank. C. piatria Grote is brown on the anterior wings and varied with black, while the hind wings are yellow with a broad median and marginal band. It is common in the Middle and Eastern States.
C. ultronic Hubner (Plate 8, fig. 4 ; a, larva) expands two and a half inches and is of a rich umber color, with a broad ash stripe along the middle of the wings, not extending towards the apex, which is brown. The hind wings are deep red, dusky at base, with a median black band, and beyond is a red band a little broader than the dark one, while a little less than the onter third of the wing is blackish. The larva feeds on the Canada plum. It is gray with back punctures, and the head is enged with black. The segments are transwersely Wrinklech, and on each one are two whitish and two brownish papillie ; the tro brown ones on the eleventh ring are much enlarged, and on the ninth ring is a small brownish hom. On the sides of the body, before the spiracles is a line of light pink fila-

Fig. 247. ments fringing the scalloped sides. On July 1ath the larva changed to a chrysalis in an earthen cocoon, and the moth appeared on the 2d of August.

Drasteria is a small, grayish moth, with two geminate black duts near the apex, and a broad diffise line on the fore wing. The larva is a looper, and the body is attennated at each end. D. erechtea Cramer flies very abundantly in grass lands in May aud early summer. Mr. Saunders informs me that the larva (Fig. 247) is "one and a quarter inches long and walks like a geometer; the boty is thickest in the middle, being somewhat smaller towards the head, but tapering much more posteriorly, while the head is not large and is rather flattened in front and is pale brown, with darker longitudinal lines. The body above is reddish brown, with many longitudinal darker lines and stripes ; there is a donble whitish dorsal line, with a stripe on each side of the darker shade, another stripe of the same hue on each side close to the stig-
mata, and between those stripes are faint longitudinal lines. It fed on clover and went into the chrysalis state Sept. 21st."

The two remaining genera have broad wings, and are blackish, with numerous transverse waved lines. The edges of the wings are scalloped, the palpi are very long, and the head narrow between the eyes, thas showing their affinities to the Phalanidece. The species of Homoptera are of a dark ash color. II. lunata Drury has a lunate discal spot.

Erebus is a gigantic moth, with the outer margin very oblique and a large, incised, discal spot and sublunate marginal spots. Our large, blackish speciss, clark as night, is Eiebus odorch Drury ; it expands about live inches. The magnificent, pale gray Erebus Agrippina Cramer (E. strix of Fabricius) inhabits Brazil ; it expands nearly ton inches.

Pralinidre Latreille (Geometride). The Geometrids are easily known by their slender, finely sealed borlies and broad thin wings, which in repose are not folded roof-like over the body, but are spread horizontally and scarcely overlap each other. The antenna are usually pectinated. They are delicate, pale, often greenish or yellowish moths, and fly more by day than the Noctuids. The papi are short and slenter, and the tongue, or masillæ, is weak and short.

The larre rarcly have more than ten legs, some having fourteen, and a few (Metrocampa and Ellopia) twelve. Thus from the absence of legs on the basal rings of the abdomen, the larve are loopers, or geometers, as grasping the object on which they are walking with their fore legs, they bring the hind legs close up to the fore legs, thus making a loop like the Greek letter Omega. They usually let themselves down by spinning a silken thread, hence they are sometimes called "Drop-worms." When about to pupate, the larra either spins a slight, loose, silken cocoon, or conceals itself under a covering of leares fastened together with silk, or buries itself in the ground without any cocoon, while Haris states that a very few fasten themselves to the stems of plants and are changed to chrysalids, which hang naked and suspended by the tail. The pupa is long, slender, conical, generally smooth, sometimes with lateraî protuberances on the head, and usually dark brown, but
often rariegated. The species, of which there are about 1,800 described, are widely distributed, and more are found in the aretic regions than of the preceding family.

We place at the head of this family the genas Urania and its allies. From their large size, splendid colors, swallowtailed wings, the fore pair of which are elongated towards the tips, while the outer edge is very oblique, as in Papilio; their habit of flying by day and other resemblances to the butterfies Latreille placed them among the butterties immediately after the Hesperians. They have also been supposed to belong to the same group as Castnia, but the shape of the houd, the long geometriform antenme, the palpi and the conical pupa and other characters ally them with the Urapterys and the higher Phatænidx. Urania Leilus is velvet black, the fore wings crossed by emerald green stive, and the hind edge of the hind wings are banded with light blue and golden, while the fringe and long tail are white. It is found in Surinam and Bravil.

Uraptergat is a true Geometrid, with very square hind wings extending beyond the abdomen, with their onter margin prolonged into a short tail. U. poliaia Cramer is a yellow species found in Mexico and the West Indies. The lava of the European U. sambuchria feeds on the oak, clder, bramble, etc., and is elongate, with projections from the eighth and twelfth segments. The pupa is clongate and enclosed in a netlike cocoon suspended by threads.

In Cherodes the hind wings are still angulated, the angle reaching beyond the tips of the abdomen; the falcate apex of the fore wings is acute, and the outer margin is entire and angulated just above the middle. The species are usually pale ochreons, with short transverse strigie and two rlarker lines, the onter one of which is obtusely angulated just before the aper. C. transiersata Drury is a pale ochreous species, which we have found resting on red maple leaves.

The genus Angerona comprises the single species A. crocataria Fabr., the larra of which (Plate 8, fig. 5 (t) we have found feeding on the cultivated strawhorry during the last of Jume. It is an inch and a half long and when at rest extends itself straight out. The body gradually increases in size to the first pair of abdominal legs. The head is flattened so as to be
square above, and whitish green, with three longitndinal brown lines. The prothoracic ring is concolorous with the head, from which two brown lines extend, forming an inverted V on the hinder edge. The body is pale grass green above, with the sides bulging. There are four minute black dots on each ring, a whitish, indistinct subdorsal line, and a lateral white line extending to the sides of the anal legs. The body is greenish white. The moth (Plate 8, ig. 5, male) is of a rich yellow, witl brown patches on the wings, and appears in July.

In Endropio, which is closely allied to Choerorles, the outer edge of the wings is deeply notched. E. tigrinaria Guence is dirty ochreous, the wings being sprinkled with black; the onter line is nearly straight, ferruginous, paler within, with some submarginal spots, and the basal line on the fore wings is angulated, while the apex is pale and margined externally with blackish.

Metrocampar is pearly white, with the wings a little bent in the middle. M. perlata Guen. is pure white, with two darker oblique lines not angulated ; it is found not uncommonly northward. 'The larva of the English M. margaritata has twelve legs, and like Catocala has fleshy filaments on the sides just above the legs. The pupa lives on the surface of the earth.

Ellopia has pectinated antenno and exceedingly thin transparent wings, which are angulated in the middle of the outer edge, and with an inner and outer line, the latter bent nearly at right angles. The larva has twelve legs, but is smooth. The English E. fasciavia feeds on firs. Ellopia flagitiaria Guenée is pale ashen ochreons, with the speckles and two bands pale brown. It expands from six to eighteen lines.

In Cuberodes the antemin axe broadly pectinated, and the aper of the fore wings are nearly rectangular. The species are pale ochreous with thick wings, and the outer line terminates near the apex. C. metrocamparia Guenée is common northwards; with a blackish discal dot and outer dusky line arcuated and margined with white.

The genus Nematocampa is characterized by the four filaments on the back of the larva. N. fitamentaria Guen. (Plate 8 , fig. $7 ; 7 \mathrm{a}$, larva) is a small moth of a pale ochreous color, with reddish brown lines and dots, a ring in the discal space,

and just beyond a dark lead-colored band which becomes a broad squarish patch on the inner angle, and which is continuous with a broad band of the same color on the hind wings. It expands three quarters of an inch. Its singular larra we hare found feeding, late in June, on the strawberry. It is . 70 of an inch long, cylindrical and with two pairs of long curled filaments, situated on the third and fifth abdominal rings respectively; its general color is wood gray, and the pupa is pale reddish gray. The moth appeared on the 27 th of July.

The genus Abraxas, to which our curant worm belongs, may be known by the whitish or ochreous wings being corered with dark, often partially transparent blotches, and the larva being gaily speckled with black and golden spots. A. ribearia Fitch is ochre-yellow, with two rows of dark spots, the inner row being incomplete and the outer row with a large blotch in the middle of the wings. As soon as the leaves of the currant and gooseberry are fairly expanded, late in May or early in June, the young caterpillar may be found busily eating them. In about three weeks after hatching it becomes fully grown, being about an inch long, and bright yellow with black dots. The chrysalis may be found under the bushes, either upon the ground or just under the surface. In two weeks after pupating the yellowish moth may be seen flying about the garden. Riley states that loy sprinkling powdered hellebore upon the leaves, or applying a solution of eight or twelve ounces to a bucket of water, the larve will be killed, while hand-picking and shaking the bushes will also reduce their numbers.

The genus Ennomos is stouter and much more hairy than any of the preceding genera; the antenme are well pectinated in the male, the wings are not so broad as usual aud are dentate. The larva is rather long and twig-like, either smooth or humped, and spins a cocoon consisting of leaves drawn together by silk. E. magnaria Gucn. is yellow, punctured with black, with two dusky lines, and the finge is partly blackish. E. subsignaria Hubner (Fig. 248, moth; Plate 8, fig. 6, larva) is a delicate, white, widely distributed species, and in the city of New York, where it is free from the attacks of its natural enemies, it is rery clestructive to the elm trees.

A writer in the "Practical Entomologist" (rol. i, p. 57) states that the caterpillars are hatched as soon as the leaves unfold, and live mobserved for a week or so in the young shoots in the tree-tops, and when half grown are seen crawhing about the tree. Towards the end of June they pupate, and in about a week after the moth appears. The importation of the English sparrow is said to have very effectually checked the ravages of this caterpillar, which may be recognized by its resemblance to the twigs of the tree on which it feeds, while its rather large head and the terminal ring of the body are bright red.

In Amphedasys the body is very stout and the triangular wings are inclined to be small (in Nyssia, an European genus, the female las minute rudimentary wings) and narrow, while the antenne are broadly pectinated. The larra is stout, twig-
 like, being dark brown and wartel ; it is swollen at each end, and the head is often bifid. The pupa is subterranean. Such are the habits of A. cognataric. Guen. which is white and very thickly sprinkled with ashy black. We hare found the lara feeding on the "Missouri currant," the goosoberry, and the red Spiræa. It went into the pupa state on the 22d of September.

Boamia has pectinated antenne, the tip being gencrally simple, while the abdomen is rather slender and the wings are dusky gray and crossed by dentate lines. The larva is twiglike, elongate, with small humps and lateral projections, and lives on trees. The prpa is subterranem, B. anopharich Guen. is ashen, the wings clouded with fuscous, and dusted with black seales, with four black dentate lines. A species of Bormmict, figured by Mr . Glover, "eats the flowers of the cotton, being found early in October." The larva is of the same thickness throughout, with a rather large head angulater above, and two tubercles near the tip. It is brown, with a double lateral pale stripe. The chrysalis is brom and enclosed in an underground cocoon. The moth expands nearly an inch and a half,
and is ash colored, sprinkled densely with brown speckles, with three angulated, transverse, black stripes.

Geometra and its allies (Nemoria, Iodis, and Racheospila), have smooth, round or angular, entire wings, which are green, often with whitish lines. Geometra is the largest genus; "it has pectinated antemm, and the larva is rather short, downy, with several dorsal humps. The pupa is enclosed in a transparent cocoon amongst moss." (Stainton.) G. iridaria Guen. is pea green, with two broad bands, and the costa of the fore wings is white sprinkled with rust red.

A great many species, often difficult to identify from the sameness in their markings, are comprised in the genus Acidalita, which is known by its rather thin wings, with the edges usually entire, and with stripes and bands and other markings common to both. The hind wings are often slightly angulated. The larva is smooth, slender, and feeds concealed under low plants. The pupa is subterranean, or lives in a cocoon among leaves. A. nivosaria Guen. is pure white. A. enacleata Gnen. is whitish yellow; its wings are speckled with brown, and with pale lines and submarginal spots.

Macaria is easily recognized by its falcate wings, which have a romded excavation below the hooked tip, and there is a rather prominent angle on the hind wings. There are usually two large blotches, one in the middle of the wing, and the other on the onter thind of the costa. The larra is rather short and smooth, and feeds on trees and

Fig. 210. shrubs. The pupa is protected by a cocoon. M. granitata Guen. is gray, with indistinct darker bands and minute black speckles, with a rust red costal spot in front of a black diseal spot.

Zerene is a beantiful genus, with feathery antenne and broad, thin, white wings. Z. catenaria Drury is white with black discal dots, and two black scalloped lines. The larra is a general feeder, eating sedges, the goldenrod, bluebery, waxwork, and according to Mr. Fish, is injurions to the cranberry. It is a pretty caterpillar (Fig. 249) and is straw colored, the segments being wrinkled and thickened, with two subdorsal darker threads; the head is yellow with six black dots; the spiracles
are black, sitnated in a white field, and with a black dot on each side. In Maine it pupates about the middle of August, making a thin gauzy cocoon, consisting of yellowish green silken threads. The pupa is white, with scattered black dots and black stripes; it remains thirty-two days in the pupa state, the moth appearing during the middle of September.

In Anisopteryx the male antennæ are simply pubescent, the wings are ample, and rounded at the tip, while the hind wings are rounded. The female is wingless, the head small and the body is oval. The male of A. vernata Peck (Plate 8, fig. 9; $9 a$, female; $9 b$, larva), the moth of the Canker worm, is ash colored, with a whitish costal spot near the tip of the fore wings which are crossed by two jagged whitish bands dotted with black on the ontside ; they expand about one inch and a quarter. In the enrly spring and late in autumn the male flies about and couples with the wingless female, which lays a patch of short, cylindrical eggs, from sixty to one hundred or more, arranged in rows, and glued to the surface of the bark. The larre latch from the first to the middle of May, or as Harris states, about the time of the flowering of the red currant, and the leaving out of the apple tree. Almost before the presence of the larre :s known they often nearly strip an orchard of its leares. They also attack the cherry, plum, elm, and other trees and shrubs. The canker worm (Plate 8, fig. 9b) when mature is about an inch long, ash colored on the back, black on the sides, and beneath yellowish. It varies greatly in the intensity of its markings. It ceases eating when four weeks old, and late in June creeps down, or lets itself down by a thread, and burrowing from tro to six inches in the loose earth, there forms a rude earthen cocoon, fastening the grains of earth together with silk. Twenty-four hours after the cocoon is fillished the worm becomes a chrysalid, which, in the male, is slender, rather pointed in front and light brown in color. Coming forth in the antumn and following spring, its progress up the tree can be arrested by the application of coal oil or printer's ink, by the well known methods, around the trunk, while the bunches of egrs should be picked off and burnt. The A. pometaria Harris is as abundant as \mathbf{A}. vernata; it has thinner wings, wanting the whitish bands and spot, and having an
oblique, dusky, apical line. We are inclined to think that it is simply a varicty of A. vernata. Harris has detected an ichneumon parasite which preys upon the canker worm, and a species of Tachina also attacks the caterpillars, and we have noticed a minute species of Platygaster (Fig. 134), first discovered by Herrick, ovipositing in its eggs. The Calosomas also devour them, and probably other ground beetles ; and certain wasps (Eumenes) store their nests with them. (Harris.)

Allied to the canker worm is the Hybernia tiliaria Harris, the male of which is much larger and has feathered antennæ. The female is larger and slenderer than that of the canker worm, and along the back are two rows of black dots on a pale grayish ground. The moth flies late in the autumu. The larva is bright yellow, with ten crinkled black lines along the top of the back, and is an inch and a quarter in length. It feeds on the lime, apple and elm, and is sometimes very destructive.

Eupithecia is a diminutive form, with very small rounded hind wings, while the fore wings are much elongated towards the apex, and at rest both pairs are spread out and pressed closely to the surface on which the moth rests. The larva is rather short, stiff, often marked with dorsal lozenges, and the head is small and rounded. It feeds on trees or low plants ; sometimes on seeds of plants. The pupa is slender, conical and pointed. E. misenulata Grote is clear silky grayish, with a black interrupted outer line and a grayish fringe, interrupted with black.

Cidaria numbers many species in which the antennæ of the male is simple or slightly pubescent, and the fore wings are rather pointed at the tip, while the hind wings are rounded. The larva is elongate and slender, with the head often notched. It feeds on trees or shrubs, and the pupa is of variegated colors. Cidaria diversilineata IIübn. (Plate 8, fig. 10, 10 a, larva) is yellowish ochreons, with brownish angular lines, and at rest the abdomen is curved over the back. Mr. Saunders has fonnd the larva feeding on the woodbine. According to his notes "the body above is dark brown, with a slightly reddish tint, and patches of a darker shade along the dorsal region, being the color of the twigs of its food plant. It remains in the pupa state about a weck." We have also
found both brown and green specimens feeding on the grape vine in midsummer. The worms can be remored by hand-picking as they are rather conspicuous objects. A larva, probably of Cidaria, has been found by Mr. W. C. Fish, stripping the cranberry plants in Harwich, Mass., late in August. Mr. Fish writes, "I hare never met them that I am aware of before, but on one bog in this place they destroyed nearly two acres of cranberry vines, eating off all the green leares, the bog being as luack in spots as thongh a fire had been over it." They were not numerous elsewhere in that tow, but may prove at times to be a great pest to cranbery growers. We failed to rear the larve sent by Mr. Fish. They are abont the size of the canker worm. The lead, which is no wider than the rest of the bonly, is deeply indented, on each side rising into a tubercle; the anal plate is long, acute, and bencath it are two minute acute tubercles, tinged with reddish. It is dull reddish brown, simulating the color of the twigs of the cranbery, and is finely lineated with still darker lines. The head is speckled with brown, with a conspicnous transverse band across the vertex, and two rows of pale spots across the front. Just above the spiracles is a broad dusky band. Beneath, the body is paler, with a mesial clear line edged with brown. It is .80 of an inch in length. Mr. Fish states that the owner of the bog flowed it with water so that it was completely covered and the worms were killed. This is a rapid and the most effectual way to exterminate insects raraging cranberry lots.

Prialida Latreille. The Snout-moths, so called from their very long and slender compressed palpi, are very easily recognized by this character alone. The more typical forms have triangular fore wings, and a slender abdomen and long slender legs, the front pair of which are often tufted. They are usually dull ash gray, with a marked silken lustre. The larger genera, Hypena and Herminia, etc., are called Deltoids, as when at rest the wings form a triangle of the form of the Greek letter Delta. Their antenne are sometimes pectinated in the male. They are usually gregarious in their habits, and often extremely local. They haunt moist grassy places, are readily disturbed by day, and fly before dusk, while some are
true day-fliers. The larre are generally known by their remarkably glassy appearance, and the few hairs on them have an unusually bristly look. Many spin a cocoon. The pupa is long, slender, and conical.

The largest form is IHypena, in which the male antennæ are hairy, and the palpi are long, ascending, and the fore legs are not tufted, and there are often slight tufts of raised scales on the fore wings. The larva is elongate, cylindrical, with fourteen legs, and feeds on low or climbing plants, making a slight cocoon mong leaves.

The IIop vine moth, H. hemuli Harris (Fig. 250; a, larva and pupa) is very destructive to the hop. It is marbled with gray beyond the middle of the fore wings, with a distinct oblique gray spot on the tip; they are crossed by two wavy blackish lines formed of elevated black tults, and there are two similar tufts in the middle of the wings ; it expands one inch and a quarter. The larva is glassy peagreen. The body is long and slender, with rather convex rings, and with long

Fig. 250.

a sparse hairs. The head is rather large and deeply divided into two lobes by the median suture; it is a little more yellowish green than the body, which tapers gradually towards the tail, while the anal legs are long and slender, there being but two pairs of abdominal leg's, so that the caterpillar walks with a looping gait. The body is striped with a narow whitish line, edged broadly below with dusky, and with two white lines on the sides of the body, though specimens rary in the number of lines, some having no lateral whitish stripes. It is 45 of an inch in length. When half grown the larva is pale lirid flesh color, not greenish, with a broad dark dorsal line, bounded on each side by a whitish line. It is donble-brooded, the first lot of caterpillars appearing in May and June, the moths coming ont late in June and early in July; while the second brood of larree appear in July and August, the moth flying in September. It is very active, leaping off the leaf to the ground when disturbed. When fully grown it forms a loose silken cocoon
within a folded leaf or any crevice, the moth appearing in three weeks. We have raised a species of Tachina from the pupa. The vine should be showered with a solution of whale oil, and soapsuds, and the plants shaken to rid them of these pests.

Herminich differs from Hypena in its tufted fore legs; the larva is short, slender towards each end, covered with small spots; it has sixteen legs, and feeds concealed among dry leaves, making a narrow cocoon among them. H. jucchusiulis Gucné is one of our most common species.

Pyralis has narrow wings, the fore wings being oblong, with distinct lines, and the palpi are short, ascending. The Meal moth, P. farinatis Harris, is reddish gray at the base and hind edge of the fore wings, becoming more reddish towards the tip,

Fig. 851. with two whitish cross lines, the space between being ochreons. The larva is dull whitish, with a reddish brown head, and having reddish prothoracic and anal plates. It feeds on straw and corn, and Mr. Riley has found it feeding on clover.

The Clover worm, or Asopica costalis Fabr. (Fig. 2ŏ1; 1, 2, larva in different positions; 3, 7, cocoon; 4, pupa; 5, 6, moth), according to Riley, "attacks and spoils clover for feecling purposes, both in the stack and mow, by interweaving and covering it with abundant white silken webs and black excrement that much resembles conrse gunpowder. The parent of these clover worms is a pretty little lilac-colored moth, with wide golden fringes," and has been introduced from Europe. The moths fly late in June and in July, and they creep into all parts of the stack, as the larvæ have been found eight feet from the ground, though they are mostly found at the bottom. The larva is three-fourths of an inch long and is dull dark brown, with an olivaceous hue. Mr. Riley thinks there are several broods through the year, and suggests as a preventative to
stack the clover on a good log or rail fom the air to pass up through from beneath.

In Aglossa pinguinalis Harris, the Grease moth, the palpi are rather long, the fore wings are grayish brown clouded with a darker hue, and are crossed by two indented lines. The larva is of an uniform dark brown, with a darker head and prothoracic plate, and feeds on greasy horse clothes, etc.

Another species of Aglossa (perhaps A. cuprealis) has been sent me by Prof. A. E. Verrill, who writes me that the larva does great damage to the old leather bound volumes in the library of Yale College, by eating out great patches and galleries in the leather covers, and also, in some cases, some of the glue and pastebourd. It spins a silken cocoon. The moth (Plate 8 , fig. 20) differs from A. pinguinalis by the hind wings beng' pale whitish gray, instead of grayish brown. The palpi have the third joint one-third as long as the second. It is pale brown, with a slight reddish tinge, and the wings are crossed by two pale bands, with several pale costal spots. The outer band is heaviest on the costa and inner angle, and faint in

Fig. 252. the middle of the wing. The hind wings are pale, shining whitish, with no bancls. It expands. 90 of an inch.

In Europe, Mr. Curtis states, the Aphomica colonella Liun. (Fig. 252) which also occurs with us, is a formidable foe of the humble bee, fecding upon its honey. When fully fed it spins a tough web of a close woolly texture, in which the caterpillar turns to a chrysalis (a). "The female moth creeps into the nest in June to deposit her eggs, and the caterpillars live in fimilies sometimes of five hundred, to the total destruction of the progeny of the poor humble bees. The moths are of a dirty white, the upper wings have a greenish and rosy tinge, with a line of black dots round the margin, a whitish space near the base, and two black lines near the costa in the male. The female has two distinct, indented, transverse bars, and two black spots on the disc."

Hydrocampa and its allies are exceedingly interesting from
the aquatic habits of the larwo, which remind us of the Caddis worms. Catuclysta is at once known by its slender body and narrow wings, the hinder pair of which have a row of eye-like spots along the hind margin. The larva is elongate, with a pale head, and is aquatic, feeding beneath the leaves of the Duck weed, living in a cylindrical silken case covered with leaves. The pupa has a long ventral projection, and is enclosed in the cuse of the larva. C. fulicaits Clemens has, on the outer margin of the liud wings, a row of five black lumules connected by intermediate metallic violet blue spots, and behind them a row of orange yellow dots.

The larra of Paraponya is provided with branchis and spiracles; the pupa residing in a cocoon among leaves under water.

Hydrocampa has large white spots on the outer edge of the fore wings. The larva is rather thick, attemuated at each end, with a black head. It is aquatic, living in a Hat case under

Fig. 2.3. the leaves of water lilies. The pupa resembles that of Cataclysta.

The genus Botys (Fig. 253) includes many species, in which the conical abdomen is longer than the wings, and the tip of the front pair is often prolonged. The larra is said by Stainton to be lively, attentated at each end and semitransparcut, with warty spots. It feeds in rolled up leaves. The pupa is elongate, smooth, enclosed in a slight cocoon among leaves. B. verticalis Albin is whitish, with the outer edge of the fore wings dark grayish. The larva feeds on the nettle. B. citrina G . and R . is a bright yellow species.

The genus Desmia is at once known by its resemblance to Botys, and by its back body and wings, spotted with broad white patches, while the male antemæ are swollen in the middle. D. maculalis Westwood, the Grape leaf folder, is shiny black, with a white fringe on its wings, which are spotted in the middle with white patches, and with two white bands on the abodomen of the female. It is found chiefly in the Southern States, where it attacks the grape. 'The larva, according to Riley, who observed the moth in Southern Illinois, is "glass-green, and folds a leaf, or attaches two, that may be close together, by aid of a few silken threads. It is very active, jumping and jerk-
ing at the least touch. It acquires a flesh-colored hue prior to changing to a chrysalis, which it usually does just within the leaf. Many which thas changed with me on the 21 st of July, became moths on the 29 th of the same month."

To the genus Phycita belongs the Apple leaf crumpler, or P. nebulo of Walsh, which in the West is known to strip the trees of their early leaves. It draws the leaves together by a web, and about the middle of June becomes fully grown, when it closes up its hom-like case, and at the end of the same month and early in July appears as a long, narrow-winged moth, somewhat like Nephopteryx, but with broader fore wings.

Nephoptery is a genus with very narow wings, with the male antennee sinuous at the basc. It feeds on various trees, while the Iarva of N. Edmandsii Pack. (Plate 3, fig. 2; 2a, larva; $2 b$, pupa), feeds on the cells of the humble bee.

The genus Pempelia closely resembles Nephopteryx. Our most injurious species is the Gooseberry worm, which is undescribed. It may be called the P. grossutarice (Fig. 254; a, cocoon) and is allied to the European P. semirubella. Though familiar with the insect, and having raised the moth, our

Fig. 254. specimens were too much rubbed for identification, and we are indebted to Mr. Saunders of London, Canada, for very perfect specimens of the moth, and notes regarding its habits, confirmatory of our orm observations. The moth is pale gray, with a dark, transverse, diftuse hand on tho inner third of the wing, enclosing a zig-zag white line not reaching the costa. There is a discal discoloration, and beyond, a white zig-zag line with a long, very acute angle on the internal margin, and a row of marginal black dots, while the apex is white, and the veins and their branches white; it expands nearly an inch. As soon as gooseberries and currants are well formed, many turn prematurely red and dull whitish, which is due to the presence of a pale green, smooth worm, which, after eating out the inside of one berry, leaving a hole for the passage of the excrement, enters another berry making a passage-way of silk until it draws together a bunch of currants, or two or three gooseberries. During the last of June it pupates, while the moth does
not appear until the spring of the following year, Mr. Saunders' specimens haviug left the chrysalis May 8 th.

Crambus, so abundant throughout the summer in grass, is at once known by the long narrow wings being rolled around the body in a tubular form. The larva has sixteen legs, is whitish or dull colored, with large shining spots, and fecds on moss in silken galleries. Mr. Saunders has hatched the larwa from the eggs. "They feed readily on grass, the blades of which they tasten together with silken threads, under which they live concealed ; they will also feed on clover." Crambus mutcbilis Clemens is grayish fuscous, the palpi a little darker, while the fore wings have a grayish median stripe, not extending bejond the disk, and the discal dot is dark brown. It is a rariable and a common species. Other linds are variously streaked with silvery white.

The Bee moth, Galleria, has mather broad wings, which are indented on the outer edge. G. cereana Faln. (llate 8, fig. 11) is dusky gray, streakod with purple brom on the onter edge, with a few dark brown spots on the inner margin. The larva is jellowish white, with brownish dots. It constructs silken galleries running through the comb, in which it feeds. It spins a thick white cocoon. Two broods of moths appear, one in April and May, the other in Angust. They lay their eggs at evening while the bees are resting. The caterpillars mature in albout three weeks.

Tompricide Leach. The "Leaf-rollers" are best characterized by the shortness of the palpi, which project beak-like, and are rarely long enough to be curved in front of the head ; and by the oblong fore wings. They are of small size, rarely expanding over an inch, and are folded roof-like (Fig . 255) orer the body. The fore wings are Fig. 2ni broad, compared with those of the Tineida, and are much romded on the costa. They are rariegated with bands and spots, often of brilliant metallic hues, while the hind wings are dull colored like the body, the imer edge being folded fan-like against the body. The antemm are filiform and the legs are much shorter than in the Prralids. They fly mostly by night, resting during the day upon the plant on which the larva
feeds. They most abound in summer, though a few species are found in the spring and autumn.

The larve are cylindrical, usually transversely wrinkled, and nearly maked. The pupa is slender, and the rings of the abdomen armed with transverse rows of teeth. Many of the larger species roll mp the leaves of trees, or gather them into a rude tent, with silken threads; others devour the interior of fruit buds and sceds, or live in the tender shoots, or under the bark, or in the roots, while some live exposed on the leaves of plants.

In Antithesia the palpi are longer than the head, and the thorax is tufted behind ; the fore wings are more than twice as long as broad, the costa being regularly archecl, while the apex is obtuse, and the apical third of the costa is white or ochreous. A. bipartitana Clem, has white fore wings, with a dark brown basal patch, and a central concolorous band, with two or three dark brown spots on the outer third of the costa. The tip of the wing is spotted with brown, and there is a pale brownish spot in the middle of the white apical third of the wing. It is not uncommon northwards.

Another species has been detected on the rose by Mr. F. W. Putnam. The larva

Fig. 256. is yellowish green with a jet black head and prothoracic shield, and pupates late in June, the moth appearing during July. It is identical with the Antithesia promiona of Hubner (Plate 8, fig. 13, natural size) a destructive moth in Europe. where it devours the plum, as its specific name indicates. The inner: two thirds of the fore wings are marbled with black and lilac colored scales; the apical third being white, with three costoapical dark spots, and the extreme apex black.

The genus Siderea has rather long fore wings, the costa being regularly arched, and the tip rather pointed, the outcr edge being concave below the tip. Clemens, doubtfully, refers his S.? nubilana (Fig. 256, 7a, hearl) to this genus. The fore wings are brown, with dark brown markings, and there is a dark brown basal line and a central irregntar dark brown band, which becomes ochreous brown in the middle of the wing, and seems to be separated from a conspicuous dark brown triangu-
lar patch, which is erlged narrowly with ochreous. Near the inner angle are two dark brown oblique stripes.

The typical genus Tortrix has the palpi much longer than the head, with the fore wings about twice as long as broad, and the costa arched abruptly at the base, while the outer edge is truncate and sometimes hollowed out below the tip. T. gelidana Möschler is a common arctic form, and occurs commonly in northern Labrador, and has been detected on the Alpine summit of Mount Washington by Mr. F. G. Sanborn. He has also detected a new species which feeds on the cranberry, for which we suggest the name Tortrix oxycoccana. Its body is dark brown, with lighter hairs on each side of the abdominal segments, and fuscous at the tip. The fore wings are of a peculiau glistening gray, mottled with reddish brown scales, especially towards the onter edge. There are no well defined spots or bands. The hind wings and body, and under surface of the wings are slate colored. The wings expand 1.15 inches.

The Leptoris breviornatanc of Clemens (Fig. 257; a, side view of the head and labial palpi; b, fore wing ; c, hind wing), which is referred to the genus Tortrix by Mr. C. T. Robinson, has tawny yellow fore wings, with the veins brown. An oblique

Fig. 258. brown band arises on the basal third of the costa, and runs to the middle of the inner margin, but does not reach it. On the costa is a brown patch. It lives in Virginiar Mr. Robinson also informs me that in a fortheoming paper on this family he refers the Ptycholoma? semifuscand of Clemens (Fig. 258; a, head; b, fore wing; c, hind wing) to the present genus. "The fore wings are white along the costa and hinder margin, marked with pale brown, ochreons and tarnished silvery stripes and spots." It ranges from Maine to Virginia.

The genus Lozotonia has palpi rather longer than the head.

It differs from Tortrix in the male having a fold or flap of scales extending nearly to the tip of the fore wing, while the outer edge is indented below the tip, which is rather produced upwards. The larax of this genus feed in leares, the edges of which are drawn together by silken threads, or in the stems and seeds of plants. L. vosaceana Haris (Plate 8, fig. 12; 12 a, larva) is pale brown, with two oblique, darker reddish brown bands, and a triangular spot of the same color on the costa near the tip. The hind wings are ochreons yellow, and blackish within. The larra, early in June, binds together the leaves of the rose, apple and strawberry. It is planp and rather large, and of a pale yellowish green. We found, on the $23 d$ of June, the fully grown larva on the leaves of the strawbery, doubling them up and binding them together by a few silken threads. The worm is pale lisid, greenish above and pater beneath, with a conspienons black dot on each side of the binder edge of the prothorax. The head is very pale honey yellow, with two black spots: one near the insertion of the mandibles, and the other on the side near the base of the head. The posterior half of each segment is transrersely wrinkled a few times. The body is scattcred orer with a few minute tubercles, each giving rise to a tine hair. It is .80 of an inch long. One specimen spum its slight cocoon on June 26th, the pupa appearing June 30thIt is sometimes attacked by Ichnemons. The pupa is pointerd on the vertex of the head, and on the back of each abdominal ring are two rows of spines. The moth usually appears the last of June.

We have reared another species from the wild strawberry. It may be called the Lozotrenia firagariana. It is a rery pretty moth expanding 80 of an inch, with red fore wings, clarker on the outer hald and with a large triangular white spot near the middle of the costa; the outer edge of the spot is hollowed out. The outer edge of the wing is pale, especially in the middle, and concolorous with the head and palpi, and thorax. The hind wings and abdomen are whitish buff. The hind wings are whitish bencath. The larra may be found in Maine, early in June, folding the leaves, and the moth appears in the midthe of the same month.

The Lozotcenia gossypiana, or Cotton Leaf-roller, we describe
from the very characteristic drawings of Mr. Glover. The larta closely resembles that of L. rosaceana and is about the same size. It rolls up the leaf of the cotton into a loose circular fold, and when fully grown spins a thin, loose, transparent cocoon between the leares. On the abdominal tip of the brown cocoon are three pairs of minute hooks, the two outer pairs supported on a perdicel, by which the chrysalis is retained in place in the cocoon. The moth is the size of the L. rosaceana, being pale reddish brown, and with three darker' bars, the inner one crossing the costal two-thirds of the wing, the middle and broadest crossing the wing obliquely, and terminating near the outer angle, while the third bar cuts off the apex of the wing. The hind wings are paler, but dosky along the inner side.

The species of Penthina may he recognized by the oblong fore wings, the apex being obtuse, sometimes a little falcate. An interesting species, according to information received from Mr. M. C. Reed of IItdson, Ohio, rolls up the leaves of the grape, and when the fiuit becomes formed, eats the pulp and seeds, thus doing a two-fold injury to the vine. It may be called the Penthina vitivorana (Plate 8, fig. 22, entarged). The head, thorax and palpi, and basal half of the antenne are fulvous. The fore wings are dark slate brown. From the middle of the costa proceeds a blackish band which curves to the middle of the outer third of the wing ; beyond is a linear eurved costal band succeeded by another broader but quite short costal line ; the costa is tawny beyond, sending a tawny patch obliquely inwards. Near the margin is an irregular blackish patch and two dark spots on the costa, and a larger one at the apex. The hind wings and body are dark slate color. It expands . 40 of an inch. The first brood of caterpillars feeds on the leaves, appearing in May (in Ohio), or as soon as the leaves are grown. The sccond brood appears when the grapes are nearly filled out, and then they feed on the pulp and seeds. Mr. Reed writes me that "in every instance where a grape was opened containing a fully grown larra, the seeds were mere shells. They continue their work until the grapes are fully ripe, and at that time on remoring to a new berry, seem to make their home in the old one, which is attached by a web." The larva turns
over the edge of a leaf to form a rude cocoon for the chrysalis. Mr. Read suggests destroying the leares thus affected before they fall in autumn, as the larra do not descend to the earth to undergo their transformations.

Hutonota cliffers from Tortrix in having the apex of the fore wings rather obtuse, and ihere is a pale bloteh ustally present on the middle of the inner margin. HI. simulanct Clemens is brownish ochreous, with dull ochreous palpi, reddish at the tip; the fore wings are brown, with a slight hrassy hoe, and with an ochreous dorsal blotele; the costa is streaked with ochreous, and there are two violet streaks, one ruming beneath the tip aud the other to a faint eyc-like patch, behind whieh, on the hinder margin, are three black spots.

The gems Gropholitha is characterized by Stainton as having the palpi longer than the head, with the fore wings more than twice as long as wide, the costa being slightly arched, and the apex rather pointed, while the outer edge is a little hollowed out below the apex, and romuled at the imner angle. The larve live in the folded leaves of shrubs, or in the tops of herbaceous plants, or in their roots. Mr. Robinson refers the Steganoptycha? ochecme of Clemens, to Girapholitha (Fig. 259 ; a, heur ; b, fore wing: c, hind wing.*) The fore wings are pale yellowish, and the outer half of the costa is

Fig. 2\%9. streaked with ochreons brown, and there is an eyc-like patch which is white, and contains two oclreous brown streaks and two black dots. It was discovered in Virginia. Robinson also refers Clemens' Emrptyetia stligneana (Kig . $256 ; 8$ a) to this genus. It was bred by Mr. B. D. Walsh, in Illincis, from a willow gall. The fore wings are white, tinted with yellowish, with a clark brown basal patch, the wing beyond being nearly white raried with lead colored speckles, and striped over the reunles with dull, lealen gray. transterse stripes, two of which near the anal angle, form a white eye-like patcho (Clemens.)

Under the name of Callimosema scintillona (Fig. 256; 9a),

[^36]Clemens describes a moth with narrow fore wings, and a large eye-ike spot across the inner angle, the renation being the same as in Loplocoma. In this latter genus (Fig. 250; $10 a$, I. formosana Clemens) the wings are broader and have the costa of the fore wings dilated at the base, while the labial palpi are broad, and reach far beyond the front of the head.

In Anchoplopera the palpi are shorter than the head, with the fore wings broader than usual, and the costa somewhat obtusely arched towards the base, while the tip is often hook-like and the onter eige concave. The larva feels between the united leaves of plants. A. spirea foliana Clemens is white on the fore wings, with a large, retdish brown dorsal patch extending from the base to the middle of the wing, and an oblique band ftom the middle of the costa to about the centre of the wing; the costa beyond is streaken alternately with white and recldish brown to the apex. The larea feedis on the leares of Spirea opulifiolia, or Nine-bark. It is pale green with a yellowish tinge. (Clemens.)*
Mi. Fish has discovered an undescribed species which feeds on the cranberry, and which we may call the Cramberry Anchylopera, A. cucomiana (I’ate 8, tig. 21, eularged). The moth is dark ash, the fore wings being whitish, dusted with brown and reddish scales, with white narrow bands on the costa, alternating with broader yellowish

[^37]brown bands, five of which are several times larger than the others, and from four of them irregular indistinct lines cross the wing. The first line is situated just beyoud the inmer third of the wing, and is often obsolete. The second line is the largest and is slightly bent once in the middle of the widg. There is a large brown spot parallel to the costa, being situated on the angle. The third line is oblique and stops before reaching the inner angle and is forked on the costa, while the fourth line is a short apical diftuse irregular iine. 'The apex of the wing is dark brown, and is a little more acute than usual in the genus. The length of a fore wing is 20 of mu inch. It lays its egg's on the leaves during the month of August and a new brood of larre appear in September, though they hatch mostly in the following spring, or early in June, and becone fully grown in July.

The larva seen from above is much like that of Lozotrenia rosaceana, but the head is a little larger in proportion to the rest of the body, being as wide as the body in its thickest part. The body is more hairy, while the prothorax is not dark. The chrysalis is rather slender, the body being contracted at the base of the alodomen, on the rings of which there are dorsal rows of fine spines.

Mr. Fish writes me that "these larve, called the Cramber'yvine woms, hatch alout the first of June from eggs that have remained upon the leares of the plant all winter. They eommence to feed upon the tender growing shoots of the plant, drawing the leaves together with their web for shelter, concouling themsches and feeding within. Before reaching their full size they, if very numerous, almost wholly destroy the leaves and tender shoots, giving the whole bog a dark dry appearance as thongh a fire had beenover it. This is why they are in some places known as 'fire-worms.' Haring reached their full size they spin up among the leares or among the dead leares upon the ground. Alter remaining in the pupa state about ten or thirteen days the moths come out and deposit their eggs upon the leaves.
"This year the moths were out the last of June and first of July. In five or six days the egg's hatched and this second brood, which is usually the most destructive, mostly changed
to pupae on the 20th of July. On the 26th of July the first moth came ont and most were out before rhe 4th of August. I saw the moth at sandwich as late as the 20th of August. Most of the eggs laicl in August do not hateh until the following spring. I did succeed in finding two or three larve in September, but they were rare at that time. The only sure means known of destroying them, is to let water upon the bog for twenty-four hours."

Another 'Tortricid larva, which seems to differ generically from the vine worm, in being thicker and having a larger, squarer prothoracie ring, and a less hairy body is called the "Fruit-worm." According to Mr. Fish, these worms appear the first of August and work all throngh the month. The first signs of their presence are seen in the berries that are attacked turning prematurely real. Most of them reach their full size before the first of September. In some places where the rines have

Fig. sit. been retarded by being leppt under water until the first of June previous (it is common to cover the bogs with water when convemient), they do not reach their full size until a few weeks later. When fully grown they enter the gromul and spin their cocoons within a few inches of the surface. The cocoons are covered with grains of sand and are hardly distinguishable from small lumps of earth. They remain in the ground all winter. I do not know positively the perfect insect, as I have never been ahde to rear it in-lloors. In the spring of 1867 I bred two species of Ichnemmons from these cocoons that had remained in the house over winter."

The Strawbery leafroller (A. firgarise Riley, Fig. 261; c, lines showing the dimensions of the moth; a, larva, natural size; b, the head and four succeeding rings of the hody; d. the terminal ring of the abdomen, showing the anal legs) has, accorting to Riley, recently been doing much injury to strawberry plants in Illinois and Canada. "It crumples and folds the leares, feeding on their pulpy substauce, and causing them
to appear dry and seared, and most usually lines the inside of the fold with silk. There are two broods during the year, and the worms of the first brood, which appear during the month of June, change to the pupa state within the rolled up leaf, and become minnte reddish brown moths during the fore part of July. After pairing in the usual manner, the females deposit their eggs ou the plants, from which erges in due time hatches a second brood of worms. 'These last come to their growtin towarls the end of September, and changing to pupre, pass the winter in that state. The moth expands from 40 to 45 of an inch. The head and thorax are reddish brown, with pale palpi and legs. and dusky antenne, while the tarsal joints are dusky at the tips. The fore wings are reddish brown and streaked and spotted with black and white, as in the figure, while the hind wings and abdomen are dusky." (American Entomologist, vol. i, p. 89.)

The Coddling moth, Carpocapsa, has palpi longer than the head; the apes of the fore wings is rather obtuse, and the outer edge is suddenly hollowed out below the tip. The larve feed in the interior of fruits. C. promonella Linn. (Fig. 256, 11 a) is gray, with numerous darker, transverse lines, and with a curved black line before the ocellated patch on the inner angle, which line is elged with a coppery tint. The moth lays its eggs on apple and pear trees early in summer in the blossomend of the fruit, and the larva hatches in a few days, burrowing into the core. It matures in three weeks, when the apple drops to the grond and the larva transforms in a thin cocoon in crevices in bark, etc., and in a few days another brood of moths appear, thouglı most of them remain in their cocoons through the winter as larve, where we have found them under the loosened bark early in May.

This formidable pest may be partially destroyed by gathering "wind-falls," though the larva often deserts the worm-eaten apple before it falls. The best remerly is that suggested by Dr. Trimble, who binds bands of hay abont the trees from July until the middle of September. The larvæ crawl under these bands and there spin their silken cocoons, when every few days the bands can be removed and the worms destroyed.

Trinerda Leach. The Tincils are a family of great extent, and the species are tery destructive to vegetation, having innumerable morles of attack. They may be distinguished from the Tortricida by theil smaller size, while the narrow wings which lie on the top of, or are rolled around the body when at rest, are often falcate, or pointed acutely, and edged with a long fringe of exceeding delicacy. The maxillury palpi are greatly developed, while the labial palpi are of the usual size, and usually recurved in front of the head. The antenna are long and filiform. The larre are cylindrical, variously wrinkled transversely, and with from fourteen to sisteen feet. They often construct cases in which they live, and usually spin a slight silken cocoon. About 1,200 species are alreaty known in Europe alone. Those of this country have been mostly described by Dr. Clemens.

In studying this interesting family, Stainton remarks that "the elongated wings, the slender body and the long or very long fringes to the wings, are characters ly which the Tineidæ may generally be recoguized at once ; and the development of the palpi and their variety in form and structure, ofter most tangible grounds for separating the greater nomber of the genera. Indeed, if the stulent will look at the head of' a species to see whether it is hairy or smooth, if he will then notice the palpi, whether the maxillary palpi are developed and to what extent, and whether the labial palpi are slender, ascending or drooping, whether the second joint is densely clothed with scales, or bears a long protruding tuft, and if he will farther notice the form of the hind wings, which are either well rounded or very pointed, or indented towards the tip, he will be perfectly surprised to see how easily he will arrange these insects into genera by their structure."

The larra vary excessively in the number of legs, sixteen being the ustal number, but in several genera (Gracilaria, Lithocolletis, etc.), we only find fourteen ; in Nepticula, though the legs are but poorly developed, they number eighteen; on the other hand the larve of a few of the smaller genera (Antispila, Tinagma, etc.) are absolutely footless.

For collecting and preserving these minute and delicate moths, which are called by collectors, micro-lepidoptera, especial
instructions are nocessary. When the moth is taken in the net, it can be blown by the breath into the bottom. "Then by elevating the hand through the ring, or on a level with it, a common copping glass of ahont two inches in diameter, or a wine glass carried in the pocket, is placed on top of the left hand over the constricted portion, the grasp relaxed, and the insect permitted to escape through the opening into its interior. The glass is then closed below ly the left hand on the outside of the net, and may be transferred to the top of the collecting box, when it can be quieted by chloroform" (Clemens) ; or the moths may be collected in pill boxes, and then carried home and opened into a larger box filled with fumes of ether or benzine or cyanide of potassium. In pinching any moths on the thorax, as is sometimes done, the form of that region is invariably distorted, and many of the seales removed. In searching for "Micros" we must look carefully on the lee side of trees, fences, hedges, and undulations in the ground, for they avoid the wind. Indeed, we can take adrantage of this labit of many Micros, and by blowing vigorously on the trunks of trees start the moth off into the net so placed as to intercept it. This methor is most procluctive, C. G. Barrett states, in the "Entomologist's Monthly Magazine," while a steady wind is blowing.

In seeking for the larra we must remember that most of them are leaf miners, and their burows are detected by the waved brown withered lines on the surface of leaves, and their "froass," or excrement, thrown out at one end. Some are found between united leaves, of which the upper is crumpled. Others construct portable cases which they draw about the trunks of trees, fences, etc. Others burow in the stems of grass, or in fungi, toatstools, and in the pith of currant or raspherry bushes. Most are solitary, a few gregarious. Λ bush stripped of its leares and covered with webs, if not dune by Clisiocampa (the American Tent Caterpillar), will witness the work of a Tineid. Buds of unfolded herbs suffer from their attacks, such as the heads of composite flowers which are drawn together and consumed by the larva.

After some practice in rearing larve it will be found easier and more profitable to search for the leaf miners, and jear the
perfect, fresh, and uninjured moths from them. In this way many species never found in the perfect state can be seemed.*

In raising "micro" larvec it is essential that the leaf in which they mine be preserved fresh for a long time. Thus a glatss jar, tumbler or jam-pot, the top of which has been gromad to receive an air-tight glass cover, and the bottom covered with moist white sand, will keep a leaf fiesh for a week, and thus a larva in the summer will have to be fed but two or three times before it changes; and the moth can be seen through the glass without taking off the cover ; or a glass cylinder can be placed over a plant inserted in wet sand, hawing the top corered with ganze. Dr. H. G. Knaggs in treating of the management of caterpillars in breeding boxes, enumerates the diseases, boside muscardine and cholerine, to which they are subject. Among direct injuries are wounds and bruises, which may be productive of deformities in the future imago; the stings of ichneumon flies, whose eggs laid either upon or in the body may be crnshed with finely pointed scissors or pliers; frost bites, and suffocation chielly from drowning. If the caterpillar has not been more than ten or twelve hours in the water it may be recovered by being dried on a piece of blotting paper and exposed to the sum. Larve may also starve to death even when food is abundant, from loss of appetite, or improper ventilation, light, etc.; or they may eat too much, become dropsical, and die. Caterpillars undoubtedly suffer from a contagious disease analogons to low fever. Many die while monlting, especially the lavve of Butterflies, Sphinges, and Bombycids; others are carried off by diarrhoca, which is generally caused by improper feeding on too juicy or relaxing food, when oak leaves or dry stment foliage should bo given them. To relieve constipation they should be fed with lettuce and other natural purgatives, and lastly, they may be attacked by fungi, especially, besides those previously men-

[^38]tioned, a species of Oidium. Such patients should be put in direct sunlight or dry currents of air. (Entomologist's Monthly Magazine, June, 1868.) The pupee easily dry up ; they should be kept moist, in tubes of glass closed at either end, through which the moth can be seen when disclosed.

In setting micro-lepidoptera: "If the insect is very small I hold it by its legs between the thumb and finger of the left hand, whilst I pierce it with the pin held between the thumb and finger of the right hand; if the insect is not very small I use a rough surface, as a piece of blotting-paper, or picee of cloth, for it to lie upon and prevent its slipping about, and then cautiously insert the point of the pin in the middle of the thorax, as mearly as possible in a vertical direction. As soon as the pin is furly throngh the insect, remove it to a piece of soft cork, and by pressing it in, push the insect as far up the pin as is required.
"For setting the insects I find nothing answers as well as a piece of soft cork, papered with smooth paper, and with grooves eut to atmit the bodies. The wings are placed in the required position by the setting needle, and are then retained in their places by a werge-shaped thin paper brace, placed orer them till a square brace of smooth card-bonard is placed over the ends of the wings." (Stainton.) A small square of glass can also be laid on the wings to keep them expandect, and thus serve the same purpose as the paper braces. Linneus first set the example of laving the specilic manes of the 'Tortricids end in ance and of the Tineids in ella, and at the present day the rule is generally followed by entomologists, who have also gren the same terminations to the names of the smaller speecies of Pyralids, such as Pempelia, Crambus and allied generia.

In the group of Tineids proper, the head is roughly scaled, with short and thick labial palpi, while the maxillary palpi are generally extremely well developed, and the antenne sometimes (Adela) extremely long. The larre live in a portable case and feed on wool, hair, etc., and fungi, or decayed wood.

Solenobia has very short labial palpi, which are almost concealed in the hairs of the mouth, and the case of the larva is shorter than usual. The mimpreguated females of this genus lay fertile eggs, so that one may breed a species for years with-
out ever seeing a male. (Stainton.) Solenobia? Walshella Clemens is gray, varied with fuscous. The silken case is granulated with tine sand; the larva is probably lichenivorous.

In Then the head is rongh, the maxillary palpi are usually folded and five jointed, while the labial palpi are cylindrical, hairy and sometimes bristly. The fore wings are oblong ovate, and the hind wings ovate and clothed with scales.
Fig. 2, The common Clothes moth, Tinea flavifrontella Linn. (Fig. 262; fig. 263, a, larva, with its case, b; chrysalis, enlarged) is of a light buff color, with a silky iridescent lustre, the hind wings and abdomen being a little paler. The head is thickly tufted with hairs and is a little tawny. The wings are long and narrow, pointed acutely, with the most beantiful and delicate long silken fringe, which increases in length towards the base of the wing. The moth begins to fly about our apart-

Fig. 263. ments in May, individuals remaining through the summer. They lay their eggs in woollens, though we have ${ }^{a}$ reared numerons specinens which had attacied a mass of cotton. Early in June we found numbers of the caterpillars in their flattened cylindrical cases which in this instance were white, the color of the substance they fed upon. The larva is whitish with a tolerably plump body, which tapers slightly towards the end of the body, while the head is honey yellow. The segments of the body are thickened above by two transverse folds. The body of the chrysalis is considerably curved, with the head smooth and rounded. The antenne, together with the hind legs, which are laid on the breast, reach to the tip of the abdomen. On the upper surface of each ring is a short transverse row of minute spines, which aid the chrysalis in moving towards the month of its case, just before changing to a moth. When about to transform, the skin splits open on the back, and the perfect insect gliiles out. The skin is moulterl with great rapidity. To avoid the ravages of this destructive moth,
woollens and furs should be carefully shaken and examined early in June. Dr. Harris states that "powdered black pepper strewed under the edge of carpets is said to repel moths. Sheets of paper sprinkled with spirits of turpentine, camphor in coarse powder, leares of tobacco, or shathgs of Russian leather, should be placed among the clothes when they are laid aside for the summer; and furs and other small articles can be kept by being sewed in bags with bits of camphor wood, red cedar, or of Spanish cedar, while the eloth lining of carriages can be secured forever from the attacks of moths by being washed or sponged on both sides with a solution of the corrosive sublimate of mercury in alcohol, made just strong enough not to leave a white stain on a black feather." The moths can be most readily killed by pouring benzine among them, though its use must be much restricted fiom the disagreeablo odor which remains, and its inflammable nature. The use of a weak solution of carbolic acid is also recommended. Tinea tapetzella Linn., tho Carpet moth, is blackish at the base of the fore wings, the remainder being yellowish white, while the
 hind wings are dark gray, and the head white. The larva feecls on carpets, etc.

Tinea granellu Linn. (Fig. 264 natural size, and enlarged. with the wings spread ; a, larva, natural size and enlarged; b, pupa, hatural size and enlarged; c, grains of wheat held together with a firm web) the Grain moth, is found flying in granaries during the summer. The female lays thirty or more minnte eggs, one or two on each grain of wheat. The white worm hatches in a few days, eats its way into the grain, closing the entrance with its castings, and after it has devoured the interior of one grain, unites others in succession to it, until it binds together by a fine web a number of them. When
nearly full grown they cover the grains with a very thick web. According to Curtis the larya retire to cracks and crevices in the floor and walls of the granary, and construct their cocoons by gnawing the wood and working it up with their web until it has the form and size of a grain of wheat, wherein it remains through the winter, changing to a chysulis early in the spring : while two or three weeks after the moth appears. It is creany white, with six brown spots on the costa, and with a long brown fringe. To prevent its attacks empty granaries should be thoronghly cleansed and whitewashed, or washed with coal oil, and when the moths are flying numbers may be aitracted to the flames of a bright light; also when the larve are at work, the grain should be shovelled over fiequently to disturb them.

The beautiful genus dolela is at once known by its excessively long antemne. The larva makes a flat case, and feeds on the leaves of farious low plants, such as the wood Anemone and Peronica. The A. Ridingsella of Clemens has coppery brown fore wings, with a pale grayish brown mesial patch dusted with black, and four or five black spots at the imer angle, while the hind wings are fuscous.

Hyponomeuta has a smooth head, with raiher shor't, slender, reflexed, subacute labial palpi; the fore wings are white, dotted in rows with black, and on the base of the hind wings is a transparent patch. The larvere gregarious, and the pupa is enclosed in a cocoon. II. millepenctatelle Clemens is white, with the base of the costa blackish, and with longitudinal rows of distinct black dots, two of which, one along the inner malrgin, and one along the fold, are plain. The hind wings are blackish gray.

In Depressaria the fore wings are unusually oblong, being rombled at the apex ; and the himd wings are broader than usial, with the inner edge emarginate opposite the submedian vein, and rominded opposite the internal vein. The alodomen is flattened above, with projecting scales at the sides. The larve of this gems are extremely active, and feed on a variety of substances; some in rolled up leares of composite plants, some in the leares and others in the umbels of the umbelliferons plants. Many of the worms descend from the plant on the slightest agitation, so that considerable caution is
necessary in attempts to collect them. The full-fed larvæ descend to the ground and change to pupe among the fallen leares. The perfect insects have the peculiarity of sliding abont when laid on their backs. D. atrodorsella Clem. is yellow ochreous, with six or eight black costal dots, with a reddish patch extending from the clise towards the tip of the wing. The head is rufons above, with the face blackish brown above and Jellowish bencath.

During the last summer we observed a locnst tree which had some of the branches well nigh defoliated by an undescribed species of this genus which we may call the Depressaria robim. iella (llate 8 , fig. 14 , natural size). The head, palpi and fore wings are light brick red, spotted irregularly with yellow, and the antenne are slate brown. The fore wings are a little darker in the middle, especially towards the inner edge. There is a submarginal darker brown band near the onter edge, which does not reach the costa, and on the outer edge is a row of minute black dots. The hind wings and abdomen are of a pale slate gray, and of the same color beneath, while the legs are of a very pale straw yellow. It differs from most of the species of the genas in having the apex of the fore wing less rounded than usual, and in this and other respects it is allied to the European D. luterella. The larva is thick-borlied, with a black head, and is green, the cervical shiek being green. It devours the leaves, drawing them together by threads, and also eats the flower buds. It was most abundiant in the last week of June. It turned to a chrysalis July 8th, and in about two weeks the moth appeared.

In Gelechia the fore wings are rather long and pointed, and the hind wings are trapezoilal and more or less excarated below the tip. 'The terminal joint of the labial palpi is slemer, almost needle-like, smooth and pointed. This genus is of great extent and comprises a considerable diversity of species. The moth is extremely active. Clemens states that "the habits of the larre are extremely varied, feeding noon leaves, flowerbuds, young shoots, and in the interior of grain and seeds. The species that feed in buds and shoots are mostly in the larra state in spring and the begimning of sumner; those that feed in and upon leaves are met with in summer and autumn, and
those that feed on seeds do so in the autumn and winter." The Angommois Grain moth, G. cereulellu Limı. (Fig .265), is ochreons, with a fuscous streak towards the base, and a fow fuscous dots towards the tip of the wing, while the hind wings are grayish ochreous. The wings are sometimes unspotted. It feeds in whoat granaries, where it secretes itself within the grain, devouring the mealy substance. Reammur, according to Mr. Stainton, thus speaks of the economy of material in the food of the larva of Gelechia cerealella. "A grain of wheat or of barley contains the precise quantity of food necessary to nourish the larsa from its birth till it is full fed, For if we open a grain inlabited by a yomger and smaller larva, we find that there is more or less of the substance of the grain still to be consumed, aceording to the size of the larva. But what is remarkable is, that in the latter case, we find at least as much and probably more excrement, and in larger pellets, than we find in a grain tenanted by an older larva." It is thus driven to eat its excrement over once and perhaps more than once! We hare received from Mr. F. G. Smborn the larva (Fig. 266, much enlarged) of this moth, which had eaten ont the kernel of grains of parching com, leaving but a thin shell. The borly is unsually short, thick and white, the tegument boing very thin and transparent. Gelechio fungionrella Ciem. has roscate white

Fig 206. fore wings, dusted and banded with brown. Walsh states that * the larva mines a cabbagelike gall (C. salicis-lurassicoicles), peculiar to Salix longifolia, and a pine-cone-like gall on Salix cordata, named C. salicisnstrobiloides by Osten Sacken." The larva of a similar species, G. roseosuffuselle, inhalits the firuit panicles of the sumach.

Coleophora is a beantiful form, with long fringes to the wings, which are long and laneeolate, especially the hinder pair. The head is smooth above and in front, and the slender, simple antennæ are sometimes thickened with scales as far as their
middle. The labial palpi are slender, rather porrected, with a slender prolonged tuft from the second joint, and the third joint is pointecl. The larva is a case-bearer, changing to a pupa within the case. While these moths abound in the larva state, the adult insects are rarely met with. The leaf-lecding larve are very easily found, as their presence may be detected by the pale blotches they form on the leaf they feed upon, while the seed-feeding larva are much better concealed.
"Coleophora larse do not well bear confinement in the humid air of the breeding jar. To be successful in rearing the lavire, one must use a pot of moistened sand, in which the food plant is placed, covered with a glass cylinder, with fine gauze tied over the top; or the plant may be kept in water and covered with a cylinder of glass. For this purpose old chimney tops to lamps answer very well. The larve of this genus, taken in the fall of the year, hibernate in their cases until the following spring, and feed upon the first leaves that put forth. They must not, therefore, be kept in a warm room during the winter. The pupe of the fall brood of larve thrive much better, likewise, if not kept in a warm room cluring the cold months. The spring, or early summer brood of larrae, produce imagos in a few weeks after entering the pupa state, and hence it is much more satisfactory to collect early in the year than during the latter part." (Clemens.)

In C. roscefolielld Clem. the head and thorax are white, while the fore wings are pale grayish towards the base, clouded with dark brown from the middle to the tip, and the hind wings are dark brown. The case is silken, covered with gramulations, cylindrical, slightly compressed, the month slightly deflexed and the opposite hook-like end tumed down slightly. Its color is brown, varied with gray and reddish-brom gramlations. The larva feeds in the spring on the common garden rose, and the case was found in winter attached to a thorn on one of the stems. C. rosacella Clem, also feets in the spring on the rose and sweet briar. The case is made of the cuticle of the roseleaf on which the larva feeds. It is a compressed cylinder, and dilated slightly in the middle of the under edge. Color dark ochreons. (Clemens.) Coleophord cortscipennella Clemens is a beatiful bronzed green species, with the terminal half of the
antennæ white, ringed with brown. The fore wings are reddish violet on the apex, and the hind wings are dark brown. An unknown species is represented on Plate 8, fig. 17. It was found feeding on the pear the 5th of September, carrying about a flattened case of the form indicated in the figure, which is enlarged about five times. We have also found another Coleophora larva, with a long, flattened, cylindrical case, alike at each end, constructed of tho outer skin of the leaf. It was found late in September feeding on the apple.

In the genus Butrackedra the wings are narrow, especially the hind ones which are sharply pointed, with a tuft near the base of the costa. B. scticipomonella Clemens (Fig. 267, venation and side view of the head, enlarged), in its larral state, according to Mr. Walsh, inhabits the gall
 made by a saw-fly on the willow.

Elachista is a very extensive genus charac-

Fig. 207. terized by the long and slender, slightly recurved palpi. The fore wings are smooth, elongate and rarely oblong, and the lind wings are narrow and pointed. The larra mines the laves of grasses and allied plants. Over fifty species have been described in Europe. Clemens refers clonbtfully to this gemus, a Virginian species, Elachisfa? orichalcella, which is of a beautiful metallic coppery color, while the hind wings and fringe are rather pale ochreous.

The genus Lithocolletis comprises very minute but most richly colored moths. The head is rough, the labial palpi filiform and drooping, while the fore wings are elongate, and the hind wings are linear lanceolate, with long fringes. They are often excessively abundant, are rather sluggish, but fly readily in the carly morning. In Europe they are double-brooded, and hibernate in the propa state (Clemens states that some hibernate as moths), appeariug in the perfect state in spring, while a seconct brood of moths appear in Angust. The larwe have fourteen fect, and mine the leares of trees, shrubs or low plants, separating either the upper or lower cuticle and feeding on the inner substance of the leaf. When the mine is on the upper surface, or at least most frequently when it is in this position,
the leaf becomes folded and curved at the place mined, and the separated cuticle is gathered into folds, or covers the curved portion so as to make a capacious habitation. Some of the miners of the upper surface of leaves make large blotches, or tracts, and when the mines are fresin the separated cuticle is whitish and very noticeable. The miners of the under surface, cause the upper cuticle to become discolored in patches, and this with the fold of the side of the leaf is often sufficient to indicate the presence of a mine. Usually the species are confined to a single plant; some, homever, feed on several allied plants. The lava seldom quits the mine and changes in it to a pupa. Some species either make no cocoon or only a very slight one, and others make one of grains of excrement woven together with silk. L. Fitchello Clemens (Argyromiges quercifoliella Fitcli) is silvery white, with pale reddish saffiron fore wings, slightly tinged with a brassy hue. It feeds on the oak, according to Dr. Fitch.
I. salicifoliella Clemens during the latter part of June or early in July mines the under surface of the laves of the yellow willow (Salix vitellina var. alba). L. juglandiella makes an elongated, rather wide tract on the ruper surface of the leaves of the black walmut.

During the last summer the larra of an undescribed species, which we may call Lithocolletis geminatella (Plate 8, fig. 15; a, larra; b, pupa; c, its mine, the first three figures enlarged six diameters) was abundant on the apple and pear trees. The moth is of a dark slate gray, without any prominent markings, with oelreous hairs on the top of the head. There is a black round spot on the midrle of the inner edge of the wing (omitted in the figure, which is drawn from a slightly rubbed specimen). On the outer edge is an eye-like spot, pupilled with black, like the "eye" in a peacock's tail. The antemma are dark, ringed with a pale slate color. It expands. 30 of an inch. The larva is pale livid reddish with a black head and cervical shield, and . 14 of an inch in length. It was first discovered about the middle of August, hanging from a branch suspended by a threarl. From this time it became abundant, until the leaves began to fall in the first week of October; nearly every leaf on some of the pear and apple trees having a mine like
that represented in Plate 8 , fig. 15c. USually the larva draws two leaves together, or folds one up, and as it eats its way along the surface of the leat, leaves its excrement filliug up the space behind, thus making blotches and otherwise disfiguring the leares. In this mine it transforms into a long slender pupa, which may be found sumomoded with the castings of the larva. The moths first appeared Alogust 19 th , and flew in-doors at night attracted by the light.

Lithocolletis curtilineatella (11ate 8, fig. 16, cnlarged) is a pale whitish species with yellowish scales, with a back line, which beginning on the middle of the costa, curves around towarcls the apex, euding in the usual erve-like spot on the outer edge, beyond which is a dark marginal line; in the middle of the wing near the inner sitle is a longitudinal back oral spot, paler within. The hind wings are pale gray, and the body and legs pale whitish yellow. The wings expand .30 of an inch. We never met with the larra, but the cocoon is long and slender, a little blunt at cach end and white, with slight longitudinal ridges. It may be found attached to the bark on the bianches of the apple tree in May and also in the autuma and winter. Besides cliffering from L. geminatella in making a regular cocoon. the pupa is a little stouter and the top of the head is blunter.

Another species, which appears to be undescribet, we would all the Lithocollotis midificansella (Plate 8, fig. 19, moth; 19 a, cocoon) from the singular way the cocoon is suspended in a leaf like a hanging nest, by silken cords. The single specimen figured was found early in september, the moth appearing on the 11th. The larva feeds on the pear, and when about to transform had evidently drawn the edges of the leaf together by a few threads, and then suspended its thin cocoon in the manner indicated in the figure, the position of the chrysalis being represented by the back line in the centre of the cocoon. The moth is silvery white, with gray lind wings. The fore wings are white, with golden bronze strears and spots. The costa is white, with traee oblique golien lines running outwards from the edge of the wing fowards the outer margin, the imer one being minute, and the outer one broad and less oblique than the othors. Beyond, are thuee apical straight
thread-like lines next the cye-like black dot, near which arises a slender pencil of long hairs. Below the costa the wing is spotted with gold, and there is a broad oblique gollen dank band directed outwards and reaching to the miclde of the wing. The costa is golden on the outer third of its length. The wings expand .56 of an inch.

Lyonetia is closely allied to the ireceding gemus, and may be distinguished from it by the head being smooth, the scales being lyoul and Hattened domn. Mr. F. Cx. Samborn first drew our attention to this moth, having reared it from cocoons fonnd on the apple. From the singular habit of the larva in making a case insteat of living in a mine in leaves, we would call it the Lyonetio saccutelfa (llate 8, fig. 18; 18a, the larva; 186 , the larma with its case, all a little enlarged). The moth is a perfect gem; its head and short antemie are pale gray abol its fore wings are light slate gray on the basal half, and beyond bright orange, enclosing two white bands, one costal and the other arising from the imer elge, both nearly meeting in the middle of the wing, and edged externally with black. There is a square, black, very conspicuons spot near the fringe, in which is a long pencil of hack hairs, not shown in the figure. The outer angle of the wing is dusky. It expands .20 of an inch. The larva is a little flattened green worm, and constructs a flattened oral case of the skin of the leaf Which it draws about. The case is open at each eud, and is roomy enough for the lava to tum around in. It becomes fully grown by the latst of August, and in October we have found the cocoons attached to the bark of the tree, where they may also be seen through the winter and in the spring.

The last important genus, Nepticuld, contains the smallest known lepidopterous insects. "Many of then are excessively beantiful, resplendent with humished copper, gold and silver scales. 'They may be observed in May and June, sitting' on the trunks of trees or palings: but to see these atoms requires an experiencer eye. Most of the species appen to be donblebrooderl, and are easily collected in plenty in the larva state. A nut-leat, containing from trenty to thirty larre of Nepticula microtheriella, is no unusual sight. In Nepticula the antenne
are not half as long as the fore wings, which are rather broad while the hind pair are lanceolate.
"The larve mine very narrow scrpentine paths in the intes rior of leares, the mine being always on the upper surface. They vary much in form, being sometimes a slender gallery or line, either simple, or enlarged towards the end into a bloteh. When the larva is full-fed it quits the mine, cutting for this purpose the separated cuticle, in order to weave a minute cocoon." (Clemens.) N. cormbifoliella Clemens mines the hazel. A. platanella Clemens mines the button-wood tree, or syeamore, and N. amelanchierella Clemens mines the leares of the June berry in June and July.

Pteropiorides Latreille. The small group of Plome-moths may be at once known by their fissured and plumed wings. The body is long and slender, with long antenne and legs. They are the lowest moths, the long slender abdomen and fissured wings being marks of degradation. The larve have sixteen legs and are rather hairy. They form no cocoon, but, fastening themselves by the tail to a leaf or stem, shed their larra-skins and appear in the pupa state. Some of the prope are nearly as hairy as the larve, others are quite naked. Most of the larve feed in the early summer months, and the perfect insects appear rather later, thongh some may be seen in spring. (Stainton, Mannal of British Buttertlies and Moths.)

In Pterophorms the hind margin of the fore wing is more or less deeply cleft, while the hind wings are almost divided into three separate slender lobes or plumes. The larve live in the flowers and stems as well as on the leaves of plants. P. periscelidactylus Fitch (Plate 8, fig. 23; a, lava; b. pupa, enlarged) is tamy yellow, the fore wings having three large white spots and two bands beyond ; the outer line is thread-like, the imner line being much bronder on the costal division of the wing, reapparing at the base of the split in the wing, and below extending ont to the lower half of the outer line. The hind wings are darker brown than the rest of the moth, while the third and shortest division of the wing is white, but brown at the end, with the finge on the outer fourth of the wing still darker brown. The legs are white with tufts of brown scales
surrounding the hind legs. It expands 65 of an inch. The larvæ, received from Mr. M. C. Reed, of Hudson, Ohio, were pale green, with a greenish yellow head. Along the body is a double dorsal paler line, and whitish tubercles, from which proceed very long uneven hairs, and the body is also covered with very short white hairs, giving a frosted appearance to the worm. They are about half an inch long. Abont the middle of June it changes to the singular chrysalis represented on the plate, and in about a fortnight appears as one of the most delicate and graceful of moths. It may be seen flying about our graperies in midsummer, and is attracted to our apartments after nightfall by the liglits within. It feeds upon the young leaves of the grape, hiding itself in a hollow ball made of leaves drawn together by threads. The pupa is slender, conical, obliquely truncated at the head, with two long compressed horns placed side by side, and jutting apwards from the middle of its back, and numerous smaller projecting points and ridges. It reminds one of the chrysalids of the butterflies, in its habit of remaining' attached by its tail to the plant on which it feeds.

In Alucita the wings are still farther subdivided, each wing being divided from the base into six distinct feathers. The larva of the European A. polyductyla feeds in the unopened buds of the honey-suckle. It is not hairy, and spins a cocoon.

Fig. 969.
Chrysophanus Thoe Westwood.

DIPTERA.

Flies may be easily recognized by their having but a single pair of wings, the hinder pair being aborted, and existing in a rudimentary state under the name of "halter." The more essential character of the Diptera, however, consists in the greatly centralized, more or less globular thorax. Both the prothorax and metathorax are greatly aborted, and the legs are somewhat weak. As the second pair of wings are obsolete, the muscles adapted for Hying are not developed.

When the wings are entirely wanting, as in Chionea, the Spider fly, and the Spicler-like Bat-tick (Nycteribia), the thorax becomes still more globular, and the head of Nycteribia shows a tendency to become immersed in the thorax, as in the spiders.

The abdomen is either short, conical and broad at the base, being rarely pedicellate; or long and cylindrical, or fattened either horizontally or laterally. The conical form of the abolomen accords with the quick jerky flight of the House fly, as compared with the stetdy slow fight of Tipula, whose abdomen is very long. The abdomen is composed of from tive to nine distinct segments. . As Lacaze-Duthiers states, the Diptera as a rule have no true oripositor like that of bees, etc., though the three terminal rings are retracted within the abdominal carity, aud are capable of being thrust out like the joints of a telescope. When about to lay their cgrs they simply place them in eracks or upon the sulbstances that are to form the future food of the larva, having no organs for boring, thongh the female Tipulids are able to work the hard tip of the abdomen into the ground where they deposit their eggs. The terminal ring of the abdomen in the males is provided with clasping organs.

The head is reyy free from the thorax in the true flies, and is spherical, hemispherical or conical. The eyes are large, with very mumerous facets, and often approach each other closely on the fiont of the hearl, especially in the males. The ocelli, when present, are placed on the rertex, and the antenne are inserted below, in the middle (antero-posteriorly) of the front.

They are eithei long and erenly jointed, as in the Tipulidee, often with long cilia, and sometimes verticillate, as in Cecidomyia; or, as in the House fly, the typical form is a shor't and stout, two to three-jointed antema, ending in a bristle.

In the Hymenoptera and Lepidoptera only a portion of the mouth parts are used for sucking in foorl, but in the present group, the labram, with the two pairs of appendages, $i . e$, the maxilia and mandibles, are (when all are well developed, as in the Mosquito) ensheathed partially within the labimm, and with the last form a channel for the passage of the fluid food into the month.

The labium forms the under side of the sheath, while the mandibles and maxillie are represented by simple setre, though the one, two, or three-jointed maxillary palpi are present, and in this last character the rostrum of the flies cliffers from the beak of the Hemiptera. As in the Ifymenoptera, the lingua is well, though differently developect, terminating in a large fleshy knob which is divided into two fleshy flaps called the lubellee.

The wings are naked, as in the Hymenoptera, thongh fine hairs may be detected by the microscope on the voins, becoming most apparent in the Psychodx, where the wings are very hairy. In form they are long and narrow, the costal edge being straight, the apex of the wing obtusely romded, while the oblique outer edge is very long and nearly parallel with the costa, where in the Lepidoptera it is noarly at right angles to it. The veins are six in number, and in their direction and branches (Fig. 270-271) correspond more closely with the renation of the Lepidontera than any other suborder. The veins are straight, and with fewer branches than in the Lepidoptera, but with more cross renules, which in the wing of the Tipulido, remiud us of the net-veined Neuroptera. When, as in the Cecillomsire, the veins become in part obsolete, only three veins remain, the costal, subcostal and median. The form and size of the cells, especially the submarginal ones, are of much use in distinguishing the species, while the changes in the costal and basal portion of the wing are the most important in classifying the genera and families.

The function of the halteres, or "poisers," is still problematical. Hicks and Leydig consider them as organs of hearing, while Gourean and Loew think they are coucerned in the act of respiration.

Besides the well known wingless gemus Chionea, and the Flea, Sheep-tick, and Braula, Loew, the eminent German entomologist, enumerates several European species of Tipulit, the females of which have the wings rudimentary ; and also a species of Limmobia (Idioptera). Epidapus is wingless in both sexes. "Psyllomyia, Apterina and Elachiptera, and species of Tachista, Chersodromia and Geomyza have rudimentary wings in both sexes; in other forms the wings are only abbreviated in both sexes (Sciomyza), or in those of the male or female are smaller than in the other sex (species of Empis, Rhamphomyia, Idiopteril and Tipula)."

Fig. 270. Diagram of a wing with two submarginal and fire pasterior cells (Cludura indiuisat. Cells:-1, costal; 2, subcostal; 3, marginal; 3*, inner marginal; 4, submarginal; 5 , second submarginal; (-10, lirst to fiftlu posterior; 11, diseal; 12, first basal; 13, secoul basal; 14 , anal; 15 , axillary; 16 , spurinus. Feins: $-b l$, auxiliary; $\mathrm{c} m$, first longitudinal; n, n, o, secour longitudinal; h i, prefurea; $k n$, anterior bremeh of the second longitudinal vein; $k o$, posterior branch of the second longitudinal vein; $i k$, petiole of the inst sumargimal cell; $i p$, third longitudinal; d q $r \& t$, fourth longitudinal; $q r$, fork of its anterior branch; the postorior branch of this fork, ending in r, is Mr. Loow's anterior intercalary tein; $s t$, fork of the posterior branch of the fourth vein; the branch of this fork, conding in t, is Mrr. Loen's posterior intercalary vein; e u, fifth longitudinal; $f v$, sixth longitudinal; g w, seventh longitudinal. Cross-coins:-x, humeral; $x x$, subcostal; $x x x$, marginal; x^{*}, small, or anterior cross-vein; $x^{* *}$, great cross-vein. - from Osten Sacken.

Fig. 270.
Fic. 271 (1). IFing of Ortalis. $-a$, transverse shoulder-vein; b, auxiliary vein; c, d, e, f, g and h, frst, second, third, fouth, fifth and sixth longitudinal veins; i, small or middle transverse vein; k, hinder transverse vein; $l, m, n, 0$, costal vein; p, anterior basal transverse vein; q, posterfor basal transverse vein; r, mdiment of the fourth trunk; s, axillary incision : A, B, and C, dirst, second and third costal cells; D, marrinal cell; E, submarginal cell; F, G and Π, first, second and third posterior cells; I, diseal cell; K. first or large basal cell; L, second basal cell, or
M. Marey has determined that a common fly when held captive mores its wings 330 times a second ; a honey bee 190 times, and a cabbage butterfly (Pieris) nine times. The wings describe a figure 8 in the air. (Cosmos.) Landois, ealculating the rapidity of the vibrations by the sound produced
anterior of the small basal cells; M, thind basal cell, or posterior of the small basal cells; N, anal or axillary comer of the wing; O, alar appendage, (alula).

Fig. 271 (2). Wing of Empis. - t, anterior branch of the thivd longitudinal vein; u, anterior intercalary.

Fig. 271.
FIG. 271 (3). Wing of Dasypogon. - t, anterior branch of the third longitudinal vein ; u, anterior interealary vein; v, posterior intercalary vein. - From koew.

Comparing the wing of OLtalis with that of the bee and buttertly figured on page 23 , we should prefer to use the same terminology and call l, m, n, the marginal vein; A, b, the costal ; c, d and e the three branches of the subeostal vein; f, the median vein ; h, the submedian; and r, the internal vein. In Macquart's system. modified slightly by Sacken (flg. $2 \overline{7} 0$), b, l, is the costal; $c m$, the subcostal; d and e, the median ; f, the submodian, and g the internal vein.
thereby, states that the fly, which produces the sound on F , vibrates its wiugs 3.j2 times a second, and the bee, which malses the sound of $\Lambda^{\prime}, \not \pm 0$ times a second. "On the contrary a tired bee hums on E , and therefore ribrates its wing's only 330 times in a second. This difference is probably involuntary, but the change of 'tone' is evidently under the command of the will. and thus offers another point of similarity to a tue 'voice.' A bee in the pursuit of honcy hums continually and contentedly on A^{\prime}, but if it is excited or angry it produces a very dif'ferent note. Thins, then, the sounds of insects do not merely serve to bring the sexes together; they are not merely 'love songs,' but also serve, like any true language, to express the feelings. (Sir John Lubbock's Address before the London Entomological Society, 1868.)

Landois describes the sound-producing organs in several genera of flies. "He distinguishes three different tones as emitted by these insects: during flight, a relatively low tone, a higher one when the wiugs are held so as to prevent their ribrating, and a higher still when the fly is held so that all motion of the extemal parts is prevented. The last mentioned is the true roice of the insect ; it is prombed by the stigmata of the thorns, and may be heard when every other part of the body is cut away. The first sound is caused by the rapid vibration of the wings in the air ; the secont is cansed, or at all events accompanied, by the vibration and friction of the abdominal segments, and by a violent movement of the head against the anterior wall of the thorax." The halteres aiso assist in producing the sound. The ribration of the head in the Diptera during the emission of sound is regarded by this author as clue to the transmission of mosement from the thorax. (Zoōlogical Record, 1867.) Landois also states that there are small species which give a deeper note than larger ones, on account of the wing-ribrations not bing of the same number in a given time. (Lubhock.)

The leg's are slender, unarmed, except with stout bristles, as in Asilus; the joints are simple, cylindrical; the tarsi are fivejointed, the terminal joint ending in two claws (ungues), between which is the cushion, or pultithes, consisting of two or three fleshy vesicles, often armed with hairs, which are tubular,
and secrete an adhesive fluid, which is said to aid the fly in walking up-side-down on pulished surfaces.

The nervous system in the Diptera is characterized by a grouping of the thoracic ganglia into a single mass, from which proceed nerves to the abdomen; the abolominal ganglia being for the most part aborted. Thus in some Muscido, Wistrus, and IIippobosea, the nerrous cord behine the cephatic portion, consists of a single thoracic ganglion, which gives out nerves in different directions. The higher Muscids, strch as Syrphus and Conops hare in addition one or two ganglia siluated at the base of the abdomen. The higher groups, such as the Tabunide, Lsilidue and Bombylide have six ganglia, and the Empide, Tipulidw and Culicide have more. The larve usually have one more pair than the adult, having ten and sometimes eleven ganglia, with long commissures, which are often double.

The digestive system is less complex than usual. As in the two preceding suborders, on one side of the casophagus is a pedicellate sucking stomach which extends into the ablomen near the true chyle-making stomach. The latter is of the usual intestinoid form, enlarging a little anteriorly, with two coecal appendages beneath on each side, near the cardiac extremity.

The four, rarely five, Malpighian ressels which correspond to the kidners of vertebrates, are united before they open into the single or double common outlet.

There are two main trachex, and two large air-sacs, one on each side, at the base of the abdomen. The system of trachere is simplest in the aquatic Tipulid larve, resembling in this respect the Phryanea, where the trachere are subcutaneous and designed to extract the air from the water.

The testes are generally colored, being provided with a pigment layer. They are oral, curved or tortuous glands, with a short efferent ressel (ras differens). The ovaries consist of three to four chambered tubes, and a short oviduct. The receptacmum seminis is generally triple. A true bursa copulatrix is wanting in the Diptera, but in "many Ifuscide the ragina has, as a seminal receptacie or uterus, a spacious and sometimes two-lobed reservolr in which the fecmblated egos are acomm-
lated in great numbers, and remain until the larre are sufficiently developed to be hatched, so that these animals are viviparous. In the pupiparous Hippobosex, the female organs are formed on an entirely special type, corresponding with the remarkable mode of reproduction in these animals." (Siebold.) Near the external opening of the oviduci is a pair of glands designed to secrete the gummy matter conting the eggs.

The eggs of the Diptera are usually cylindrical, elongated and slightly curved, and the surface is smooth, not being ornamented as in the Lepidoptera. In the Tipulider the eggs become mature as som as the pupa skin is thrown off, when they are immediately laid.

The larve are footless, white, fleshy, thin skinned, cylindrical and worm-like, spindled or linear in shape. They have, in the higher families, as in the Tipulidce, a distinct head ; but they are often headless, as in the Muscidas, and are then called maggots. They live in mould, decaying organic substances, or in the water. Many maggots are provided with two comeous hooks, probably the mandibles, with which they seize their food.

The pupa is either naked (Pupa obtecta, Fig. 276), like the chrysalids of moths, with the limbs exposed, as in the Tipu-
 lides or they are coarctate (pupa coarctata, Fig. 272) as in the flies generally, the skin of the larva serving to protect the soft pupa within, as during the growth of the pupa the old larval skin separates from the newly formed pupa skin, which contracts slightly. It is then called the puparium, and is usually cylindrical and regularly rommed at each end like the cocoon of moths. Those which have the Fig. 272. pupæ obtected, when aquatic and active, are provided with gill-like filaments permeated with tracher.

The semipupa stage of Diptera, corresponds generally with that of the Hymenoptera and Lepidoptera. By an ingenious device Dr. Fitch succeeded in observing in the living insect the processes by which the larva of the willow Cecidomyia (C. salicis) turns to a pupa, and which is ustually accomplished during the night. He states that "as the first step of this change, at the anterior end of the larva the cutis or opake inner skin becomes wholly broken up and dissolved into a
watery fluid, whereloy the thin tramsparent outer skin or cuticle is elerated like a vesicle or blister, which oceupies about a fourth of the length of the worm on its under side, but is much shorter on its back. The insect is now in its em-bryo-pupa state, having lost its larva form and laving not yet assumed its pupa form. In the fluid contained in this vesicle, the wings, legs and antenne of the future fly now begin to be developed, whereby the sheaths of the wings at length come to be discerned immediately under the skin. This skin is exceedingly thin, delicate and transparent, like the tumida arochoides of the human brain, a mere film, as thin as a spider's web. Eventually the insect, by gently mrithing, ruptures this film at its anterior end, and gradually crowds it off downwards to the lower end of the vesicle, carrying the minute black jaws of the larva with it. It there remains, becoming dry and torn into shreds which flake and fall off by the continued motions of the insect. At the same time from the remainder of the surface not occupied by this vesicle, a still more slight and delicate film, appearing as though the worm had been wet in milk which had dried upon it, forming an exceedingly thin pellicle or scurf, becomes separated by the same motions of the insect and drops of in minute seales searcely to be perccived with a magnifying glass. And now the insect has acquired its perfect pupa form."

Frederic Brather has proposed in his "MIonographie der Estriden," a division of the Diptera into two large groups. This division is much more natural than the old one into those with coarctate and obtected pupe. The first group is the Dipterca orthorapha, comprising the Nemocera, or flies with long antemme, Logether with the Stratiomyidce, Xylophagide, Tabanida, Aerocerida (?), Bombylida, Asilida, Leptida, Therevidre, Empidre and Dolichopida (passing over some small families whose metamorphoses are not known). In these families the larva skin at the last moult splits down along the middle of the back of the three thoracic rings, while a transverse split on the first thoracic ring makes a T-shaped fissure. 'Through this the mummy-like pupa with free limbs escapes; or it remains within the loose envelope formed by the old larval skin, when this author calls it a "false puparium."

In the second group, the Diptera cyclorapha, the true coarco tate, cy lincirical, smooth puparium is formed by the contraction of the larva skim, but is very difterent in shape from the mature larva; while this puparium remains in rital connection by means of trachere, with the enclosed pupa, which escapes from the puparimm through a curved sean or lid in the anterior end, and not by a slit in the back. 'This group includes the Pipunculidre, Syiphidet, Conapidce, EEstride, Muscide and Pupipara.

Certain Diptera are injurious to crops, as gall producers, but indirectly the Tachinider are benefial since they prey on caterpillars; while the greater number act as scavengers in the water and on land, and thus as sanitary agents. Diptera enjoy a wider geographical range than other insects. None of the larger families are exclusively tropical; the huscicta and mosquitocs are found in the circumpolar regions in abundance, as well as in the tropics. They are the earliest to appear in spring and the latest to disappear in antumn. They are active at all times, in rain or smbline, day or night, though the greater number prefer the sumshine.

From their habit of living in regetables, flowers, and other substances sometimes eaten by persons, physicians "oceasionally are called to treat cases where dipterons lave have been swallowed and produced sickness. Among those most frequently romited are larme of varions Muscids, especially Anthomytia. "(.. Gerhardt records a case in which a pationt, after four days ilhess, romited abont fifty lirve of some dipterous insect, probably a large species of Muscida. A. Labonlbene describes and figures in the Annals of the Entomological Socicty of France, a larwa of Tcichomyza fusca Macquart, which is exceedingly abundant in the public urinals in France, and which lives in hmman urine. He identilies it with the larve described and fiowed by Davaine in 1857, as having been evacuated from the intestines of a woman after she had suffered much pain. (Koological Recorl for 1867.) Four other cases are on record of harvie having been voided by the urinary passages, or found living in urine, though, as suggested to us by Dr. Hagen, it is possible that in such cases, the worms were not roided, but lived in the urine previons to the time they were detected by the reporters of such case. .

Dr. J. Leitly reports in the Procecdings of the Academy of Natural Sciences of Philadelphia, for 1859, a case where a numbor of specimens which "appeared to be the larvat of the Blucbottle fyy," were given him by a physician, having been romiited from the stomach by a child. Also, a second case where numerous larve of a species of Anthomyia, "were given to him for examination by a physician who had obtained them from his own person. He had been scized with all the symptoms of cholera morbus, and in the discharges he had detected numerous specimens of this, to him, unknown parasite. It was in the latter part of summer, and the larree, it is suspected, had been swallowed with some cold boiled vegetables. Dr. Leidy had observed the same kind of larva in another case, accompanied with the ordinary phenomena of cholera morbus."

Isidore Geoffroy Saint IIilaire records a case of a larva of the common fly found lising in the skin of an infunt; while Dr, Livingston, according to Cobhold, detected a "solitary larva of a species which had taken up its residence in his leg. Dr. Kirk removed this parasite by incision; and on a second occasion he obtained a similar specimen from the shoulder of a negro."

There are about 2,500 species of North American flies described, and it is probable that the number of living North American species amounts to 10,000 . In Emope there are also about 10,000 known species, belonging to aboit 680 grenera.

The flies of this country, compared with the other groups, have been but little studied, though the hahits of many are so interesting and the species very numerous. The different parts of the boly vary much more than in the Hymenoptera and Lepidoptera, and in such a degree as to often afford comparatively easy chameters for diseriminating the gencra.
'd'heir habits are very rariable. Fresh water aquaria are necessary for the mantenance of aquatio larve. If quantities of swamp mud and moss with decaying matter are kept in boxes and jars, multitudes of small flies will be hatehed out. Leafmining and seed-inhabiting species can be treated as microlepidoptera, and earth-inhabiting lare like ordinary eaterpillars. Dung, mould in hollow trees, stems of plants and
toadstools contain numerous larve or magoots, as the young of thies are called, which must be kept in clamp boxes.

Flies can be pinned alive, without killing them by pressure, which destroys their form ; and numbers may be killed at once by moistening the bottom of the collecting box with creosote, benzine or ether, or putting them into a bottle with a wide mouth, containing cyanide of potassium. Minute species can be pinned with very slender pins, or pieces of fine silver wire, and stuck into pieces of pith, which can be placed high up on a large pin. In pinning long-legged, slender species, it is advisable to run a piece of card or paper up under their bodies upon which their legs may rest, and thus prevent their loss by breakage. Of these insects, as with all others, cluplicates in all stages of growth should be preserved in alcohol, while the minute species dry up unless put in spirits.

In the genume flies the thorax is highly centralized; the maxillæ are covered by the labrum, and the labium is not prorided with palpi. The females lay eggs from which the lavere are hatched. They are also divided into the Nemocera, comprising those flies having long, threal-like, many-jointed antennze, and embracing the higher families, i.e the Culicide, Tipulide, Bibionide and IRhyphidre; while the remaining families of this division are included in the Brachycera, or flies with short antenne, such as the JIuscidce, ete. But the fossil genera, Electra and Chryothemis, discovered by Professor Loew in the amber of the Tertiary formation, and a North American gems of F ylophagide, and the genus Rachicerus, have intermediate characters combining these distinctions, which are thas shown to be somewhat arbitrary.

Cclicides Latreille. The family of Mosquitoes or Gnats have the mouth-parts very long and slender ; the maxilla and mandibles are free and lancet-like. Figure 274 (A, larra; c, its respiratory tube; B, pupa; d, the respiratory tubes; a, the end of the abdomen, with the two oar-like swimming leaves, seen in profile at B, from drawings made by Mr. E. Burgess, illustrates the transformations of a species inhabiing brackish water in the vicinity of Boston. The larve remain most of the time at the bottom feeding upon decaying matter, thus act-
ing as scavengers and doing great bencfit in clearing swamps of miasms. Occasionally they rise to the surface for air by a jerking morement, inhaling it through the star-like respiratory tube which connects with the trachere.

The pupe have club-shaped bodies owing to the greatly enlarged thorax, with two respiratory tubes like those of Corethro, situated on the thorma. They remain near the surface of the water wriggling towards the bottom when disturbed, aided by the two broad swimming candal leaves. Though aetive in their halbits they do not eat. The egrs are laid in a boat-shaped

Fig. 273. mass, which floats on the surface of the water. About four weeks atter hatching the imago appears, so that there are several broods during the summer. The females alone bite, the males not coming into our apartments bat spending their lives in the retirement of the swamps and woods.

This genus abounds in the high Arctic regions as well as in the tropics. Culer pipiens Linn. inhabits Europe, and there are over thinty North American species described in rarious works.
Figure 274 represents a vertical and side view of the head (greatly magnified) of a common species of Culex found in Labralor. The antcunæ (c) do not reach as far as the tip of the beak, and are supplicel at each joint with a thin rerticil of hairs (by an oversight partly omitted in the upper fig-
 ure). The beak consists of a stout bristle-like labrum (not shown in the figure), the bristle-like maxillæ ($m x$, with their rather large three-jointed palpi $m p$) with the mandibles (n)
which are thicker than the maxilla and barbed at the tip, and the single hair-like lingua, or tougue (lg). These six bristlelike organs are folded together within the hollowed labium (l), which is a little enlarged at the tip, and forms a gutter-like case for the rest of the mouth-parts. The moscuito, withont any apparent eftort, thrusts them, thus massed into a single awl-like beak, into the flesh, and draws in the blood throngh the channel formed by the fine bristles, Westruod stating that the labium does not penetrate the flesh, hut becomes bent upon the breast of the fly. He adds "it is supposed that, at the same time it instils into the wound a renomous liguid, which, while it enables the blood to flow faster, is the chieff cause of the subsequent irritation." So far as we tre aware no poison glands have been demonstrated to exist in the head of flies, or other six-footed insects, and we are clisposed to coubt whether any poison is poured into the momel, and to question whether the larbed mandibles are not sufficient to produce the irritation ordinarily accompanying the punctured wound made by the mosquito as well as other fiies.

A large mosquito, with two light spots on cach ming (Anopheles (unadrimaculatus Suy), bites fiercely. It is abundant rery early in the spring before other mosquitoes appear. It seems to hibernate in houses. The genus Corethor has the mate antemace tery long and densely latiry. The wings are finely ciliated as in Culex, and the imner edge lats a short finge. 'The beantifully transparent and delicate whitish larva may be seen in carly spring in quiet pools. Early in April the pupa state is assumed, disclosing the flies late in thie month.

Chirozomide Westwood. Of this small family the genus Chiromomus includes some small species which are mosquitolike, with feathered antemx, and abound in swarms in carly spring before the snow disappears. The larye are long, slender, worm-like ; sometimes of a blood-red color, and aquatic in their habits. White most of the larve of this genus live in fresh water, we have observed multitudes of the young of C. oreanieus Pack. living on floating ecl-grass and in green seaweeds at low water mark in Salem harbor. There are two
broods of the larvæ, the first becoming fully grown the last of April, the other the last of September, the flies appearing about the middle of October. The larva (Fig. 275, a, enlarged about three times, with the head greatly magnified; b, the labrum; c, the mandibles; (d, the labium) is cylindrical, whitish and about a quarter of an inch long. The single pair of fore legs (Fig. 276a) are providen with

Fig. 275. about twenty-five longitudinal rows of hooks, while the anal legs (Fig. 277; a, a portion of the dorsal vessel) terminate in
a

Fig. 276. a single crown of hooks which can be drawn in out of sight. The worms were found either creeping over the surface of the weeds, or if about to pupate, concealed in a rude thin case or tube, formed of the debris collected on the weeds. It feeds on sea-weeds and small worms. It remains in the propa state (Fig. 276) about two weeks, transforming into a fly (Fig .278 male, and head of the female) which ditters from the true Chironomi in having shorter antemme and smaller palpi, and also in the venation, and the longer thorax. T'angues resembles Culex in its larva and pupa state, being of similar form. Lyonnet figures a larva which spins a movable case of silk and moss. The egges of T. varius are latid on the ${ }^{a}$ leares of acpuatic plants, and fastened together

Fig. 2 27. with gluten. Some species of Ceratoporm, like the mosquito, are blood suckers. The larve are, however, terrestrial, living in mushrooms, or under the bark of decaying trees.

Cecromyide Westrood. The group of Gall-fies comprises minute, delicate, slender-bodied species, whose bodies are clothed with long hairs. The wings have msually three or four longitudinal veins, and are folded over the back. They are gall-flies, the female laying her eggs in the stalk of cereals, and in the stems, leaves and buds of various plants
which produce gall-like excrescences inhalited by the larvæ. The Wheat-midge or Hessian-fly does not, however, produce such an enlargement, while other larva only produce a folding of the leaf, swelling of a leaf-rib, or arrest the growth of a bud or stallk.

Before giving a special aceount of the Wheat-midge, so destructive to wheat crops, let us, with the aid of Baron Osten Sacken's résume in the Smithsonian Monographs of North American Diptera, Part 1, take a glance at the habits of the family. As a rule the species prefer living plants, though several species of Epidosis and Diplosis live in decaying wood, and

Fig. 278.
C. fuscicollis Meigen
(?) has been reared by Bonché from decaying bulbs of tulips and hyacinths. Others live under the bark of trees, in the cones of pines, or in fungi. Each species is, as a rule, confined to a peculiar species of plant. Some of the larve live as guests or parasites in gatls formed by other Cecidomyix. Thus C. acrophila and C. parida live socially in the deformed buds of Fraxinus ; and Diplosis socialis inhabits the gall of Lasioptera rubi. The larva of some species of Diplosis are parasitic among the plantlice (Aphis). Some of the larye live on the surface of leares, C. glutinosa having been found by Osten Sacken living on the surface of hickory leaves.

The rather long, cylindrical eggs laid on the surface of leares, etc., are generally hatched in a few days, though this period may be hastened or retarded by laeat or cold. The young larre are colorless and transparent, with age becoming reddish or yellow, or white. They are fourteen-jointed, a supposed supernumerary joint being placed between the head and the first thoracic segment. The last abdominal ring is
sometimes provided with bristles or horny spinules, frequently curved, which aid the larve in leaping, as they have been observed by Dufour to do. The head and mouth-parts are exccedingly rudimentary, consisting of a ring with two processes extending backwards; the soft fleshy labium protrudes through this ring; and from the upper part of the ring arise a pair of two-jointed organs, supposed to be rudimental antenne. On the under side of the body at the juncture of the first or prothoracic segment with the supernmerary segment, is a horny picce called, provisionally, the breast-bone (Fig. 284, a), and which is present in most of the larve of this group. The larve having no jaws, must suck in the sap and moisture through the mouth, or absorb it through the skin. They make no excrement, like the larva of the Hive bee and Humble bee. Though their motions are ordinarily slow, just before pupation they are very active. The larez are not known to moult, though probubly the larva skin is shed by gradually peeling off in shreds, in this respect resembling the thin-skinned larve of bees.

Some larve of Cecidomyia before becoming prope, leave their galls and descend to the ground, while others remain in them, where they spin a slight silken cocoon. Dr. Ilarris has described the mode of pupation of the larva of C. salicis Fitch, stating that "the approaching change is marked by an alteration of the color of the anterion segments of the larra, which from orange become red and shining, as if distended by blood. Soon afterwards, rudimentary legs, wings and antennz begin, as it were, to bud and put forth, and rapidly grow to their full pupal dimensions, and thus the transformation to the pupa is completed." This process is mudergone beneath the larva skin, out of which the prea does not draw its body, as in the obtected diptera generally: The lara skin, dried and eylinchical in shape, thus serves as a cocoon to preserve the soít pupa from harm. The semipupa of C. destructor thas "takes the form and color of a flax-seed. While this change is going on externally, the body of the insect gradually cleaves from its outer dry and brownish skin. When this is carefully opened, the included insect will be seen to be still in the larra state.*

[^39]It does not change its condition and become a true pupa until a few days before it discloses the winged insect."

The pupa resembles that of the fungus-ating Tipulids, such as Sciara. The bases of the antennar are often prodnced into horn-like points, which aid the pupa in working its way out from the gall before assuming the fly state, and for the same purpose the back of the abdomen is spinose, and often there are a few bristles at the tip.

According to Dr. Harris, the Cecidomyia destructor Say, or Hessian-Ay (Fig. 280), has two broods, as the flies appear in the spring and autumn. At each of these periods the fly lays

Fig. 280. twenty or thirty eggs in a crease in the leaf of the young plant. In about four days, in warm weather, they hatch and the pale red lave (a) "crawl down the leaf, working their way in between it and the main stalk, passing downwards till they come to a joint, just above which they remain, a little below the surface of the gromd, with the head towards the root of the plant" (c). Here they imbibe the sap by suction alone, and by the simple pressure of their bodies ther become embedded in the side of the stem. Two or three larvæ thus embedded serve to weaken the plant, and cause it to wither and dic. The larwe become full grown in five or six weeks, then measuring about threetwentieths of an inch in length. Abont the first of December their skin hardens, becomes brown and then turns to a bright chestnut color. This is the so-called flax-seed state, or puparium. In two or three weeks the "Iarva" (or more truly speaking, the semipupa) becones detached from the old case. In this puparium the larra remains through the winter. Towards the end of April or the begimning of May the pupa (Fig. 280, b) becomes fully formed, and in the middle of May, in New England, the pupa comes forth from the brown pupariom, " wrapped in a thin white skin," according to Herrick, "which it soon breaks and is then at liberty." The flies appear just as
the wheat is coming up; they lay their eggs for a period of three weeks, and then entirely disappear. The maggots hatched from these eggs take the fiax-seed form in June and July, and are thus found in the harvest time, most of them remaining on the stubble. Most of the flies appear in the autumu, but others remain in the puparium until the following spring. By burning the stubble in the fall, their attacks may best be merented. Among the parasites on this species, are the egg-parasites, Platygaster, and Semiotellus (Ceraphron) destructor Say (Fig 。 140), the latter of which pierces the larva throngh the sheath of the leaf. Two other Ichmenmon parasites, according to Herick, destroy the fly while in the flax-seed or semipupa state. The ravages of the Hessian-fly have been greatly checked by these minute insects, so that it is in many localities not so destructive as it was formerly. Dr. Fitch has suggested that the Euro-

Fig. 140. pean parasites of this insect and the C. tritici, could be imiported and bred in Iarge quantities, so as to stop their ravages. With proper pecuntary aid from the State this seems feasible, while our native parasites might perhaps also be bred and multiplied so as to effectually exterminate these pests.

The Wheat-midge, C. tritici Kirby, attacks the wheat in the ear. When the whent is in blossom the females lay their eggs in the evening by means of the long retractile tube-like extremity of the body, within the chaffy scales of the flowers, in clusters of from two to fifteen or more. In eight or ten days the egg's disclose the transparent maggots, which with age become orange colored, and when fully grown are one-eighth of an inch long. They crowd around the germ of the wheat, which by pressure becomes shrivelled and aborted. At the end of July and in the beginuing of August the maggots become full fed, and in a few days moult their skins, leaving the old larva skin entire, except a little rent in one end of it. "Great, numbers of these skins are found in the wheat ears immediately after the moulting process is completed." Sometimes the
larva descends to the ground and moults there. Harris states that "it is shorter, somewhat flattened, and more obtuse than before, and is of a deeper yellow color, with an oblong greenish spot in the middle of the body. In this state, which is intermediate between the larva and propa states, which has by Dr. Fitch been termed the "embryo-pupa," and by us "semipupa," the insect spins a minute earthen cocoon, which, atcording to Dr. Fitch, is smaller than a mustard seed and remains in the ground throngh the winter, burrowing to the depth of an inch beneath the surface. In the next Jume they are transformed to puper,

Fig. 185. with the limbs free. When about to assume the adult state the pupa works its way to the surface in June and July. Its chief parasite, the Platygaster error Fitch (Fig. 135), is allied to P. tipulx, which in Lurope destroys great numbers of the midge.
It is evident that deep plonghing in the fall or spring will destroy many of the insects, and grain sown after the 1 ath or 20 th of May, in New England, will gencrally escape their attacks.

The wings of the Hessian-fly are blackish; those of the C. tritici are transparent. This last species is orange colored, with long, slender, pale yellow legs, and the joints of the antenne are twenty-four in number in the male, and twelve in the fomale.

The Cecidomyia rigidce Osten Sacken (C. salicis Fitch) forms a gall surrounded by the dry and brittle terminal bud at the end of the twigs of the willow. The single Iarva discloses the dy early in the spring. The bright yellow larra of C. grossularice Fitch, causes the gooseberry to turn red prematurely and become putrid. The pupa of C. pini-inopis is supposed by Osten Sacken to be coarctate, the larva fastening itself to a pine leaf and remaining motionless until the resinons exudation resulting from its attacks hardens, forming a cocoon-like pupa case or puparium.

Mr. Walsih describes in the "American Entomologist," vol. i,
p. 105, the gall formed by C. strobitoides O. Sacken (Fig. 281; a, natural size ; b, antema; c, gall) which is simply an enlarged and deformed bud of Salix cordata. The fly appears in April, or early in May, oriposits in a terminal but, and the gall attains its full size by the middle of July. The larva hibernates in a thin cocoon, changing to a pupa in the spring. (Walsh.) Another willow gall made by C. salicis-brassicoides Walsh oceurs

Fig. 281. on the Salix longifolia, the galls forming a mass (Fig. 282) like the sprouts on a

Fig. 281, c. cabbage stalk. Mr. Walsh also describes the Grape-vine Apple Gall (Fig. 283, gall of C.? ritis pommo ; a, matural size; b, a section), the fly of which is manown. The gall is divided into numerons cells, each containing a larva. It occurs on the wild Frost grape. The Grape-vine filbert gall (C.? vitis-coryloides Walsh, fig. 284; a, head of lavea, showing the clove-shaped breast bone; b, a bunch of galls, natural size ; c, section of a gall, showing the cell the larva inhabits) is found on the wild Frost grape in Illinois.

Walsh has described fourteen acilditional species of Cecidomyre inhabiting eight different species of willow. The specific character of the insects themselves, are in all their stages of the slightest possible character, but the different galls ean be readily distinguished. These galls, according to Walsh and other authors, also afford a shelter to so-

Fig. 282. called "inquiline," or giest specics, such as the larve of other species of Cecidomyia and speries of Scatopse and Drosophila,

Curculionidle and minute Lepidoptera, together with Aphides and speeies of Thrips, which last are thought by

Fig. 283. Mr. Walsh to prey upon the cecidomyious larve.

The subtivisions of the large genus Cecidomyia are noticed by Osten Sacken in Part 1 of the Smithsonian Monograplis of Diptera. As the student can refer to that work, we simply introduce the cuts showing the remation of the wing of each genus, without farther characterizing them. (Fig. 285, Cecidomyia; 286, Diplosis; 287, Colpodia; 288, Epidosis ; 289, Asynapta;

Fig. 284. 290, Spaniocera; 291, Lasioptera). Another gronp of this family are Anarete and its allies (Fig. 292, Zygoneura; 293, Anarete : 294, Catocha; 295, Campylomyza; 296, Lestremia) which are also related to the Mycetophilids.

We have already referred, on page 51, to certain cecidomyians, which in the larval condition produce young. We figure
(297) a species whose metamorphosis has been traced by Nicholas Wagner. The larra is cylindrical in form, like most
cecidomyian Iarvæ, with the division between the segments indicated by rows of minute spines. From the germ-balls ($(1$, nearest the posterior end of the body) the embryo is gradually formed (as at a in the eighth and ninth rings of the body), whea they assume a eylindrical form like the eggs of the adult fly of this family. These eggs may be compared with the

Fig. 285.

Fig. 287.

Fig. 289.

Fig. 286.

Fig. 288.

Fig. 290.

Fig. 291.

Fig. 2n2.

Fig. 293.

Fig. 294.

F:g. 295.

Fig. 296.
"psentora" of the Aphis, and are dereloped from the two large fatty bodies (corpora adiposa) which are situated one on each side of the body. These "folse eggs" increase in number and develop until the entire carity of the mother larva becomes distended with young worms like itself, and which are finally born and may be compared with the wingless broods of Plant-lice.*

* Baron Osten Sacken afterwards abandoned the hypothesis (stated on p. 209) that the females of Cynipidæ are impregnaten by males inhabiting a different sort of gall. See the Proceedings of the Entomological Society of Philadelphia, 1862, 1). 24, § 3 , Sexes of the Cynipidx.

Several species have been found in Europe under the bark of apple trees, etc. Loew states "that the species on which
 Wagner made his observations is nearly allied to the genus IIcteropeza, but still more closely to the genus Monodicrana, from the amber of the Tertiary formation on the shores of the Baltic. (Zoological Record, 1865.) Meinert describes a similar species of worm and its imago, under the name of Micastor metrolocs, ard characterizes the fly as laving very short two-jointed palpi, and moniliform eleren-jointed antenne. The wings have three veins, the middle one of which does not reach the apex of the wing.

Psichodids Zetterstedt. The principal genus in this small family is Psychodet, comprising small flies with hroad, rery short, oral whitish Fig. 207. wings, which, like the borly, are very hairy. They may be seen flying and leaping on the banks of, or on the surface of pools, and on windors. The lavve live in dung. The larva of the European P. phatcmoides (so named from its resemblance to a moth) is "long, subfusiform and depressed, with a slender, straight cylindrical tail, longer than the precerling segment. The pupa has two short appendages, thickened at the tips behind the head. The abdomen is tapering." (Westwood.)

Tirumdes Latreille. The Daddy-long-legs or Cranc-flies are well known by their large size and long legs, and from their close resemblance in form have probably given rise to the humorous stories of giant mosquitoes, which sometimes appear in newspapers. They are chaneterized by their slender antemæ and palpi, and their remarkably long legs, while the abdomen is very slender and eylindrieal in shape; the group chiefly differs, however, from other flies, according to Haron Osten Sacken (Monograph of the Diptera of North America, Part iv), in the presence of a transwerse V-shaped suture across the mesonotum; hy the completeness of the renation, and the presence of a well dereloped oripositor, "with its two
pairs of long, horny, pointed valves." The laver (Fig. 298, natural size, a larva of this family found living under stones in a ruming brook at Burkesville Junction, Va. In the American Naturalist, vol. ii, it was referred to Tabanus) differ liom those of the neighboring families in having but a single pair of spiracles

Fig. 298. at the anal end of the body. The head is rather large, and "embedded nearly up to the month in the first thoracie segment; the mandibles are horny and strong, and forked at the end." The body is grub-like, of a miform grayish, brownish, or whitish color, and consists of twelve segrments.
"The larve of Ctenophora, living in wood, have a soft, white, smooth skin, similar to that of the larve of Iongicorn bectles, or of the asiliclee, living in similar conditions. The larva of Tipula living in the soil, or the larve of those species of Ctenophora which arc found in wood so far decomposed as to be like soil or regetable monld, have a much tougher skin, and are covered with a microscopic, appressed pubescence. This tonghess, as well as some stiff bristles, scattered over the surface of the skin, is probably nseful in burrowing. Thas the larra of Trichocera, digging in regetable mouk or in fungi, is corered, according to Perris, with microscopic erect bristles. The larra of Ela, living in fungi, has, according to the same author, still longer liristles. Those larve living in water (as some Limnobina) are solt and stiny, of a dirty greenish color, and with a peculiar clothing of ajpressed microscopic hairs, not unlike those of the larye of Statiomys. The most anomalous of all the 'Tipulideons larye are those of the Cylindrotomina. That of Cylindrotoma distinctissima lives upon the leaves of plants, as Anemone, Viola, Stellaria, almost like a caterpillar. It is green, with a crest along the back, consisting of a row of fleshy processes. The larra of Cylindrotoma (Phalacrocera) replicata, according to Degeer, lives in the water, on water plants, and is distinguished by numerous filaments, which, although resembling spines, are fexible and hollow on the inside. Degeer took them for organs of respiration." (Osten Sacken.)

The larvæ move by means of minute stiff bristles arising
from transverse swellings on the under side of the body. "The end of the body is truncated, and the two spiracles are placed upon the truncature," from the edge of which part arise usually four retractile processes.

In the aquatic larsa of Ptychoptera there is a long respiratory tube at the end of the body. The pupe (Fig. 299, under
 side, cnlarged twice, represents a pupa of this family) have usually on the thorax two horn-like processes, representing the thoracic spiracles, and in Ptychoptera one of these processes acquires a great length, in order to allow the pupa to breath muder water.

The Tipulids, like other fies with soft bodies which contract in drying, shonfd, as Osten Sacken suggests, be studied from fresh specimens, especially when the thorax and abdomen, witl the ovipositor, are to be exFig. 2f9. amined. The Tipulids of the United States, east of the Mississippi river, closely represent those of Europe, while Osten Sacken states that a few species are found to be common to both countries; and he farther states, with regard to the Tipulid", that "whenever the North American fanna differs fiom the European in the occurrence of a peculiar generic form, or in a marked prevalence of another, this difference is tue, either to an admixture of South American forms, or of forms peculiar to the amber fauna."

Fig. 300.

The genus Tipula comprises the largest individuals of the family, and the species may be seen early in May flying over grassy fields. The larve live in garden mould and moder moss in fields and moods. T. trivittuta Say is one of ont most common species.

In the genus Limmobic the body is very slender and delicate, thongh stonter than in Dicranomyia, a closely allied genus, the larre of which are probably aquatic. "The larve live in decaying vegetable matter, especially in wood and fingi." "Van Roser discovered the larve of the Europenn L. cmnulus (closely allied to L. cinctipes Say) in decayed wood. They are like an earth-worm in size, as well as in color, and line their burrows with a kind of silken web." (Osten Sacken.)

The genus Styringomyia (Fig. 300, wing) is an anomalons genus found in gum copal brought from Zanzibar. Of three other anomalons gencra belonging here Osten Sacken describes Rilumpledia, of which the rostrum is long, but shorter than the thorax, with species common to Europe and Ancrica, and also found in amber; Toxomhince which is fonind both in North and South America, and Elephantomyia which ocenrs only in North America, aud has a very slender filiform rostrum, ahmost as long as the body. E. Westuoodii O. Sacken is found in the Northern States and Canada.

Erioptera and its allies have two submarginal cells and the tibia are without spurs at the tip. In Erioptera the wings are pubescent along the reins only, giving the whole wing a hary appearance. E. remusta O. Sacken has yellowish wings, with two brown lands, and is a common species in the Atlantic States. According to Osten Sacken Chionea is closely allied to Erioptera. It is wingless, with sixjointed antemne of amomalous structure, and stont, hairy feet, and a short abdomen, which, according to Harris is provided with a "sword-shaped borer, resembling that of a grasshopper." "These insects occur on snow in winter, the larve live underground, apparently upon vegetable matter, and have been described in detail by Braner in the Transactions of the Zoological and Botanical Society of Viemna for 1854." C. valga Harris (Fig. 301, enlarged; fig. 302, larva of the European (. araneoides Dalman) is reddish brown, with paler legs.

Another section of this large fanily is represented by the genus Limnophita, in which there are two submarginal ceils, usually five posterior cells, and

Fig. 302. the wings and eyes are smooth, and the antenno sisteenjointed. The larva live in derayed wood. The larva of the European L. disper digs longitudinal burrows in the dry stems of Angliea sylvestris. "It is cylindrient, glabrous, of a livid gray, with a horny black head." (Osten Sacken.)

The anomalous genus Trichocera has pubescent eyes and
distinct ocelli on the sides of the frontal tubercle. The species appear in swarms, flying up and down in their mazy dances, especially at twilight early in spring, though they may be seen late in autumn and on warm days in winter. They live in decaying vegetable matter. Pedicia is a gigratic crane-fly, embracing the largest flies of the family, d and with Trichocera is the only genus of this family having ocelli. P. albivitte has hyaline wings, with the costa, the fifth longiturtinal vein and the central cross veins margined with brown. The body is 1.4 of an inch in Iength. The larva of an European species lives in well water.

The genus Cylindrotoma and its allies, resemble Tipula in the course of the reins lying in the vicinity of the stigma, and Osten Sacken illustrates the resemblances by the accompanying drawings, of which Fig. 303 represents the remation near the stigma of Cylindrotoma; Fig.

Fig. 304. 304 that of the Eiropean Phalacrocera replicata, closely allied to the preceding genus, and Fig. 305 that of a genuine Tipula.

Ptychoptera is rather stout-bolied and has a singular membranons spatulate orgam, ciliated on the margin, which is inserted at the base of the halteres. (Osten Sacken.) P. ruforincta $\mathrm{O} . \mathrm{S}$. is black with reddish bands on the feet.

The larva of the European P. paludosa has a long respiratory tube at the end of the body, which it raises to the surface

Fig. 303. of the water, and in the pupa. "one of the horny processes which clistinguishes the thorax of all the pupre of the Tipulide, is enormonsly prolonged, likewise, for the purpose of breathing under water. (Osten Sacken.) The very singular gemus Bittatomorpha is an aberrant form, resembling the neuropterous Bittacus. The antemme consist of trenty joints, and the first joint of the tarsi is very much thickened, while the abdomen is very long and slender. B. clavipes Fabr. is
black with a white stripe on the mesonotum, the metanotum and flanks being white, and the legs banded with white. It is a widely diffused species, and presents a most singular appearance when dying, as it moves slowly, with its feet variegated

Fig. 306. with snow-white, and extending like the radii of a circle. (Osten Sacken.) In the genus Protoptasma (Fig. 306, wing) there are six posterior cells in the wing. P. Fitchiii O. Sacken is brownish gray, with brown bands on the wings.

Mycetophilide Macquart. This family comprises small flies, capable of leaping to a considerable height, and provided with two or three ocelli, but not haring a proboscis. While the antenne are usually simple, as in all other Diptera, those of Platyroptilon Niersii Westwood are forked, having a branch one-half as long as the antema itself. The thorax does not have a transverse suture, and the wings are withont a discal cell, while the coxie are greatly elongated, and the tibixe are all armed with spurs. The larva are subcylindrical and smooth, with locomotive bristles beneath, and eight pairs of stigmata; they are in color white or yellowish. They are gregarious, living in decaying regetable matter, fungi, or in dung, one species forming a gall. They shed their shin several times before becoming fully gromn. Osten Sacken states that the larva of Sciophila which covers the surface of the fungus it feeds in with a web, is long and almost serpentiform, while those of Bolitophild and Mycetophild are shorter and stonter, and that of Sciara is intermediate. The pupa of this family are smooth, with rounded angles and edges, whereas those of Tipula are sharp and pointed. They are enclosedi in a silken cocoon. Some species of Sciara do not, howerer, spin cocoons. The larva of Iyycetophita scatophora Perris "carries on its back a sheath formed of its own excrements and moulded by means of a peculiar undulatory motion of the skin. The pupæ remain within the sheath, but before assuming this state the larra extends the sheath anteriorly in a short neck, and tapestries it on the inside with a pellicle, which renders it
more tough and resisting." The larre of one genus sometimes live gregariously with those of other genera. Thus Osten Sacken found that the "larw of Sciophila appeared in a decaying fungus only after the transformations of Mycetophila were entirely completed. For two or three weeks the egrgs of the former remained apparently dormant among the bustle of so many larte of the other species." (Osten Sacken.) Leja resembles Sciophila in its habits. The larve of Sciora have no bristles on the tubercles of the under side of the body, usually present in the family. They are more gregarious than the other genera, and have the singular propensity of sticking together in clense patches, generally under the bark of trees. When fully grown they sometimes march in processions in a dense mass, sometimes several feet long, and two to three inches broad, and half an inch in thickness, whence the Germans call them "Army-worms." To the same genus belongs the S^{\prime}. (Molobrus) mali of Fitch, the apple midge, whose larva is glassy white and devours the interior of apples.

Professor E. D. Cope describes in the Proceedings of the Philadelphia Academy, 1867 , page 222 , a procession of a species of Sciara observed in September by William INite, in Chester County, Pemn., where he had observed this army-worm for three consecutive years. "This company (consisting by rongh estimation of about 2,400) extended over a length of alout twenty-two inches, with a breadth of from thee-forrths of an inch in the thickest part, to about one-eighth of an inch at the head, and one-tenth at tail; five or six worms deep in thicker parts. They adranced at the rate of four inches in five minutes, the hinder ones working their way over the top of the rest." These larve were about onchalf an inch long, semitransparent, with black heads. Mr. Kite observed another procession July 8th, which was six feet six inches long. These trains were attacked by larre of Staphylinids, ants, dipterons larve and other predaceous insects. Seven other persons in this country hare witnessed similar trains, one of which was obscryed in Lce, Mass.

The larva of Mycetobia, which agrees closely with that of Rhyphos, is found living in protrescent sap under the bark of the elm trec. We have found, through the summer, great num-
bers of an undescribed species (Fig. 307; a, larma; b, pupa, magnified three times. Fig. 308, head of the larva greatly enlarged; a, antema; l, labrum ; m, mandible; $m x$, maxille: mp, maxillary palpi? g, gena?) which seems to differ fiom Dufour's figure of the European M. pellipes in the form of the wings and their remation, as well as in the form of the pupa. The larve were first seen in abundance on the 26 th of June in the crevices of the bark of the elm from which flowed a sour sap mingled with dust, and in this putrescent mass the slender white worms glided swiftly about. The body is long and slencler, scarcely tapering towards either end, and consists of twelve segments besides the head. Like the larva of Scenopinus and Thereva, each abdominal ring is subdivided by a well defined false suture; but the hinder division in this larya is abont one-fourth shorter than the rest of the ring. It is . 36

Fig. 307. of an inch long. The had is pale honey yellow, and the bodypure white. The three thoracic rings are marked posteriorly with honey yellow, with a pair of large round pale spots low down on the side of each ring. It moves with great activity, keeping its month-parts constantly moring, pushing them into the dirt. The pupre were found sticking straight out from the bark, being attacherd by the spines on the tail. They were straight, long, cylindrical, the thoras being but little larger than the base of the abdomen. The head is square in front, ending in two lateral horns, and the abdomen is covered with stont spines, especially at the tip. It is . 20 of an inch long, and is pale honey yetlow and corered with dirt. The flies appeared June 27 th, and for six weeks after flew about the trees. The heal is lilack, the thorax and abdomen brown, with a leaden hue; the abdomen is a little paler, being whitish beneath, but darker towards the tip. The legs are pale, a little darker externally, especially
towards the tips of the joint, and the hind tarsi are a little dusky. Its length is .10 of an inch, not including the antemue. It may be called the Mycetobia sordida.

Pclicide Westrood. While this group has been considered by many writers as forming a distinct "order," or suborder of insects, equivalent to the Diptera, under the name of Aphanipter:a, we prefer, with Straus Durckheim, to consider them as wingless tlies, and perhaps scarcely more abnormal than

Fig 309 Nycteribia or Braula. Instead of placing them at the foot of the suborder, we prefer, in accordance with a suggestion made by Halidlay (Westrood, Class. Insects, vol. ii, p. 495, note), who places them near the Mycetophilits, or "fungivorous Tipulits," to consider them as allied to that group. The borly is much compressed; there are two simple eyes which take the place of the compound eyes, the epicranial portion of the head being greatly prolonged, while the labrum is wanting, and the labium is small and membranous; the three-jointed labial palpi, always absent in other diptera, are long and slender. The form of the larva, including the shape of the head and its habit of living in clirt, and its way of moving about, as also its transformations, certainly ally the flea with the Myectophilids.

We have received from D_{1}. G. A. Perkins of Salem, the eggs and larve of the species infesting the cat, from which we hare also hatched the young larve. The eggs (of which, according to Westwood, eight or ten are laid by one female) were shaken from the cat's fur, whence they are said to fall upon the floor and there hatch, the larve living in the dust and dirt on the floor, and feeding on decaying regetable substances. The egg is oval cylindrical, and one forty-fifth of an inch long. The larra when hatched is . 06 of an inch long (Fig. 309, the larra four days old; a, antenna; b, end of the body) white, cyliudrical, the sides of the body being a little expanded, giving it a slightly flattened appearance when seen from abore. The segments are rather convex, the sutures being deeply im-
pressed. There are four long hairs on the side of each ring, becoming longer towards the end of the abdomen, where they are longer than the body is thick. The terminal segment of the body is considerably smaller than the one preceding it, amt has two long spines arising from the tergal part of the ring; these spines seem to assist the larva in moving through the hairs and dust in which it lives. The well developed head is rounded, conical, narrower than the prothoracic ring, pale honey yellow, and with long three-jointed antone.

Mr. Encrton, who made the drawings here given, informs me that the larva, when fifteen days old, did not differ from those freshly hatched. I have been mable to discover that it moults. Westrood states that "when fully grown, which occurs in summer in about trrelfe days, the larvae enclose themselves in a small cocoon of silk. Rösel, however, observed that some of the lave underwent their transformtons without forming any cocoon." "The pupa is quite inc-

Fig. 310. five, with the legs enclosed in separate cases. The period of the duration of the pupa state varies from eleven to sixteen days." Our specimens were hatched early in October, and they probably pass the winter before changing, as Westwood states that they pass the winter in the larva state. The species here represented (Fig. 310, b, maxilla, and their palpi, u; d, the mandibles, which are minutely serrated; c, labial palpi, the labium not being shown in the figure) was found on the person of a man, though it seems to differ specifically from Westwood's figure of P. imitans Limn, the human flea; other species live on the dog, cat, squirrel, and other quadrupeds and various birds. The antenna are concealed in a small cavity situated behind the simple eyes and are four-jointed; in P. muscuti

Duges, they are external. Firby describes a gigantic species two lines long, from British America. As a preventive measure in ridlling dogs of fleas we would suggest the frecuent sweeping and eleansing of the floors of their kemels, and renewing of the straw or chips composing their beds - chips being the best material for them to sleep upon. Flea-afflicted dogs should be washed every few days in strong soapsuds, or weak tobacco, or petroleum water. A writer in the "Science-Gossip" recommeurls the use of Persian Insect Powder, one package of which suttices for a good sized dog. The powter should he well rubbed in all orer the skin; or the dog, if small, can be put into a bag previously dusted with the powder; in either case the dog should be washed soon after."

One of the most serious insect torments of the tropics of America is the Saropsybla (Rynchoprion of Oken) penetrans Limn., called by the natives, the Jigger, Chigoe, Bicho, Chique,
 or Pique. (Fig. 311 much enlarged; a, the gravid female, natural size). The fernale (luring the dry season, bores into the feet of the natives (though it also lives in dogs aud mice, which accounts for its presence in houses), the operation requiring but a quarter of an hour, usually penetrating under the mails, and lires there until her body becomes clistended with eggs ; the abdomen swelling out to the size of a pea. The presence of the insect often causes clistressing sores. The Chigoe lays about sixty eggs, accorling to Karsten, clepositing them in a sort of sac on each side of the external opening of the oviduct. The larme do not live in the body of the parent, or of its host, but, like those of Pules, live free on the ground. The best preventatives against its attacks are cleanliness and the constant wearing of shoes or slippers when in the house, and of boots when out of doors.

Srmillde Loew. Simulium molestum (Fig. 312 ; a, larva of this or an allied species, magnified), the Black-fly, represents this family. Its antenna are eleven-jointed; the palpi are four-jointed, with long, fine terminal joints, and the ocelli are
wanting, while the posterior tibia, and first joint of the hind tarsi are dilated. The body is short and thick. The labrum is free, sharp as a dagger, and the proboscis is well dereloped and draws blood profusely. The species are mumerous. 'The Black-fly, so well known as the tomment of travellers in the North, is black, with a broad siluery ring on

Fis. 312. the legs. We have recived a large species from Mr. E. T. Cox, called in the West the Buffalo fly. On the prairies of Illinois it has been known to plague horses to death by its bite. The S. (Rhagio) Columbaschense Fabr. in Hungary abounds in immense numbers, often killing cattle. Other species abound in the American tropics where they are a
 great scourge. 'The cylindrical larra of the Euro- Fig. 312, a. pean species is furnished with short mintenm and two flabelliform appendages. On the under side of the prothorax is a thick conical and retractile tubercle, and there are several curved filaments at the end of the body. The pupa has eight very long lateral filaments on the front of the thorax, and the posterior end of the body is enclosed in a semioral membranous cocoon, open in front, and posteriorly attached to some plant. The fly leares the pupa beneath the water,

Bibionide Macquart. 'This group is characterized by having three ocelli and the prothorax much developed; the wings have no discal cell. The coxa we not prolonged and the empodiun (supplementary cushion) is proportionally long, while the pulvilli are sometimes wanting. The trpical genus, Bibio of Gcollioy, has short, nine-jointed antemæ, five-jointed palpi, and the eyes of the male are large and contiguons, while those of the females are small. The larve are cylindrical, footless, with ten spiracles, and furnished with transverse rows of short hairs, being found in dung, but they mostly feed on the roots of grass, whole patches of larre appearing as if winter-killed. Robins destroy immense numbers of them. Westwood has
found the pupæ enclosed in smooth oval cells; they are naked, the thorax gibbous, with the rudimental wings and legs very short. Bibio cllipenmis Say, a white-winged species, is doublebrooded, and flies in swarms in June and October, alighting slowly on the passer-by.

Rnypides Loew. This family is known by the wings having a perfect discal cell, while the empodium resembles a pulvillus; the pulvilli leing wanting. The single genus Rhyphus has short fourteen-jointed antenne, the second joint of the palpi swollen, and the legs are not spiny. Ihhyphus alternatus Say, is common on windows.

The succeeding families belong to the Brachycera, or shorthorned flies.

Nylophagide (Macquart). This family is known by the -three basal cells of the wings being very prolonged, the annulated third joint of the antonnte alwas without a style or terminal bristle, and by the spurred tibix. Nylophagus has ten-jointed antennæ, with the ovipositor very long. The larva is cylindrical, with an oblique sealy plate on the tail, while the head ends in an acute horny point. Loew doubtfully refers the genus Bolbomyia, found fossil in the Prussian Anber, to this group.

Stratromide Latreille. The wings in this group have the three basal cells much prolonged, and the costal rein reaching only to the middle of the wing. The third joint of the antenne is sometimes subdivided into several portions. The tibie are spurless and the pulvilliform empodium is much dereloped. The coarctate pupa retains the larva skin nearly in its original form. The genus Beris is easily distinguished by having seven, instead of five (the usual number) abdominal segments risible. In Sargus the eyes of the males approximate much eloser than in the females. They are showy insects, with bright metallic colors, and are widely distributed over the carth. The larra lives in the earth, is oral obtong, narrowing before ; the head is scaly, with two ocelli, and armed with two hooks, while the body is hairy. Fig. 313 represents a pupa
belonging probably to this family. Stratiomys has a broad flattened abdomen, and the scutellom spined. The larra are aquatic, being apodal and flattened, and slender especially at the end of the body, which is elongated and has a simple terminal spiracle "surrounded by a great mumber of bearled hairs, which form a coronet, and which are capable of being closed up so as to retain a bubble of air, and by the assistance of which the insect suspends itself at the surface of the water for respiration. On assuming the pupa state, the insect floats at liberty in the water, the enclosed pupa occupying only the anterior

Fige. 313. portion of its larya skin."

Tabanide Latreille. In this important family the three basal cells of the wings are much prolonged ; the third longitudinal rein is furcate, and the tegule are rather large. The proboscis of the male has four, that of the female six bristles. The third joint of the antenne is annlate and always without style or bristle. The eyes are large, and the thorax oblong and flattened abore. The female Irorse-flies are troublesome from their formidable bite. The pupa are obtected, resembling the adult flies. Pangonia has a proboscis often longer than the body itself. Chrysons, the Golden-eyed fly, is rery troublesome, unceasingly flying about one's head, striving to alight and draw blood. The two basal joints of the antemne are prolonged, hairy, the third spindle-shaped. Choysops miger Macquart and C. vittatus Wiedemann are the two most abumlant species.

Tabanus, the Horse-fly, is known by its large size and powerful biting and sucking apparatus. Like the mosquito, the male horse-fly does not bite, but lives on the sweets of flowers. The aceompanying sketch shows the structure of the proboscis of the female of the Green-head fly, Tabanus tineala Fabr. (Fig. 314; a, fire terminal joints of the antemne; $7 b$, labrum ; m, mandibles; $m x$, maxillæ; $m p$, the two-jointed, large, stout, maxillary palpi ; 7 , the tongue). Its bite is most painful and poisonons to many. Mr. Walsh has shown,
however, that in its larval state the horse-fly is useful to man, as it feeds on snails and probably the larvæ of other rooteating insects. The larre of other species are aquatic, living under submerged objects. Walsh describes

Fig. $31 \pm$. a greenish transparent larva which is cylindrical, twelve-jointed, the body being most slender towards the head, which is small, truncate, conical, the anterior part capable of extension, with shor't, fleshy, exarticulate antenna and without ocelli. There are six pairs of dorsal fleshy tubercles. On the under side of the abdominal segments are six retractile false legs, and a single anal retractile proleg. It is, when disturbed, vigorous and restless, swimming quickly, often elevating the anal slit, in which the stigmata are probable placed, out of the water to take in the air. The pupa is cylindrical, obtuse at the head, tapering a little posteriorly, and is of a pale yellowish brown. There are six tubereles at the mouth, above which are the trigonate three or four-jointed antenne. The abdominal segments are furnished with a ring of appressed bristles directed backFig. 315. wards, and the anal spine is large, truncated, and terminates in six small, stout spines. T. atratus Fabr. is a common species; it is black, covered with a whitish bloom, and expands nearly two inches, while the Tabanus cinctus Fabr, or Orange-belted horse-fly, is smaller and less abundant. Of the smaller species the Tabomus lineola Fabr. (Fig. 315) is so named from the whitish line along the abdomen. This fly is our most common species, thousands of them appearing during the hotter parts of the summer, when the sun is shining on our marshes and Western prairies; horses and cattle are sometimes wortied to death by their harassing bites. In cloudy weather they do not fly and they perish on the cool frosty nights of September.

Leptide Meigen. This family is easily distinguished from the preceding by the simple third joint of the antennæ, which are provided with a simple or thickened styliform bristle.

The tibix are spurred; the larre slender, cylindrical; the body widening posteriorly, terminates in two points, while the pupa is naked, incomplete, with transverse rows of spines on the abdomen, becoming largest at the tip. 'The larva of Leptis vermileo Fabr. lives at the bottom of holes which it makes in sancl, and thus, like the ant-lion, entraps other insects.

Crimtide Loew. Known by the greatly inflated thorax and abdomen this family is of but small extent, comprising species which have the proboscis rather obsolete, or long and bent beneath the body. Such are the genera Cyptus, Acrocerct and Oncodes. The genus Hirmonewre represents the family Mrrmoxecride of Loew.

Mrd.sidm Leach. This family, represented in this country by the single genus Midas, is easily known by the large size of the species, and by the long clarate antenna, the fleshy labimm, and the minute emporlium. The larra and pupa are said by IIaris to almost exactly resemble those of the rapacious Asilidie. The larva of Midas cleteatus Drury is cylindical, whitish, tapering before and almost rounded behind, with two spiracles in the last segment but one of the abdomen, and is two inches long. It lives and undergoes its transformations in decaying logs. (Hamis.) The pupa (Fig. 316, drawn from a specimen in the Harris collection) is about an inch and a quarter long, brown, nearly cyandrical,

Fig. 316. with a forked tail ; there are eight spines on the forepart of the body. Miclus fildeipes Walsh has similar habits and its transformations are similar; the larva is insectivorous.

Asilide (Asilici) Latreille. These large, stont, Robber-flies, as the Germans style them, are covered with stiff hairs, and have long abdomens. The third joint of the antemne is simple; the labium forms a horny sheath, and the empodium is like a horny bristle. They are rapacious, scizing other insects and flying of with them, like the fossorial hymenoptera. Dasypogon (Fig. 271, 3, wing) las the second longitudinal vein
romning into the border of the wing, while the anterior tibiæ end in a hooked spine.

The genus Laphria is large, stont-bodied, rery hirsute, the second longitudinal vein runs into the first, and the style of the antennze is either thick and stout, and generally wanting, or entirely obsolete. In their loud buzz, swift, peculiar Hight and general appearance, the species strikingly resemble humble bees. Laphria thoracica Fabr. is nearly an inch long, and is black with yellow hairs on the thorax. Asitus is much longer, with an acutely pointed prolonged ablomen, and the species are often nearly naked, while the more essential characters lie in the union of the second longitudinal vein with the first, and the termination of the nntenne in a distinct bristle. The larre of Asilus sericeus Say, which feed on roots of the rhubarb plant, accorling to Dr. Harris, are yellowish white, about three-quarters of an inch long, a little flattened and tapering at each end, with a small brown, retractile heak, which is provided with two little horny brown hooks. The brown pupa is naked, with a pair of tubereles on the front of the head, three spines on the side, a forked tail, and a transterse row of fine teeth across each abdominal segment, by which they are enabled to work their way to the surface. The Trupanea apucora Fitch, or Bee-killer, captures the honey bee on the wing, one having been linown to kill 1 ± 1 bees in a clay. (Riley.)

Timereyide Westrood. This small gronp is characterized by the wings haring the three basal cells much prolonged ; the third longitudinal rein is furcate, and the antenne have a terminal style of variable form, sometimes wanting. There is no empodimm, and the labium is fleshy. The larva is very long and slender, the abdominal rings having a double segmented appearance, with two respiratory tubes at the end of the body. 'They are found in garden mould and rotten wood. The pupa is oblong, with two spines on the front of the heal, and three on the side of the thorax. Westwood states that the larva of a species of Therera, which is like a wire-worm in shape, feeds on the pupre of some moths.

Bomblmde Latreille. These pretty flies are very lirsute,
with an oval body and long proboscis; the wings lave the three basal cells much prolonged, with the anterior intercalary rein present almost without exception, the posterior always wanting. The thircl joint of the antemae is simple, and the empodium quite rudimentary. They are exceedingly swift on the wing and are found in sunny paths and glades early in the spring and throughout the summer. They can only be eaptured when alighted on the ground. The eggs are laid in the nests of bees, and the half cylindrical, long, fleshy, smooth, unarmed larva devour the bee larva, while the pupa is spiny, armed on the head with homy lamellæ. In the genns Bombylius the body is ovate, with long dense hairs and a suall head. The eyes of the male are grown together, and the legs are very slenter. A species is known in England to lay its egges at the opening of the holes of Andrena, whose larve and prow are devoured by the larve of the fly. Systropus is rery long and slender, and wasp-like, as in Conops, with the proboscis cqualling the thorax in length. The genns Anthrax is more flattened and oblong ia shape than Bombylins, with a short proboscis; the eyes are not connected in the males. The species are gaily colored, the wings often partially black; they fly in paths in the lottest days of summer. The larre are parasitic on bees, and in their transformations closely resemble those of Bombylins. Andonin has found Authrax morio in the nest of Anthophora, and Westwood has fomd the pupa-skin in the nest of Megachile, while the larra has, in England, more recently been found to be parasitic in the nests of cortain Andrenidae. We have received from Mr'. J. Angus the larva and pupa (Plate 4, figs. 6, 7) of Authraw sinuosa Wieclemann, which is parasitic in the nest of Xylocopa Virginica.

Syrphide Leach. These gaily colored flies, so useful to agriculturists from their haluit of feeding upon Plant-lice, closely resemble the wasps in form and coloration, haring hemispherical heads, large broad eyes, and rather flattened bodies ormamented with yellow bands and spots. The wings have the three basal cells much prolonged, the third longitudinal rein simple, a spurious longitudinal vein between the third and fourth longitudinal reins; while the fourth longitudinal vein is united
at its end with the third, and there is no intercalary vein. The genital armor of the male is musymmetrical, and there is no empodium. They hover in the hot sun

Fig. 317. over and about flowers, resting upon them to feed on their sweets. The larwe either live in the water, when the body ents in a long extensile breathing tube ; or are terrestrial, living in decaying mood, or parasitically in nests of bees, or, as in Syrphus, live among plantlice. The singular spherical larva of Microdon globosus (Fig. 317; a, puparimm; s, spiracular tubercles; v, vent; b, anterior tiew of the same; c, larra just before pupation) is founcl, according to Mr. Samborn, under sticks in company with shells.
Milesia strikingly resembles, in its style of coloration and form, the common large yellow wasp. The antenne are short, drooping, witl a stout oval terminal joint, and a subterminal bristle. M. excentrica Harris, with its yellow spots and bands resembles a wasp.

Eristalis is well known by its aquatic "rat-tailed" larwe, the abdomen terminating in a long respiratory tabe equalling the body in length, with two stigmata at the end, which they protrude out of the water. There are seven pairs of prolegs, more distinct than in any other genms in the entire suborder. The pupa is foum huried in the earth. The body of the larta shortens and hardens, forming the puparium, which is provided with four horns, serving as organs of respiration.

The species of Evistalis* are scen flying abundantly about

[^40]flowers in the spring, and are common throughont the spring. They scoop up the pollen of the flowers with their maxillee. We have received from Mr. E. T. Cox the pupariam (Fig. 318) of a species which inhabits the salt vats of the Equality Salt Works of Gallatin County, Ill. The puparium of a species of Helophilus closely re-

Fis. 318. sembling that figured by Westwood (Class. Insects, Fig. 131, 8), has been found living in the salt water canal of the

Fig. 319. Namkeag Factory leading into Salem Harbor, and is in the Muscum of the Peabody Academy.

Closely allied to Eristalis is the genus Merodon, of which M. bardus Say (Fig. 319; a, puparium, natural size) is frequently met with. Its thorax, the first abdominal ring and the side of the second are covered with short yellow hairs; it is .70 of an inch in length. The proparium is of the same length, and is cylindrical, ending suddenly in a respiratory filament a little longer than the body; it is quite stout, contracting beyond its middle into a slender filament. On each aludominal ring is a pair of small, low, flattened tubercles crowned by a number of radiating spinules. Its larva is undoubtedly aquatic, like that of Eris-

Fig. 320. talis. Mr. Sanborn has also reared from the prona state M. Narcissi, which probably lives in the soil abont decaying bulbs, as the puparium has no respiratory tube, but instead a rery short sessile truncated projection, scarcely as long as it is thick, with a pair of stigmata in the end ; the body is cylindrical and rounded alike at each end, with a slight con-

[^41]traction behind the middle of the head; its surface is roughened with transverse wrinkles, but no regularly marked sutures, indicating the divisions between the segments, are apparent. It has been introduced from Europe, according to Mr. Sanborn, by the importers of Dutch bulbs.

The well known genus Symplus (Fig 320, S. politus Say) so useful in reducing the immense numbers of plant-lice, lays a single egg in a group of plant-lice, which hatches out a footless, eyeless, flattened, transversely wrinklecl, gaily colored green and purple maggot (Fig. 321) laving a very extensile body, which enables it to reach up and grasp the Aphis by the pectuliar sucking mouth-parts. When fully grown the larva adheres by means of a glutinous secretion to a leaf, its body contracts and hardens, forming a half cythdrical puparimm.

The species of Volucella are parasitic in their habits, the larve feeding on those of Bombus. They" are long, "narrowed in front, transversely wrinkled, with fine lateral points, and the tail is armed with six radiating points; the mouth is armed with two lifid mandibles, and three pairs of temiacula." (Westwool.) The pupa are not known. The fly woult be easily mistaken for a bee, nearly attaining the size of the worker Humble-bee, being remarkably plump and hirsute. d. Kunckel states that in Europe two species are known to live in the nests of Yespa.

Conorids Leach. The species of this family bear some resemblance to the wasp, Emmenes, from their long, slender, pedicelled abdomen. The three basal cells of the wings are large, the third closed, more or less remote from the posterior border, and all the longitudinal veins are simple. The eyes in both sexes are smallen than in the preceding family, being separated. 'The proboscis is, with a few exceptions, much prolonged, and the third joint of the antenne has either an apical style or a thick dorsal bristle. The male genital armor is symmetrical and turned bencath the alodomen. The flask-shaped larva of Conops is \cdots soft, whitish, cleven-jointed, with a long neck and a mouth armed with lips and hooks (manclibles), and two lateral elevated plates supporting the two spiracles." It was found by Lachat and Audouin liring in the
abrlomen of Bombus. It is also said by St. Fargeau to live in the nest of Vespa, and Conops flavipes was bred, according to Curtis, from the body of Osmia.

Mr. S. S. Samders has observed in Epirus the habits of a species which lives in the aldomen of Pompilus andax Smith. The fly lays its eggs in June in the adult Pompilus, probably ovipositing between the abdominal segments. During August the larre become fully grown, probably in ten or fifteen days. The puparium is oral, of an uniform, deep, piceous lute, and the fly works its way through the first and second abdominal rings of the wasp, whose abrlomen then breaks in two. Saunder's also found a similar Conops larva in Sphex flavipemnis, captured at the same time and place as the Pompilus; also a smaller species of Conops was bred from the abrlomen of Odyucrus. We have also bred a species from one of two species of Bombus, either B. ragans or B . fervidus.

Fig. 322.

In Ifyopa the antennal bristle is subterminal, and the proboscis is twice elbowed. Westwood has observed Myopa atra flying about sand-banks in which were the burrows of various bees, and by other authors the genus is said to be parasitic on bees.

The genns Pipunculus represents a small group in which the head is almost entirely occupied by the eyes, the front and face being exceedingly narrow, while the antenna have a basal bristle.

Loew considers the genus Scenopinus as the type of a distinct family, hinting at its relationship with the Bombyliidæ. The genus is known by the short antenne, without style or bristhe ; and by the short proboscis with its broad fleshy end. The larve are long, very slender, much like those of Thereva, and the pupa is much like that of Leptis. Mr. Sanborn has reared S. pallipes Say (Fig. 322 ; a, larra). The larva is found under
cappets, and is remarkable for the double segmented appearance of all the abdominal segments, except the last one, so that the body, exclusire of the head, seems as if twenty-jointed instead of haring lout twelve joints. The head is conical, one-third longer than broad, and of a reddish brown color, while the body is white. It is . 60 of an inch in length. The larra is also said to live in rotten wood, and is too scarce to be destructive to carpets. The fly is black, with a metallic hue, and with pale feet.

The genus Platypeza also represents the Platypezida of Meigen, the antennæ of which have an apical bristle, with the male genital armor (hypopyoinm) turned symmetrically under the abdomen. The middle tibixe are provided with spurs, and the empodium is wanting. The larva is flat, with rigicl curved bristles along the side. It lives in rotten mushrooms.

Eurprde Leach. The species of this family closely resemble the A silide in their long boty, incumbent wings, and rapacions, carnivorous habits. The first joint of the antennæ is not much shortened, and the thind joint has an apical or dorsal bristle, while the empodium is usually membranaceous and of a linear form. The lead is small, spherical, the cyes united in the male; the proboscis is horny, without a distinct tongue, and bent upon the breast. The slender larve, whose segments are much constricted, are found in garden mould. The species hover in swarms orer standing water, flying backwards and forwards as if by a common impulse. They appear very early in the spring, or in autumn. The genera Hybos and Ttchydromica represent small groups which are closely allied to Empis.

Dolichorodide Latreille. Loew has characterized this Well marked funily as generally comprising metallic green, brisk and restless Diptera of small or medium size, predatory on other insects, and liring principally in clamp situations; the larve living under ground or in decaying wood. The head is hemispherical, the eyes large fund hairy, the antenne are stretched straight out, with a two-jointed bristle. The proboscis is short and stout, concealed above by the single jointed, usually scale-shaped palpi, with a wide opening which can be
shat by the protruding suctorial flaps. The wings do not have the auxiliary rein running towards the anterior margin ; the anterior basal cell is very short; and the cliscoidal cell coalescent with the second basal cell, while the posterior basal cell is rery small. They are mostly "found on the leares of aquatic plants, on stones partly overfown with water, on dams and near waterfalls; some of them are able to run tapidly orer the water, eren when it is rippled by the wind (IIydophomes) ; others are fond of salt or brackish waters (Aphrosylus, Thimophilus and some Ilydrophorus) ; the species of Wedeterus prefer (ry situations, and are found on stumps of trees, fences, etc., even in very dry and hot weather."

Certride Lench. Bot-flies, Breeze-flies. In these flies, so interesting in their habits, the body is stout, hairy, like the Humble bees, aud they are easily recognized by laving the opening of the mouth very small, with mamentary oral organs. The midtle part of the face is exceedingly narrow, and the minute antenne are inserted in rounded pits. The eggs hatch rery soon after laying, and Riley (First Annual Report on the Noxions Insects of Missouri, p. 16t) thinks, from the testimony of three indepeurlent witnesses, that the sheep botfly is viviparons, the larre hatching within the body of the pareut, who deposits in the nostrils of the sheep the "perfectly formed and living grub."

The larwe are, in gencral, thick, flesiy, footless grubs, consisting of eleren segments exclusite of the head, which are spined and tuberenlated, the former in rows, which enable them to move about readily when living under the skin or in the frontal sinus and thus greatly irritate the animals on which they live. The stigmata are placed in a scaly plate on the thickened posterior cud of the bodly. The mouth of the cutancous larve consists simply of fleshy tubereles, while in those species that live in the stomach and frontal simuses of their hosts, it is provided with horny hooks. While in this state they moult twice, and then attain their full size. They feed on the purtrlent matter originating from the irritation produced by the morements of their borlies. Just before assuming the pupa state, the larya leaves its peculiar halitat, descends into the
ground, and there becomes a coarctate pupa, enclosed within the old larva skin, and remaining in connection with it by means of four tracher.

The genus Gastrophitus has very smanl mouth-parts, the deep lying palpi being somewhat spherical, and the proboscis nearly obsolete, while the abdomen is sessile. The species are of medium size, short and thick, and very hairy. The female lays her eggs on the horse's hips, or forelegs, by which the larva are introduced into the stomach. The borly of the larsa widens posteriorly; the mandibles are not visible, and the maxillit constitute the so-called mouth-hooks, by which the larva grapples and adheres to the walls of the horse's stomach. The rudimentary antemme are

Fig. 324. indicated by an ocellus-like point. The IIorse Bot-fly, Gastrophitus equi Fabr. (Fig. 323; fig. 324, larva), in its perfect state is pale yellowish, spotted with red, with a grayish yellow hirsuties; the thorax is banded with black, or sometimes,

thongh rarely, reddish hairs. The hinder trochanters are hooked in the males, and tuberculated in the females, and the wings are banded with reddish, with two spots at the apex. The larve live from May till October, and when fully grown, hang by their mouth-hooks on the edge of the rectum, whence
they are carried out in the excrement. The pupa state lasts from thirty to forty days, and the perfect fly appears the next season from June to October.

In Hypoderma the palpi are entirely wanting. The species are either very large, or of medium size, and often duite small, corered with fine dense hairs. The legs are long and slender. The Irporlerma bocis-Degeer (Fig. 32̄̄, a, larva) or Bot-fly of the ox, is black, densely pilose; the front of the head is dirty ashen, with whitish yellow hairs. The naked black thorax is twice broudly banded with yellow and white; the scutellum has slight tubercles; the abromen is black, with a basal white or yellowish band, a mesial black band, and at the end is a reddish orange band of hairs. The larva are found during the month of May and in the summer in the tumors on the backs of cattle, and when fully grown, which is generally in July, work their way out and fall to the ground. They exist in the puparium twen-ty-six to thinty days, and the fly appears from June to Scptember. This species is found over all the civilized portions of the world. IIypoderma tarandi Linn. infests, in like manner, the Reindeer. The genus aistromyia is thought to inhabit the Hare. Estrus ovis Linn., the Sheep Bot-fly, is of a

Fite mer dirty ash color, with a fuscous ashen, banded, and obscurely spotted thorax. The abclomen is marbled with yellowish and white flecks, and is hairy at the end. The larva lives, during April, May and June, in the frontal sinns of the sheep, aud also in the nasal cavity, whence it falls to the gromed. It changes to a pupa in twenty-four hours, and the fly appears during the summer. Cuterebica has the third joint of the antemne oral or elliptical and the bristle is dorsal and feathered; the species are short, very plump and hairy flies, with a proboscis elbowed at the base, and with a metallic shining rounded abdomen. The larve live in subcutaneous bots beneath the skin of various animals. One species (the C. emasculator of Fitch) lives in the scrotum of the squirrel, which it is known to emascnlate.

Mr. S. S. Rathoon has reared C. buccata Fabr. (Fig. 326, and side view) from the body of a striped squirrel, the larvo having emerged from the region of the kidneys." (American Entomologist, p. 116.) Other species live in the Opossum and different species of fiek-mice. Cuterebra homimitum Clark is found throughont the United States, and C. cuniculi Clark lives in the hare and rabbit, in the Southern States, and is found, according to Coquerel, in the bots of horses.

The genus Dermatohia includes the Fer macaque, of Cayeme and Mexico, found beneath the skin of man in tropical America, and it is clisputerl whether it be a true indigenous "CEstrus hominis," or originally attacks the monkey, dog, or other mammal. In Cayenne the species attacking man is called the Ver

Macacque: in Brazil (Para) Via; in Costa Rica, Torcel; in New Grenarka, Guseno peludo, or Muche. The D. noxialis Goudot? (Fig. 327) Fer moyocut, lives on the dog, and is found in Mexico and New Grenada. The larwe are long, cylindrical, S-shapect, differing greatly in form from others of this family. The flies are closely allied to those of the preceding genus.

Dr. Leidy states in the Proceedings of the Philadelphia Academy (1859), that several specimens of the larra of a bot-fly were olutained by Dr. J. L. Leconte in Honduras, from his travelling companions. They were "usually found beneath the skin of the shoulders, breasts, arms, buttocks and thighs, and were suspected to hare been introduced when the persons were bathing," "Dr. Leconte informs us that lis companions were not aware of the time when the eggs of the larwe, obtained by him, were deposited in their bodies. He also states that the presence of the larva gave rise to comparatively little measiness."

Accarding to Krefft a species of Batractomyia is parasitic mpon lour species of Australian frogs. The larre are found between the skin and the flesh behind the tympanmm; they are of a yellow color and may be squeezed throngle a small opening that exists over them. When they quit the frog the latter
dies. The change to the pupa state is usually effected on the lower surface of a piece of rock in some damp locality. The perfect insect emerges in thinty-two days. (Gunther's Zoological Recort, 1864.)

Muscide Latreille. The common Housc-fly, the Bluc-bottle fly, and the Flesh-fly, at once recall the appearance of this family, which is one of great extent, and much subdivided by entomologists. The antennæ are threc-jointed, the terminal joint being flattened and with a plumose bristle in the typical species. The proboscis euds in a fleshy lobe, with porrect single-jointed maxiliary palpi. The four longltudinal veins of the wing are simple; the first of the two reins on the hinder edge often approaching that on the apex of the wing; the tarsi have two pulvilli, and the abdomen is fire-jointed. The larre are footless, cylindrico-conic, narrowing in front, with a head variable in form, and with hook-like maxilla. 'There are often two pairs of spiracles, one on the terminal ring of the body, and the other pair on the prothoracic segment. The pupa is enclosed in the puparium, generally cylindrical, but sometimes preserving the original shipe of the larra. The celebrated "Tsetze" fly (Glossina morsitans Westrood) is a member of this family. It kills cattle by its painful bite, though its injurious nature is said to have been overrated. It is allied to Stomoxys, the species of which bite rery sharply. S. coltricens has a well developed proboscis, cnabling it to bite severely. It is often found in houses.

The species of the genus Tarkina, like the Ichnemmonidre, are parasitic in caterpillars, and others are found in the nests of bees. They are stout flies, covered with bristles, with the eyes much larger in the males than in the other sex. The bristle of the anteme is bare or with a rery short pubescence. The thorax is short, and tho first posterior cell is closed, or but slightly opened, and the legs are short. The abdomen is oval or eylindrical, and the first segment is much shortened. The larva are oval, with the segments much constricted; they have no head; the last segment hears two spiracles. T. (Senometopia) militaris Walsh lays its eggs, from one to six in number, on the Army worm (Leucania unipuncta), "fastening
them by an insoluble cement on the mper surface of the two or three first rings of the body. The eggs hatch often after the caterpillar has gone under ground to transform, and in fifteen to nincteen days, or the last of September, the flics appear. T. (Lydella) doryphorat Riley (Fig. 328) preys on the

Fig. 328. larve of the Colorado potato beetle. Other species of genera allied to Tachina, according to Dufour, are parasitic on beetles, etc ; thus, Cassidomyia preys on Cassida, Hyalomyia on Brachyderes, and Ocypterct attacks Pentatoma; and he thinks that Chartophita floralis feeds either on the food or the young itself of Andrema.
Sarcophaga, the Flesh-fly, has a small head, with the antennal bristle plumose or hairy, naked at the tip; the first posterior cell only slightly opened, or closed, with large teguls and stout legs. The flesh-fly, Sarcophaga carnaria Linn., is black, the thorax streaked with gray, and the abdomen checkered
 with whitish. The female is viviparous, that is, the larve hatch and live within the ovicluct. The ovaries are large, arranged in a spiral manner and contain sometimes 20,000 eggs. We have reared Sarcophaga nudipennis Loew from the cells of Pelopaeus flaripes, the Mud-dauber, which had been stored with spiders, the Hies making their appearance on the first of July, a few days before the wasps issued from the cells. The parent flies had probably laid their eggs in the spiders before the cells were closed by the wasps. The nests were brought from Texas.
Fig. 320. Minsea has plumose antenne, while in Stomoxys they are pectinated. Dufour states that the allied genera, Echinomyic, Gomia, Dexia and Siphomia are also viviparons. Musca (Lucilia) Coesar Lim, the Blue-bottle fly, and Misca (Calliphora) vomituria Linn. the Meat-fly, deposit their eggs (fly-hlows) upon meat and decaying animal substances, and during the late war were grievously tormenting to our soldiers,
laying their egrg in the wounds, especially of those left on the field over night. The larva of M. Casar (Fig. 329) is of very rapid growth. It is of an "elongated conical form, pointed towards the head. which is furnished with two fleshy horns," and horny mouth-parts, and a pair of rudiments of branchise on the prothotacic ring. The body is suddenly troncated, the end being furnished with a pair of stigmata. The pupa transforms in the ground, within a puparium of the usual long, erlindrical form.

Dr. Chapman of Appalachicola, writes to MIr. Sanborn that this fly, "attracted by the stench of a mass of decaying insects which have perished in the leaf of Sarmeenia, ventures in and deposits its eggs, and the larre devour the festering heap. These in turn, on becoming flies, are unable to get out of their prison, perish, and are adderl to the putrefying mass that had nourished them."
F. Smith notices in the Transactions of the Entomological Society of London, 1868 , the "Warega" fly of Brazil, which is said to be the "pest of both man and animals; it is a species of Musca, and is said to lay its egges in the slin; large and terrible swellings are formed. The mode of extracting the

Fig. 330. maggot is to cut an opening, and to press it ont - a most painful operation. These wounds are very difficult to cure."

The House-fly, Musca domestica Linn., is common in the wamer parts of the year, and hibernates through the winter. A study of the proboscis of the fly reveals a monderful adaptability of the mouth-parts of this insect to their uses. We have already noticen the most perfect condition of these parts as seen in the horse-fly. In the proboscis of the house-fly the hard parts are obsolcte, and instead we have a fleshy tongue-like organ (Fig. 330), bent up underneath the head when at rest. The maxillic are minate, and the palpi ($m p$) are single-jointed, and the mandibles (m) are comparatively useless, being very short and small compared with the lancet-like jaws of the mosquito or horse-fly. But the structure of the tongue itself (labium, l) is
most curious. When the fly settles upon a lump of sugar or other sweet object, it unbends its tongne, extenls it, and the broad knob-like end divides into two flat, muscular leares (l), which thus present a sucker-like surface, with which the fly laps up liquitl sweets. These two leaves are supported mpon a framewrork of tracheal tubes, which act as a set of springs to open and shut the muscular leares. In the preceding figure, Mr. Emerton has faithfully represented these modified trachere, which eut in hairs projecting extermally. Thus the inside of this broad fleshy expansion is rough Iike a rasp, and as Newport states, \cdot is easily employed by the insect in scraping or tearing delicate surfaces. It is by means of this curious structure that the busy honse-fly oceasions much mischicf to the covers of our books, by seraping off the albuminons polish, and learing tra-
 cings of its deprectations in the soiled and spotted appearance which it occasions on them. It is by means of these also that it teases us in the heat of summer, when it alights on the hand or face to sip the perspiration as it exudes from, and is contenserl upon, the skin."

Every one notices that house-fies are most abundant around barns in August and Scptember, and it is in the ordure of stables that the early stages of this insect are passed. No one Fig. 331. has traced the transformations of this fly in this country, but we copy from Bonche's work on the transformations of insects, the rather rute figures of the larva (Fig. 331), and puparium (a) of the Musa domestica of Europe, which is supposed to be our species. Bouche states that the larra is cylindrical, romaded posteriorly, smooth and shining, fleshy, and yellowish white, and is four lines long. The puparium is dark reddish brown, and three lines in length. It remains in the pupa state from eight to fomrteen days. In Europe it is preyer upon by minnte ichneumon flies (Chalcids). Idia Bigoti, according to Coquerel and Mondiere, produces a clisease in the natives of Senesal, probably by oxipositing on the skin, thus giving rise to hard rerl fluctuating tumors, in which the larva of this fly resides.

The species of the genus Arthomyia, seen about flowers, in
the larva state live in decay ing regetable matter and in privies. They are smaller flies than the foregoing genera, with smaller aluae, and the fourth longitudinal rein of the wing is straight, thus learing the first posterior cell fully open. The larve are generally much like those of the meat-fly, but are thicker, while others, described as belonging to this genus, are said to be dattened and hairy.

The Radish-fly, Anthomyia raphani Harris, abounds in the roots of the radish, the fly appearing towards the end of Jume. Another species, the Onion-Aly, Anthomyia ceparum (Fig. 332), causes the leaves of the onion to turn yellow and die from the attacks of the larve in the roots. The larvar mature in two weeks, transform in the root, and two wecks later disclose the flies. Mr. Wralsh suggests that the larrie may be destroyed ly pouring boiling hot water orer the joung plants, which, without injuring the onions, destroys the maggots. The

Seed-corn Maggot, the larva of Anthomyic zece Riley (Fig. 344, p. 419, a, lara ; b, puparium; c, kernels eaten), destroys, in New Jersey, the kernels of spronted corn before it comes up. The Cabbage maggot, the larva of A. brassicue Bouché, a common fly in Emrope, has been found in Michigan to be injurious to the cabbage. (Riley.) The hairy maggots of A. cuniculanis or an allied species, live in rotten tumips. (Haris.) The puparimm (Plate 3 , fig. $\overline{5}, 5 a$) of another species has been found by Mr. F. W. Futuam in the nests of the liumble bee.

In Ortalis the frout is quite prominent, the clypeus is greatly developed, the opening of the month wide, and the proboscis much thickener. This genus comprises rariously banded and spotted flies, which may be seen walking along leaves vibrating their wings. 'They feed on the leares, and afterwards the pulpy fruit of the cherry, olive and orange. Another Onionfly, discorered by Dr. Shimer in Illinois, is the Ortalis fleaa
of Wiedemann (Fig. 333; a, larva). The fly differs from the Anthonyia ceparum, besides more important respects, in having black wings with three broad curved bands. The maggot feeds in the root thus lilling the top of the plant.

A species of Trypeta, according to F. Smith, which in Brazil is called the "Berna" fly, deposits its eggs in wounds, both on man and beast. "It is remarkable from baving the apical
 segment of the abdomen elongated into a long oripositor: Mr. Peckolt says the negroes suffer much fiom the attacks of this fly, which firequently deposits its eggs
in their mostrils whilst they are sloeping, and such are the effects of its attacks, that, in some eases, death ensues." (Transactions of the Entomological Society, London, 1868, p. 185.)
'To the genus Lonchoea, Osten Sacken refers, with considerable doubt, a fly, which I have found in abundance, raising blister-like swellings on the twigs of the willow. They were

Fig. 334.

fully grown in April. The larra (Fig. 334, fly; a, the larva; b, the pupa) is curved, cylindrical, tapering nearly alike towards each extremity, though the thoracic region is the thickest. The rings are thickened upon their posterior edges, so that they appear contracted in the middle. It is glassy green, with two little elongated tubercles placed near each other at a little distance from the ent, where in the pupa they are terminal. It is .15 of an inch long when fully extended. The pupa-case, found late in May, is oral, long, eylindrical and obtuse at both ends; the anterior end is more blant; the first segment of the body is minute and forms the
lid, which opens when the fly makes its exit, and bears two small slender tubercles which project upwards. The posterior end bears two terminal spine-Tike tubercles similar to those on the heal, but projecting horizontally. The puparimm is glassy green, and the limbs of the enclosed pupa can be partially seen througln the skin. The lings are (especially on the thorax) spinose, being the remnants of the rows of spines around the lind edge of the larval segments. It is . 15 of an inch long. The pupa lies a short distance from the opening of its burrow, which is about half an inch long, and is sitnated between the wood and the bark. The larva before pupating eats away the bark, leaving a thin outer scale, or roundish black space which can be folded back like a lid, which the fly pushes open when it emerges. Several swellings occur ca the twig in the space

Fig. 335. of six inches. The fly appeared the 205th of June. Dufour states that in Europe Lonchea nigra lives in the outer bark of the oak, and another under the bark of the poplar, while still another species makes a sort of gall in the dogsgrass.

The genus Sphyracephata is remarkable for its stalked eyes, which are placed on long stems going out from the sides of the head. Some species are found fossil in the Prussian amber. S. brevicomis Say is rather rare.

The Cheese maggot is the larva of Piophita casei (Fig. 335) a shining black fly, three-twenticths of an inch long, with the four posterior legs yellowish, and with transparent wings. The whitish larva is cylindrical, and .22 of an inch in length, and is acutely pointed towards the head and truncated behind, with two long horny stigmata in the middle of the truneature, and two longer fleshy filaments on the lower edge. Wherr moving it extends its month-hooks, and pulls itself along by them. Mr. F. W. Putnam has called my attention to the power of leaping possessed by the maggot. When aloont to
leap the larva brings the under side of the abdomen tomards the head, while laying on its side, and reaching forward with
 its head, aud at the same time extending its monthhooks, grapples by means of them with the hinder edge of the truncature and pulling hard, suddenly withdraws them, jerking itsell to a distance of four or five inches. The Tine-fly (Fig. 336, prparimm) also belongs to the same genus, and with its puparim may be found floating in old wine ant cider.

Several species of the genus Ephydra have been Fig. 330. found living in salt water. Mr. E. T. Cox has sent us specimens of Ephydra halophila Pack. (Fig. 337; a, wing; b, puparium), which in the pupa state lives in great numbers in the first graduation house of the Equality Salt Works of Gallatin County, Illinois. The larva itself we have not seen, but the puparium is cylindrical, half an inch long, the body ending in a long respiratory tube forked at the encl. The fly

Fig. 337. itself is coppery green, with pale honey jellow legs, and is .15 of an inch in length. Another species has been found by Professor: B. Silliman living in great abundance in Mono Lake, Cal., and in the Musem of the Peabody Academy are puparia of this genus from Labrador, and from under sea-weed on Narragansett Bay, and a pool of brackish water at Marblehead; they are noticed by the author in the "Proceedings of the Essex Institute," rol. vi.

The Apple Fly, or Drosophita, has habits like the apple midge. Mr. W. C. Fish has described in the "American Naturalist," the habits of an unknown species (Fig. 338; a, larva), which he writes me has been very common this year in Barnstable County, Mass. He says that "it attacks mostly
the earlier varieties, seeming to have a particular fondness for the old fashioned Summer, or High-top Sweet. The larve enter the apple usually where it has been bored by the Appleworm (Carpocapsa), not uncommonly through the crescent-like puncture of the curculio, and sometimes throngh the calyx, when it has not been troubled by other insects. Many of them arrive at maturity in August, and the fly soon appears, and successive generations of the maggots follow until cold weather. I have frequently found the pupe in the bottom of barrels in a cellar in the winter, and the flies appear in the spring. In the early apples, the larver work about in every direction. If there are several in an apple, they make it unfit for use. Apples that appear perfeetly sound when taken from the tree, will sometimes, if kept, be all alive with them in a ferw

Fig. 336. weeks." Other species are known to inhabit putrescent regetable matter, especially fruits. Mr. B. D. Walsh also describes in his "First Annual Report on the Noxious Insects of Illinois," another apple fly, Tiypeta pomonella Walsh, which destroys stored apples, and has been found troublesome in various parts of the country.

In England Oscinis granarius Curtis lives in the stems of wheat. The Oscinis vastator Curtis does serious damage to wheat and barley crops in England, by eating the base of the stalk. The larve are fully grown late in June, and a month later, the fly appears. Their attacks are restrained by numerous I'teromali, and a minute Proctotrupid (Sigalphus caudatus) oriposits in the egg of the Oscinis. Other allied species in the larwa state cause the stems of wheat and barley to swell twice their usual size, which disease is termed in England the gout.

The larvæ of Chlorops tineata Fabr. in Europe, destroy the central leares and plant itself, the female laying her eggs on the stems when the wheat begins to show the ear. In a fortnight the eggs hatch, and the fly appears in September. Curtis also states that Chlorops Herpinii Guerin, attacks the ears of
barley, from six to ten larre being found in each, and by destroying the flowers render the ear sterile. Oscinis frit Lim. in Europe inhabits the husks of the barley, and destroys onetenth of the grain. Linneus calculated the ammal loss from the attacks of this single species at half a million dollars. Plonghing and harrowing are of no use in guarding against these insects, as they do not transform in the earth; the best remedy lies in the rotation of crops. Many of these small flies, like the micro-lepidoptera, are leaf-miners, and are not

Fig. $3: 9$. rendily distinguished from them when in the larva state.

Of the genus Phora, a European species (P. incrassata Fig. 339 ; a, larva; b, puparium) frequents bee hives, and is thought by some to produce the disease which is known among apiarians as "foulbrood."

In the pupiparous Diptera, namely, those flies which are born as pupa from the body of the parent, the larva state having been passed within the oviduct, the thorax is more closely agglutinated than before; the head is small and sunken in the thorax, and in the wingless species this consolidation of the head and thorax is so marked as to canse them to bear a remarkable resemblance to the spiders. Spider-like in their looks, they are spider-like in their habits, as the names Spiderflies, Bat-ticks and Bird-ticks, imply a likeness to the lower spiders or ticks. The antennæ are very deeply inserted and partially obsolete; the labrum is ensheathed by the maxillæ, and the thoracic nervous ganglia are, as in the Arachnida, concentrated into a single mass.

Hifpoboscide Westwood. The Forest-fies and Sheep Ticks are characterized by the horny and flattened body, the horizontal flattened head received into the front edge of the thorax, the large eyes, the rudimentary papilla-like antennæ placed very near together, and the proboscis is formed by the labrum and maxillie, whose palpi are wanting; the labium is rery short; wings with the veins present only on the costal
edge, the others either aborted or only partially developed. They resemble the lice in their parasitic habits, living beneath the hairs of vertebrates, especially of bats, and are abundant beneath the feathers of birds.

These flies differ from all other insects in their peculiar mode of development, which remincls us of the intrat-uterine life of the vertebrate foetus. According to Dufour and Lenckart they

Fig. 340. have an irregular uterns-like enlargement of the oviduct, which furnishes a milk-like secretion for the nourishment of the lave. The body of the bare, for each female produces but one or two young, when first hatched is not divided into rings, but is smooth, ovate, egg-like, forming a puparium-like case in which the lave transform to pupa immediately after birth.

The Forest-fly or Horse-tick, Hippobosca Latreille, has no ocelli, with five stout veins on the costal edge of the wing; thorax broad, and the proboscis short and thick. We figure a species* of this genus (Fig. 340) which was found on the Great Horned Owl. Its body is much flattened, adapted for its life mauler the feathers, where it gorges itself with the blood of its host. The genus Lipoptena, which has ocelli, with only three costal veins, a long slender probes-

Fig. 341. cis, and a small thorax, is remarkable for living in its wingless state on the Deer, but when the wings are developed it is found on the Grouse (Tetras). The Bird-tick, Oinithomyia, has ocelli, a short proboscis and six costal veins, and there are mmerous species, all bird parasites.

[^42]In the wingless Sheep-tick, Melophagus ovinus Linn. which is often very troublesome (Fig. 341, and puparium), the head is wider than the thorax, the proboscis is as long as the head itself, the limlos are short and thick, and the bristly abdomen is brond and not dirided into joints.

The genus Carnus, which was placed in the Conopidee by Nitzsch, seems rather to belong here. C. hemapterus Nitzsch,

Fig. 342. is "of the size of a flea, with minute rudiments of wings, and is parasitic on liirds of the genus Sturnus."

Nycteribide Leach. The Bat-ticks are remarkably spicer-like, with a beaker-like head, withont eyes, having four ocelli, or else entirely blind. The finger-like, two-jointed antennæ are situated on the under side of the head. The proboscis is feather-like, the palpi very large and porrect; the legs are of great size, with the basal joint of the tarsi of remarkable length, and the hairy abdomen is composed of six segments. They are very small parasites, one or two lines in length. Westwood has extracted the puparim from the body, showing the close relationship of these strange forms to Hippobosca. Nycteribia Westroodia Guérin (Fig. 342) is an East Indian species.

Braulina Gerstaccker. The Bee-lice are wingless, minute, blind insects, with large heads ; the thorax is transverse, ring-

Fig. 343. shaped, half as long as the head ; the aldomen is round, five-jointed, and the legs are thick, with long claws enabling them to cling to the hairs of bees.

The genus Braula may be compared with the flea, its body being flattened vertically, while that of the flea is tlattened lat-
eratly. While the transformations of Braula show it to be undoubtedly a degrarled Muscid, with a true puparium; those of the flea, with its worm-1ike, more jhighly organized larva, and the frec obtected pupa show that, thongh wingless, it occupies a much higher grade in the dipterous series. Braula cace Nitzsch (Fig. 343, and larva) is found living parasitically on the honcy bee in Europe, and has not been detected in this country.

The antema are short, two-jointed and sunken in deep pits. It is from one-half to two-thirds of a line long. The larra is headless, oral, elewen-jointed and white in color. On the clay it hatches from the egg it sheds its skin and changes to an oval puparium of a dark brown color. It is a body parasite, one or two of them occuring on the body of the bee, though sometimes they greatly multiply and are very troublesome to the bee.

Fig. 344.

We now take up the second series of suborders of the hexapodous insects, in which the different segments of the body show a strong tendency to remain equal in size, as in the larra state; in other words there is less concentration of the parts towards the head. In all these groups the prothorax is greatly developed, generally free, while the wings tend to conceal the two posterior thoracic segments, and the body generally is elongated, flattened or angulated, not cylindrical as is usually the case in the preceding and higher series. The degraded wingless forms resemble the worm-like Myriapods, while, as we have seen above, the wingless flies resemble the Arachnida. The imago (especially in the Hemiptera, Orthoptera and certain Nemoptera) resembles the larva; that is, the metamorphosis is less complete than in the preceding gronps.

COLEOPTERA.

In the highest snborder of this series, the Coleoptera, we find the most complete metamorphosis and the greatest specialization of parts, with

Fig. 345. a more complete concentration of them towards the head than in the lower suborders. They are at once recognized by the elytin, or thickened horny fore wings, which are not actively used in flight (the hind wings being especially adapted for that purpose), while they cover and encase the two posterior segments of the thorax and the abdomen. The prothoracic ring is greatly enlarged, olten excarated in front to receive the head. These characters are very persistent; there are fow aberrant forms and the suborder is remarkahly homogeneous and easily limited.

The head is free from the thorax, but less so than in the preceding suborders; it is scarcely narrowed belind, and its position is usually horizontal. The cyes are usually

Fig. 345, under surface of Harpalus ealiginosus. (After Leconte.) a, ligula; b, paraglosex; c, supports of labial palpi; d, labial palpus; e, mentum; f, inner lobe of maxilla; g, onter lobe of maxilla; h, maxillary palpus; i, mandible; k,
quite large, and there is but a pair of ocelli, when present, or there may be but a single ocellus. The antennæ are generally inserted just in front of the eyes, and rarely between them as

Fig. 346.
in the previous suborders. They are either filiform where the joints are cylindrical, as in the Carabida, not enlarging towards the end, or serrate, as in the Elateridac, where the
buecal opening; l, gula or throat; m, m, buceal sutures; n, ghlar suture; n, prosternum: p, episternum of prothorax; p^{\prime}, epimeron of prothorax; $q, q^{t}, q^{\prime \prime}$, coxa; $r^{\prime}, r^{\prime \prime}, r^{\prime \prime}$, trochanters; $s, s^{\prime}, s^{\prime \prime}$, femora or thighs; $t, t^{\prime}, t^{\prime \prime}$, tibix; r, v^{7}, r^{3}, etc, , rentral abrlominal seqments; w, episterna of mesothonax (the epimeron is just behind it); x, mesoternum; y, episterna of metathorax; y, epimeron of metathorax; z, metastermum.

Fig. 34, upper surface of Wervohorns Americames. (After Leconte.) a, mandible; b, maxillarr palpus; c, labrum; d, epistoma; e, antenuæ; f, front; g, vertex; h, oceiput ; i, neck; k. eve: l, pronotum (usually called prothoras); m, elytion; n, lind wing; o, scutellum (of mesothorax) : p. metanotum (or dorsal surface of metathorax) ; q, femur or thigh; x, r, r, tergites of the abdomen; s, s^{2}, s^{3}, spinacles or stigmata; $t, t^{\prime}, t^{\prime \prime}$, tibie; v, tibial spurs; w, tarsi.
joints are triangular and compressed, giving thereby a serrate outline to the inner edge; or clavate, as in the Silphido,

Fig. 317.
where the enlarged terminal joints give a rounded club-shaped termination; lamellate, when the terminal joints are prolonged

Fig. 348 .
internally, forming broad leaf-like expansions, as ju the Scarabeida, while the geniculate antenna is procuced when

Fig. 347. Different forms of antennæ: 1, sermate; 2, pectinate; s, caphtate (and also genioulate) ; $4,5,6,7$, clavate ; 8,0 , lamellate: 10 , serrate (Dorcatoma); 11, irregula ($\mathrm{G} y \mathrm{rmus}$) ; 12 , two.jointed antenna of A clumes crecus.

Frg. 348. 1, bipertinate: 2, flablate anteme ; 3, maxila of Bembidinm; 4, of Hydmophilns; 5, of Paelaphus; 6, maxillary palpus of Ctenistes; 7 , of Tmesiphorus'; 8, of Tychus. - From Leconte.
the second and succeeding joints make an angle with the first. The mandibles are always well dereloped as chewing organs, becoming abnomally enlarged in Lucanus, while in cortain Scarabeitre they are small and membranous.

The maxillæ (Fig. 348) are supposed to prepare the food to be crushed by the mandibles. The body of the maxillia consists of the cardo; a second joint, stipes, to which last are attached two lobes and a palpus. In certain Ciciudelidee and Curabida, the outer lobe is slender and two-jointed like a palpus. The maxillary palpi are usually four-jointed, somefimes with one joint less, and in but a single instance is there any additional joint, as in Aleochara.

The mentum is generally square or trapezoidal, warying in size. The labim berss the ligula, and supports the labial palpi, and varying much in form, is thus important in classification. The labial palpi are tasually three-jointed, sometimes two-jointed, or with no joints apparent, as in certain Staphylinide, according to Leconte.

The greatly enlarged prothorax is free and rery morable, the pronotum or dorsal piece, considered to be formed originally of four pieces, is usually rery distinct from the pieces composing the flanks, though sometime they are continous. The two hinder rings of the thorax are covered up by the wings and do not rary in form so as to be of much use in classification. 'They are respectively composed of a prascutum, scutum and scutellm, and postscutellum, the first and fourth pieces being more or less aborted. The pieces composing the flanks are partly concealed by the great enlargement of the clorsal parts of the segment, muth more so than in the preceding suborders, the side pieces being much smaller and more difficult to trace; and these flank-pieces (plemites) help form the under surface of the body, where in the Hymenoptera, Lepicloptera and Diptera, they are greatly enlarged, forming. the bulging sides of the body.

The epimera and episterna of both the meso- and metathorax, Leconte states, are of much ralue in classification, especially those of the mesothorax, "according' as they reach the middle coxie, or are cut off from them by the junction of the episterna with the metasternum." The thickened horny an-
terior pair of wings (elytra), often retain traces of the original veins, consisting of three or four longitudinal lines. Their office in flight seems to be to assist the hind wings in sustaining the body, as but rarely when the insect is on the wing do the elytra remain quiet on the back. The membranous hind wings are provided with the usual nomber of principal veins, but these are not subdivided into reinlets. The wing is long, narrow and pointert, with the costal edge strong, being evidently adapted for a swift and powerful flight.

In the runing species, such as many Carabida, the hind wings being useless, are aborted, and very darely in some tropical Lompyride and Scaraboidee are both pairs of wings wanting in both sexes, though, as in the Glow-worm and some of its allies the females are apterous. The legs are well dereloped, as the beetles are among the most powerful ruming insects. The coxie are large ant of much use in clistinguishing the fanilies. The trochantine is usually present in the forelegs, but often absent in the middle pair ; the trochanters, or second joint of the leg, is small, circular, obliquely cut off, and the femur and tibia lying mext beyond are of varying form, correlated with the habits of the insect, the hiuder pair becoming oar-like in the swimming $D y t i s c i d$ ce and some Hydrophilidae, while in the Gyrinidee both pairs of hind legs become broad and flat. The number of tarsal joints varies from the normal number, five, to four and three joints, the terminal joint as usual being two-clawed. These chaws are only known to be wanting in Phanrens, a Scarabeid, and the aberrant funily Stylopide. According to the number of the tarsal joints the families of Coleoptera have been gronped into the Pentamera (five-jointed), the Tetramera (four-jointed), the Trimera (three-jointed), and Heteromerc, which are four-jointed in the hind pair, while the first and second pairs are fire-jointed.

The abdomen, usually partly concealed by the wings, is sessile, its base broad; in form it is usually somerhat flattened. The tergal and stermal portion of ench ring is connected usually by the membranous pleural piece, which represents the epimera and episterna of the thoras, and on which the stigmata are situated. While in the other suborders the typical
number of abdominal segments is ten, no more than nine have been traced in the Coleoptera.

A few gencra are capable of producing sounds by rubbing the limbs or elytra over finely wrinkled surfaces, which in Trox are situated on the side of the basal segments of the abdomen, and in Strategus on the tergum of the penultimate segment of the abdomen, while such a surface is fomel in Ligytus on the surface of the elytra.

The nervous system is subject to great rariation in the Coleoptera. The ganglia may be fused into three principal masses, as in the Lamellicorms, Curculionidee and Scolytidde, where the first mass corresponds to the prothoracic ganglia, the second and larger to the second and third thoracie ganglia, usually separated in the other suborders, while the third oblong mass represents the whole number of abdominal ganglia, from which radiate the nerves which are distributed to the muscles of the abdomen and the reproductive system. In the Cistelida, EEdemeridee and Cerambycide, the abdominal portion of the nerrous cord occupies the whole body, and there are five ganglia in the abdomen. These two types of the nerrous cord sometimes rom into each, but are always distinct in the larva state.

The alimentary canal is very simple in the flesh-eating speecies, going directly, without many convolutions to the anus, but in the vegetable feeders it is very long and greatly convoluted. The gizzard is oral in shape, its intermal folds being armed with hooks. There are two salivary glands. The urinary tnbes we either four or six in number.
"The phosphorescent organs of the Lumpuridee and certain Elaterida consist of a mass of spherical cells, filled with a finely granular substance and surrounded by numerous trachean branches. Jhis sulustance which, by daylight, appears of a yellow, sulphur-like aspect, fills in the Lampyride, a portion of the abdominal cavity, and shines on the rentral surface through the Iast abdominal segments, which are covered with a very thin skin; while with the Elatericta, the illumination occurs through two transparent spots, situated on the dorsal surface of the prothorax. The light produced by these organs, so remarkably rich in trachew, is undoubtedly the
result of a combustion kept up by the air of these vessels. This combustion explains the remission of this phosphorescence observed with the brilliant fire-Hies, and which coincides, not with the movements of the heart, but with those of inspiration and expiration." (Siebold.)

The trachere of the Coleoptera are always highly developed. In the larra state they arise from two principal trunks. In the adult, howerer, they branch ont directly near each stigma and distribute branches which commonicate with other main trunks. In those species which fly most, both the fine and larger trachere end in vesicles, which are distributed in great abundance all orer the body. In the Lucanidace they are especially numerous, thus lightening the bulk of the enomonsly developed hicarl.

The ovaries are arranged in the form of branches of few or numerous tri- or multilocular tubes; the receptaculum seminis is wedge-shaped and often arcuate, communicating with the copulatory pouch by a long flexuous spiral seminal duct, and there is a bursc copulatria: usually present. The testes vary in consisting of two long cœeca, or two round or oblong follicles, or pyriform and placed like a bunch of grapes on the extremity of the caso deferentia, or as in the Lamellicorns, Cerambycida, Curculionida and Crioceride, they are round, flattened, disc-like, and are situated, two to twelve in number, on each side of the body. The organ of intromission is rery extensible, composed of the terminal segments of the body, which form a broad flattened, hairy canaliculated piece.

The larve when actire and not permanently enclosed (iike the Curculio) in the substances that form their food, are elongated, flattened, wormlike, myriapodous-looking, with a large head, well developed mouth-parts, and with three pairs of thoracic feet, either horny, or fleshy and retractile, while there is often a single terminal prop-leg on the terminal segment of the body and a lateral horny spine. The larve of the Cerambycider are white, soft and more or less cylindrical, while those of the Curculionido are footless or nearly so, and resemble those of the Gall-flies, both hymenopterons and dipterous.

The pupr have fice limbs, and are either enclosed in cocoons
of earth, or if wood-borers in rude cocoons of fine chips and dust, united by threads, or a viscid matter supplied by the insect. None are known to be coarctate, though some Coccinellie transform within the old larva skin, not rejecting it, as usual in the group, while other pupe are enclosed in the cases in which the larva lived. In some Staphylinide the pupa shows a tendency to become obtected, the limbs being soldered to the body as if it were enclosed in a common sheath. Generally, however, the antema are folded on each side of the clypeus, and the mandibles, maxillæ and labial palpi appear as elongated papille. The wing-pods being small, are shaped like those of the adult Meloe, and are laid upon the posterior femora, thus exposing the meso- and metathorax to view. The tarsal joints lie parallel on each side of the middle line of the boty, the hinder pair not reaching to the tips of the abdomen, which ends in a pair of acute prolonged forked incurved horny hooks, which mast aid the pupa in working its way to the surface when about to transform into the beetle.

The number of living species is between 60,000 and 80,000 , and over 8,000 species are known to inhabit the United States. There are about 1,000 fossil species known. They are found as low down as the Coal Formation, though more abundant in the Tertiay deposits and especially the Amber of Prussia.

Coleoptera have always been the favorites of entomologists. They have been studied, when in their perfect state, more than any other insects, but owing to the difficulty of finding their larye, and carrying them through their successive stages of growth, the early stages of comparatively few species are known.

The most productive places for the occurrence of beetles are alluvial loams corered with woods, or with rank regetation, where at the roots of plants or upon their flowers, mander leaves, logs and stones, under the bark of decaying trees, and in ditches and by the banks of streams, the species occur in the greatest numbers. Grass lands, mosses and fungi, the surfaces of trees and dead animals, bones, chips, pieces of board and excrement, should be searched diligently. Many are thrown ashore in sea-wrack, or ocem under the debris of freshets on river banks. Many Carabide run on sandy shores. Very
early in spring stones can be upturned, ants' nests searched, and the muddy waters sifted for species not met with at other times of the year.

For beating bushes a large strong ring-net should be made, with a stout bag of cotton cloth fifteen inches cleep. This is a
 very servicable net for many purposes. Tials of alcohol, a few quills stopped with cork, and close tin boxes for larve and the fungi, ete., in which they live, should be prorided; indeed, the collector should never be without a vial and box. Beetles shonld be collected largely in alcohol, and the
Fig. 3is. colors do not change if pinned soon after being taken. Coleoptera should be placed high up on the pin, as in(leed all insects shouk. The pin should be stuck through the right elytion (Fig. 349) so that it shall come out bencath or between the middle and hind pair of legs. Small species should be pinned with minute pins, which can be afterwards mounted on higher ones.

Cicindelides Leach. The Tiger Beetles have rery large heads, much broater than the prothorax, very long curred jaws and long, slenter legs. The outer lobe of the maxilla is biarticulate, the inner usmally terminated by an articulated hook. The eleven-jointed antennæ are inserted on the front above the base of the mandibles. They are brownish or greenish with metallic and purplish reflections, marked with light dots and stripes. They abound in smmy paths and sandy shores of rivers, ponds anci the ocean, flying and running swiftly, and are thas very Fig. 350. difficuit to capture. The larwe (Fig. 350) are hideous in aspect; the head is very large with long jaws; the thoracic rings large and broad, and the ninth ring has a large tulicrele which ends in a hook, by which the huncli-backed grub can climb up its hole, near the entrance of which it lies in wait for weaker insects. These holes may always be found in sandy banks frequented by the beotles.

While all the species living in the United States are ground beetles, in the tropics there are some which live on trees. It. W. Bates states that Ctenostoma and its allies have a greater
resemblance to ants than to the Cicindelæ proper, so much so that when the insects are seen prorling in search of prey along

Fig. 351.

Fig. 352.

Fig. 353.
the slender branches of trees, they can scarcely be distinguished from large ants of the Ponera group.

The genus Amblychila has the third joint of the maxillary

Fig. 354.

Fig. 3ั๊.

Fig. 350.

Fig 357.
palpi longer than the fourth, and the flrst joint of the labial palpi very short, while the epiplewre are wide. Omus differs in the wider epipleure ; both genera inlabit the Pacific States,

Fig. 3.38.
and the former is found as far east as Kansas. Tetracha (Fig. 351, T. Virginica Hope) has the first joint of the labial palpi elongated. In Cicindela and allies, the third joint of the max-
illary palpi is shorter than the fourth. This country is very rich in species, among the most common of which are C. generosa Dejean (Fig. 352) ; C. vulgaris Say (Fig. 353) ; C. purpurea Olivier (Fig. 354); C. hüticollis Say (Fig. 355) ; C. sexguttata Fabr. (İig. 3ă6), a bright green active species with six golden dots ; and C. punctulata Olivier* (Fig. 357).

Carabide Leach. This is a family of very great extent, and one very difficult to limit. In form the species vary greatly; the antennæ are inserted behind the base of the mandibles under a frontal ridge; maxillæ with the outer lole palpiform, usually biarticulate, while the inner lobe is usually

Гig. 359.
curred, acute and ciliate, with spines. The epimera and episterna of the prothorax are usually distinct ; the three anterior segments of the abdomen, usually six, rarely seven or eight in number, are connate. The legs are sleuder, formed for running' ; anterior and middle coxe globnlar, posterior ones dilated internally, and the tarsi are five-jointed. \dagger

[^43]They are, with few exceptions, predaceous beetles; they are runners, the hind wings being often absent. Their colors are dull metallic or black. They run in grass,
 or lurk under stones and sticks, or under the bark of trees, whence they go out to hunt in the nighttime. They may be found also in great numbers under the debris of fieshets and under stones in the spring. Fig. 361. The larve are found in much the same situations as the beetles, and are generally oblong, broad, with the terminal

Fig. 860.

Fig. 363.
ring armed with two horny hooks or longer filaments, and with a single false leg beneath.

The genus Omophron, remarkable for its rounded convex form, and wanting the scutellum, is found on the wet sauds by rivers and pools, where also Elctphrus occurs, which somewhat resembles Cicindela. It has slighty emarginate anterior tilix, with large prominent eyes, and rows of large shallow ocel-
late holes on the elytra. The genus Calosoma is well known, being common in fields, where it lies in little holes in the sod, in wait for its prey. I have seen C. calidum Fabr. (Fig. 360) attacking the June bug (Lachosterna fusca) tearing open its sides. Its larva (Fig. 361) is black. C. serutator Fabr. (Fig. 362) is a still larger species with bright green elytra. It is knorn, accord-

$a \quad$ Fig. 363. ing to Harris, to ascend trees in search of canker-worms.

Carabus has similar habits, but differs in having the third
joint of the antennæ cylindrical, while that of Calosoma is greatly compressed. C. serratus bay (Fig. 363 ; a, pupa of the

Fig. 36t. same gentrs.) Pasimachus elongatus Lec. (Fig. 307) has been found, according to Walsh, to prey on the Doryphora, or Potato beetle.

The genus Scarites and its allies have family which are allied to Carabus; Fig. 364, natural size; Fig. 365, a little cularged; a, mouth parts; b, end of the body, and Fig. 366 , a larva apparently of the European C. auronitens) is black bordered with purple. The elosely allied species of Cychurs, of rich porple and blue tints, differ in the longer head, the deeply bilobate labrum, and in haring four of the antennal joints smooth, with thickly striated elytra. (We figure some unknown larye of this

Fig. 367. the anterior toothed palmate tibix more or less produced at the apex, with a pedunculate abdomen. In Scarites and Pasimachus the basal joint of the antemna is very long; the former having the maxilla rounded at the tip, and the thorax rounded behind, while in Pasimachus, the thorax is distinctly angulated, and the max-
 illa are hooked. In Clicina the basal joint of the an- Fig suc. tenne is short, the mandibles flat and acute, and the clypeus is not emarginate.

In Harpalus and allies the epimera of the mesothorax do not extend to the coxr, and the mesosternum is large, widely separating the middle coxa. Of this group Brachinus (B. fumans Fabr. Fig 368), the Bombardier beetle, with its narrow head and cordate Fig. 368. prothomx, is remarkable for clischarging with quite an explosion from its anal glands a pungent fluid, probably
of use as a protection against its encmies. They are yellowish red, with bluish and greenish elytra. Helluomoryha (II. prausta Lap. Fig. 869 ; a, mentum) has a large mentum and much eompressed antennse.

Fig. 370. Galerita is similar but much larger, with a red thorax, and blue or blact. elytra. Fig. 3 - 0 represents the larra; Fig. 371 the pupa

Fis. 30 . of G. Lecontei Dejean, a Southern species. Casnonia has a rhomboidal head, with a long narrow neck and a cylindrical thorax. C. Pensyluanica Dejean (Fig. 372) is not uncommon, being found under stones. The species of Lebia are found upon flowers, especially the golden rorl, in August and September. They are gaily colored, with the head constricted behind and the

Fig. 371. thorax pedunculate. The species of Platynus (P. cupripenne Say, Fig. 373) are often of brilliant metallic green and red colors. In Cymindis, which is hairy, the head is not constricted behind, and the last joint of the labial palpi is dilated. In Pterosti chas, which is a genus of great extent, the three basal
 joints of the antennæ are smooth, the anterior tibiz are thickened at the extremity, and the dilated tarsal joints are triangular or corclate. The species are Fig. 3iz. black and of common occurrence. Amara differs in the head not being narrowed behind, the slightly
Fig. 373. emarginate labrum and the elytra being without the usual punctures. Zimmerman states that the species are ammal, or double brooded anmally; the eggs, which are laid beneath the surace of the soil, do not mature for several days after coupling; the larvæ moult once, live six to eight
weeks, and the pupa lives half that time; the beetles often hibemate. The larra has the general form of that of Poccilus.

The species of Hurpelus are large,

Fig. 374. with a very square prothorax. II. coliginosus Say (Fig. 374) is beneficial in cating cut-worms and other injutious larva. Fig. 375 represents a lara supposed to belong to this or an allied genus. The blind Anoph thalmus Tellkanpfii Erichs. from the Mammoth Care, has no eyes, while the legs are vely long, especially the narrow fore tibix; but in Trechus, which is closely allied to the blind Cave Beetle, the eyes are as large as usual, and the legs stouter. Fig. 375.

Fig. 376.

Bembidium com-
 prises species of very small size and variable in form, in which the anterior tibire are not dilated at the
base. They are found abundantly under the refuse of freshets and tides, preying upon dead amimal matter and other insects, and a species of Cillemum, closely allied to Bembidinm, is known to scize the beach-flea, Gammarus, and devour it. Fig. 376 (A, a little enlarged; B, head; c, mandible; e, antenna; f, labinm and its twojointed palpi ; \quad, maxillæ; h, i, j, under side of different abdominal rings) represents the larra of a Gromd beetle, which, according to
Fig. 377. Walsh, prevs upon the larra of the Plim cur-
 culio while under ground. Fig. 377 represents the Fig. 378. supposed larra of a European species of Chloutus, and Fig. 378 what we suppose is the larva of a beetle allied to Cillenum.

Avphizoids Leconte. The genus Amphizoa (Fig. 379, A. insolens ; a, antema; b, labrum ; c, mandibles; a, maxillæ; e,
ligula; f, mentum ; g, prosternm, front, and h, side view; i, under side of the rest of the body, showing the sis ventral segments of the abdomen ; j, anterior tarsus: from Horn) fomd in Northeru California, is the sole representative of this family and differs from the preceding fimily in the metasternum be-

Fig. 379.
ing truncate behind, and not reaching the abdomen. A. insor lens Lec. is an anomalons form, being snbaquatic, and in its structure and labits connecting the Carabidre with the succeeding family.

Drircin. MeLeay. The Dising Beetles, or Water Tigers, are oral flattened elliptical beetles, which differ from the Cforabiche in the form of the hinder corx, which are very large, touching each other on the inner edge, and externally leaching the side of the body, entirely cutting off the abdominal segments from the metathorax, while the oar-like swimming legs are covered with long hairs, and the himder pair are much flattened. The larre are called "water tigers," being long, eylindrical, with large flatened heads, armed with scissor-like jaws with which they seize other insects, or snip off the tails of tadpoles, while they are even known to attack young fishes, sncking their blook. They are known to moult sercral times, four or five days intervening between the first two periods of monlting, and ten days between the latter. The body ends in a pair of long respiratory tuhes, which they protrude into the air, though eight pairs of rudimentary spiracles exist. When about to transform the larva creeps on to the land, constructs a round cell, and in about five days assumes the pupa state, and in tro or three weeks the beetle appears, if in summer, or
if in autumn hibernates as a pupa, to transform to a beetle in the spring.

In Huliplus the antennæ are ten-jointed, bristle-shaped, and the legs are soarcely addpted for swimming, being narrow. The body is rery convex, spotted with black or gray, while the elytra are corerel with rows of punctures. In the remaining genera, the types of the fanily, the antenne are clevenjointed and the hind legs oar-like. "The larve differ not only by their dorsal segments being armed with spines, which gives them a rery grotesque appearance, but by their possessing only one claw, and by their anal segment (which is rudimentary in all other Dytiscidæ) being enormonsly elongated and forked, so that the anus is placed on the under side of this peculiar tail, and the spiracles of the cighth pair, which are terminal and tube-like in other Dytiscide here become lateral and quite plain." (Schiölte.) In Colymbetes and Agabus the anterior tarsi of the males are broad, oblong, and covered beneath with cups of equal, or nearly equal, size. Agabus differs in having the thorax as wide at the base as at the middle, or still wider. In Dytiscus the orate, not very convex body is usually broader behind the middle, and the last joint of the palpi is not elongated, while in Aciturs which is usually banded, the intermediate tarsi of the male are not dilated. The males of these two genera often have the elytra deeply furrowerl, while those of the females are smooth. Dytiscus fusciventris Say and Acilius mediatus Say are common in all our ponds northward.

Gyminide Latreille. Whirligigs. These oral bluish black beetles are easily distinguished by their peculiar form and hahits. They are always seen in groups, gyrating and circling about on the surface of pools, and when caught, give out a disagreeable milky fluid. Like the previous family, upon being disturbed, they suddenly dive to the bottom, holding on by their claws to submerged objects. They carry down a bubble of air on the tip of the abdomen, and when the supply is exhansted rise for more.

The crlindrical eggs are placed by the female, end to end, in parallel rows on the leaves of aquatic plants, and the Iarvie
are Iatched in about eight days. They are myriapodous in form, with a pair of large, long, lateral respiratory thaments
 on each segment, much as in the larra of Corydalus. They become fully grown in Au;ust, crawl ont of the water and spin an oral cocoon, within which the pupa remains a montl, and then appears as a beetle. In $G y$, inues (Fig. 380, G. borealis Aubé ; Fig. 381, Larra of a European species) the scutellum is Fig. sou. listinct; the species of Dineutus, of which D. Americanus is a type, are larger, and lack the scutellum. Fig. 381. Schiodte states that the larve of Curabicto, Dytiseide and Gyrinide differ from those of other Coleoptera in having double claws, while in the others the tarsus is undivided and claw-like.

IMybophilide Leach. Carnivorous as lavar, but when bectles, regetable caters, and living on refuse and decaying matter, this family unites the labits of the foregoing families with those of the scavenger Silphids. They are aquatic, small, convex, oral, or hemispherical beetles', in which the middle and posterior feet are sometimes adapted for swimming; the antenne are short, and the palpi very long and slender. The females spin a silken, turnip-shaped nidus for their egge, fifty to sixty in number, which ends in a horny projection, serving as a respiratory tube to supply the foung larra with air as they are hatched. Others carry the cocoon abont with them on the under side of the body. To spin this large amount of silk, they are prorided with two large silk glands, with external spinnerets. The larra hatch in from two to six weeks, and moult three times; when mature they are long, cylindrical, tapering rapidly towards the posterior end, with short leg's, while the hend is

Fig. 382. flattened abore and very convex beneath, with the mandibles elevated much as in the larva of Cicinclela, enabling them to
seize their food by throwing their heads back and extending the jaws. When handled "it becomes placid, and emits a blackish fetid fluid from the month accompanied by a slight noise." The larva of the European H. piceus Limn. (Fig. 382) becomes mature in two months, then ascends to the bank, forms an oval cocoon, and transforms to a beetle in about forty days.

In the genus S_{l} percheus (S . tessellatus Melsheimer) the middle and hind tarsal joints are equal in length. The females of the European species curry the eggs in a silken nidus beneath their abdomens, and as the eggs are hatched every eight or ten days, others we laid to keep up the supply.

Hydrophitus is large, oral, olive black, with smooth elytra, and the prosternum is small, with a long spine on the metasternum. In the larve the lateral appentages of the abobomen are soft, flexible, ciliated, and assist in buoying mp the heary fleshy body (for which purpose the antenne are ciliated) but they do not serve for respiration, as in Berosus, another European genus of this family. (Schiodte.) H. triangutaris Say is a large pitchy black species. In Hydrobius the last joint of the maxillary palpi is longer than the preceding. Sphoritiam and its allies are characterized by an orate, convex or hemispherical form, being black, with the elytra often spotted or margined with yellow, and with ten rows of punctures or stric, thongh in Cyclonotum there are no strix. In Cercyon the mesosternum is not produced, and the prosternum is keeled over. "In the larre of Cereyon and Sipheridium, which represent the IIydrophiline type modified for life on dry land (though in humid places) we find neither lateral abdominal appendages nor even true feet, the amimal wiggling its way throngh the debris amongst which it lives, whilst the last abdominal segment is the largest of all and is often armed with hooks." (Schioclte.)

Silphide Leach. The Carrion or Sexton locetles are useful in burying recaying bodies, in mhich they lay their eggs. By living in the vicinity of carion, and by their rely clavate antenne and flattened head and body, and the hlack nauseous fluit they give out, the common species are readily recognized.

The larve are crustaceons, flattened, with the sides of the body often serrated, black, and of a fetid odor. They undergo their transformations in an oval cocoon. In Necrophorus (Fig.
 joints, and the rounded club is

Fig. 384. four-jointed. The genus Sitpha, of which S. Latponica Herbst (Fig. 383, larva fully grown ; 384, young, from Labrador) is a common species, differs in the third joint of the antenna being no longer than the second, but shorter than the first. In Neerophilues the third joint is as long as the first. N. Surinamensis Fabr. has a yellow thorax with a central in'egular black spot. Catops and its allies live in fungi. carrion and ants' nests, and are small, black, oral insects. The

Fis. 38. cyeless Adelops hivtus Tellk. is blind, wanting the eyes, and is found in Mammoth Care. Anisotoma and allies, with eleven-jointed antemax, are oral and sometimes hemispherical, and capable of being rolled up into a ball. They are of small size and found in fungi, or mender the bark of dead trees. Agathictiom (Fig. 385, larra of the European A. seminulum) has the club of the antenne three-jointed. Clumbus and allies comprise exceedingly minute species, found in decaying vegetable matter.

An aberrant form is Brathinus, two species of which, B. nitidus Lec. anḍ B. varicomis Lec., lave been found from Lake Superior to Nova Scotia, about the Fig. 335 . roots of grass in damp places. According to Leconte, they are small shiny insects of graceful form, and distinguished by the prominent middle coxæ.

Scrdmenide Leach. The species of this small group differ from the Pselaphidee to which they are closely allied by their long elytra and clistant conical posterior coxie. They are mi-
nute, oval, brown, shiny insects found under stones mear water, under bark and in ants' nests. Scydmomus is the typical genus.

Pselaphidas MacLeay. In this group the labial palpi are very small, while the fourjointed maxillary palpi are of remarkable length ; the eyes are composed of large lenses, and are sometimes wanting ; the elytra are short, truncated, bencath which the wings, when present, are folded and the legs are long and the femora are stout, while beyond the leg is usually slender. "The species are very small, not exceeding oneeighth of an inch in length, and are of a chestnut-brown color, usually slightly pubescent; the head and thorax are most ficquently narrower than the elytra and abdomen, which is conres aud usually obtuse at tip. Many are found flying in twilight; their labits at other times are rarions, some being found in ants' nests, while others occur under stones and bark. North America seems to be rich in this funily; more than fifty species are known to me, and sereral of the genera lave not occurred in other comntries. This family closely approaches the Staphylinida, but the rentral segments are ferrer in number, and not freely moting, and the eyes are composed of large lenses." (Leconte.) The genus Chaviger and its allies Adranes cecus Leconte, which is found in ants' nests in Northern Georgia, have antennæ with less than six joints; it is blind, and the antennae have only two joints. Pselaphus and its allies have eleven-jointed, rarely ten-jointed antennæ.

Staphilinida Leach. The Rove-bectles are easily recognized by their long linear black bodies, with remarkably short elytra, and seven to eight visible horny abdominal segments. The maxille are bilobate, usually ciliated, with four-jointed palpi, except in Alcochara, when there is an additional joint; the antenne, rariable in form and insertion, are usually clevenjointed, and while the legs are variable in length and form, the anterior coxa are usually large, conical, prominent and contiguous. Though sometimes an inch in length, they are more commonly minute, inhabiting wet places under stones, manure heaps, fungi, moss, under the bark or leaves of trees. Many species inhabit ants' nests, and should be carefully
songlt for on derry mornings under stones and pieces of wood, which should be taken up and shaken over a white cloth or paper; or the whole nest should be sifted through a rather coarse sieve, when the small beetles will fall through the meshes. The cggs are very large. The larva (Fig. 386, under side of a larra probably belonging to this family, from Mane, enlarged twice) closely resemble the beetles, being narrow, the segments of very equal size, the terminal ring forming a long prop-leg, on each side of which there is a long ciliate seta. In the pupre the hind wings are not folled beneath the elytra, but extend below, meeting upon the breast.

In the true Staphylini the anterior coxa are prominent and their cosal carities are open behind. Aleochara and its allies are difficult to distinguish, as the characters separating them are but slightly marked; they have the maxillary palpi moderate in length, with the second and third joints also of moderate length, the forrth small, sululate, distinct, and in Aleochero Fig. 386. itself there is an additional very small fifth joint. In Homolota, numerons in species, the ligula is short and bifid, and the first to the fourth joints of the hind tarsi decrease in length. In Tachyporus and allies the prothoracic spiracles are visible; the anterior cona are large, conical and prominent, with the trochanters very distinct, while the antemize are inserted under the lateral margin of the front. The species are usnally convex above, with the thorax always ample, arched and highly polished, and the abdomen conical, sometimes very short. They are found partly in fungi, partly under bark. Dr. Leconte, whom we lave been quoting, states that the species of Bolitobius usually have the head much elongated; when, howerer, the head is oral, they approach closely to the genus Quedius of the next tribe, but are recognized by the antenure being inserted at the lateral

Fig. 387. margin of the front, near the cyes, and not at the anterior angle of the frontal margin, as in Quedins.
In Stophylinus the antennæ are inserted on the anterior margin of the front, inside of the base of the mandibles, but dis-
tint from each other; the thorax is punctured and pubescent, the middle cove slightly separate, while the abdomen is natrowed at the tips. Fig. 387 represents the larva of this or a closely allied genus found in a humble bee's nest. Philonthats differs in having the femora unarmed. The species
 live in decaying matters and excrement. The pecis of Pederus (Fig. 388, the larva of the European P. tompestivus Erich.) are found under stones, etc., near water.

In Stents, of which S. stygicus Say and S. Juno Fall. are types, the eyes are large and prominent, so that the head resembles that of Cicindela and the Fig. 388. antenna are inserted upon the front between the eyes; the lahum is entire and romped anteriorly, the paraglosser are dilated, rom led, and the body is coarsely punctured, while that of its nearest ally Dianous is finely punctured and
 the paraglosse are connate and indistinct.

Another small group of genera is represensed boy Oxypomes, which is found in fungi, and which has a large heat, with
 large long mandibles crossing each other, and five-jointed tarsi ; and Oxytelus which is found in wet places and in dung, and has three-
a jointed tarsi, with a row of spines on the front tibia, and the middle coxa separated.

Anthonzaghe crassus?, Harris Correspondene (Fig. 389 ; (t, maxilla), is found in wet ground where spearmint grows, of which it diffuses a strong odor.

In Omalium the antema are inserted under the lateral margin of the front, the elytra are long, and the tibiae finely apinous. Wicrotymate is closely allied, bat differs in the elytra being very short. The genus Micropeplus is squarish in form and connects the present family with the one following.

Hisrerides Leach. As stated by Leconte, "this is a very well defined family of insects, moderately numerous, nearly all of a shining black color, with the elytra variously sculptured
with striz; some few species of Hister and Saprinus have the clytra marked with recl, and a few of the latter genus are metallic in color. The form of the borly is variable; those of the first group are oblong aud flat, with prominent mandibles; the others are rounk, oblong oval, globose, some depressed and some conves. The species live under the bark of trees, in excrement and in carcasses. When disturbed the insects retract the antenne and fect, appearing as if dead. The antennea are geniculate, the cighth and following joints forming a compact annulated, rounded or (rarely) triangutur club. The elytra are truncate behind, leaving two segments of the aldomen uncorered. The linear Hattoned larve have the terminal ring ending in two biarticulated appentages, and a single anal prop-leg. The lara of the European Hister medurite (Fig. 390) lives in cow (lung, forming a cell in which it transforms, and like Andrenus, the pale brown pupa retains the larvaskin about it. In Itister the head is retracted and bent downwards, and the chab of the antema is round and annulated. Hister interruptus
 Bealus. and A. marginicollis Lec. are common morthward. Fig. 390

The genns ITctcerius differs in the antennal club being obeonical, truncate and solid. The species are found only in auts' nests carly in the spring. In Supminus the antemme are inserted under the margin of the front; the antennal cavities being at the sides of the prostarnm proper. The species are mostly found in carrion.

Scapmidmde MacLeay. "This family," according to Dr. Leconte, "contains small oral or rounded oval, convex, very shining insects, living in fungi. The sides of the thorax are oblicue, and the head small, so as to make the body somewhat pointed in front; the thorax is very closely applied to the front, and the elytra are brondly truncate, permitting the tip of the conical abdomen to appear." In Scaphictum the antennce are clavate, the cyes emarginate, the posterior tibiae are not spinous, and the first joint of the posterior tarsi longest.

Trichormergadea (Trichopterygia Frichson). This inconsiderable fimily comprises the smallest beetles known. The
cleven-jointed antenme, which are verticillate, with long hairs, are inserted at the margin of the front, and the chub is long and loosely articulated. The beetles live under the bark
 of trees and in ants' nests. The larve are carnivorous, being very active, withont ocelli, and with eylindrical bodies, with four-jointel antennae and long four-jointed legs. Trichopteryx is known by its pubescent body, and laminate posterior coxe. One species is one-third of a line long; others are still smaller. The larva Fig. 391 of the European T. intermedia Gillmeister (Fig. 391, enlarged) feeds on Podure.

Pilalacribe Erichson. "A small number of oval or rounded oval, courex, shining insects, constitute this family. They are fomd on flowers, and sometimes under bark. The elytra have sometimes approximate rows of small punctures, but more usually only a sutural stria. The seutellum is larger than usual, triangular. One of the four genera (Tolyphus) of this family is wanting in our fama. The other three are separated by the form of the posterior tarsi." (Leconte.) In Phalacurs the anterior and posterior tarsi are of the same length. The larra are vegetable feeders, living in the flowers of composite plants.

Nitmetariae Latreille. This fumily includes small oral or elliptical, flattened bectles, which are sometimes almost globular. The heat is suddenly narrowed before the insertion of the antenne, thus forming a short beak, and the antenua may be partially retracted into a groove under

Fig. 392. the cyes. The larve are both carnivorons and regetable-feeders; they are elongated, with two to four-jointed antennæ, three ocelli on ench side, with a flattened hairy body, cuding in four small, horny, recurved tubercles. The pupre may be found under the surface of the ground in earth and sawdust. Carophitus has the second and third abdominal segments short, while the first, fourth and fifth are longer, and the claws are simple. Carpophitus antiquus Mels. is a well known spe-
cies. Nitidule and its allies are elliptical depressed, often with a broad margin; the elytra covers the whole abdomen, or leares merely the tips exposed. In Nitictula the last joint of the labial palpi is not thicker than the precerling, and the species often have two red spots on the elytra, as in Nitidnta
 bark, the last joint of the palpi is large and thick. Omosita colon Fabr. is also spotted twice with red; the genns may be recognizel by the antennal grooves diserging behind. following the outline of the eyes, while in the males the sixtlo abominal segment is wanting. Ips is much longer and larger, with trumcate elytra, and the head is immersed in the thorax to the eyes. Ips somguinolentus Say has a broad red bamt on the elytra, with two large round dots. Ips fusciatus Say (Fig. 391 , and larva; found in the roots of the squash by Mr. M. C. Read) has two broad interrupted yellow bands on the elytra; both species ocenr about flowing sap in spring. Ips ferruginea of Europe lives on the joung of Hylesinus ligniperda. Rhizopharus depressus is known in Europe to attack the larre of Hylurgus piniperda, according to Dufour.

Monotomide Chaudoir. The species of this inconsiderable group are much like the preceding family in form, bat as Leconte states, differ from them in the anterior coxa being small, rounded and separated. They oceur under the bark of trees.

Trogositide Kirby. This group, usually united with the preceding family, is distinguished by the bilobate maxillie, with the short, four-jointed maxille and the short undilated tarsi. They generally live under bark, but some have been transported over the whole world in grain. In Trogositc, which comprises long insects, with the thorax narrowed behind, the ligula is entire, the tibire are not spinous, and the thorax is prominently angulated in front.

Colydides Erichson. The small globalar anterior and middle coxe, and the four-jointed simple tarsi will enable them, Leconte states, to be readily disting'uished from any of the neighboring families. The species are of small size, usually
rather long and cylindrical, and occur in fungi, in the earth, or muler the bark of trees. Colydiom is slender, with linely striate clytra, and the anterior tibire hare one spur enlarged and hooked; while the first joint of the tarsi is elongated. C. elongatuan is statel by European anthors to attack the larve of Platypus, a genus allied to Scolytus.

Rurssodidse Erichson. This group. by some anthors mited with the preceding family, simulates the form of the Caralids. The antemna are, howerer, composed of equal glubutar joints, and the head is strongly constricted behind into at neck. They are found moder bark. In Rhyssodes the eyes are placed upon the side, and in the other genus, Clinidium, upon the upper surface of the head.

Crcubide Latreille. The species of this family are very much flattened long insects, with flat, strongly emarginated elytra, and the abdomen has five full segments, equal in length. They are found ander bark. The larve are quite transparent, with the terminal joint ending in two horny curved hooks. The antenne are four-jointed, the limbs provided with a single claw, and there are five ocelli on each side of the head. In Sylromus, which is of small size, the nine to eleren-jointed antenne to not lawe the first joint clongated as usual, while the terminal ones are enlarged. Siftumes Surinemensix Linn. is one-fourth of a line long, of a rusty brown color, and covered with short yellowish hairs. The larva is a flattened rellowish white grub, with the terminal joint somewhat conical. It breens in bran, rice and wheat. Cucujus is a bright searlet flattened insect, with punctured elytra, and three faintly marked smooth lines. The larva differ from those of Sylvanus by having two horny tubereles at the end of the abdomen; they are often found in granaries.

Criptophagide Kirby. This fumily differs from the preceding group in the greater length of the first abdominal ring, the thickened body, and in the thorax being as wide as the elytra. Antherophagus is readily known by its resemblance to Epurea among the Nitidulidee, as its head and body is flat,
the front not prolonged, and in the male is deeply excised at the tip. The antenne of the fomale are clubbed as usual, and the mandibles are prominent and suddenly incurved at the tips. It is often found on flowers in the perfect state. We have found the larre (Fig. 393; u, end of abdomen) of intherophayus ochaceus Say (Plate 3, ing. 4) in the nests of humble bees cluring July and August. They are whitish, and .32 of an inch in length. The bectles are of a pale honey yellow, with little darker antennæ, legs and elytra, while the ends
 of the antemal joints, the base of the corre and tibier, Fig. *3s,
 and tip of the terminal joint of the tarsi are black. The larva of the Enropean Croptophagus hivtus Gyll. (Fig. 394) is found in cellars.

Drrodontide Leconte. In these insects the transverse form of the anterior and posterior coxæ Fig. 394. (which latter are slightly separated), dilated internally, forming a small plate to protect the insertion of the thigh, distinguishes this group from all the preceding families, and approximates it somewhat to the families following the Elateride.

Lathridide Rectenbacher: Leconte states that the iusects of this small fimily are of very small size, found flying in twilight, and also under burk ant stones; they are of graceful form, the elytia being usually wider than the thorax ; the species of Bomorloiria and most of the species of Lathridius (Fig.
 395, larra of L. minutus Limn., enlarged) are very remarkably sculptured, with elerated lines on the thorax.

Ominides Leconte. Othnius umbrosus Lec. is the type of this family. It occurred in Nelraska, near the Rocky Mountains.

Mycetopifagide Leach. The genus Mycetophagus is finely punctured with closely appressed hairs; the anterior cosal cavities are open; the tarsi are four-jointed and filiform, the
anterior pair in the malesharing but three joints; the frontal suture is always distinct and usually deep; the eyes are transrerse and the antennie gradually enlarged externally.

Dermestide Leach. These well known insects have the head small and deflexed, witl short manclibles, rounded eyes, with a single ocellus; the prothorax is short, sometimes excilrated for the reception of the antenne, which are inserted in front of the eyes and are usually eleven-jointerl, and the legs are short, somewhat contractile, the tarsi being fire-jointed. In Byturus the mandibles have several teeth, and the claws are armed with a large basal Fig. ans. tooth. They are small oval brown beetles found eating flowers. Mr. J. L. Russell of Salem, has called my attention to the rarages committed by B. unicolor Say on the raspberv; it eats the flowers and makes long holes in the leaves, and for two or three summers has been very abundant. IIand picking was found to be the best remedy. Erery entomologist dreads the presence of Dermestes and Anthrenus in his cabinet. The ugly, bristly, insidious larva, which so skilfully hides in the body whose interior it consumes, leaving only the shell ready to fall to pleces at the slightest jar, can be kept ont only with the greatest precautions. Dermestes lardorius Linn., the larger of the two, is oblong oval, with short legs, black, with the base of the elytra gray buff, covered by two broad lines. It is timid and Fs. 3n. slow in its movements, and when disturbed seeks a shelter, or mimics death. We have found the larva (Fig. 396) of probably another species of Dermestes, crawling up the side of an out-honse. It was nearly twice the size of D. lardarits. Aftagenus pellio Stephens is another insect which infests museums. It is shorter than Dermestes, black, with two dots on the wing covers. The larva (Fig. 397, enlarged three times) is long and slender, cylindrical, with reddish brown hairs closely appressed to the body, giving it a silky, shining appenrance. The abdomen ends in a long pencil of hairs.

Aothernes verius Fabr. (Fig. 398 ; a, larra; 2 , pupa) is rounded oval, with transverse waved lines. Its larra is thick,
with long bristles, which are largest on the end of the body. They are gencrally destructive in musemms, and prey on stuffed specimens of all sorts. The beetles fly about early in spring and then lay their eggs. The insect is found in all its stages through the year. They may be killed like the Clothes-moth, also found in museums, by saturating the specimen infested by them with benzine. To prevent their attacks, they should lue kept out of collections by keeping benzine in constant eraporation in open vessels. Camplor and turpentine and creosote are also very useful. Insects recently prepared should
 be placed in quarantine, so we may be sure none of the museum pests will be introduced into the drawers or cases of the cabinet while either in the egg or larva state. Their presence in cabinets may be detected by the dust they make filling on the white surface beneath. Specimens thoroughly impregnated with carbolic acid, or arsenic, or corrosive sablimate, will not be attacked by them.

Bmrmide Leach. Pill Beetles. This gromp has the head retracted under the thorax, with the parts of the mouth more or less protected by the prosternum ; the legs are short, stout and retractile, and the antemme are clarate. The typical species are "oval or rounded, rery convex, dull black or bronzed insects, covered with a fine, easily removed pubescence, forming varied patterns." In Byrchus all the tarsi are retractile. We have taken Byrotus Americames Lec. in Labrador, on the stems of the "Labrador tea." 'They are found in cold mountainous districts. The larve (Fig. 309, larva

Fig. 399. of B. pillula Illiger, a European species found in moss) are fleshy, cylindrical, with the last two rings of the body larger than the others.

Georrasmer Heer. This family consists of but a single genus, characterized by Leconte as comprising small, rounded,
convex, roughly sculptured, black insects, found at the margins of streams, on wet sand; they cover themselves with a mass of muk, so that no part of the insect is visible. Georyssus 'pusillus Lec. is our only species.

Parnida MacLeay, These are aquatic beetles, having a retractile head, and are often found clinging to snbmerged stones, both in the larval and pupal states. The body of

Fig. 100. the beetle is "clothed with a fine pubescence, cnabling a film of air to be preserved beneath the water." The larve are hemispherical like a basin. "The larva of Psephenus Lecontei ITald. (Fig. 400, under side, enlarged three times) is an elliptical object, with the margins widely extended be-

Fig. 401. yond the body, and is seen on stones under the water of rapid streams; it is especially abundant in the rapids of Niagara, and differs in no important particular from the larva of Helichus of the next subfamily. It respires by branchial filaments." (Leconte.) Elmis (Fig. 401, larva of a European species) is known by the narrow, elongate scutellum.

Meterocemde MacLeay. "This family consists of but a single genus, Heterocerus; it is represented in every portion of our territory. The species are numerous, but very similar in form and color, so that care is necessary in distinguishing them. They are oblong or subelongate, oral, densely clothed with short, silky pubescence, very finely punctuate, and of a brown color, with the elytra usually variegated with undulating bands or spots of a yellow color. They live in galleries which they exeavate in sand or mul at the margin of bodies of water, and, when disturbed, run from their galleries and take flight, after the manner of certain species of Bembidium." (Leconte.)

Lucamme Latreille. This family is closely allied to the next, and is often united with it, as it differs chiefly from the onter lamellate joints of the antenne not being so closely
mited into a compact club, as in the Sectrabeida, and the mentum is usually large. The genus Lucamus, called the Staghorn beetle, is of large size, with enormonsly developed jaws in the male, as in Lucamus ${ }^{\circ}$ dama Fabr. (Fig. 402, §). The larva of Lucanus damo (Fig. 403, and cocoon, natural size) is long, thick, nearly cylinrlrical, and the corneous rust-colored head is armed with two large jaws. Living in rotten wood, like the Cerambycide, it constructs a cocoon of the chips it makes. The larva of the European L. cerve is stated by Roesel to live

Fig. 402. six years. Harris states that they lay their eggs in crevices of the bark of trees, especially near the roots. The larve resemble the grubs of the Scarabæans in color and form, but are

Fig. 403. smoother, being less wrinkled. Dorcas breris Say (Fig. 40t) is an exccedingly rare insect whose habits are unknown. In Passalus comutus Fabr', belonging to a more aberrant genus, the body is long and flattened with a short bent hook on the hearl, and the elytra deeply striate. Matam Merian describes the larva of Passalus as being a thick fleshy worm, with a small scaly hearl, six legs, and slender posteriorly; it lives in decaying wood.

Scaraberde Erichson. This family, the Lamellicornia of Latreille, is one of immense extent, being divided into more than 700 genera, comprising some 6,000 species, or three-
fourths as many Coleoptera as are known to live in this country. They comprise the mammoths among insects, and it is in the tropics that we meet with the most mumerous and

Fig. 404. bizarre, as well as gigantic forms. Always rearlily recognized by their clubbed lamellate antennx, the terminal joints being expanded into broad flat leaves, which, at the will of the insect, can be closely shut into a compact club, or loosely expanded fan-like, and laid under the projecting elypeus, so overhanging the mouth-parts as to give rise to the terms beetle-horned, and "beetling;" these insects, by their robust, thick, often square body, short fossorial legs, with large looked claws for seizing leares and stems, have been well known to all observing persons, howerer slight their entomological knowledge. The larve are thick and fleshy cylindrical grubs, with a corneous head, and rather long four-jointed antenne; the ocelli are generally wanting; the legs are stout and long, without claws, and the last ab-

Fig. 40%. dominal segment is soft and baggy. The body is often rery transparent, the tracher appeniing through. Fig. 405 represents a singular larva (magnified twice) of this family fiom Mr. Sanborn's collection.

The genus Copris and allies are known by their rounded form, and the hroadly expanded clypens, which covers in the mouth-parts. In some species (those of Deltochilum) the anterior tarsi are wanting either in the females or both sexes; and in some species a stridulating apparatus is fumd on the upper surface of the abdomen. In Copris the labial palpi are dilated, the first joint of the antennal club does not receive the others, and the claws are distinct. The larva of C Carolina Fabr., while, accorling to Osten Sacken, having the general appearance of the larre of the Lamellicoms, is much thicker and curved up, the loack being much swollen and "distended into a hump-like expansion. It is about two inches long' and of a
dirty yellowish white. Each larva was found enclosed in a globular case of clang or earthy matter, about an inch and a quarter in cliameter." (Proceedings of the Entomological Society of Philatelphia, vol. i, pl. 1, fig. 1.)

The closely allied Phuneus camifex MacLeay is common southward, aud easily known by its brilliant copper colored thorax and bright green elytra, and by the large hom on the head of the male. These insects are called "Tumble-buggs," as they enclose their eggs in pellets of manure, holding them between their hiud legs, and rolling them away to a place of safety. The species of Aphodius live also in manure; they are quite small, nearly cylindrical, with the mouth-parts concealed by the clypeus; the antenne are nine-jointed, the club consisting of three joints, and the lobes of the maxillee are membranaceous, unamed, while the upper parts of the eyes are risible in repose. Aphodius fimetarius Linn., which is black with bright red elytra, has been introduced from Europe, and is abmudant in roods, Hying orer dung; it is now common in the carriage road of Mount Washington. Fig, 406 represents the larva of the European 1. fossor Linn. Chapuis and Candeze found it in manure in spring. Ceotrupes has elevenjointed anteme, with the club three-jointed, the midde cox:e are contiguous, and while the club of its nearest ally, Bobloceres, a shorter insect, is large and lenticular in form, that of the present genus is lamellate, as minal. Geotropes splendidus Fabru is

Fig. 400, a common beetle, with a bright shining green body, flying in paths and wood roads late in the summer. The species of Trox difter in having slightly fossorial legs; they are oblong convex, the stirface being very rough and covered with dirt which is seraped off with difficulty. They live in dried decaying amimal matter, and, according to Lcconte, "possess a distinct stridulating organ; it is an elliptical plate, with pearly reffections, occupying the upper part of the external face of the ascending portion of the first ventral scgment, and is corered by the elytra; on the inner surface of the elytra, near the margin, about opposite the thorax, is an oval, smooth, polished space, which has, probably, some comnection with the stridulating organ." The larva of "Trox Carolina Dej." (T. scabro-
sus Beatr. Fig. 407), is described by Chapuis and Candeze as coming from New Orleans.

Melolontha and its allies come next in the series. They feed exclusively on living plants. The genus Acrotus was estab-

lished by Dr. Horn for A. ftatipentis Horn (Fig. 408 ; a, antema; b, maxilla; c, mentum; d, manclible; e, anterior leg and tarsal claw) found in Arizona. The genus Dichelonycha is distinguished by the front margin of the thorax being narrow and Fig. 10. membranous, with equal claws, cleft at the tip. Dichelonycha elongatula Schonh. is a long green beetle, with long Iegs, and of a metallic green color; it is found in June on the a
 leares of the birch.

Macrodactyhus subspinosus Fabricius, the well known Rose-bug or Rosechafer, is brown, covered with ochreons scales; the legs, tansi and claws are rery long and slenter. It overuns garden plants, especially injuring the rose leares. Dr. Harris has observed the transformations of this insect. The nearly globular whitish eggs, abont thirty in number, are deposited by the female from one to four inches beneath the surface of the soil, and are hatched in about twenty days. The whitish larva becomes fully grown in the antum, and is then three-quarters of an inch long and an eighth of an inch wide. In October it descends below the reach of fiost, and in the next May is transformed to a pupa in an oral earthen cell. The pupa is yellowish white,
 somewhat of the form of the beetle, with short wings; its antennæ and legs folled on its breast, with its white body surrounded by a thin film. The beetles may be often seen in clusters on low bushes in partially cleared fields haring just appeared from their cocoons. Dr. Hora has described the genns Plectrodes for a Califormian species, P. pubescens Horn (fig. 409 ; a, maxilla and palpus ; b, tarsal elaw). The well
known June-bug or Dor-bug, Lachnosterna fusca Frohl (Fig. 410,411 , larva; 412, side view of pupa), lives as a larva on the roots of grass and is often turned up by the spade or plough. It is then a large fleshy grub, very commonly met with, and is injurious to growing com and wheat. The pupa is found in its rude carthen cocoon in May. The beetles are very injurions to the leares of frait trees. They are chestnut brown, with yellowish hairs beneath, and nearly an inch in length. There are several smaller, closely allied species. Melolontha (Poly-

Fig. 410. phylla) variolosa Harris differs in its enormously dercloped six-jointed lamellate antemal club, that of the female being much smaller.

Fig. 411,

In Anomala the body is small, the antenne nine-jointed, and the mandibles when at rest do not project beyond the clypeus. Such is Anomala varians Fabr., which is very injurious to the vine in June and July. Pelidnota penctata Linn. has similar habits. It is oblong oval, very convex above, with dull bromish yellow elytra, with three large black dots on each side. It is often abundant on grape-rines in July and August, and proves very injurious.

The Cotalpa lanigera Linn. (Fig. 413; a, lava) or the Goldsmith beetle, is nearly an inch long, bright yellow, with long white, woolly hairs beneath, where it is metallic green. It often injures fruit and shade trees, and Mr. S. Lockwood states that in the larva state it destroys the roots of the strawberry plant. ILe remarks that on the 16 th of June a pain of Cotalpas coupled, and in the evening the female burrowed beneath the dirt, reappearing the next morning, having meanwhile laid at different depths, and singly, fourteen white, long, oval eggs ;

Fig. 412. on the 13 th of July the larve hatched, being five-sixteenths of an inch long. (American Naturalist, vol. ii, p. 441.)

In Dynastes the labial palpi are inserted on the sides of the
mentum, which is acuminate in front; the head and thorax are armed with large horns in the males; the first joint of the posterior tarsi is not elevated, and there are no stridulating organs. Our only species is Dynastes Tityrus Linn., found in the Southern States. It is over two inches long, of a greenish gray color, with black spots scattered irregularly orer the elytra. Dynastes Hercules Limu, one of the giants of the family, is about six inches long.

The genus Cetonia and its allies are flower beetles; their mandibles are feebly developed and in part menbranous and concealed with the other oral organs beneath the clypeus; and in flying they "do not raise or expand the elytra, as most Coleoptera do, but pass the wings from the side, under the e!ytra,

a

Fig. 413 which do not at all embrace the sides of the body." (Leconte.)

The immense Goliath beetles of the western coast of Africa belong to the gemus Golictlons, in which the clypens of the males is generally forked or armed with horns. Dr. Harris has proposed the mame of Hegemon "for: the subgenus, including the princely Scarcherens Gotiathus of Linnens, together with the still more magnificent Goliuthus Drumit of Westwood, and the G. Cacicus of Gory and Percheron." Of Hope's subgenus Mecynorhina, the Scarabmus Polyphemus of Fabricius is the type; it is velvet green above, with a pale buff head and markings, and is two and a half inches long, exclusive of the horns. Dr. Harris has also described as new to science M. Soragit which has a relvet green thorax, and relvet black elytra, with tawny bands and spots; it is about two inches long. The G. Colicthus is perhaps the largest of all the Colcoptera; specimens measuring nearly four inches. Dr. G. A. Perkins of Salem, Mass., who collected a large part of the fine series of specimens of these Goliath bectles in the Muscum of the Peabody Academy of

Science, informs me that they are found in the tops of trees where they feed on flowers and on sap extuling from wounds in the bark, like the Cetonis, and that the natives obtain them by jarring the trees. Harris states that "it appears, from the observations of Dr. Sarage, that the food of the Goliath beetles is Huid, like that of the Trichii and Cetoniæ, insects belonging to the same natural family, but the latter live chietly ou the nectar of flowers, and the former on the sap of plants. The long bushes on their jaws, and the diverging roms of hairs that line their lower lips, are admirahly fitted for absorbing liquirl food; while their horny teeth afford these beetles additional means for obtaining it from the leaves and juicy stems of plants, when the blossoms hare disappeared."

From Cetonia, Lacordaire has separated the genus Euryomia, distinguished by the untoothed maxilix, by the clypeus being usually parabolic, sometimes parallel and larely emarginate in front. Euryomia Inda Limn. attacks ripe peaches, spoiling them for the market. They are found about running sap in A pril and flying in fiehds in May, and a new brood appears in September. In Osmoderma the elytra are not simnate on the sides, the prothorax

Fig. 414. $\quad a$ is marrower than the elytra and usually romaded on the sides. Osmoderma scrbra Dej, is a large long-legged beetle of a coppery purplish black color. 'The larva lives in decaying cherry and apple trees. According to Marris it is a whitish fleshy grub, with a reddish corneons head, and closely rescmbles the grub of the common dor-beetle. In autumn it forms an oval cocoon by ghing together the chips it makes, and the beetle appears in July.

Bupnestide Leach. This very extensive family is known by the serraten antenne, the onter joints of which are usually furnished with pores, which are either diflused on the sides, or concentrated in a cavity (forea) on the mader side or at the tip. The head is decply sunken up to the elliptical eres, and the labrum is small and prominent, while the mandibles are short and stout. The legs are short, the tibixe are usually
slender, and the species are generally long, flattened beetles of very tough thick consistence, and are found on flowers, or suming themselves on the bark of trees in midsummer. The

Fig. 416. larve are flattened footless grubs, with the prothoracic ring greatly cularged.

In Chatcophora the antemal pores are diffused on the sides of the joints, or only on the lower margin ; the mesosternal suture is indistinct ; the antemm are inserted in small forea, and the posterior tarsi have the first joint elongated. C. Tirginiensis Drury is one of our most common species, and may be seen flying about pine trees in hot days in May and June. Its larra bores into pines, often proving very injurious.

Dicerca is noted for having the tips of the elytra lengthened out and diverging from each other. Dicerca diraricata Say is frequently met witl ; it is smoother than usual and highly polished with a bronzed hue. The elytra are marked with numerons fine irregular impressed lines and small obolong square elerated black spots. The larwe attack the wild cherry and the garden cherry and peach. Diecrea lurida Fabr. is found on the trunks and limbs of the hickory.
The genus Chrysobothris differs in having the antemme inserted at the inner extremity of two short ohlique grooves, by which the front is narrowed; the anterior femora are strongly toothed, the thirel

Fig. 117. joint of the tarsi is truncate, while in the hind tarsi the first joint is elongated. The species are rather broad and flattened, with impressed bands and spots on the clytra. Chrysobothris femorata Fabr. (Fig. 414; a, larva; Fig. 415, larva of the
same gemus, found under loark of oaks) is greenish black above, with a brassy polish; it infests the apple and oak, in whiclı it lives one yeur. C. Hurrisii Hentz inhabits the small limbs of the white pine. It is also very injurions to apple trees and red maples. To prevent its attacks Fitch recommends placing a piece of soap, in a fork in the tree so that it will be washed down by the rains over the bark, while young trees may be rubbed with soap; this is an excellent remedy against the attacks of all kinds of borers.

The gemuine species of Buprestis occur in Europe. The largest species of this family known to us is the Euchroma Columbica Mann. which occurs in Central and South America. It is two and a half inches long and metallic green. Mr. MeNiel has sent to the Muscum of the Peabody Academy several immense white larve (Fig. 416, natural size), from Nicaragua, which are, without mueh doubt, the young of this gigantic beetle.

The small, 1attened, orate, angular Brachys

Fís. 418. is probably a leaf miner, as such are the habits of the closely allied genus Truchys (T. pygmea, Fig. 417, lava; 418, pupa), as olnserved in Europe where it mines the leaves of the Malva and Alcea, according to M. Leprieur.

Tinoscides Laporte. This small group has been separated from the succeeding family; the species differ in not having the power of leaping, owing to the immorable thorax. In Throsers the antenne are terminated by a threc-jointed chuls.

Elaterides Leach. A very large and easily limited family, in which the serrate, eleven-jointed antemax, are inserted upon or under the margin of the front, in groores, while the head is retracted, though sometimes free as usual from the prothorax, between which and the mesothorax is a loose articulation, enabling the species to leap in the air by a sutden jerking morement, which Dr. Leconte thus describes: "a few of the species of the first subfamily (Eucnemidæ) and a majority of those of the third (Elaterida), possess the singular power of springing in the air when placed on the back. This is
effected by extending the prothorax so as to bring the prosternal spine to the anterior part of the mesostemal carity, then suddenly relaxing the muscles so that the spine descends violently into the cavity, the force given by this sudden morement causes the base of the elytra to strike the supporting surface, and by their elasticity the whole body is propelled upward."

The larye, known by the name of Wire-worms, are regetable feeders, living on the roots of grass, wheat, corn, potatoes, tumips and other garden vegetables. Fig. 419 (enlarged four times) represents a larva of this family found by Mr. Sanborn in the roots of the squash vine. The eggs are laid probably in pastures and fallen ground where the surface is undisturbed, or in the ricinity of rotten wood. The larvæ moult three times, and some species are known to live in this state five yeurs. When fully grown they transform in an carthen cocoon, and may be seen rising out of the gromul during the summer, Fig. +19. especially in Junc. The larve are very long cylindrical (whence their name wire-worm), hard-horied and dificult to kill, and are generally pale testaceons, or yellowish red in color. They have only six thoracic legs, and a slight anal prop-leg; the borly is flattened towards the head and tail.

Eucnemis differs from the true Elaters in the serate antenme being inserted in approximate grooves at the margin of the thorax beneath, which makes the elypeus narrow. The

Fig. 420. species do not leap so rigoronsly as those of other leaping genera. Formax differs from Eucnemis in the antenne being filiform. In Adelocera (Fig. $4 \geq 0$, A. obtecta Say) the third joint of the antemnce is equal to, or larger than the fourth. In Elater and its allies, the antemme are wictely separated, being inserted in small carities (forear) under the margin of the front, and before the eres. Alcus oculatu.s Esch. is the largest Elater we have, the scutcllum is oral, and the elytra have a broad margin. The gents Elater has the front of the head convex and margined quite broadly, and the thorax is always
narrowed in front, with the tarsi ciliate beneath, and entirely simple. Elater obliques say is a small species about a quarter of an inch long, of a leathery brown color, and yellowish red on the prothorax and base of the elytra. In Agriotes and allies the front is rely convex, the edge of which is higher than the labrum ; the antenna are slender, scarcely serrate, the first joint being a little longer than usual.

In Lucius the front is convex, but not margined behind the labrum, the angle of the hind coxa are acute ant prominent, while the mesa-

Fig. 421. sternum is not prominent. Mr. Walsh has found the larva of L. (uttentutus Say (Fig. $4 \because 1$; fig. $4: 22$, larva) which lived in decaying wood for two years in his breeding jar. The
 genus Agriotes has the margin of the prothorax bent down in front, while in Iolopius it is straight. Agriotes manaos Say is a pale reddish brown species, while A. stabitis, much more abundant northward, is slenderer, of a darker hue, with a dark shade along the inner edge of each elytron. D. pamper Lac, is a small species found northward.

Melonotes includes some of our most common species, such as J. communes GyM., which is of the usual dull brown color. The genus may be known by the front being moderately Fig. tan convex, margined anteriorly, and the antone are serrate, with the first joint of the usual size, while the prothorax is lobed in front, and the claws are strongly pectinate. Fig. 423 represents a larva probably of this genus.

In Limonite and Allows the front is margined, the month placed farther forward from the prosternum, the coal plates are narrow, gradually dilated inwards,
 and the first joint is only moderate in length. In Fig. 423. Limonites the first tarsal joint is scarcely longer than the second, while in Athous the first tarsal joint is elongated, and the prosternal lobe is long. Limonius plebeius Lee, and T. ectypus Say are obscure reddish brow insects, with a slight fine pubescence.

In Corymbites the front is more or less flattened, and the coxal plates are marrow externally. C. pripennis Lec. is a shiny dark greenish species and is found northward. C. viri-
 dis Say is dull mahogany brown, mottled with a fine grayish bloom. C. cylindriformis Germ. is more common, and of the usual dull reddish brown. C. triundulutus Lec. is frequently found in New England, and Fig. 42t. has three transserse waved bands on the pale elytra; it is found on the blossoms of the rhubarb plant. C. hieroglyphicus IIaris (Fig. 4Dt, elytra) is a similar form.

To the genus IVprophorus belong the different species of Fireflies of Central and Sonth America. P. roctilucus (Fig. 425, natural size) is dark rusty brown, and has two large cye-like

Fig. 425. luminous spots on the sides of the thorax, and another at the base of the abdomen. Dr. G. A. Perkins in the "American Naturalist," vol. ii, p. 428 , states that "by placing the luminous parts of one inseet quite near the paper, very fine print can be easily read by its airl, though I cannot imagine the light, even of a laree number, to be sufficient for any practical illuminating purposes as has been affirmed by some writers. The Cuban ladies make a singular use of these living gems, sewing them in lace

Fig. 490. bags, which are disposed as ornaments upon their dresses, or arranged a.s a fillet for their hair."

The species of Melanactes are large shining hack insects found under stones, and are known by having the coxal plates gradually dilated inwards. The larree (Fig. 420, a luminous larva of this genus discovered by Mr. Sanborn in Roxbury, Mass.) are luminous and differ from others of this family, according to Osten Sacken, by their small sunken head, and the presence of a pair of ocelli. The ablomen ends in a prop-leg.

Cebrionide Westrood. This family differs from the preceding group in the greater number (six) of abdominal seg-
ments, the well developed tibial spurs, the expansion of the anterior tiliee at the apex, and in the close connection between the front and the labrum. The females are found at the entrance of holes which they excavate in the gromnd. (Leconte.) In Cebrio the labrum is separated by sutme from the front, and the anterior tibie are entire. Cebrio bicolor Fabr. is found in the Southeria States.

Ruipicerida Latreille. In this small group the head is prominent and the maxillæ have usually but a single lobe; the eleren-jointed antemae are inserted before and in front of the eyes, under ridges, and are serrate in the females and frequently thabellate in the males. The larae, in their general appearance, resemble those of the Elateride or Tenebrionidee, being eylindrical, the head amost of the same breadth as the body, which is hard and horny, more or less dark brown, and in Zenoa picea Beanr. is a little more than an inch in length. "The eighth segment is punctate all around, and more denscly than the

Fig. 122. others. 'The posterion' part of this segment is obliquely truncate, and is closed posteriorly by a romod, flat, horny piece, punctate on the outside and which can. to a certain extent, be opened and closed like a lid, being comected by a hinge superiorly, and an expanding membrane inferiondy. 'This lid is to be considered as the ninth segment of the alntomen." (Osten Sacken.) The larva, with the adult Zenoa picea, was found moder bark in Southern Illinois by Mr. Walkh. Sondelus (S. petrophy Knoch, and tarsus, Fig. 427). with short antenne, Habellate in the males, is found in rarious species of cedars.

Schizopodide Leconte. This small group is represented by only a single species, Schizopodus leetus Leconte. It resembles in form a Gallemea; it is of a metallic green color, coursely punctured, with red clytra, and is nearly six-tenths of an inch long. The head is bent down, closely affixed to
the prothorax, and the eleven-jointed antenne are inserted immediately in front of the eyes, under a slight prominence.

Dascrilide Guerin. This group embraces genera differing much from each other; the head is usually bent down, sometimes prominent; the antenme are eleren-jointed, distant at their insertion immediately in front of the eyes, being placed under a slight ridge, and the mandibles are not prominent. They all live on aquatic plants, and the larve are either like those of the Scarabcide, being provided with short four-jointed antennæ, and without ocelli, as in Atopa; or they are long, ovate, with distinct ocelii, long bristle-like antenure and very well developed limbs, as in Cyphon. The genus Prionocyphon has the first joint of the antennae much dilated, and the joint of the labial palpi is inserted on the side of the second; in Cyphon the palpi are normal. Baron Osten Sacken describes the larva of Prionocyphon discoideus Say as being long, flattened orate, like a sow-bug (Oniscus) with sharp lateral edges, the body slightly attenuated before and behind, of a leathery consistence, dull pale yellowish, and four-tenths of an inch in length. It was found by Mr. Walsh in the hollow of an oak stump filled with water, in which it "vibrated vigoronsly up and down a pencil of hairs proceeding from a horizontal slit in the tail; this pencil is composed of three pairs of filaments, each beautifully bipectinate. When at the surface this larra generally, but not always, swims on its back, keeping its body slightly below the surface, and striking with its feet, so as to jerk from point to point, in a eurred line. The pencil of hairs touches the surface all the time. "Oceasionally, says Mr. Walsh, "a bublle of air' is discharged from the tail. Generally, when it is beneath the surface, the anal pencil is retracted entirely. It has the power of jerking its body suddenly round, and darting up and down with great vigor. Its remakably long antemme are constantly ributing, like those of terrestrial insects. The pupa is white, with large back eyes which are rery conspicuons beneath, and two short black setice on the occiput. 'The body is covered with a short, white, erect down or pubescence. The antemm are about two-thirds
the length of the body, placed lengthwise beneath, side by side. The body is scarcely two-tenths of an inch long.

Lampheide Leach. The species of the family of Fire-flies resemble the Elaters, but they are shorter and broader, and of softer consistence. The head is usually immersed in the thorax; the usually eleven-jointed, serrate, rarely pectinate or flabellate antenne are inserted on the front rather closely together in the typical genera. The elytra never strongly embrace the sides of the abdomen, are sometimes short, and in some foreign genera entirely wanting in the females. The anterior coma are contiguous, conical, with a large trochantine; the middle coxa are oblique, and the hinder ones transverse; while the logs are slender or compressed and of moderate length. The larva are rather long, flattened, blackish, with pale spots on the angles of each segment.

In Lycus the antenne are inserted in front of the eyes, at the base of the long beak into

Fig. 430. which the head is prolonged, and the sides of the thorax are somewhat foliaceous. The female of the Glow-worm, Lampryis, of Europe is wingless. She lays her eggs, which are of large size, in the earth or upon moss and plants; the larra (Fig. 428, female of a species of this genus from Zanzibar), which feeds on snails, is said to become fully grown in April, and in fifteen dias assumes the imago state. An anonymons French anthor states, according to Westwood, that when the larva is ready to assume the pupa state, instead of slitting the skin in a line down the back, a slit on each side of the three thoracic segments is made, separating the upper from the lower surfaces." While the fomale is large and larva-
like, the much smaller male has broad elytra and a rather narrow slender body.

In the genns Ihotimus, of which there are numerons species in this country, the antenux are compressed, or nearly filiform,

Fig. 429. and the species differ from those of Lampyris, by the females haring wings. Nearly all have phosphorescent glands in the last alodominal segments.
The editors of the "American Entomologist," p. 19, give the history of P. phralis Limn. (Fig. 429 ; a, larva ; e, muderside of a segment ; f, head ; d, a leg; b, pupa in its cocoon of earth; c, the adult). The larva lives in the ground, feeding on earthworms and soft bodied insects. When fully grown, or churing the latter part of Jume, it forms an oval carity in the earth and pupates, and in ten days becomes a beetle.

In Photuris the wings and elytra are complete in both sexes, while the heal is narowed behind, and the labrum is distinct. P. Pensyluarica DcGeer (Fig. 430, and 431, larva) is our most common species, and the larva figured I regard as

Fig. 431. belonging to this species. It is not nucommonly met with in the evening shining brightly as it crawls along, and is blackish

Fir. 13. family, and related to the gemus Drifus. It was found by Rev. E. C. Bolleş, at Westbrooke, Maine, muder leares, and it probably, like other larye of this family, is carmivorous. Its body is very flat, with the sides of the head
and each ring of the body produced into a remarkably long, soft, fleshy tubercle, while there are two rows of black spots along the back.

In the genus Phengorles, the females of which are not yet known in this conntry, the third and following joints of the antemse enit two very long, slender and flesible pubescent branches from near the base; the second and third joints are rery short. The elytra are one-third the length of the abdumen, and are strongly divergent and subulate. Dr. Leconte describes Phengodes plumosa Olis. as heing testaccous, with the antemae, excepting the base, and the namow tips of the elytur fuscons, and the sides of the thorax broadly depressed ; it occurs from New York to Texas. In Chendiognathus the antenne are filitom; the elytra are as long or nearly as long as the ablomen and rounded at tip, while the anterior margin of the thorax is romnded. C. Pensyltanimes DeGeer (Fig. 434; a, larra; b, head enlarged; c, labium; d, lalomm; e, a leg : f, maxilla; ! $/$ autenna ; h, man(lible), in the larva state devours

Fig. 43. the grubs of the plum enculio. (American Entomologist, i, p. 35.) In Telephorus the head is never concealed by the thorax, and the later is rounded from the sides along the fiont margin, the front of the head is emarginate at tip; the claws are tootherl. being velrely clopt. The species are found on the leaves of trees in June. Walsh states that the larva of T. Carolina Fabr, preys on woodfeeding larve. Mr. P. S. Spragne has reared the larva of T'. bitinentus Say. He found it near Boston under stones in spring, when it pupates, and early in May hecomes a boetle. It is found on the leaves of the birch as soon as they are expanded.

Malacirde Redtenbacher. 'This small group, often united with the preceding family, is chietly distinguished by the antennee being inserted on the sides of the front, and by the body in some genera being furnished with soft extensible resicles, while the abrlominal segments are in part membranons. Werlachius and its allies are of small size. Some of them resemble
at first sight some Staphylinidx; they frequent flowers and the hanks of ponds and streams. The females of ificrolipus are apterous. .

Clemint Kirby. These beantiful flower beetles are known by the prominent heal, the usually cmarginate eyes, and the usaally cleven-jointed antenna inserted at the sides of the front, and either serrate or pectinate, with the outer joints enlarged, forming a servate, or rarely a compact. club. Their

Fig. 435. bodies are slender, with slender legs. They are rapid in their morements, and rom like ants (which they much resemble when in motion) orer flowers aurd trees to feed on the sweets and sap. The larye are carnivorons and infest the nests of bees. They are flattened, hairy gruls, the tip of the abdomen ending in two horny points. Those of the generat Corynetes and Necrobid live on dead animal matter.

In Priocera (Fig. 43ă, P undulata Say) the eyes are couscly gramuted ; the antemma are serrate, and the inaxillary palpi are cylindhical. In

Fig. 430. Elasmocern (E. teminatus Say, of, Fig. 436) the antenna are ten-jointed, the last juint being very long and flat.

The genus Trichodes is known by the maxillary pulpi being somewhat dilated, otherwise it agrees with the suceeding

Fig. 137. genus. T. Nuttellii Kirly is aboundant in August on the flowers of Spirea alba ; its larva is to be looked for in the nests of bees. In Europe T. aprutius Linn. (Fig. 437 ; a, larva; b, pupa) has long been known to clerour the young bees. In its perfect state it is found on flowers.
In Clewes the head is large, the eyes not very prominent, finely granulated, the antennal chb is somewhat triangular; the maxilhary palpi are not dilated, and the posterior tarsi are
moderate in length and broadly dilated. Thunasimus differs in the body being hairy, while the posterior tarsi are longer and scarcely dilated. The long narow slender pink larvo can be found under the bark of dead pine trees where they probably prey upon the larve of Hyluggus and Hylobius. The larwe of Clerus are of a beantiful red color. The European Clems alcearius infests the nests of the Mason-bees, Osmia and Megachile. "The larva when hatched, first devours the grub of the bee in the cell in which it is born and then proceeds from coll to cell, preying upon the inhabitant of each until arrived at maturity. It is in this situation, also, that it undergoes its changes in a small cocoon, which it has previonsly constructed, making its escape from the nest in the beetle state, where the hardness of its covering sufficiently defends it from the stings of the bees." (Westrood.)

Lraenvlide Leach. This small group, chicfly interesting as contaning a gemus which has proved of great mischief to the ship timber of Europe, from its boring habits, is distingnished by the head being bent down and narrowed behind ; by the usmally very large eyes, the two ciliate lobes of the maxilla, the palpi of which are stout, four-jointed, and in the male very large and flabellate, while the madibles are short and obtusely bidentate. The body is long and narrow,
 with slender legs. The genus Lymexylon has five alktominal segments. The larra is very long and slender, with the first thomacie segment dilated into a large hood, while the terminal ring is proluced into a large obtuse lobe. In Europe it greatly injures oak trees and ship timber, but our species (Lymerylon sericemm IIarris, Fig. 438, and antemna, legs and palpi) is too rare to be of any harm at present.

Cepeside Lacordaire. Leconte states that "the affinities of this family are very obsente; in the form and insertion of the antenme it is similar to the first genera of the next family, hat other characters, such as the form of the cosa and the retractility of the legs, are at rariance. The body is covered
with small scales as in the genera alluded to." Cupes capitata Fabr. is black with the head red; while Cupes cinerea Say is pale gray, with darker lines. They are found under the bark of decaying trees, and also occasionally in honses. (Leconte.)

Prisine Leach. These are small beetles, often of an obscure brown color, somewhat oral in shape, and truncated behind ; the nine-jointed filiform antennæ are inserted on the front, or sides of the front; the head is retractile, frequently

Fig. 439. protected by the prothoras ; the labrum is distinct; the maxillae have two ciliate lobes, and the maxillary palpi are short and forr-jointed. The legs are slender, contractile, and the insect when disturberl draws them up and feigns death. In Ptinus the antenne are inserted on the front very close together, the legs are long, not contractile, with large trochanters; the teeth of the mentum wre acute, and the laturum is rounded. The males differ from the short and thickened females in being long and narrow. The beetles are found about out-houses, the wood of which they perforate in various directions. Itimus fur Linn. (Fig. $438 ; a$, larra), the most commonly diftused species, is known to attack museums and collections of insects. It is . 15 of an inch in length, and uniformly chestnut brown in color. The larva here figured was found eating the dried contents of a shell in the Museum of the Peaborly Academy of Science.

Sitodreper panicea Fabr. (Fig. 440, pupa) is a Fir. 410 . small insect like Anobium, of a pale reddish brown color, with much pater dense latirs. It is .13 of an inch long. The larra resembles in its form that of Ptinus, but the body is much thicker, not growing smaller towards the head as in that genus; the end of the body is smooth, obtusely rounded, with fine hairs ; it is .08 of an inch long and undoubtedly grows larger. It occurred in all its stages and in
great abundance in several nests of Tespa in the Museum of the Peabody Acadeny, where it undoubtedly eat the dried remains of the wasps ; it was extensively preyed upon by a Pteromalus-like Chalcid.

The genus fnobium is cylindrical, the eleven-jointed antenner are distant from each other at base and inserted immediately in front of the eyes, the mesosternum is flat, and the unterior coxa are nearly contiguous. The larva is thick and llesly, resembling some Scarabaid larva in the fleshy haggy tip of the abdomen, except that they do not lay on their side when walking. They construct a silken cocoon interweaving the particles of dust they make. A. notutum Say is mackish

Fig. 101 above, raried with ashen, and the posterior angles of the prothorax are rather acute. In Europe they are called Deathticks, as the ticking made by them in the walls of houses, a familitu sound in this country, was supposed by the superstitions to amounce the death of persons, though it is but a sexual call. Dunbt having been thrown on the statement that Anobium causes the tieking noise, Mr. M. Doubleday states in the "Entomologist," rol. iii, p. 66, "I can speak positively with regard to the Auobium, and I assure you that this little beetle profluces the loud tieking sound by raising itself upon its legs as higin as it can, and then striking the head and under part of the thorax against the substance upon which it is standing, generally five or six times in suceession, and it always chooses a substance which produces the most sount. It is eridently a call mote from one individual to another, as yon very rarely hear one rap withont its being immediately answered

Fig. 412. by another." Mr. Sanborn has reared the larva (Fig. 441, enlarged) of Ernobius mollis Fabr., which is a near ally of Anobium.

Bostrichus and its allies are distingrished by their long bodies, the heat being usually bent down and covered by the hood-like thorax; the antenne are distant and the anterior coxx are contiguous. They are found in fungi or under bark. In Bostrichus the front is margined on the sides. In Amphicerus the front is not so margined. The apple twig borer, A.
bicaudatus Say (Fig. 442) in the valley of the Mississippi, is very injurious to apple trees, boring under the burk of small twigs "just abore one of the buds, and on catting into them it will be noticed that a cylindrical hole, about the size of a common knitting needle, extends downwards from the perforttion above the bud, through the very heart of the twig, for the lengtl of an inch and a halt." (Walsh.) The larra which I have received from Dr. Shimer, has much the same form as that of Lyetus, but the head is more prominent and also the sides of the body. The anterior half of the body is considerably thicker than behind and the legs are provided with long hairs; the end of the body is smooth and much rounded. It is .30 of an incly long.

Specimens of Rhizopertha musila have been introluced, Leconte states, into wheat distributed from the Patent Office. In this last genus the eighth and ninth joints of the antennæ are triangular.

In the genus Lyctus the head is prominent, the body long and hatrow, and the cluls of the antemm is two-jointed, while

Fig. 4 43. the outer apical angle of the anterior tibice is prolonged. We have received from Dr. H. Shimer, I. opkentus Lec., in all its stages (Fig. 44:; a, larva; b, pupa). The bectle is chestnnt brown, with short yellowish hairs and puncto-striate elytra; it is 20 of an inch in length. The larva is white, its body is eylindrical, thick and fesher, with a small head and strong black mandibles; the thoracic rings are thickest. It is .17 of inch long. According to Dr. Shimer it eats the wood of dead grape vines.

Crorbe Leach. This small group is known by the maxille being exposed at the base, the two ciliate lobes of which are flattened, and the eight to ten-jointed clavate antconæ are inserted at the anterior margin of the eyes; the hearl is protected by the prothorax, which is cylindrical, romeded in front, with the lateral margin distinct. The species of the gemns Cis, which have ten-jointed antemee, are very small, cylindrical, dark colured, gregarious beetles, which live under the bark of
trees, and in dry, woodly species of fungi. Some males have the head and anterior margin of the thorax hormed.

Tenebrionide Latreille. This is not a very easily limited family; the most trenchant characters, however, are stated by Leconte to be these: the two-lobed maxilae hare the smaller lobe sometimes armed with a terminal corneons look; the palpi four-jointed; the mandibles are usually short, robust and furnished with a basal tooth; the eyes are usually transverse, and the antenne are generally inserted under the sides of the head, or at least under a small frontal ridge, and are usually eleven-jointer, clavate, subserate or very rarely pectinate, as in Rhipidandrus. 'The elytra are rombled at tip, covering the abdomen, and frequently embracing its sides rery fur down, while the hind wings are frequently wanting. The legs vary in length; the anterior coxe are globose, withont any trochantine; the hind tarsi are four-jointed, and the abdomen has five free segments, the first three appearing more closely united than the others. The larve are slender, flattened, horny, resembing the wire-worms; from two to five ocelli on each side, or wanting entirely, and the last ring of the body often has two spines. The larre (Fig. 44t, larva of an unknown species) moult
 several times, and when about to transform make no co- wita at coon, the bcetles appearing ip about six weeks. Dr. Leconte says that the distribution of the genera of this family is very remakable. Of those without wings scarcely any are common to the two continents. With the exception of three, they are not represented in North America, east of the longitude of the mouth of the Platte or Nelraska River ; from that point they increase in number of genera, species and individuals, until in California they form the characteristic feature of the insect fama."

We can only notice a few genera, interesting to the general reader, and refer the special student, as heretofore, to Dr. Leconte's able treatment of the Colcoptera previonsly cited.

The genus Blaps, in which the hind wings are olsolete, does not ocenr in this country, being represented by numerons species of Elodes and Promus. The European Blaps mortisaga is
the Church-yarl beetle. Dr. Pickells states, according to Westwood, that "one of these beetles was immersed repeatedly in spirits of wine, but revived after remaining therein all night, and afterwarls lived three years." The larve are eaten by the women in Egypt, after being roasted.

In Chis the legs are long, with small tibial spurs, while the tarsi are clothed beneath with a silky, golden pubescence, the hind tarsi being long, and

Fig. 445. the epipleure are gradually narrowed towarls the base of the elytra. Upis ceramboides Linn. is a fine large, deep purple black bectle, with roughly shagreened elytra, and is found under the bark of trees. In Tenebrio the body is long ovate and winged, the legs are slender, the femora swollen less than usual, with larger tibial spurs; the tarsi are clothed with a rigid pubescence, and the epipleure extend to the tip of the elytra. Tenebrio molitor Linn., the Meal worm, is found in all its stages about corn and rye ineal; it is frequently swallowed with foot. "It is also very destructive to ship-bisenits packed in casks, which when opened are fombleaten though in holes by these insects and their larve." (Westwood.) The larva is about an inch long, cylindrical, smooth and glossy, with the terminal segment semieitenlar, slightly serrated on the edges, and terminated in a single point. An allied beetle in Brazil is known to eject a caustic fluid, and in Europe some are known to cover themselves with this fluit. In Boletrophagus the antemme are eleven-jointed and the eyes are contirely divided. B. cormutus Panzer (Fig. 445, $\%$, a, larva; b, pupa, δ), as its name implies, lives in those fungi, which, accordiug to Dr. Leconte, either grow upon trees or under hark, and may be known by the front of the head being prolonged and margined anteriorly and on the sides, covering the month above, often thus dividing. the eyes, while the dull black body is covered with stout tubercles. It is found in all its stages in fungi, in August. The
larva is long and narrow, cylindrical, the head free from the body, rounded, with stont, broad, triangular mandibles; the tip of the abdomen is square, with a sharp spine on each side. It is 80 of an inch in length, and of a dark chestnut brown color.

Eglalitide Leconte. This family is represented by a single species, AEgialites debilis Lec., from Russian America.

Crstelide Latreille. This group, as Leconte states, "appronches very nearly to the more degraded forms of the Tenebrionido, and the degradation of structure is carried still farther by the anterior coxa becoming conical, prominent, and contiguons in certain genera. The only characters to be relied on for isolation in this fanily are, first, the pectinate claws; and secont, the anterior coxal carities being closed behind. They are fomd on leares and flowers, or under bark." Allecula at first sight somewhat resembles an Elater. Cistela differs from its allies in having the last joint of the maxillary palpi longer than wide.

Lagrime Westroorl. This inconsiderable family differs from the Tenebrionidce, in the greater prominence of the anterior cosee, and the difated penultimate joint of the tarsi, thongh the larree differ in being rather long, almost as wide as long, convex above, and with the exception of the large head are thickly covered with hairs. There are two genera, Arthromeura and Statyra, which are found on leares and under bark.

Moxommbas Lacordaire. This little gromp is a very distinct one, composed of small, black, oval, flattened beetles. Monommu is confined to the Eastern Continent, and a species of Hyporthagus is fomut, one on the eastern, the other on the lacific side of this country.

Melandifide Leach. This gromp comprises a few species of elongate form, with two batsal impressions on the prothorax, ant the first joint of the hind tarsi is always moneln elongated. They are found under bark and in fingi. In Metandrya the
head is bent forward, the base of the prothorax is simons, but not distinctly lobed, and the elytra are striate. M. striata Say is found in the Atlantic States.

Pythida Lacordaire. This is a small group of mostly northern species found living under bark and stones. Pytho and its allies resemble some Tenebrionidce.
(Fimemeride Latreille. This group comprises insects of moderate size, and, according to Leconte, generally fomd on plants, though some species of Asclera live on the ground near water, and Microtonus sericans is a very small brown sericeous insect, found on leaves in the Atlantic States.

Cepifaloide. Leconte places in a distinct family, the single species, Cephuloon lepturides Newman, which is found on plants northward.

Mordellide Leach. These are curious small, werlgeshaped, glistening, pubescent, black beetles, which ocour in abundance on the flowers of Golden-rods and asters, and when disturbed leap off like fleas, or slip suddenly to the gromnd. Anaspis has the fourth joint of the anterior and middle tarsi very small, and the body is fusiform, with oval eyes. In Mordella the body is wedge-shaped, the cyes are finely granulated, the scutellum is triangular, and the last joint of the masillary palpi triangular or securiform. The larve are said to live in the pith of plants during autumn, and are long, suberlindrical, and the sides of the rings are furnished with flesly tubercles. Mordellistend differs in the hind tibiee having subapical and oblique ridges.

Antircidss Latreille. Of this small group, Notoxus anchora INentz is noted for having the head prolonged over the month into a horn; it is fomd in marshy places. Leconte states that Tanarthrus solinus Lee. flies and rums on salt mud like a Cicindela; it oceurs in the Colorado desert. The numerous species of Anthicus live in sandy places near water. Formicomus is ant-like, being wingless.

Pyrochroide Latreille. A small group of beetles which are found under the bark of trees; they generally have a reddish thorax contrasting with the black head and elytia. "The branches of the pectinate male antenme are rigid in Pyrochroc, and rery slender and flexible in Dendroides; in Schizotus they are of an intermediate form, and somerwat flexible." (Leconte.) The larva of Dendroides is a very flat whitish grab, with two large curved spines on the tail; it lives muder the bark of pines and other trees. Two species of this genus, D. concolor Newman and D. Canadensis Latr., are equally common in New England. Fig. 446 , enlarged, represents the larva of a species of Pyrochroct, of which P. flabellatic Fabr. is a type.

Meloide Gyllenhal. This is a family of great interest from the parasitic habits of the larve, which differ remarkably from the adult forms. The head is
 much bent forwards, and is suddenly constricted far Fig. 446. behind the eyes into a small neek; the eleven-jointed antenne are inserted at the sides of the front, before the eyes; the elytra are variable in form, but when abnormally shortened, are orate, rather than square at the tip, and the hind wings are often absent. The legs are long, the hind tarsi are fourjointed, the penultimate joint usually cylindrical. They are soft-bodied, cylindrical, slender beetles, and are always found on flowers. The larree are orate, flattened, often rery minate and then somewhat resembling the Peliculi in habits. Meloe is a large dark blue beetle found about buttercups and cranling on grass in May and again late in Angust. The elytara are small and short, overlapping each other on the large orate full abdomen; the claws are cleft, the male antenna are twisted and knotted. The eggs are lain in the gromed, prohably near the nests of hees, for in the early spring, the young larse receutly hatched are found on the bodies of rarions bees, such as Bombus, Halictns and Andrena, and also varions Syrphi and Musce frequenting the flowers of the willow in April, whence they are conveyed by the agency of the bees. On these flowers we have found them in abmondance. They are very active in their labits, and dificult to rear in confinement,
which can only be done by confining the bees on which they are found, and supplying them with flowers. When the bee becomes exhansted by the loss of Huids dram out by its parasite, it is quickly deserted by these minute torments for a newly introduced and more lively bee. The

Fig. 417. length of the larra at this period (Fig. 447) is . 06 of an inch. It differ's very remakaluly from those of the neighboring families, which are generally oral, being long and linearoblong, flattened. The three thoracic rings are of equal size, transversely oblong, the head being of nearly the same size with one of the thoracie segments, and provided with short anteme. The legs have long chars with an intermediate long pad. From the tip of the abdomen proceed tro pair of sete, the inner one much longer than the other pair. It is shorter than that of M. violaceus, figured by Newport, who has, with great sagacity, cleared up the remarkable history of this genus. It is undoubtedly the young of our common IVeloe angusticollis Say (Fig. 448). The larwa are convered by the bees themselves into theil nests where they prey on the larve and bee bread. When full-fed and ready to pass through their transformations, instead of at once as-

Fig. 48. suming the pupa state, they pass throngh what has been called by Fabre a "hypermetamophosis." In other words the changes in form preparatory to assuming the pupa state are here more marked than usual, and are almost coegual with the larva and pupa states, so that the Meloe instead of passing through only three states (the egg, larva and pupa) in reality passes throngh these and two others in aldition which are intermediate. Fabre states that the larva, soon after entering the nest of its host, changes its skin and assumes a second larral form (Fig. 449) resembling a lamellicorn larva. Newport, however, who with Siebold has earefully described the metamorphosis of Melue, does not men-
tion this stage in its development. In this stage the larra is said to be motionless; the head is mask-like, without morable appendages, and the fect are represented by sir tubereles. This is, properly speaking, the "semipupa." This form, however, accorling to Fabre, changes its skin and turns into a third larval form (Fig. 450). After some time it assumes its true pupa form (Fig. 451) and finally monlts this skin to appear as a beetle.

In Iforia and allies the head is large, square behind,

Fig. 14.). and the front is not prolonged beyond the base of the antemne. Horia sarguinipennis say is now placed by Leconte in the
 genus Tricrania, which differs in the last joint of the maxillary palpi being longer than the thide and by the triangular hearl. It is found in the nest of the humble bee, and in the Wrast Indies a species of Horia is found in the nests of Xylocopa teredo, a species of carpenter bee.

Sitoris, an Europenn genns, has much the same Fig. 450. habits as Meloë. Its egos are latidnear the entrance of bees' nests, and at the very moment, according to Fabre, that the bee lays her egg in the honeycell, the flattened, oral, Sitaris laura drops from the body of the bee upon the egg and feasts upon its contents. It then feeds on the honey in the cell of the bee and changes into a white, cylindrical, nearly footless grub, and after it becomes fullfert, and has assumed the supposed "pupa" state, the skin, without hursting, encloses a kind
 of hard "pupa" skin which is rery" similar in outline to the former larva,

Fig. 4.51^{-} and within this skin is found a whitish larma, which directly changes into the true pupa. These changes M. Fabre calls a "hypermetamorphosis," but it will probably be found that the two socalled "pupa" states, immediately preceding the
Fig. 452. final genuine pupa state he describes, are but changes of the semipupa, and can be paralleled in some degree by the remarkable changes of the bee and moth noted by us previously.

The Blister beetles, of which Lyttch (Cantharis) affords many species, secrete the substance known as "Cautharadine." The

Spanish-fly is used in commerce, and is a bright shining green species. Our native forms, which as well as Meloe, when dried, can be used for producing blisters, are dark colored. Their larre have the same form as that of Meloë ; it remains yet to ascertain their true habits, though Latreille states that they live beneath the
 gromnd feeding on the roots of vegetables. Among the species of Blister beetles which are especially injurious to the potato are Lyitta vittota Fabr. (Fig. 452), L. cinerea Fabr. (Fig. 453, a), L. murina Lec. (Fig, 453, b), and L. marginata Fabr. (Fig. 454).

Phodaga alticeps Lec. (Fig. 455 ; 1, front of male; 2, profile of male ; 3, anterior tibia and tarsus; 4,
rig. tat. midelle tibia; 5 , claw; from Horn) is a Californian species, remarkable for the great differences between the sexes, in the form of the legs and tarsi.

Rimpipioride Gerstacker. This family is characterized by Leconte as having a vertical head, with perfect mouthparts, affixed to the prothorax by a very slenter neck, which is entirely contained within the prothorax, while the rertex is

Fig. 4.s. usually elevated. The eleven-jointed antenne (ten-jointed in the female of certain specics) are pectinate or flabellate in the males, and frequently serrate in the females. The prothorax is as large as the elytra at base, much narrowed in front, and the elytia, rarely covering the abdomen, are ustally narrowed behind, divergiug on the back. The legs are long and slender, with filiform tarsi, and the claws are pectinate or toothed, being rarely simple. They are found on flowers. The larval
forms are not yet known. Rhipiphoms is a wedge shaped genns, not found in America. R. Fimicus Paykull is said to be a parasite on Chrysis, the cuckoo wasp. It is here represented by two genera, Macrosiagon and Emmenadia which are wedge-shaped, with coarsely punctured aud sparsely pubescent bodies, with the vertex of the head much elerated. In Myodites the elytra are very small. The species are found on Solidago or Golden-rod in Angust. The genus Metocers is allied to Myodites. Metocus paradoxus Lim. is in Europe a parasite in the nests of wasps (Vespa) eating the larve.

In the genus Rhipidtus the males hare short pointed dehiscent elytra, while the females are entirely wingless and worm-like. It is a parasite on Blatta Germonica. They are to be looked for in this country, where they have not yet occurred.

Srylopide Kirly. This most anomalons family, both as regards the structure and the habits of the few species composing it, were for a long time excluded from the Coleoptera by systematists generally, and by Gerstaecker they are even now placed in the old "order" Strepsiptera. They are minute forms, and have been characterized thus hy Dr. Leconte. "Oral organs atrophied except the mandibles and one pair of" palpi. Head large, transverse, vertical, prolonged at the sides, forming a stout peeluncle, at the end of which are situated the eyes, which are convex and very coassly granulated. Antenne inserted on the front, at the base of the lateral processes of the head; forked in one genns. Prothorax exceedingly short. Mesothorax short, bearing at each side a slender, coriaceons club-shaper appendage, with the inner margin membranous: this appendage ropresents the elytra. Metathorax rory large, greater in bulk tham the rest of the body, with the sutures of the dorsal pieces all distinct. The postscutellum is conical and prolonged far orer the base of the ablomen; wings very large, fan-shaped, with a few diverging nervures; the epimera are very large, and project behind almost as far as the postscntellum. Abdomen small, with from seren to nine segments. Leg's short ; anterior and middle coxe cylindrical, prominent; hind cosx very small, contiguous, quadrate; tibia without
spurs; tarsi withont claws, joints each with a membranous lobe beneath." The females are sac-like. They live enclosed in the body of the bee.

In Stylops the antennæ are six-jointed, ant in Xenos they are four-jointed. From the middle of May until late in June both sexes of Stylops may be found in "stylopized" individuals of Andrena and Polistes. The flattened triangular head of the female may be seen projecting from between the abdominal segments of the bee, and sometimes there are two or three of them. Oin carefuly drawing out the whole body of a female Stylops Chilureni (Fig. 4ă $;$; a, ah-
 domen of bee enclosing the female Stylops ; b, top view), which is very extensible, baggy and full of a thin fluid, and examining it under a high power we found multitudes, at

Fig. 456. least three lumdred, of rery minute Stylops larve, like particles of dust issuing in every direction from the body of the parent. Most of them escaped from near the head, over which they ran, as they must do, when the parent is in its natural position, in order to get out upon the surface of the bee. It thus appears that the young (Plate 3, fig. 6, $6(a)$ are hatched within the borly of the parcnt, and are therefore viviparous. The head of the female is flattened, triangular, nearly equilaterally so, with the apex or region of the month obtuse, and the two hinder angles each containing a minute simple eve ; the larger part of the head aloove consists of the epicranium, which is narrow in front, with the edge convex; the mandibles are ousolete, being two flattened portions lying in front of the gena and separated from that region ly a rery distinct suture; no clypeus or labrum ean be distinguished. The mouth is transverse aud opens on the upper side of the head, while in front, owing to the position of the month, lies the rather large lahium and the rounded papilliform maxilix.

The larra is elliptical in form, the head semioval, while the
tip of the abdomen is trumate; the sides of the borly are straight, there being $n 0$ well defined sutures between the segments; seen laterally the larra is thickest at the metathoracic ring. 'Two simple eyes are situated near the base of the head. The borly is so transparent that the intestine can be traced easily to just before the tip, where it ents in a cul de sut. The two anterior pairs of legs are much alike; coxe short : femora and tibix small, cyliudrical : a slender tibial spur ; the tarsi consisting of a single clavate joint equalling the tibia in length, being much swollen at the tip, and without claws. The hind tarsi are longer,

Fig. 157. very slender, two-jointed, the terminal one being bulbous. The terminal styles, inserted in the tenth abdominal ring, are a little more than one-half the length of the body, which is covered with long setose scales. In their morements these infinitesimal larve were rery active, as they scrambled over the body of the parent, holding their caulal setae nearly erect.

On the last of April we caught a male Stylops Childreni Westwood (Fig, 457 , and 458) in the same net with a stylopized Andrena placida, and as the abdomen of the male was long and very extensile, its tip being providerl with a capacious forceps for seizing the body of the female, it is most proba-

Fig. 458. ble that the female described belonged to the same species. and that at this time the short-lived male, for this one lived but for a day in confmement after capture, unites sexually with the fomale. It appears then that the larwe are hatched during the middle or last of June, from the eggs fertilized in April, and which are retained within the body of the parent. The laree then crawl on to the body of bees and penetrate within the abdomen of those that are to hibernate, and live there through the winter. The entire body of the male is, with the
head and antennæ, of a velvety black, the abotomen slightly brownish, while the legs and anal forceps are pale resinous brown, and the tips of the tibiee and the tarsal joints pale testaceons. It is about one-fourth of an inch in length.

The succeeding fanilies comprise the divisions Tetramera and Trimera of early anthors, in which the penultimate joint of the tarst is but slightly developer, forming an entargement at the base of the last joint, with which it is closely united.

Brcoudde Leach, This small family comprises Curculio-like beetles of short rounded form which are noted for their activity and readiness to take flight when disturbed. They differ from the Curoulionide in the proboscis being folded on the chest, the antemme being short and straight and inserted in a cavity next to the eyes. There are 300 species of Druchus known. Bruchus pisi Limn., the Pea weevil, is found in peas in the spring at sowing time. It appears soon after the pea is in flower, laying its eggs on the flowers. The young larra feeds in the growing pod, on the pulp of the pea. Peas infested with them should be soaked in boiling hot water before sowing. Bruchus fubi Linn. in like manner infests the bean.

Curculionide Latreille. The weevil family may be at once recognized by the head being lengthened into a long snout or proboscis (used for boring into olvjects when about to oriposit), near the mitille of which are situated the long, slenter, elbowed antenne. At the extremity of the snout are situated the mouth-parts, which are much reduced in size, the palpi having small romoded joints. Their bodies are hard and genernlly round and often rery minute. They are rery timid and quickly feign death. The larve are white, thick, fleshy, footless gitubs, with fleshy tubereles instead of legs, and are armed with thick curved jaws. They feed on muts, seeds, the roots, pith and bark of plants, leaves or flowers, and especially the fruits, while some are leaf-miners and others are said to make galls. Preparatory to transforming they spin silken cocoons. The number of species already known is immense, being not less than from 8,000 to 10,000 , and upwards of 630
genera have been already described by Schönherr and others, of which we can notice but a few of the most important.

Brenthes and its allies differ fiom the following genera in their remarkably long and slender bodies, the shout being stretched straight out, not bent down as usual; while the slightly elavate antenne are not elbowed. Dr. Harris gives the history of B. septemtrionalis ILerbst (Fig. 459). The female in midsummer punetures with her long snout the bark of the white onk. The grub, when hatched, bores into the solid wood; it is nearly cylindrical, whitish, except the last segment, which is dark brown and homy, and is

Fig. 500. obliquely hollowed at the end, which is dentate, forming a scoop by which the larva clears its gallery of chips. There are three pairs of legs and an anal prop-leg. The pupa is

Fig. 460.
 described as being white, with the bead bent on the chest between the wings aud legs. On the back are rows of sharp teeth, with two larger thorns at the anal tip.

Harris states that "the different kinds of Attelabus are said to roll Fig. 461. up the edges of leaves, thereby forming little nests of the shape and size of thimbles to contrin their eggs and to shelter their young, which afterwards devonr the leaves." A. anclis Illiger (Fig. 460) is dull red, with dark blue antenna and legs. In Rhyuchites the head is not contracted behind into a neck. R. bicolor Fabr. injures rarions roses, will and cultivated. It is red above, with the antenne, legs and sides of the body black.

The little seed weevils, Apion, are pear-shaped and generally black. Apzon Soyi Schönh.

Fig. 462. (Fig. 461) lives in the pods of the wild Indigo. It is black and one-tenth of an inch in length. Bulanimus, the nutweeril, is oval in shape, with a very slender snout, nearly as long as the body. B. naticus Say (Fig. 462) is fonmet on hazel bushes, and probably infests the nots. Harris describes
it as being dark brown, and clothed with very short, rustyellow, fattened hairs, which are disposed in spots on its

Fig. 463. wing covers. It is nearly three-tenths of :un inch long, exclusive of the snout.

The genus Ifylobius has the antenme inserted before the midule of the snout, not for from the sisles of the mouth. The P'ine weeril, Hylobins peles lierbst, is very destructive to pines, the pitch-pine especially. Thiss decp chestnat colored weerii is very abment in May and June. It has a line on the thorax, and yellowish white dots scattered over the body, while the thighs are toothed beneath, and the slender cylindrical snout is nearly as long as the thorax. The larva are found moder the bark. In ohl trees it burrows under the bark, its galleries extending irregularly orex the inner surface of the bark and in the sap wood.

The White-pine weevil, Pissodes strobi Peck (Fig. 463; a, larya; b, pupa), equally destrmetive with the former, is a smaller beetle, more slender, and oblong oral in form. It is rust-colored brown, with two white dots on the thoras, a white scutellum, and behimt the middle of the elytra, which are pronctured in rows, is a transyerse white line. ILarris states that its eggs are deposited on the learling shoots of the pine, probably on the outer bark, and the larra when hatched bores into the shoot, and thus distorts the tree for life. The pupa is found just under the bark, the beetles appearing in the autumn, thongh in much greater numbers in May.

We have found this insect, in all its stages of growth, under the bark of the white pine the last of $A_{\text {pill }}$, the larve being the most numerons. The larva is white, footless, cylindrical, with a pale reddish heat. It is .32 of an inch long, and transforms in a cell. The pupa is white, the tip of the abdomen being square, with a sharp spine on each
side. It is .30 of an inclu long. An insect that would be readily mistaken for the Hylobius polles is the Otiorthechus sulcatus of Fabricius (Fig. 46t), which is of much the same color, but with a thicker body.

The Plum Gouger, Authonomus prunicida Walsh, resembles the Plum curculio in its habits, and, accorting to Walsh, is equally as common in Northem and Central Illinois. It makes a round puncture in the plum, sometimes fire or six, from which the gim copiously exules. Instead of living, howerer, in the pulp, it devours the kernel and ustadly transforms inside the stone of the fruit. "The thorax of the plum grouger is ochre-yellow; the heat and hinder parts slate-color, the latter with irregular white and black spots. In common with the other species of the genus to which it helongs its snont usually projects formard, whereas that of the Curculio msually hangs perpendicularly downwards." (Walsh.) A. syomhenta W:alsh is brown-hack and was bred by Mr. Walsh from the galls of rarious sam-flies found on the willow, and he supposes that this species, "while in the larva state, must destroy the eggo or the very young larva of the gall-making Nomatus, just as A. crategi Walsh evidently does; which was form in an undescribed Cecidomyian gall on the thom bush, and just as the larra of A. scutellutus Schönh. graduaily destroys the young plant-lice among which it lites; otherwise the two lave would exist in the same gall." Walsh has also bred A. tessellutus Walsh from the Cecidomyian gall, C. s. brassicoides. It is "a very constant species and easily recognizable by the tessellate appearance of the elytra." A. quadrigibut say punctures the apple, making from one to twenty holes in the frut.

The Cramber'y weevil, as we may call it, or the Anthonomus suturalis Lec., is a minnte reddish brown bectle, with the beak one-hatf as long as the borly, just beyond the mindle of which the antemme are inserted. The heal is darker than the rest of the body, being brown back. The thorax is a little darker than the elytra and covered very sparsely with short whitish hairs ; the scutellom is whitish, and the elytra are slining reddish brown, with the strie deeply punctured, the interstices being smooth. It is 13 of an inch long including the beak. Mr. W. C. Fish writes me that in the middle of July he
detected this little weevil laying its eggs in the buds of the cranberry. "It selects a bud not quite ready to open, and clinging to it, works its snout deep into the centre of the bud. An egg is then deposited in the hole made, when the beetle climbs to the stem and cuts it off newr where it joins the bud, which drops to the ground and there decays; the egg hatching and the grub going through its transformations within." The

Fig. 465. larva is long and rather slender, cylinclrical, the borly being of uniform thickness and curved ; the head is pate honey yellow ; the jaws tipped with black; the rings are very conver, especially the prothoracic one; it is white, with a few fine pale hairs, and is .08 of an inch in length.

The Magdalimes olyra Herhst (Fig. 465; a, larva; b, pupa; the thorax of the lara is entarged by the pupa growing beneath; the pupa from which the drawing was made is not fully developed, since the tip of the fully grown pupa ends in two spines) may be found in all its stages early in May under the
 bark of the oak. 'The larva is white, with the head freer from the body than in Pissodes strobi (though it is not so represented in the figure). The body of the beetle is black, punctured, and the thorax has a lateral tuberele on the front erge. while the tarsi are brown with whitish hairs. It is a quarter of an inch long.
Conotrachelus nenupher Merbst, the Plmm-weeril (Fig. 466; a, larva; b, pupa; c, beetle; d, plum stung by the weevil) is a short, stout, thick weevil, and the snont is curved, rather longer than the thorax, ancl bent on the chest when at rest. It is dark brown, spotted with white, ochre-yellow and black, and the surface is rough, from which the beetle, as Harris says, looks like a
dried bud when shaken from the trees. When the fruit is set, the beetles sting the pluns, and sometimes apples and peaches, with their snouts, making a curved incision, in which a single egg is deposital. Mr. F. C. Hill shows that the curculio makes the crescent-shaped cut after the egg is pushed in "so as to undermine the egg, and leave it in a kind of flap formed by the little piece of the flesh of the froit which slie has undermined. Can her object be to wilt the piece around the eggg and prevent the growing fruit from crushing it?" (Practical Entomologist, ii, p. 115.) The grols hatched therefrom is a little footless, fleshy white grub, with a distinct round light brown head. The irritation set up by these larve causes the fruit to drop before it is of full size, with the larva still within. Now full-fer, it burrors directly into the ground and there transforms during the last of the summer. In three weeks it becomes a beetle It also attacks many other garden firuts, such as the cherry, peicll and quince. Drs. Marris, Burnett and others, think the larva is but a temporary oceupant

Fig. 467. of the wart on plumb and cherry trees, and not a canse of the disease. The best remedy is jaring the trees, and eatching the larse in sheets and burning them. Dr. Hull's "eureulio catcher" is an excellent invention for destroying these insects ; it consists of a large inverted white umbrella, fixed upon a large wheelbarrow split in front to receive the trunk of the tree, against which it is driven with force sufficient to jar the curculios from the tree into the umbrella.

The genms Ceutorbynehus is a small, short, thick curculio, which attacks the seeds of the radish and allied plants. We have noticed a pale gray species on the radish, which probably inhabits the seeds.

The gemus Cuftofla has a slenter snout slightly bent downwards, a coarsely punctured thorax nearly half as long as the
whole body, while the elytra are furrowed and do not quite corer the tip of the abdomen. The Grain Wreevil, Sitophitus granurius Linn. (Fig. 467 ; e, and natural size; b, pupa, en-
 larged), is pitclyy red in color and about an eighth of an inch long, and is immensely prolific. This great pest, both as a larra and beetle, consumes wheat alter it is stored up, being rery abundant in granaries. The larva devours the inside of a hull, leaving the sliell whole, so that its presence is not readily detected. To prevent its attacks IIarris recommends that the wheat be kept cool, well rentilated and frequently stirred.

A similar weevil, Sitophilus oryze Limn. (Fig. 467; e, and natural size), attacks the grains of rice and also of wheat; it differes in having two large red spots on cach elytron, and it is abomblant in the Sontl, where it is ealled the "black weevil."

The (irape Curculio, Coliodes incequalis Say (Fig. 468; 469; a, grape disfigured by the larva; b, larva), has lately, according to Walsh, been rery destrnctive to

Fig. 439. groples, stinging the fruit and thus destroying whole bunches of them. The presence of the larra in the grape may be known by a discoloration on one side of the berry as if prematurely ripening, thongh it be the last of June or early in July. Late in July or carly in August the grub may be found fully grom, when it drops to the gromd and descending a littlo beneath the surface transforms, and the beetle appears early in September. It is grayish black, the elytra hack freekled with gray spots, and striated, with large punctures. The legs are dull brick red; the femora are unarmed, while the four anterior tibie lare a large rectangur tooth near the base. It is from .09 to. 11 of an inch in length. As a preventative against their attacks, the vines should be thoroughly shatien each day in June.

Another larva (Fig. 470), probably of this family, has been discorered by Mr. IV. Saunders of London, Canada, in the seeds of the grape, causing the beries to shrivel.

The Potato-stalk Weevil, Buridius trinotatus Say (Fig. 471; a, larva; b, pupa; c, adult), is a common species in the Micldle and Western States, where it causes the stalk to wilt and die, hence all stalks so affected should be burnt. "The beetle is of a blush or ash gray color, distinguished as its name implies, by having three shiny black impressed spots at the lower edge of the thorax. The female cleposits a single egg in an oblong slit

Fig. 470. about oneeighth of an inch long, which she has previously formed with her beak in the stalk of the potato. The larra subsequently hatches ont and bores into the heart of the stalk, always proceeding downward towards the root. When fully grown it is a little orer one-fourth of an inch long, and is a soft, whitish, legless grub, with a scaly head." (Riley.) Fig. 472 represents the lurra of B. vestitus Schonherr, which bores into the stems of the tobacco plant in Mexico.

Mr. Huntington has observed the Grape Cane gall curculio, Buridius Sesostris Lec. (Fig. 473) in the larral

Fig. 471. state in large bunches near the joints of the Clinton grape on Kelly's Island, near Sandusky, Ohio, and has also fount the beetle in consitcrable numbers. The larra closely rescmbles that of the Potato Baridins. Riley states that the gall is formed daring the previous autumn while the tender cune is growing. "It has almost invariably a longitudinal slit or depression on one sile, dividing that side into two checks, which gencrally hare a rosy tint."
 It pupates late in June, and carly in July the adult Fig. tio. appears. It may be known by its polished elytra and punctured thorev- It is pale reddish, with a stout beak, equalhing the borly in length, and each elytron has a swelling on the onter cdge near the base, and another near the tip. It is a tenth of an inch long. It is the Madarus ritis of Riiey.

Scolitide Westwood. These cylindrical bark borers are
romnded beetles of an elongate cylindrical form, truncated before and behinct. They mine under the bark of trees, ruming their winding galleries in every direction. They rarely attack
 living healthy trees. They are usually brown or black in color. The rounded heal does not end in a snout and is deeply sunken in the thorax ; the clavate antenne are somewhat clbowed, while the palpi are very short; the elytra are often hollowed at the end, and the short stont legs are toothed on the under
Fig. 4ï. side of the femora, and the tarsi are slender and narrow. The eggs are laid in the bark, whence the larve on being hatched bore straight into the sap wood, or mine between the bark and sap wood. They are like those of the precerling family, fleshy, cylindrical, footless larve, wrinkled on the back. When fully grown in the autum they gnaw an exit for the beetle, taling care to lenve a little space closed in front of their burrow to conceal the pupa. The bark of trees infested by them should be scraped and whitewashed. Ingurges terebrens Oliv. (Fig. 474) is a rather large red species, very abundant in spring.

Fig. 1 it. It is found under the bark of pines associated with I'issodes, though the larva is smaller and more cylindrical. It mines the inucr surface of the bark, shightly grooring the sap wood, and pupates in April, appearing as a bectle in great numbers on warm days early in May. Ifyurgus dentutus Say

Fig. 4π. infests the cedar.

The Scolytus destructor of Olivier often does much injury to old and decaring elm trees in Europe. Capt. Cox exhibited to the Entomological Socicty of Loudon a piece of elm three feet long, which was scored by the lateral tubes of this insect, which he estimated must have given birth to 280,000 larve.
The various species of Scolytus, Tomicus and rypoterus give rise to the rlisease called fireblight, by their rat iges beneath the twigs of fruit trees, causing the bark to shitivel and peal oft as if a fire had run through the orchard. The hest method of restraining their attacks is to peal off the affected bark, ex-
posing the eggs and larve to the air, when the birds will soon destroy them. T. monographus does great damage by drilling holes in malt-liquor casks in India. It was calculated that sometimes 134,000 holes were drilled in the stares forming at single cask. Immersion in boiling water has been found an effectual remedy. (Morse.)

Also associated with Pissodes, we have found in April the galleries of Tomicus pini Say branching out from a common centre. They are filled up with fine chips, and, aceording to Fitch, are notched in the sides "in which the eggs have been placed, where they would remain undisturbed by the beetie as it crawled backwards and forth through the gallery." These littile beetles have not the long snout of the weerils, hence they cannot bore through the outer bark, bat cuter into the burows made the preceding year, and distribute their eggs along the sides.
 (Fitch.) T. aghogrophus Say (Fig. 475) is often a Fig. aij. most formidable enomy to the white pine in the North, and the yellow pine in the South. The genus Cirpholus is a slemederer form. A specics, probably the C. materarius of Fiteln (Fig. 4T0), hats heen found by Mr. Huntington of Kelly's Island, to bore into empty wine casks and spoil them for use.

Cerambyode Leach. (Longicornia Latreille). This immense famity, numbering already nearly 4,000 known species, comprises some of the largest, most showy, as well as the most destructive insects of the suborder. They are readily recognized by their oblong, often eyliudrical bodies, the remarkably long, filiform, recurved antennx, and the powerful incurved mandibles. Their eggs are introduced into the cracks in the bark of plants by the long fleshy extensile tip of the abdomen. The larve are long, flattened, cyindrical, fleshy, often footless whitish grulus, with very convex rings, the prothoracic segment being much larger and broader than the succeeding, while the head is small and armed with strong sharp mandibles adapted for boring like an anger in the hardest woods.

These borers live from one to three Jears before transforming, at the end of which time they construct a cocoon of chips at the end of their burows, the head of the pupa lying next
to the thin portion of hark left to conceal the hole. As quoted by Baron Osten Sacken in an interesting article on the larral forms of some of our natire beetles, Erichson states that "notwithstanding the great similitude between the larra of Longicorns, some important differences in the structure of those belonging to the four sublivisions of this family may be notieed. The larve of the Lamiide differ more than the others, on account of the total absence of feet, and the position of the first pair of stigmata which is placed in the fold between the pro- and mesothoracic segments, less abruptly separated than the others. The other larve have this first pair on the
 sides of the mesothorax, and have feet, which, howerer, are sometimes so small as to be pereeptible only when magnified, eren in large sized larre. The Cerambyeide (Cerambyx, Callidium and allies) have, on the posterior side of the protlomax, above anci below, a fleshy, transrerse fold, separated by a furrow from the horny dise of this segment. In the Prionide and Lepturide, the same foll is risible only on the under side. The Lepture have a large flattened head, as broad as the prothorax, whereas in the other Longicom larre the head is small and much narrower than the thorax. The larre of the Prionida show the least differences from those of the Lepturide; and that of Spondylis is remarkably allied to the latter." "The pupa is at first soft ancl whitish, and it cxhibits all the parts of the fiture beetle under a filmy veil which inwraps every limb. The wings and leg's are folded upon the breast ; the long antemme are turned back against the sides of the body, and then bent forwards between the legs." (Harris.) The beetles mostly hide by day and fly by night.

Parondre brmmed Fabr. is much unlike the remaining genera, being Tenebrio-like in form, with a broad head and short antemme, and shining red in color. The larva is described by Osten Sacken as having a yellowish cordate head, with a large prothorax and Heshy tubercles on the upper and under side of
the segments, with the first pair of stigmata placed on the sides of the mesothorax. It is found in dead betch trees.

The Orthosoma unicolor Drury (Fig. 475) is a light bay colored beetle found flying from the middle of July until September. We have found the larva. (Fig. 478) in the rotten stumps of the pine, and in the Western States Riley states that a larra (Fig, 479, head and thoian seen from beneath), probably of this species, eats the roots of the grape-vine, hollowing out and sometimes severing the root and killing the vine.

Priomus brevicornis Fiblr. is a very large, not uncommon beetle, of an ovate shape and pitehy black

Fig. 479. color, with short, thick jaws, and antemm about half as long as the borly. The larve, IIarris states, are as thick as a man's thumb, and are fomnd in the trmes and roots of the Balm of Gilend and Lombardy poplar.

Fig 473.

Cirossidius pulch mior Blanel (Fig. 480), from Nebraska, is a pale reddish beetle, with the antenne, head, base and the large mark on the disk of the elytrat and legs black. An allied form is Ebmbin? There Blamd (Fig. 481, showing the sculpturing of the head) which is described as coming from Cape St. Lneas, Lower Califormia.

The larva of Stenocorus putator Peck (Fig. 482; a, lava, just about transforming; b, pupa) nearly ampu- Fig. 480. tates the branches of the black and white oaks. After becoming
 mature in the trunk, and just before undergoing its transformations, it gnaws oft a branch which fills to the gromed, containing the larra, which changes to a bectle in mirlsmmer, and
Fig. 481. lays its egg near the axilla of a leaf stalk or small stem. The beetle is a very slember one, with antemne longer than the body in the males, the third and fourth joints of which are tipped with a small spine or thom. It is dull brown, with gray spots. The Banded hickory borer, Chion (Cerasphorus) cinctus Drury, makes long galleries in the
trunks of hickory trees, the worm often working its way out of the wood after it has been made into articles of furniture or

Fig. 482. carringes. The Asemum mostum Ialdcman (Fig. 483; a, a, larva; b, pupa), we have found in all its stages muder the bark of oalks, early in May. The larva is footless, white; the head is rather large, white, with strong black jaws convex on the outer side; the body is uniform, gradually diminishing in width posterionly; it is . 60 of an inch long. The pupa is . 44 of an inch long. The bectle is about half an inch long and is dark brown, with rery thick femora. It flics the last of May. I have received a harva of this species from Dr. Shimer, which was found by him boring in the grape-rine. The genus Callidium has antennee Fig. 188 of moderate length, a broad rounded prothorax, and a flattened body behind. The larve are untsnally flattencl, with a broad

Fig. 183.

c horny head, small stout manclibles, and six small legs, and they are said to live in this state two gears. Callidimo antennatum Newman is entircly blue; it bores in pine wood and in red cedtar, mining under the bark. C. semicircularis Bland (Fig. 18t) is redtlish brown, with a white band on each elytron, enclosing a rather large, semicircular, black spot. It was discovered in Pennsylvania.

Clytus has a more eylindrical borly, and splerical prothorax, besides being beautifully banded with golden, on a dark gromad. Chytus speciosus Say injures the maple. We have taken the beetle on the summit of Mount Katahdin in Maine. The bectle lays its eggs in July and August, and the larre
bore in all directions through the tree. Osten Sacken describes the larva of C. pictus Drury, the Mickory-tree borer (Fig. 485 ; ch, larra; b, pupa), as being "six to seren-tenths of an inch in length, being rather long, somewhat flattened club-shaped, the thoracie segments being considerably broader than the abclominal ones, but at the same time distinctly flattened above and below." The pupa has a numerous pointed granulations on the prothorax, and similar sharp spines on the abdominal segments. "On the penultimate

Fig. 485. segments, these projections are larger and recurved anteriorly at the tip; there are six in a row near the posterior margin, aud two others more anteriorly. The last segment has four
 similar projections in a row." The male of the Locust tree borer, C robinice Forster (Fig. 486, δ), according to Walsh, differs from that of C. pictus "in having much longer and stonter antennee and in having its body tapered behind to a blunt point," while the females "are not distinguishable at all." It does great injury to the Locust tree, and appears in the beetle state in September, while C. phetus, the Lickory tree borer, appears in June. C. arcmeiformis Olit. (Fig. 487) has been detected on a wharf in Philadelphia; it was first described as coming from St. Domingo.

The Long-handed Acrocinus, A. longimanus Fabr. (Fig. 488, larva, natural size), is a gigantic insect, allied to Prionus, but with enormonsly developed fore legs, the whole body, including the fore leg's, when ontstretched measuring ten inches; it is brown, beatifully banded with red and buff. M. Sallé has found the larva

Fig. 15 . at Cordowa, Mcxico, under the bark of a Ficus. It grows larger in Brazil. Leiopus is a diminutive ally of Lamia. Dr. Shimer has detected the larva of L. xanthoxyli Shimer, undermining the bark of the prickly-ash, when the wood has recently died. It is a footless borer, "of whitish and pink orange colors, about one-fourth of an inch long." In the burrows
formed by the larve he found May 2oth, several pink-orange pupe, "invariably lying with their heads outwards; their long' antenne folded orer the wing-cases obliquely down on the

Fig. 488. sides, passing bencath the posterior pair of legs, a little beyond them and then curving up orer the breast, rach the head." The beetle is related to L. culpha say, and is gray, with bands and spots of blackish pubescence; it is . 25 of an inch long. Two species of ichneumons were found by Shimer to prey upon the beetle.

In Monohammus the antenna are of great length. M. ititilator Fabr, is brown mottled with gray; while a slenderer species, M. scutellutus Say, of' a peculiar dark olive green, with a whitish scutellum, bores in the white pine.

The singular habits of the Girdler, Oncideres cingulatus Say (Fig. 189), have thus been described by Professor Haldeman in the Pemsylvania Farm Journal, vol. i, p. 34. "This insect was first described by Say in the Joumal of the Academy of Natural Sciences, rol. r, p. 272,1825 , and its habits were discovered by us and published in our" 'Materials towards a History of the Coleoptera longicornia of the United States;' Am. Phil. Trans., vol. x. p. 52, 1837.
"In our walks through the forest our attention was frequently drawn to the branches and main shoots of young hickory trees (Carya alba), which were girdled with a decp notch in such a mamer as to induce an ohserver to believe that the object in riew was to kill the branch beyond the notch, and extroordinary as it may appear, this is actually the fact, and the

Fic. 489. operator is an insect whose instinct was implanted by the Almighty power who created it, and under such circumstances that it could merer have been acquired as a habit. The effect
of girdling is unknown to the insect, whose life is too short to foresee the necessities of its progeny during the succeeding season.

- This insect may be seen in Pennsylrania during the two last weeks in August and the first week in Scptember foeding upon the bark of the tender branches of the foung hickories. Both sexes are rather rare, particularly the male, which is rather smaller than the female, but with longer antemae. The female makes perforations in the branches of the tree upon which she lives (which are from half an mech to less than a quarter of an inch thick), in which she deposits her egg's ; she then proceeds to gnaw a groove of about a tenth of an inch wide and deep around the branch, and below the place where the egog are deposited, so that the exterior portion dies and the larra feeds upon the deal wood and food which is essential to many insects, althongh but few have the means of providing it for themselves or their progeny by an instinet so remarkable.
"Where this insect is abundant, it must cause mucl damage to yonng forests of hop-poles by the destruction of the primcipal shoot. We have known insects which, from their rarity, conld hardly be regarded as 'noxious,' increase to such an extent as to be very destructive, and the locust trees (Robinia psoudacacia) have had their foliage withered during the fow last summers from such a canse (Cecidomyia robinize Hald.) which has caused these trees to wither sinee that period, particularly in August, 1868." The Tridentate Compsidea, C. tridentata Oliv. (Fig. 400, larva, enlarged three times), is a dark brown beetle, with a rusty red curved line behind the eyes, two stripes on

Fig. 190. the thoras, aud a three-toothed stripe on the outer edge of each wing-cover, and is about half an inch long. It lires anter the bark of elms, occasionally doing much damage. (Harris.)

The larra of Psenocerns pini Oliv. (supernotatus Say) which burrows in the stem of a climbing plant, supposed to be the grape, Osten Sacken describes as being threc-tenths of an inch long, subeylindrical or prismatical, the pro- and mesothorax being a little broader than the other segments, ant the whole body sparsely beset with fine golden hairs.

This insect, according to Fitch, also does much injury to the curpant, eating the pith "through the whole length of the stalk and learing it filled with a fine powder. It is about the first of June that the parent insect cleposits her eggs upon the currant stalks, and the worms get their growth by the close of the season. They repose in their cells throngh the winter, changing to pupe with the warmth of the following spring, and legin to appear abroad in their perfect state as early as the middle of May, the sexes pairing immediately after they come out." (Fitch.) In August, 1868, I received from Dr. P. A. Chadbourne, President of Madison University, several branches of the apple containing larve, which in the next spring changed to this beetle. They were very injurions to orchards in Fig. 491. his vicinity, and this seems to be the first instance of its occurrence in the apple. The larva (Fig. 491, enlarged thrice) is nearly half an inch long; it is footless, white, with the head searcely half as wide as the body and considerably flattened; the segments are rather convex, each having two rows of minute warts, and the tip is rather blont, with a few fine golden hairs. It devoured the sap wood and under side of the bark and also the pith, thus locally killing the terminal twigs, and causing the bark to
 shrisel and peel off, learing a distinct line of demarcation between the dead and living portions of the twig. Each larra semed to live in a space one and one-half inches long, there being fire holes throngh the bark within the space of as many inches. On the 16 th of August the grubs seemed to hare accomplished their work of destruction, as they were fully grown. The bectle is from .13 to . 20 of an inch long, and may be known by its dark, reddish bromn, eylindrical body, with a high tubercle at the base of the elytron, an oblique yellowish white line on the basal third, and a broad curved white line on the outer third of the elytron, or wing-cover.

Soperda condula Fabr. (birittata Say, Fig. 492) the well known Apple tree borer, flies about orchards in July in New

England, in May and June in the Western States, usually at night, but we once observed it flying in the hottest part of the clay. At this time the female lays her eggs in the bark near the roots. The nearly cylindrical larva are whitish fleshy grubs, with a small horny head, while the prothoracic ring, as usual, is much larger than the others, the two preceding' ones being very short, and from thence the body narrows to the tip. It bores upward into the wood, where it lives two or three years, finally making a cocoon eight or ten inches from its starting point, in a burrow next to the bark, whence it leares the pupa state (which begins early in June) in midsummer. It also infests the wild apple, quince, pear, June-berry, momtain-ash and hawthorn. Riley advises soaping the trunk of the tree to prevent the beetle from laying its egges, and when the tree is infested with them to cut throngh the bark at the upper end of their boring's and pour in hot water, while in the autum the bark should be examined and the young worms that had been hatched through the summer may be dug out and destroyed.

We have found what we supposed to be the young larve of Desmoceras cyoneus Fabr. in the stems of the elder ; the beetle is a handsome purple and white Longicorn. We have found Rhagiom lineatum Olivier living in old trunks of pine trees. The antema are no longer than the breadth of the body. It makes a cocoon of chips, aud the bectle appears in the autum, not, however, leaving the tree until the spring.

Chrysomelide Latreille. The Leaf-beetles are oral or oblong, often rery thick and conver above, with short antennæ, round prominent eyes, with a narrow cylindrical thoras, and the hinder thighs often much thickened in the middle, while the abdomen has five free segments. The larree are short, rounded, eylindrical or flattened, generally of soft consistence, usually gaily colored, and beset with thick flattened tubercles or branching spines, and well developed thoracic feet. There are estimated to be from 8.000 to 10.000 species. They are found feeding, both in the larva and adult stages, on leaves, either on the surface, or, as in Mispa and several species of Haltica, their larre are leaf-miners.

The genus Donacia connects this family with the preceding. It has a rather long body and unusually long antenue. D. proximakirby is dark blue, and Donacia Kirbyi Lacordaire is of a shining coppery hue. The larve live in the stems of water plants, and make a leathery cocoon in the earth before transforming.

The Grape-vine Fidia (F. viticida Walsh, Fig. 493) is very injurious to the grape in the Western States, from its liabit of "cutting straight elongated holes of about an eighth of an

Fig. 493. inch in diameter in the leares, and when numerous so riddling the leaves as to reduce them to mere shreds." It is chestnat brown, and covered with short whitisls hairs, giving it a hoary appearance. Riley states that it is very abmodant in the vineyards in Missouri, where it prefers Concord and Norton's Virginia grapes, while it occurs on the wild grape-rine and on the leaves of the Cercis Canadensis. "It makes its appearance during the month of June, and by the end of July has generally disappeared, from which fact we may infer that there is but one brood each ycar." The rines should be often shaken and chickens turned in to feed upon them when it is possible.

Chioceris is
known by its rather long body, and the prothorax being narrower than the elytra. The an. tennze are lather long, the fore coxre are swollen, pressed together. and the claws are either free or united at the base. We have no native species, but Crioceris asparagi Linn. has been introduced into gardens about New York, doing metch injury to the asparagus. Fitch describes it as beimg about a quarter of an inch long, with a tawny red prothorax and three bright lemon yellow spots on each elytron. The larva is soft-bodied, twice
as long as thick, the body thickening posteriorly, and of a dull ash gray or obscure olive, with a black head and legs.

Lema trilineata Olivier (Fig. 494 ; a, larva; 7 , terminal joints of abdomen; c, pupa; d, eggs) occurs in great abmadance on the laves of the potato. The dirty ycllowish lara are found on it abundantly, and hide themselves by covering their bodies with their own excrement. They mature in albout two weeks, transform in earthen cells cementer with a gummy exudation discharged from the mouth, and in a fortnight, being about the first of August, the beautiful yellow and back striped beetle, with a reddish head and prothorax, appears.

Hispa is also a miner in the larva state. Hispa (Croplata) rosea Harris (Fig. 495) is supposed by IIarris to mine the leares of the apple tree. Harris describes it as being "of a deep or a tawny redtish yellow color abore, marked with little deep red lines and spots. There are three smooth, longituclinal ribs on each elytron, spotted with blood-red, and the space between these lines are deeply punctured in donble rows ; the under side of the borly is back, and the legs are short and reddish. They meas-

Fig. 45 . ure abont one-fifth of an inch in length." "The larve burrow under the skin of the leares of plants, and eat the pulpy substance within, so that the skin orer and under the place of their operations, turns brown and dies, having somewhat of a blistered appearance, and within these blistered spots the larve or grubs, the pupe or the beetles, may often be found. The eggs of these insects are little rongh, blackish grains, and are glued to the surface of the leaves, sometimes singly, and sometimes in clusters of four or fire together. The grabs of our common species are about one-fifth of an inch in length, when fully gromn. The body is oblong, flattened, rather bromter before than behind, soft, and of a whitish color, except the head and the top of the first ring, which are brown, or blackish, and of a horny consistence. It has a pair of legs to each of the first three rings ; the other rings are provided with small fleshy warts at the sides, and transverse rows of little rasp-like points above and beneath. The pupa state lasts only about one week, soon after which the beetles come out of
their burrows." Hispu (Uroplata) suturalis Fabr, mines the Locust tree, and often prores very clestructive in the Middle and Western States. They are flat, the body behind being broat and square, and the elytra are generally ridged and furrowed.

Cassida anrichalcea Fabr, the yellow Helmet beetle, is hemispherical, flattened, so that the edges of the wings are tery

Fig. 496. thin ; and the larva is broad, oval, flattened, and by me:ms of two spines terminating its upturned abodomen, holds its old cast larra skin over its body as a means of protection. During the last week in July we have found the larrie in all stages of growth very abundant on the Morn-ing-glony in our garden, eating holes in the leaves. In the joung the head and legs are more prominent than in the old. It pupates the last of July and carly in August.

The Chelymorphat cribraria Fabr. (Fig. 496 ; a, pupa) we have found in all its stages on the leares of the silk-weed late in July and early in August, and in one instance in Salem it occurred in abundance on the leares of the raspberry. The larva cliffers from that of Cassida aurichaleea, not only in its greater size, but the body is thicker and narrower ; the head is freer from the thorax, and the spines are simple, not spintalated. The body is yellow and less protected by the cast skin. When about to transform, the Iarra attaches itself to the leaf by a silken thread, a few segments from the end where the end of the body of the future pupa is situated.

Fig. 197. It is .4or of an inch long. The pupa is broad aud rather flattened, dark and spotted with yellow and covered with a whitish powder, cansing the yellow portions to appear more prominently; along each side of the abdomen is a rom of fire spines, and there are four spines on the anterior eclge of the prothorax; it is .40 of an inch in length.

Fig. 497 represents, according to Harris, " the larva, nearly full size, of Galeruca gelatinarice Fabr. or an allied species, found abundantly on Ambrosia elatior, July 30th. They
live on the upper surface of the leares and derour the cuticle and parenchyma above, learing the lower cuticle montouched. It is of a dirty jellowish white color, with black tubercles bearing white bristles. Length one-fourth of an inch." (Harris Correspondence, p. 267.)

We have found Galeruca marginella Kirby (Fig. 498; a, larva; b, pupa) in all its stages of growth on Myrica gale, during the middle of August, in Northern Maine. The larva is shining black, coriaceous above, and the body is elongated, flattened, with a small orbicular black head. The upper side of the body is hard, from the close prosimity of the black flattened

Fig. 498.

a tubercles. Beneath, whitish; on the side is a row of small black brown tubercles, and along the middle of the body is a row of transversely linear brown tu-

Fig. 499. borcles, on each side of which is a minute dot-like tubercle. It is not hairy, and measures .25 of an inch in length. When alont to transform it fastens itself by its tail to the surface of a leaf. The pupa is brown-black. The bectle is umber brown, testaceous on the edges of the clytra, the legs being also testaceous, while the prothoras is pale, with three dark brown spots, of which the central one is T-shaped.

The Striped Squash beetle, Diabrothica vittata Fabr. (Fig. 499, a, larra; b, pupa seen from underneath; Fig. 500, adult) appeuts on squash vines as soon as they are Fig. 501. Fig. 500. up, and at once devours them unless their attacks are prerented. Covering the vines with cotton or a box corered with muslin or millinet is the only sure remedy, while on a large scale powdered charcoal, or lime is used, to be sprinkled on the leares. Mr. Gregory, says the "American Agriculturist," relies upon plaster, or oyster-shell lime, which may be shaken
from a small siere while the leaves are wet with der or rain ; to be applied as soon as the plants are up. He objects to the use of air-slacked stove lime, as it is apt to be too caustic and injure the plant. Dr. H. Shimer has given an account of the habits of this insect in the "Prairie Farmer," and has sent me specimens of the insect in its different stages. He states that the grub in June and July "eats the bark and often perforates and hollows out the lower part of the stem which is bencath the ground, and the upper portion of the root, and oceasionally when the supply below fails, we find them in the vine just above the grouncl." It hibernates in the pupa state. "The larva arrives at maturity in abont a month after the egg is laid ; it remains in the pupa state about two weeks, and the beetle probably lives several days before depositing her eggs, so that one generation is in existence about two months, and we can only hare two, never more than three broods in one season." He has fomn them boring in the squash and muskmelon rines as late as October 1st.
Fig. 502. The larra is a long, slender, white, crlintrical grob, with a small brownish head. The prothorax is a little corneots. The thoracic legs are very slender, pale brown; the end of the body is suddenly trumeated, with a small prop-leg beneath. Above is an orbicular brown space, growing black posteriorly and ending in a pair of upcurred, vertical, slencler black spines. It is . 40 of an inch long. It will be seen that both in its boring habits and its corresponding, remarkable, elongated, cylindrical, soft white borly, that this larva raries widely from that of Grileruca, to which the beetle is closcly allied. The pupa is .17 of an inch long, white, with the tip of the abdomen ending in two long acute spines arising from a common base. The Twelrespotted Diabrothica (Fig. 501, D. duodecim-punctata Fabr.) is injurious to the leaves of the Dallia.

The genus Hultica, to which the little blackish Flea-beetles belong, is well known. The larve mine the leaves of the plants on which they afterwards feed. Haltica (Crepidodera) cucumeris ITarris (Fig, 502) infests the cucumber. Harris describes it as being "only one-sixteenth of an inch long, of a black color, with clay-yellow antenne and legs, except the hindmost thighs, which are brown. The upper side of the body
is covered with punctures, which are arranged in rows on the wing-cases, and there is a deep transverse furrow across the hinder part of the thorax." It not only kills young cucumbervines, eating the seed leaves, but is found all through the summer eating holes in the leaves of various garden regetables.

The Grape-leaf Flea Beetle, H. (Graptodera) chatybea Illiger, eats the buds and leares of the grape. It is a steel blue insect, often rarying in its shades of coloring, sometimes becoming greenish. It is

Fig. 503. a little orer three-twentieths of an inch in length. In Ohio, Mr. M. C. Reed noticed the sexes of this species, which Dr. Leconte considers as probably the Graptonera excpta of Say (Fig. 503), pairing May 6th. The larve appeared the last of the month, and by the first week in June, and on the 30th of the same month, the beetles appeared. I have received specimens of the larva from Mr. Read. It is a yellowish white, cylindrical worm, with a jet black head and black tubercles, from each of which proceed several fine hairs. The prothorax is brown black above; on each succeeding ring of the borly are ten tergal black tubereles, the two inner ones being long and marrow, and transverse, the others forming round dots. On each ring is a single black dot just between the two lower

$a \quad 7 \quad$ Fig. 504 . larger tuljercles. On the sides are two roms of black tubercles, and along the middle of the mater side a row of transrerse tubercles, on cach side of which is a row of dot-like tubercles. It is . 33° of an inch in length.

The Striped Turnip Flea beetle, H. (Phyllotreta) striolata Fabr. (Fig. 50t; a, larva; b, pupa), is black, with a waved yellowish stripe on each wing-cover, and is less than a tenth of an inch long. Dr. Shimer describes the larva as being white ; the head is of a pale brown color, and near the end of the body is a brown spot equal to the head in size; besides the thoracie legs there is a single anal prop-leg. It is . 35 of an inch long. It feeds upon roots beneath the ground. The pupa is naked, white, and transforms in an earthen cocoon. In seventeen
days from the time the larra ceases eating the beetle appeared. It then feeds on the seed leaves of cabbages and tumips and other garden vegetables, when it proves very injurious, while afterwards in June, when the plants have attained their growth, they sicken and die from the attacks of the larva in their roots. (American
Fis. ${ }^{5055}$. Naturalist, vol. ii, p. 514 .)
The Silk-weed Labidomera, L. trimaculata Fabr. (Fig. 505, larva) is found in its larval stage on the Silk-weed about the first of August. It is a thick hemispherical beetle, with a dark blue heal and prothorax, and orange elytra, with three large blue spots on each wing-cover. It is one-half of an inch long.

Fig. 500.
The Colorado potato beetle, Dormhora decem-Tineata Say (Fig. $506 ; a$, eggs ; b, the larve in different stages of growth; e, the pupa ; d, beetle ; e, elftron, magnified ; f, leg', magnilied) has gradually spread eastward as fitr as Indiaua, from its original habitat in Colorado, haring become very destructive to the potato-rine. It becomes a beetle within a month after hatching from the yellowish eggs; the larra is pale yellow with a reddish tinge and a lateral row of black dots. Messis. Walsh and Riley state that "there are three hroods of larre every year in North Illinois and Central Missomi, each of which goes under ground to pass into the pupa state, the first two broods coming out of the ground in the beetle state about
ten or twelve days afterwards, while the last one stays under ground all winter, and only emerges in the beetle state in the following spring, just in time to lay its ego's upon the young potato leaves," which it devours to such an extent as to sometimes almost cut off the en. tire crop in certain localities. The Editors

Fig. 505. of the "American Entomologist," from whom we have quoted, cnumerate and figure various beetles, hemiptera, and a species of Tachina fly (Lydella doryphora Riley) which mostly prey upon the larro. Dr. H. Shimer shows, in the "American Naturalist," vol. iii, p. 91, that a dry and hot summer is very unfarorable to the development of this insect, the pupæ dying for want of sufficient moisture in the soil. The best remedy against its attacks is hand picking.

A very closely allied species or variety, the D. juncta Germar (Fig. 505), may be easily confounded with the other species, but differs, according to Walsh, in the head of the larva being paler, while in the beetle the third and fourth stripe from the outside are united, where they are distinct in the D. 10 -lineata, and the legs are entirely pale yellow, with a dark spot on the femora. It feeds on the wild potato, not eating

Fig. 506. the cultivated species, and has always been an inhabitant of the Western and Southern States.

Chrysometa is an oral oblong genus, and its ally, Calligrapha, is very convex, hemispherical ; the species are gaily spotted and banded; Calligrapha scataris Lee. is abtudant on the alder. The Iarve (Fig. 506, larva of C. Philadelphica Linn.) are thick and fleshy, with a row of black spiracles along the side of the body, and a dark prothorncie shield.

Eumolpus auratus Fabr. is a shining, rich golden green beetle, found on the dog's-bane.

Chlamys is a little oblong, cubical, roughly shagreened,
metallic greenish beetle, found in abundance on leaves southward. The larva of Chlamys plicata Olivier, according to Mr. S. M. Scudder, who has reared it from the swect-fern, is a sac bearer, drawing after it a rounded, Hask-shaped, blackish sac, within which it withdraws when disturbect. Lavae apparently belonging to this species were found by Mr. Emerton on grass in pastures in July. 'They are interesting as being true sac-bearers, recalling Psyche helix and other sac-bearing moths, and the Phryganeids. Fig. 507 represents the larra in the act of walking, the head and thoracie segments protruding from the case. The case is a quarter of an inch long and one-half

Fig. 507. as thick, being oval cylindrical. It is black and appears to be formed of little pellets of vegetable matter chewed by the larra and appliod to the edge, with a seam along the middle of the under side, which reatily spreads open when the sac is pressed. The case is a little contracted before the mouth, where the pellets are a little larger than elsewhere. The larra is of the form of those of others of the family, but the body is slenderer in front of the abdomen, and the Jegs are longer than usual. The abdomen is suddenly thickened and curred at right angles, the tip being rather pointed. The body is white, with a brown-hack head and dark brown legs, and a prothoracic comeous piece, with a corneous piece at the insertion of each leg. It is, in its matural curvect postme, . 25 of an inch long. In the Muscm of the Peaboty Academy are several minute chalcid parasites rearea from C. plicata.

Crytocephatus is a short, cylindrical gents, numbering nearly 800 species.

Enotylide Westmool. This family is rery largely dereloped in tropical America, and is known by the large, Hattened antennal clul, which consists of three joints. Most of them are supposed to be leaf insects, while the more northern species live in fungi.

Exnomecmine Leach. In this small group are genera whose bodies are oral, with antenne longer than the head, which with
the trapeziform prothorax, distinguish them from the allied familics. An interesting form from New Hampshire, the Phymaphorct putchella of Newman (Fig .508), is described by Harris (Correspondence, p. 256) as being rust-red, with paler feet and antennie, the head being black; there is a broad Quen (1) black band across the middle of the elytra, and the tips are black.

Coconellide Latreille. The characteristic form
Fig. nos. of the "Lady-birds" is well known. They are hemispherical, gencrally red or yellow, with round or lumate black spots. The species are difticult to discriminate, and number upwards of 1,000 . Some individuals belonging to different species hare been known to unite sexually, but producing sterile eggs. Fig. nog. The fellow long oval eggs are laid in patches, often in a group of plant-lice, which the larva greedily devour. They are rather long, oval, suit-bodied, pointed behind, with the prothorax larger than the cther rings, often gaily colored and beset with tubercles or spines, and when about to turn to a pupa, the larva attaches itself by the ent of the body to a leaf, and cither throws off the larva skin, which remains around its tail, or the old dried skin is retained, loosely folded about the pupa as a protection, thus simulating the coarctate pupa of the flies. The Spotted

Fig. 510. Hippodania, H. maculata DeGeer (Fig. 509) is pale red, with thirtcen black spots on the body, and is quite common, while the H. convergens Guerin (Fig. 510, with larva and prpa) is common southwards. In Coceinella the bolly is smooth, hemisplierical, with the hind angle of the prothoras acnte.

The egrgs of the common Two-spotted Coccinella, C. bipunctata Linn., are laid in May on the bark of trees, and those of another brood are laid in June and hatched July 1st. They are oral, cylindrical, orange yellow, and are attached in a bunch of about twenty-five, by one end to the bark. They hatch out when the leaves and their natural article of dict, the Aphis, appear, and may be fomd running abont over the leaves of various garden shrubs and trees. The body is black with flat-
tened tubercles spinulater above; on each side of the first abdominal segment is a yellowish spot, and there is a broad yellowish spot in the middle of the fourth segment, and one on each side. On June 28 th we found several fully grown larre a quarter of an inch long, transforming into pupæ, with a freshly transformed beetle. The larra begins the operittion by attaching rery firmly, with a sort of silky gum, its tail to the leaf, the point of attachment not being the extreme tip, but just before it, where the tip of the abdomen of the pupa is situated. Meanwhile the body contracts in length and widens, the head is bent upon the breast, and in about twenty-four hours the skin splits open and discloses the pupa. The body

Fig. 511. of the pupa is black; the head is also black, and the prothorak is black and yellowish pink, with a black dot on each side, and a smaller black dot on each edge; the mesothorax, wing-covers, scutellum and legs, are shining black. The abdominal rings are pale flesh-colored, with two rows of large black spots on each side, the spots being transrerse; the tergat of the fourth to the seventh segments are separated, the body being arched and leaving: a cleep furrow between. The beetle is orange yellow, with a black head and prothorax; the side of the prothorax is whitish, with a central diamond-shaped white Fig. 512. spot, and behind it a much longer whitisli spot. The beetle derives its specific name from the two black dots on the elytra. It hibernates, and might be used to clear house-plants of plantlice. The Nine-spotted Coccinella, C. novemnotatre Herbst (Fig. 511, and pupa), and the Three-banded Coccinella, C. trifusciatu Linn. (Fig. 512), are also not mncommon species.

The Fifteen-spotted Lady-bird, Mysia 15 -punctata Olivier, is black on the head and prothorax, with seven black spots on the brownish red elytia, and a black spot on the sontellum ; it is seven-twentieths of an inch in length. The larva closely resembles that of Coccinclla, but along the body are six rows of stout spinulated spines: the upper surface of the body is black, with a pale spot on the hinder edge of the prothoracio ring; the body is pale beneath. It is half an inch long. The pupa is pale, not black like that of the Coccinellæ known to us, and
is sixteen-spotted, with three additional rows of dark spots on the abdomen. The body is broad and flat, with a row of three spines on each side of the abdomen, and is .40 of an inch long.

In Chilaconts the margin of the elytra is clilated, and the lunate prothorax is rounded behind. C. biruhnerulus Mulsant (Fig. 518) is black, with two yellow spots.

The genus Scymnus is hemispherical, pubescent, with short, abruptly clavate antenne. I have received from Dr. II. Shimer the larva and adult of Scymus cervecalis Muls. which he found in the holes of insects boring in the Prickly-ash. The body is subcylindrical, pale whitish, much longer and slenderer and Fig. 513. narrower than in Coccinella, with a small black round head; the legs are long and slender, more so than in Coccinclla. The Warl rings are rather convex, not tuberenlated above, thongh provided with a few hairs. It is . 12 of an inch long. The beetle is reddish brown, with very dark Fig. 51. Prussian blue elytra, and is $\mathbf{.} 10$ of an inch long.
Epilachnct borcalis Thunberg (Fig. 514) is yellowish, with seven large black patches on each elytron. "The larre, according to Osten Sacken, are common on the leaves of the pumpkin. It is yellow, with long, brown, branched spines, arranged in rows of six on each segment, except the first thoracic segment, which has only four. The pupa instead of spines has short bristles, especially on the thorax."

Fig. 515. The Pea WeeviL.

In the remaining suborders, the metamorphosis is, with the exception of most of the Neuroptera, generally "incomplete," the active larva and pupa closely resembling the adult, and often scarcely distinguishable from it except in being wingless. This similarity of the adult condition to the larval and pupal forms, as well as the equality in size of the different segments of the borly, the aquatic labits of many of the species, and the numerous genuine parasites found among them, are indicative of their low rank.

HEMIPTERA.

This suborler, including the true "bugs," plant-lice, bedbug and body-lice, may be briefly characterized by the beaklike sucking mouth-parts, composed of the mandibles and maxillæ, which are ensheathed by the large expanded labium, while the labrum is small and short; by the free, large prothorax, the usually angular short body, and the irregularly veined wings, the veins being but few in number, while the fore wings are often half coriaceous and opake. The metamorphosis is incomplete. There are many wingless parasitic forms, and many aquatic species.

The triangular head is nearly always sunken into the prothorax, and is small in proportion to the rest of the body; the eyes are small, nearly globular and very prominent, and the three ocelli are set far back, while the short, bristle-like, or filiform antenme, composed of from five to mine joints, are inserted below ard far in advance of the eyes, so that the front is broal and flat. The mouth-parts are greatly produced into a solid hard beak. The mandibles and maxille arc long and style-like, the latter without palpi ; they are ensheathed at their base by the canaliculate labinm, which has obsolete palpi, while the lingua is short, but slightly developed, its function of tasting the food, owing to the peculiar habits of the suborder, being throm into disuse. The labrum is well developed, being generally acutely triangular. The thorax is constructed on the colcoptcrous type, the prothorax being broad above, and the wings, when folded, concealing the rest
of the body, while the side pieces (the epimera and episterna) are large and of much the same form as in the Coleoptera, and the legs are situated close together, with coxæ and trochanters very similar to those of the Coleoptera. The body is usually very flat above, or, in the more or less cylindrical species, somewhat broad and flat. The body is less concentrated heatwards than in the Coleoptera, though much more so than in the Orthoptera, and in this respect, as well as in other essential characters, the group is intermediate between these two suborders. Both pairs of wings are very equal in size and alike in shape, except in the higher families where they are very unequal, the hinder pair being very small. They are generally very regularly orate in shape, the costal edge being much curved and rounded towards the obtusely rounded apex; the outer edge is long and very oblique, and the inner edge short, though often longer than the outer edge in the lower families. The type of renation is rather peculiar in this suborder, as the costal reins are large and stout, while, as seen in the wings of Aphis, the median veins are sent ont from the costa; indeed there is no central powerful vein in the middle of the wing; in other words the wing is scarcely differentiated into its three special regions, so well seen in the IIymenoptera and Lepidoptera, and especially the Orthoptera. The surface is net-veined rather than parallel-veined, but there are ferv veinlets, and the interspaces are large and few in number, and in this respect most Hemiptera show their superiority to the Orthoptera and Nemroptera. In the lower section of the suborder, the IHeteropterous Hemiptera, the thickening of the basal half of the wing tends to obliterate all traces of the veins, and especially the reinlets.

The legs are slender, and often rery long, orring to the great length of the femora and tibix, while the tarsi, like those of the lowest Coleoptera, are two or three-jointed.

The abdomen has six to nine segments apparent, though the typical number is eleren, according to Lacazo-Duthiers. The stigmata are very distinct, being often raised on a tubercle. On the basal ring of the abdomen are two cavities in which are sometimes seated vocal organs, as in the male Cicada, and in the metathorax of some species are glands for secreting a
foul olorous fluid. Lacaze-Duthiers has given a sectional view of Ranatra (Fig. 516; V, dorsal vessel ; I, intestine ; N, nerrous cord) which shows the relation of the elements of an abdominal segment. T, is the tergum; ex, the epimerum; es, the episternum, and s, the stermm.

The oripositor and the genital armature are generally concealed within the tip of the abdomen, being rarely exserted so as to form a prominent part of the body. It differs greatly in its derelopment, and is difficult to reduce to a common type. Lacaze-Duthiers states that we may consider the abdomen of the Hemiptera as consisting of ten or eleren segments, according as we consider the horny ring, lying between the abdomen and thorax as the basal ring of the abdomen, or not. He regards the former vier as the true one. This author contends that in Ploa the tergum of the first and second abdominal segments (proto and deutotergites) are coalesced, and that the original sutures are marked by simple strixe, while at the opposite end of the abolomen the genital and anal outlets are separated by three rings, i.e., the eighth, minth and tenth.

In the Cicadider and Phytocoris the oripositor is perfeet and much as described in the Hymenoptera. In the Futyoride, Nautocoris, Ploa and Notonecta, the eighth segment is complete, while the oripositor is more or less incomplete, and it often happens that a reunion of secondary pieces represents a principal piece, and that the clements of the two postgenital dings are articulated together by overlapping each other.

In Ramatra, Nepa and Gerris is a third modification of the oripositor, where the postgenital segment is incomplete, and the sternal appendages and sternm of the segment bearing the oripositor only remain, the other parts being aborted. In the Pentatomids and Cimex there is no ovipositor, but the aborted elements are more or less dereloped, so as to be identifiable.

The nervous system consists, besicles those of the head, of two thoracic ganglia, of which the anterior is the smaller, which send off two main trunks to the abdomen.

The cosophagus is usually small and short, while the much conroluted stomach is very long and subdivided, first into a large, straight, glandular portion ; second, into the convoluted smaller part, and third, in some Pentatomids and Coveidce there is a thircl stomach "consisting of a very narrow, slightly flexuous canal, on which are inserted two or four rows of closely aggregated glandular tubes." (Siebold.) The Cicadidee, and most Heteropterous Hemiptera, have very large lobulated sahivary glands, divided into two unequal portions, aud often with long digitiform processes.

In the aquatic species of the Nutcoride and Nepide there are only two stigmata at the end of the abdomen. In Nepa and Ranatra the stigmata are situated at the base of a long tube. There are four long urinary tubes. The oraries are formed of from four to eight uubes arranged in a verticillate manner about the end of the short oviduct. In the Psyllida and Cicadidxe, homever, they are composed, in the first fumily, of from ten to thirty, unilocular tribes, and in the second, of from twenty to seventy bilocular tubes. The receptaculum seminis consists of one or two small cacca, and the Cicadide are the only Hemiptera which have a copulatory pouch, this consisting of a priform resicle. "The riviparous Aphiclce differ from those which are oriparous, in that their eight ovarian tubes are multilocular and their oviducts entirely without appendages, while with the sccond, or oxiparous, these eight tubes are unilocular, and there is a seminal receptacle and two sebaccous glands." (Siebold.) The testes rary greatly in number and form, consisting of from one to fire tubuliform or rounded glands.

The active larre of the Iemiptera, like those of the Orthoptera, resemble closely the imago, differing manly in possessing' the rudiments of wings, which are acquired after the first moulting. After two or more changes of skin they pass into the pupa state, which differs mainly from that of the larva in having larger wing-pads. While the development of the imago ordinarily occopies the summer months, in the Aphides it takes but a comparatively few clays, but in the Seventeen-year Locust as many years as its name indicates. An exception to this mode of development is seen in the larva of the male

Coccus, which, as in the higher suborders, spins a silken cocoon, and changes into an inactive pupa.

Apterous individuals, especially females, sometimes occur, especially in the aquatic Hydrometra, Velia and Limmobates, and in many other genera the hind pair of wings are often absent.

The embryological development of such Hemiptera as have been observed (i.e., Corixa, according to Dr. Brandt's researches), corresponds very closely with that of the Neuroptera (Calopteryx and Diplax).

There are about 12,000 species living and fossil. Some species are of great size, especially the Hydrocores, a division containing the aquatic genera, Velia, Nepa, Belostoma and Notonecta, and which first appeared in the Jurassic formation.

Latreille divided the Hemiptera into the Heteroptera and Homoptera. The latter are the higher in rank, as the body is more cephalized, the parts of the body more specialized, and in the A_{p} hidice, which top the series, we have a greater sexual differcntiation, the females being both sexual and asexual, the latter by a budding process, and without the interposition of the male producing immense numbers of young, which feed in colonies. The species are smaller than the Heteroptera, and are all terrestrial. The Heteropterons Hemiptera, on the other hand, are larger, the body is less compactly put together, the abdomen and thorax are elongated, the head is small compared with the rest of the body, and the species are large, some of great size (a sign of degradation among insects), and several families are aquatic, indicating a lower grade of derelopment, while representatives of these were the first of the suborder to appear in geological times. Their affinities are with the Orthoptera and Neuroptera, while the Aphidre and Homoptera generally, on the other hand, whose bodies are more cylindrical, ally themsolves with the first and higher series of suborders.

In the Homopterous Hemiptera the fore pair of wings are generally transparent and usually net-reined, lying with the hind pair, which are considerably smaller, rooflike upon the body, and the head is held rertically, where in most Heteroptera it is horizontal and flattened.

Aphide Latreille. The Plant-lice have antennæ with from five to seven joints, and generally longer than the body. The ocelli are wanting, and the beak is three-jointed and developed in both sexes. The legs are long and slender, with two-jointed tarsi. The males and females are winged, and also the last brood of asexual individuals, but the early summer broods are wingless. Their bodies are flask-shaped, being cylindrical, the abdomen thick and rounded, and in Aphis and Lachnus is provided with two tubes on the sixth segment for the passage of a sweet fluid secreted from the stomach. The wings are not net-reined, having few reins, which pass ontwards from the costa. They are usually green in color, with a soft powdery bloom which exudes from their bodies.

Bonnet first cliscovered that the summer brood of wingless individuals were born of virgin parents, hatched from eggs laid in the autumn, and that the true winged sexes composed the last generation, which united sexually, and that the female laid eggs in the autumn which produced the spring brood of asexual wingless individuals.

Dr. W. I. Burnett gives the following brief summary of the mode of development in this group. In the early autumn the colonies of plant-lice are composed of both male and female individuals; these pair, the males then die, and the females begin to deposit their eggs, after which they die also. Early in the spring, as soon as the sap begins to How, these eggs are hatched, and the young lice immediately begin to pump up sap from the tender leaves and shoots, increase rapidly in size, and in a short time come to maturity. In this state it is found that the whole brood, without a single exception, consists solely of females, or rather, and more properly, of individuals which are capable of reproducing their kind. This reproduction takes place by a riviparous gencration, there being found in the individuals in question, young lice, which, when capable of entering upon individual life, escape from their progenitors, and form a new and greatly increased colony. This scoond generation pursues the same course as the first, the inclividuals of which it is composed being, like those of the first, sexless, or at least without any trace of the male sex throughout. These same conlitions are then repeated, and
so on almost indefinitely, experiments having shown that the power of reproduction under such circumstances may be exercised, according to Bomet, at least through nine generations, While Duval obtainect thus eleven generations in seven months, his gencrations being curtailed at this stage not by a failure of the reproductive power but by the approach of winter, which killed his specimens; and Kyber even observed that a colony of Aphis diconthi, which bad been brought into a constantly heated room, continued to propagate for four years in this manner, without the intervention of males, and even in this instance it remains to be proved how much longer these phe-
 nomena might have been continued." Dr. Burnett, from whom we quote, considers this anomalous mode of inerease of indivicluals as a process of budding, and that the whole series, like the leaves of a tree, constitutes but a single generation, which results from the union of the sexes in the previous fall. It has always been supposed that the final autumual set of individuals were males and females alone. But Dr. Burnett states: "The terminal brood has hitherto been considered, as far as I am aware, to be composed exclusively of males and females, or, in other words, of perfect insects of both sexes. I was surprised, therefore, on examining the internal organs of the non-winged individuals, to find that many of these last were not females proper, but simply the ordinary gemmiparous form. Moreover so great was the similarity of appearance between these two formstrue females and gemmiparous indiridnals - that they could be distinguished only by an examination of their internal genitalia."
MM. Balbiani and Signoret have discovered that the common European Aphis aceris produces, besides young of the normal form, a singular dimorphous form (Fig. 517), first described in 1852 by Mr. J. Thornton, under the name of Phyllophorus testudinatus, and afterwards called Periphyllus testudo by M. Van der Hocven. The chief characteristic of this remarkable form, which is flattened, scale-like, is the series of leaf-like scales surrounding the boty and bordering the appendages, while the upper side of the abdomen is covered with heragonal figures. The generative apparatus is also very rudimentary. It does not produce young, and the insects themsolves do not increase in size after birth, being scarcely one millimetre in length. "They undergo no change of skin, nerer acquire wings like the reprodnctive individuals, and their antemme always retain the five joints which they present in all young Aphides before the first moult." (Science Gossip, 1867, p. 204.)

Aphicles are found upon every part of plants. Some species which are

wingless, are found on the roots of plants, others on the stems of twigs, others roll up leaves, or form gall-like swellings on leaves; the grain Aphis sucks the sap of the kernel. Ants are fond of the sweet excretions from the abdominal tubes, and often keep them captive in their nests like herds of cattle. Syrphus flies, Coccinellæ, etc., keep them within proper limits in nature. Various species of A phitius kill larger numbers than we imagine. "When an Aphis has received an egg from one of these parasites it quits its companions and fastens itself by its ungues to the under side of a leaf, when it swells into a globular form, its skin stretched ont and dried up, and in a short time the perfect parasite escapes by a circular hole, the mouth of which sometimes remains like a trap door." In the Museum of the Peabody Academy is an apple twig almost covered with dead Aphides, each perforated by a hole from which an Aphidius had escaped.

In Aplis the seven-jointed antenme are longer than the body, the two basal joints short and thick, the seventh the longest, and near the end of the abdomen there are two long honey tubes. Aphis avence Fabr. is abundant and very injurious to the ear's of wheat, sucking out the sap and greatly reducing the bulk of the corn. In certain years it has spread orer the comntry in immense numbers. Aphis mali Fabr. (Fig. 518, winged female; Fig. 519, asexual female), and A. malifolice Fitch are found on the apple; A. cerasi Fabr. on the cherry; A. persicce Sulzer on the peach, and A. brassicte Linn. on the cabbage. There are about thinty species known in this country.

In Letelnus the sixth joint of the antenne is shorter than the seventh, and the honey tubes are rery short. Lachnus strobi is found on the white pine bushes often in great numbers.

Fig. 519. Lachnus caryce Harris is a very large species which lives on the Hickory. Mr. Walsh states that he has "noticed in the autumn, numerous apterons femalcs on the same tree, which lived many days and laid their eggs in confinement, but died without assuming wings." The genus Eriosona differs in having no honey tubes, and in having only two median (discoidal) cells. The species are covered with a woolly floceulent substance, secreted from the abdomen, though no special glands for this purpose hare yet been discovered, while but little "loney" is exuded from the orifices of the aborted honeytubes. Eriosoma lanigera Lausmann, the Apple-blight, is black, with the abdomen honey yellow. The eggs are laid in the axils of the branches, especially near the roots of the tree, if there are any suckers present, and are enveloped in the powdery substance of the abdomen of the female. By their stings in the bark numerous warts and excresences are produced, the leaves turn yellow and drop off, and the tree often dies. Professor Verrill has found, about the middle of October, among the wingless individuals, "a large number of both males and females having well formed and rather large wing's, but in other respects closely resembling the rest."

The genus Adelges was proposed by Vallot for certain broad, flattened plant-lice, which attack coniferous trees, often raising
swellings on twigs like pine and spruce cones. The antennæe are short, five-jointed and slender; there are three straight reinlets arising from the main subcostal vein and directed outwards, and there are no honey tubes; otherwise these insects closely rescmble the Aphides. A species (Fig. 520 ; a, pupa seen from beneath) closely related to the European Adelges (Chermes) coccineus of Ratzburg, and the A. strobilobius of Kaltenbach, which have similar habits, we have found in abundance on the spruce in Maine, where it produces swellings at the end of the twigs, resembling in size and form the cones of the same tree.

Under the name of Humamelistes Dr. Shimer describes a specics, H. comnu

Fig. 520.
(Fig. 521, wings), which inhabits "obliquely conical ol hornlike galls on the upper side of the leaf of Hamamelis Virginica, the Witch Hazel, opening on the under side of the leaf." In this genus the "wings are laid flat on the back in repose, extending much beyond the body," while the honey tubes are either small or obsolete, and the antenæ are short, being from three to five-jointed.

The genus Thelaxes differs in the wings being folded flat on the back, and there are but two veins in the hind wings, one subcostal, the other median. Thelaxes ulmicola Walsh inhabits galls on the leaves of the elm. Mr. Walsh states that the winged females are black and more or less pruinose. In Byrsocrypta the wings are steeply roofed, according to Walsh, and in the six-jointed antenne "the sixth

Fig. 521. joint is nearly as long as the fourth and fifth together." 'This genus also consists of several gall-inhabiting species. In the species of Pemphighe, which produce gall-like excresences on plants, the fourth to the sixth antemal joints are nearly equal in length, and, as in Byrsocrypta, there are two median veins, the third vein of the wing being simple, while in Eriosoma it is forked. Mr. Walsh has "ascertained from repeated observa-
tions the very curious fact, that the ants fetch the larva of Pemphigus formicetorum Walsh home to their nests from the roots on which they feed, and place them in little clusters of fifty or sixty individuals, where they soon elaborate such a dense mass of white cottony matter as to entirely conceal them." (Proceedings of the Entomological Society of Philadelphia, i, p. 307.)

Pemphigus formicarius is attended by Formica aphisticola. Mr. Walsh, who describes it, states that "two kinds of larve

Fig. 522. occurred in company; the first, when recent, scarcely twice as long as wide and whitish; the second, when recent, three times as long as wide and cinereous. From the latter I bred fire winged individuals."

Another species, the Vagabond Pemphigus, P. vagabondus Walsh (Fig. 522), so-called from its habit of wandering to very great distances in its native forests, raises large galls (Fig. 523) on the tops of the cotton-wood and balsam poplars; and the "old blackened galls hang on to the twigs for several seasons, giving the tree a singular appearance when

the leares are off in the winter time." A single female begins the gall, whose young soon multiply, leaving the gall in September. Mr. Walsh has also described the Sumac gall (Fig. 524) caused ly a smaller species, the Pemphigus thois of Fitch, and also the Cockscomb-elm gall (Fig. 525) made by the P. ulmicola of Fitch, which infests young white elm trees, often densely covering the leaves. "By the end of June or the beginning of July, the gall becomes full of winged plant-

Lice, when the slit on the under side of the leaf, through which the mother plant-louse built up the gall early in the spring, gapes open and allows the insects to escape into the open air." (American Entomologist, p. 108.)

The Editors of the "American Entomologist" (lescribe and figure the Apple root plant-louse, Eriosoma (Pemphigus) pyri of Fitch (Fig. 526; π, the gall; b, larva; c, female ; d, leg ; e, beak; f, antema of female;

Fig. 524. g, of larra), which occurs sometimes in great abundance, forming, in October, galls like potatoes, and two to three inches in dirmeter, on the roots of apple trees, just beneath the surface of the ground.

The European Chermes (Pemphigus) abietis has two sorts of females, and is parthenogenous, according to Leuckart.

Coccida Fallen. The Bark-lice have six or more joints to the antennre ; the

Fig. 525. tarsi are two-jointed, the beak wanting in the males, in which the hind wings are usually wanting, while the scales made by the females are usually flattened, scale-like, or rounded hemispherical. The wingless, scale-like, arlult females, by a retrograde derelopment, in which the legs and rings of the body become aborted, remind us of the Barnacles and allies among

Frustacea, and like them, they can scarcely be referred to the type of Articulates at all, while other forms, such as C. cacti in its larral state, resemble Glomeris, or the Isopods, among Crustacea. On the other hand the males have been mistaken for some Neuroptera, and the male Coccus, with its long anal stylets and the single pair of fore wings, may be likened to an Ephemera. The genera Aspidiotus and Lecanium are parthenogenons, as in the Aphidee.

In Aleurodes both sexes are winged and of similat form, the antemm are six-jointed, with the second joint lengthened, and

Fig. 506. in the fore wings, which are spread out as in Lepidoptera, there is but a single vein, the median. We have received from Mi. J. L. Russell, the young and adelt of a species which occurred in great numbers on his honseplants and especially on the tomato leaves. The winged forms appeared early in September. The larva are green and scale-like, rounded oval, and the pupre retain the same form and are smooth beneath, but with minute hairs above and on the edges. The adult is yellowish white, with snow-white wings, and is about $0 t$ of an inch in length. 'The borly of the imago nearly formed, with black eyes, can be seen through the thin papa skin. In Dorthesia the males only are provided with wings ; the antennæ are long, nine-jointed, and the abdomen is oval, ending in a bushy mass of threads. The genus Coccus differs in that the two-winged males have tenjointed antenne and two anal bristles. The females have nine-jointed antenne, and are covered with a flattened, hemispherical scale. The Cochineal insect, Coccus
(Pseudococcus) cacti (Fig. 527, male, with wingless female, natural size and enlarged) secretes masses of Cochineal from its body. The males are carmine red, with light brown wings, and the anal setie, or bristles, are two and one-half times longer than the body, which is three-fourths of a line long, while the female is one line in length, rounded in form, and covered with a heary bloom. It lives in Mexico on the Cactus coccinellifer, and has been introduced into Spain and Algiers and the Madeira islands. Cocous manniparus of Ehrenberg is found at Sanai growing on the Tamarix, and produces by its attacks the gum-like secretion called "manna." Coccus lacea Kerr lives in the East Indies on the Fious religiosa, and produces the lac of commerce. When found on the twigs it is

Fig. 528. called stick lac, but after it has been pounded, and the greater part of the coloring matter extracted by water, it is called seed lac; when meltel down into cakes after it has been strained and formed into thin scales, lump lac and shell lac.

Mr. T. Glover has flgured three species of Cocens found by him living on the orange in Florida, and all seem to be new to science. The first we may call Coccus Clloverii (Fig. 528, a, male; b, female; d, linear scale, enlarged) which differs from the others by not having, according to Glover's drawing, the usnal pair of candal filaments. It occurs on the hark and leaves, especially on the outer edge, and along the midrib. Another species is represented at Fig. 528, c. The third species is allied to the Coceus citri Boiscluval, which has been very injurious to the orange in the Maritime Alps in Northern Italy. It has, besides a

Fig. 529.
linear scale like that represented in Fig. 528, cl, an oral scale (Fig. 529, a, male ; b, female, enlarged ; c, oval scale), and the female has two long caudal filaments. The hymenopterous parasite, Coccophagus, preys on this genus.

Other bark-lice belonging to another genus, Lecanium, are found in hot-houses; they differ from the preceding in being flat, scale-like, without any traces of rings, and have eightjointed antemæ, while the inales have nine joints to the antemne, and are two-winged. L. Kesperidum Limn is found on the orange.

The Editors of the American Entomologist (p. 14) describe the Lecanium Machurce (Fig. 530,b) which lives on the twigs and leaves of the Osage orange. "The dark part is the scale covering the insect, and this seale, as usual in the genus to which the insect belongs, is of a blood brown color. The pale part is snowy white, and is composed of a fine cottony down enveloping the eggs and young larve." A similar species, L.

Fig. 530. acericola (Fig. 530, a) "infests the bark as well as leaves of the common maple." The common bark-louse of the Apple tree belongs to the genus Aspictiotus (A. conchiformis) and does more injury to that tree than any other insect known. It is also found on the currant, plum and pear. (Riley.) The female is shaped like an oyster shell. There are from ten to one hundred eggs laid by the female. Westwood states that the males of this genus are very broad, with broad wings, and a central anal appendage, but without the usual caudal filaments. The puparium has a double shield.

Mr. Riley has studied the habits of the A. conchiformis

Gmelin (Figs. 581, 532) in Illinois, and states that June 6th most of the eggs were hatched, thongh the young lad not left the scalcs; on the 9 th the weather being "exceedingly warm," the young (Fig. 532, 2) were found running all orer the twigs; on the 11th they all became fixed, and the day after a white waxy secretion began to issue from the body in the shape of very fine, delicate threads (3). On the $22 d$ they had increased materially in size, the waxy secretion vanished soon after the last date, leaving what appeared to be the bocly of a yellowish brown color, though in reality the body is underneath and separate, and has lost all trace of members. On the Gth of July the secretion rapidly increased and assumed an oral form, and the insect was of the form indicated at 5 . On the 10th the scale presented the appearance indicated at 4. Two clays after a third plate began to be secreted fiom the posterior end of the insect, and enlarged rapiclly, becoming of the same color as, the back. By the first of August their growth was to all appearance completed, the scale measuring .12 , while the insect is only . 05 of an inch long, thus occupying about
 half the space within (7). On the 12th of August Fig. 3 os. they began to lay eggs, and by the 28 th all had ceased egg-laying, while the body shrivelled up. There is bat a single brood,

Fig. 58.
the eggs laid late in summer, hatehing in the following spring. Thus it appears, according to Riley's observations, and as Harris supposed, that the shell-like scale is secreted from the sur-
face of the body, and is identical with the flocenlent matter, or down, that exudes from certain Aphides and the shell lac insect and related forms. On the other hand, Dr. Shimer, who has given the fullest history of this insect, and was the first to make observations for the most part similar to those recorded above, considers that the scale consists of the several (three) cast skins of the larra, "cemented by some kind of an exudation to the bark." This insect can be best exterminated by scraping the bark, and then washing the trees with soapsuds a few days after the trees blossom, just as the young are about

Fig. 533. hatching. Dr. Shimer has discovered a mite (Acarus? malus Shimer) which sucks the eggs in autumn.

Another species, which is native, the $A s$ pidiotus Harrisii of Walsh (Figs. 533, 534, A, B, showing the two linds of scales) differs in the scale being oval, "almost entirely flat, and of a pure milk white color," with red eggs, while those of the Oyster shell bark-louse are milk white, and the larre are at first blood red. It occurs on the apple and pear, and is far less injurions than the other species.

Psyllide Latreille. These small Leafhoppers are found hopping orer the surface of leaves and often raising galls. They are flattened and provided with short legs and a broad head, and covered with a white cottony mass in the larva state. In the mature insect the forked antennæ are eight to ten-jointed, with two slender terminal bristles forming the fork. There are three remote ocelli; the beak is threejointerl, reaching to the middle of the chest, and the epimera of the metathorax terminate behind in an acute spine on each side. The limbs are short, with thickened shanks, and two-jointed tarsi. The wings are thickench and folded roof-like orer the body, and the three
veins, costal, median and submedian, are usually each divided but once.

The genus Psylla has the bristle-shaped antenne as long as the body, and a distinct pterostigma. The species are very numerons, each species of tree having its peculiar leaf-hopper, but scarcely any lave been yet described. Psylla pyit is brownish orange, with a greenish abdomen. It is very injurious to the pear tree.

In Livia the antenme are shorter than the body, with a very large and thick basal joint, and flattened eyes. Livid eernalis Fitch is bright ferruginous; the breast and tips of the anteune are black, while the legs are pale rust-red. It is . 15 of an inch in length, and is found in vessels of sap of the sugar maple, according to Dr. Fitch.

Cicadellina Burmeister. The true Leaf-hoppers have a broad, triangular head obtusely pointed in front, with a large triangular scutellum not concealed by the wings when at rest, and the ocelli are either two in number or entirely wanting. The short, two-jointed antennæ end in a bristle, being inserted on the upper edge of the front, just before the eyes. The large prothorax is broad and flattened and transversely oblong. The fore wings are thickened, and the hind leg's are long, being fitted for leaping.

Many species inhabiting grasses, such as Heleochara and Aphrophora, while in the larva state suck the sap of grasses and emit a great quantity of froth, or in some cases a clear: liguid, which in the former case envelops the body, and thas conceals it from sight. It is then vulgarly called "toad's spittle." In Typhlocybot, which comprises many small species, there are no ocelli; the scutcllum is rounded, and the front is slightly concave. The species of this and the following genera by their attacks on various vines and fruit trees often kill them. They are among the greatest pests of gardencrs. The injury is produced by their beaks in feeding, and by the ovipositor in puncturing the leaves, in which they lay their eggs.

In Erythroneura the head is crescentiform, about as broad as the thorax, with the rerter rounded down to the front, without an angular edge; the ocelli are situated between the vertex
and the front, and almost as near each other as the eyes, while the fore wings are without closed cells in the disk. The species most injurious to the grape-rine is the Erythroneura vitis Harris (Fig. 535). It is pale yellow, with two red lines on the head, while the hinder edge of the thorax, including the scutellum, the base of the fore wings, with a broad band across their middle, are scarlet, and the wings are tipped with black.

In Jussus the species are larger than the foregoing, with stonter bodies. The head is very broad and short, concave at base, and the ocelli are placed between the eyes on the front, which is broader than long, and the oripositor is recurved. Jussus irroratus Say is not uncommonly seen on herbage.

The common Heleochara communis Fitch, a grass green species, is found in great abundance in damp, grassy places, in company with the yellow-legged, closely allied, Autacizes mot7ipes Say and the Proconia quadriviticto Say, which has the vertex flattened and four scarlet stripes on the wings. In Tettigonict the antenne are half as long' as the body. T. bifida

Say is common in grass. In Cercopis the prothorax is large and hexagonal.

The Clastopterca protens of Fitch is a common insect in blueberry fields and cranberry pastures. It is
short and thick, with a bright jellow head, with a black band on the front margin of the vertex, and a broader one on the front, and a black dot near the apex of the elytra, while the legs are yellowish white, and the tarsi are black. It parics greatly in its colors. In Aphephora the head is of moderate size, with two ocelli approximate on the crown of the heal; the prothorax is trapezoidal and the posterior tibia have two teeth. A. quadrinotata Say is found on grape-vines.

Fulgoride Leach. This family, as stated by Westrood, is at once known by having only three clistinct joints in the antenme, and the two ocelli are placed beneath the eyes. The
head is very large ; the body is high and conver, often compressed laterally. The hind legs are thickened and enlarged, adapted for leaping purposes. Some of the strangest shapes among insects are found in this group. This is clue to the great developmont of the forehead, or vertex of the head, which is prolonged either angralarly, or into a long snout-like process, as in Fulgorn, while in other species it is as long as the entire body.
"The species of some genera, such as Flata limbata, Phencr. variegata, Lystra auricoma and L. lanata, emit a waxy white secretion, made into a fine white wax, which is much esteemed in China and the East Indies." (Westwood.)

The Lantern-fly, Fulgora, attains an immense size when compared with other Hemiptera, being between two and three inches long. The head is large with a prolongation much longer than the head, which is said by norices and some naturalists, though doubted by others, to be luminons at night, whence its name. The Fulyora lanternaria Linn. occurs in Surinam, and F. (Hotinens) candelaria Linn, is found in China. Mr. Caleb Cooke of Salem, who resided several years in Zanzibar, Africa, informs me that the Lantern-fly is said by the natives to be luminous. They state that the long snout lights up in the night, and in describing it, say "its head is like a lamp." (reetchua Fona-tah.)

In Flata the base of the head is concealed by the front edge of the prothorax, the front of the head is long and slender, mithout any middle keel; the wings are rery broad and rouncled.

Anotia Bonnetii Kirby is found, according to Fitch, on willows about the middle of September. Otiocerus Coquebertii Kirby is found on beech and oak trees, and sometimes on the grape-rine, according to Fitch.

The genus Delphax has a very broad front, with sharp edges and a forked ked along the middle; the antenme are twojointed, the articulations long and thickened at the encl. Delphare arvensis Fitch is pale yellow, unspotted, with the elytra and wings nearly pellucid. It is common in fields of wheat early in June.

Cicadarle Latreille. These interesting insects, commonly called "locusts," are large and wedge-shaped, with a large
broad head and prominent eyes. The males have a musical apparatus beneath the wings on the basal ring of the abcomen,

Fig. 536. which acts like a kettle drum, producing a louch, penetrating, shrill sound. Cicada rimosa of Say, our smallest species, begins to be heard a Iittle before the midclle of June. The C. pruinasa Say is larger and appears later, being an autumnal species. Professor A. E. Verrill has observed this species in Norway, Me., laying jits eggs in the stems of Solidago or Golden-rod. It made a longitudinal incision with ragged edges into the pith of the plant, then with

Fig. 537. its oripositor forced its eggs a little distance domn in the pith lelow the external opening; there were two rows of eggs succeeding the first single one, each pair diverging outwards, the lower ends
of each pair nearly touching each other, and all placed rery near together. The habits of the Seventeen year locust, Cicada
septendecim Linn. (Fig. 536, A; g, drum ; c, d, male genital hooks ; B, C. Cassinï Fisher ; g, drum ; e, f, genital hooks. Fig. $537, c$, with expanded wings) which does not inhabit Northern New England, are well described by Harris and Fitch. The young larve feed on the roots of the oak and apple, clustering upon the roots and sucking the sap with their beak-like mouths. They live seventeen years. Different broods appear in different localities, so that each year they are seen in some part of the country.

The Editors of the American Entomologist, p. 63, give additional information regarding its habits. It appears during the last half of May, and disappears about the fouth of July, and the eggs hatch between the twentieth
 of July and the first of Angust. The eggs (Fig. 537 ; d, e, enlarged) are depositcd in pairs in the terminal twigs of different species of deciduous trees, especially the oak (Fig. 538, punctured twig; Fig. 539, a twig which has been ${ }^{1 \mathrm{ig}, 538 .}$ punctured and then healed over). The larve hatch out in about six weeks after they are laid, and (Fig. 540 , newly latched larva) drop to the ground in which they live feeding on roots of trees for nearly seventeen years, the pupa state (Fig. $537 ; a, b$, cast pupa and skin; c, adult) lasting but a few days. When about to trunsform into the winged state they ascend to the surface, making cylindrical burrows, "firmly cemented and varnished so as to be water-
Fig. $\begin{gathered}\text { ä9. proof." Mr. S. S. Rathvon has observed that in low }\end{gathered}$ and wet localities the pupe extend these "galleries from four to six inches above ground (Fig. 541 ; a, full view ; b, section) leaving an orifice of egress even with the surface (e). In the upper end of these chambers (c) the pupre would be found awaiting their approaching time of change. They would

Fig. 510. then back dorm to below the level of the earth, as at d, and issuing forth from the orifice would attach themselves to
the first object at hand, and mndergo their transformations in the usual manner." (American Entomologist, p. 64.)

The ovipositor of Cicada, as we have observed it in a rudimentary state in the pupa, closely resembles that of Aschna (Fig. 21), and essentially agrees with that of Bombus, the basal pair of blades arising from the eighth segment of the abdomen, as in the humble bee, and the two succeeding pairs forming the ovipositor itself (the outer pair forming a sheath) arising from the ninth segment.

Notonectide Latreille. The Water Boatmen somewhat resemble the Tettigonix, but their habits are aquatic; their

Fig. 541. hind legs are very long, ciliated, and formed for swimming. The body is convex above, but flat beneath; the head is large and nearly as wide as the rest of the body, with a broad and rounded front; the antennæ are four-jointed, concealed bencath the eyes, and the ocelli are wanting. The different species of Corixa are common in every pool. Their motions are rapid, diving when disturbed rapidly to the bottom and seizing hold of submerged objects. They fly well, but
 walk with difficulty. The genus is characterized by the single-jointed fore tarsi, which are flattened and strongly ciliated; the prothorax is large, covering the mesothorax. C. interrupta Say is not uncommon in pools.

In Notonecta the body is somewhat prismatic in form, and hairy bencath, where in Corixa it is smooth. The fore tarsi are three-jointed, and the hind legs are very Fig.512. long. Roesel states that "the eggs (which are attached to the stems and leaves of aquatic plants, and are of an oval form) are hatched in fifteen days; the young make their ap-
pearance at the begiming of the spring, and the parent survives until they have arrived at maturity." (Westwood.) The recently hatched young are broad, oval and flattened. Notonecta undulata Say (Fig. 542) and N. imorata Say are our more common forms. The genus Ploa differs from the preceding, in the fore wings being coriaceous, and "united together by a straight suture."

Nefider Leach. These insects have very flat bodies which are cither oval or very long and linear. The head is sunken into the thorax, with large eyes, but no ocelli. The antennæ are short, three or four-jointed, and concealed in a cavity under the eyes; the beak is three-jointed. The fore wings are membranous, and the fore feet are raptorial, while the hind limbs are formed for swimming. In Nepa and Ranatica the body terminates in a long breathing tube, and the tracheary system in these two genera is very peculiar, being very largely developed on the uncler side of the body. There is a large airbladder within the metathorax, leading from the spiracle, which evidently lightens the insect during its flight. In the abdomen the spiracles are only present on the third to the fifth rings; they are not, however, simple clefts in the walls of the body but are closed by a siere-like membrane, so that they perform the function of tracheal gills. (Gerstaecker.)

The genus Belostoma comprises the most gigantic forms of the suborder, some species being from three to four and a half inches long. The body is oval, elliptical, flattened ; the eyes are large and the second to the fourth antemal joints provided with hook-like expansions. The fore tarsi are two-jointed, with a single claw, and the hinder limbs are broad, flat, but not fringed. The larva are provided with two claws on the fore tarsi. "The females of some species of Belostomae ear"y their eggs upon their backs, arranging them in a single layer with great symmetry." (Westrood.) Belostoma Haldimamum Leidy is not uncommon in our waters. It is three inches and a half in length, and has black patches on the under sile of the body, while in B. grisea Say, which is of the same size, the under side is unspotted. Professor A. E. Yerrill has sent me the eggs and fieshly hatched young of one of our New England
species of Belostoma, the former of which he found in the spring "under an old \log just at, but above, the edge of the water. On the 18 th of June they hatched out a most amusing flock of young bugs, nearly as large as squash bugs, and light yellowish green in color, which soon changed to dark gray." The young, two days old and previons to moulting, were .35 of an inch long. The eggs are smooth, cylindrical, 16 of an inch long, and are deposited in a mass of about ninety eggs, attached by the posterior end to a mass of silk-gum. They partially overlap each other, and the yomg escape by a round lid, indicated by a semicircular white line.

The genus Ranatroc is remarkable for its long linear body, teminating in the long respiratory tube. The prothorax is greatly elongated, while the mesoscutellum is short. "The eggs of the genus Ranatra are more elongated than in Nepa, and are furnished abore with two slender sete. According to Rösel, they are deposited at random in the water, but Geoffroy states that they are introduced into the stems of aquatic plants, the elongated filaments being alone exposed. Our most common form is Ranctra fusce Beanvois (Fig. 543).

The genus Nepa las very short three-jointed antemne, the tro last joints being expanded laterally. The body is flat, oval, with two long respiratory tubes, while the thorax is trapezoidal, and the mesoscutellum is very large; the thighs are dilated, with a notch to receive the tibia, which is curred and soldered to the tarsus. The genus is very predaceous, feeding like Ranatra and others on the larree of Ephemeræ. "The eggs are deposited in the water; they are
oval, and surmounted by seven elongated filaments, which serve, while the egg is in the oviduct, to form a kind of cup for the reception of the succeeding egg, but which are recurved when the egg is discharged." (Westwood.)

Galgulide (Galgudini) Burmeister. This small group consists of a fer species which have the hind legs formed for running. The body is short, broad, flattened, and the head is broad with pedunculated eyes, and the four-jointed antennæ are concealed beneath the cyes, while the ocelli are present. These insects are said to live on the edge of the water, "burying themselves in the sand, especially in the larva state." The group is interesting as forming a connecting link ljetween the aquatic and terrestrial plant-eating species.

In Galgulus the third antennal joint is small, the fourth minute and rounded. G. oculatus Fabr. is uniformly brown, the upper surface granulated, and beneath blackish.

Ploteres Latreille. These insects are long, narrowing alike towards both ends, being shaped like a wherry, and with their long legs they course over the surface of ponds and streams, moving backwards and forwards with great facility. They are among the earliest spring insects. The body beneath is furnished with a coating of plush, to repel the water. The four-jointed antennæ are long and slender, and the fore legs are partially raptorial for seizing their prey. Wingless insects (evidently mature as they are found coupling) occur in this family, as among the Cimicidce. Thus, there are apterous forms in the genera Gerris, Hydrometra and Velia, while in Pymhocon's apterus and Prostemma guttula there are individuals partially winged,

Fig. 54. "which no one regards otherwise than as specifically identical with the full-winged specimens of the same species, . . . but must be compelled to regard them as imagines with peculiar. characters of their own, somewhat analogous to the neuters, or undeveloped females of the bee; but yet more perfect than
that kind of imago, being capable of reproduction." (Westwood.)

In Yelia the triangular head is sumken in the thorax up to the ejes; the ocelli are wanting; the thorax is large, and the wings are present.

The well known genus Gerris has the ocelli present, the abdomen long and slender, while the prothorax is very large, covering the mesothorax. The egrgs of a European species are preyed upon by a species of Telias, according to Mecznikow. Gerris paludum Fabr. (Fig. 544) and G. mufoscutellatus Falrs. a reddish species, are albundant on our streams. The larve are much shorter and with broader bodies than the adults.

The genus Hylobates has the first antennal joint as long as the two following ones together; both ocelli and wing's are wanting ; the mesothorax is very large, and elongated posteriorly, and the fore legs are short, outstretched, with thickened femora, while the middle pair of limbs is the longest. The species are found swimming on the surface of the ocean in the tropies far from land.

Reduvide (Rechivini) Latreille. The characters of this family are these: head free from the thorax, elongated, nearly cyilindrical, with prominent eyes and two ocelli; the antennæ are of moderate length, slender torrards the end, and the beak is stout and incurved; the tarsi are three-jointed and the legs are long and fitted for running. These insects are among the most predaceous of the IEmiptera.

The group begins with an aquatic genus Limmozates, which comects this family with the preceding one; it runs over the surface of pools like Gerris. The body is linear ; the prothorax is as long as the rest of the thorax, and the hind wings are wanting.

Ploiaria is a remarkably slender, thread-like insect, with long hair-like posterior legs, reminding us of 'Tipula. The species are raptorial and are frequent in gardens. P. brevipennis Say is reddish, with wings, and the feet are ringed near the knees. Its ally, Emesa, resembles "the thinnest bits of sticks fastened together," according to Westwood. The body is long and thin, hair-like, and the antenne are long and delicate; the
fore legs are raptorial, with long and thin coxæ. The wings are either wanting, or they reach only to the middle of the abdomen. Emesa longipes DeGeer has a white head, with a brown band under the eyes; the femora are amulated with brown, and tipped with white.

In Salde the body is small, elliptical and flat; the antenne are long and thread-like, half as long as the body. The beak reaches to the end of the breast,, the second joint being at least six times as long as Fie. 545. the first, and the legs are short and slender. The species are found mostly in Europe along the shores of the ocean and inland waters.

The genus Nabis is known by the anterior tibise having an apical cushion; the beak is slender, extending to the hind legs. Nabis ferus Linn. is abundant in gardens, feeding on insects. An allied and common form is the Pirates picipes of Herrich Schaeffer (Fig. 515), The P. biguttatus Say has been found between the mattrasses of a bug-infested bed in south Illinois, and probably feeds on the bed-bug. (American Entomolgist, p. 37.)

The allied genera Prostemma (P. guttata), and Coranus (C. subapterus) "are interesting on account of their being generally found in an undeveloped imago state; the latter being either entirely apterous or with the fore wings rudimental, although occasionally met with having the four wings completely developed." Mr.

Fig. 516 . Westrwood thinks that, especially in hot seasons, these apterous insects acquire full sized wings, in accordance with the same opinion of Spinola, whom he quotes.

The type of the family is the genus Reduvius of Fabricius, which may be recognized by its second and third antemal joints being much longer than the first, while the fourth is hair-like. The limbs are clensely hirsnte, and the beak is short and stout. Reduvius personatus Linn., a black species, is said to feed upon the bed-bug. "The larva and pupa have the instinct to envelope themselves in a thick coating of particles of
dust (DeGeer') and so completely do they exercise this habit that a spechmen shut up by M. Brullé, and which had undergone one of its moultings during its imprisonment, divested its old skin of its coat of dust, in order to recover itself therewith." (Westwood.) The Evagoras viridis Uhler MS. is saic, by the Editors of the "American Entomologist," to devour the plum curculio.

In Ifarpuctor the head is convex behind the eyes; the ocelli are distant, knobbed, and the first antemal joint is as long as, and stouter than, the two succeeding ones together. Harpuctor cinctus Fabr. ($\mathrm{F} \mathrm{g} .546 ; b$, beak) attacks the larra of the Colorado Potato-beetle. Another member of this family, the Conorkinus scmguisuga of Leconte, is said to occur in beds, its bite being very painful. (Anerican Entomologist, p. 87.)

Cortsle Latreille. In this very extensive family, which is especially rich in species in the tropics, where they are gaily colored, the head is flat, extended horizontally, and sunken up to the eyes within the prothoras. The antenna are long, filiform, often clarate at the tip, and from three to five-jointed. The two ocelli are almost always present, while the beak-sheath (labium) is four-jointed. The tarsi are generally three-johnted, and the claws are provided with two suctorial pats. The membranous wing-covers have distinct, often forked, longitudinal reins.

We follow Gerstaecker in retaining Latreille's family Corisiæ, which includes the "Lygaeidxe" "Coreidæ" and "Pentatomidre" of recent authors, as they all agree in the general form of the body, and, as stated by Gerstaecker, in the structure of the antemme, the uniform presence of troo ocelli, the longitudinal reins of the fore wings, and the hardness of the crust of the body; these characters separate them from the preceding groups.

In Lygrets and allies (Lygreidæ) the sontellum is of the normal size; the antemne are four-jointed, and are attached to the under side of the head, and the beak is tolerably long. In Lygceus the head is elongated acutcly, the eyes globular, the ocelli distinct, and the antennæ are slender, scarcely half as
long as the body, and slightly clavate. Lygeres turcicus Fabr. is a typical form. Pyrrhocoris apterus Linn. is usually apterous ; oceasionally specimens are found with wings. It inhabits Europe.

The Chinch bug, Rhyparochromus leucopterus Say (Fig. 547) is a great enemy of our wheat crops, and, as its specific name indicates, it may be known by the white fore wings, contrasting well with a black spot on the middle of the edge of the wing. It is about three-twentieths of an inch in length. Harris allso states that "the young and wingless individnals are at first bright recl, changing with age to brown and black, and are always marked with a white band across the back." Shimer says the female is "occupied about twenty days in laying her eggs, about 500 in number. The larva liatelies in fifteen days and there are two broods in a season, the first brood maturing, in Illinois, from the middle of July to the middle of August, and the second late in autumn." According to Harris, the "eggs of the chinch bug are laid in the gromnd, in which the young have been found, in great abundance, at the depth of an inch or more. They make their appearance on wheat about the middle of June, and may be seen in their various stages of growth on all kinds of grain, on corn, and on herdsgrass, during the

I
Fig. 547.

Fig. 548. whole summer. Some of them continue alive throngh the minter in their places of concealment." 'They also attack erery description of garden vegetables, attacking principally "the buds, terminal shoots, and most succulent growing parts of these and other herbaceous plants, puncturing them with their beaks, drawing off the sap, and from the effects subsequently visible, apparently poisoning the part attacked." This species is widely diffused. I have taken it frequently in Maine, and
even on the extreme summit of Mount Washington, in Aug'ust.

Dr. Shimer in his "Notes" on the chinch bug, says that it "attained the maximum of its derelopment in the summer of 1864, in the extensive wheat and corn fields of the valley of the Mississippi; and in that single year three-fourths of the wheat and one-half of the corn crop were destroyed throughout many extensive districts, comprising almost the entire North-west, with an estimated loss of more than one hundred millions of dollars in the currency that then prevailed," while Mr. Walsh estimates the loss, from the ravages of this insect in Illinois alone, in 1850 , to have been four millions of dollars.
In the summer of 1865 , the progeny of the broods of the preceding year were almost entirely swept off by an epiclemic clisease, so few being left that on the $22 d$ of August, Dr. Shimer found it "almost impossible to find even a few cabinet specimens of chinch bugs alive" where they were so abundant the year before. "During the summer of 1866 the chinch bugs were very scarce in all the early spring, and up to near the harvest I was not able, with the most cliligent search, to find one. At harrest I did succeed in finding a ferw in some localities." "This disease among the chinch bugs was associated with the long-continued wet, cloucly, cool weather that prerailed during a greater portion of the period of their development, and doubtless was in a measure produced by deficient light, heat and electricity, combined with an excessire humidity of the atmosphere." In 1868 it again, according to the Editors of the "American Entomologist," "did considerable damnge in certain counties in Southern Illinois and especially in South-west Missouri." Fig. 548 represents the Anthocoris insidiosus Say, called the False Chinch bug; it is often mistaken for the chinch bug, with which it is sometimes found associated.

In the "Coreidre" the scutellum is still of the usual size; the antenne are four-jointed; while the basal joint of the beak is generally the longest.

Westwood states that the Coreus marginatus of Europe "in flight makes a humming noise as loud as the hive bee," and the eggs of this species hare been observed by Andouin to be
"of a splendid golden appearance." The larvæ and pupæ of several species of Coreus have been observed by Westwood to "differ from the imago in wanting ocelli, possessing only two joints in the tarsi (although there is a slight indication of an articulation in the middle of the terminal joint) ; their antenne also are much thicker, especially the intermediate joint. The propa of C. scaphe differs also from the imago in haring the margins of the abdomen notehec." Several adult forms of this group are known to be partially wingless.

The Squash-bug, Coreus (Gonocerus) tristis DeGeer (Fig. 549) is very destructive to squash-rines, collecting in great nombers around the stem near the ground, and sucking the sap with its stont beak. It is a large, blackish brown insect, six-tenths of an inch long, and dirty yellowish bencath. It hibernates, leaving the plant in October. About the last of June the seres meet, and the females "lay their eggs in little patches, fastening them with a gummy substance to the under side of the leares. The eggs are round, and flattened on troo sides, and are soon hatched. The young bugs are proportionally slorter and more rounded than the perfect insects, are of a pale ash color,

Fig. 549. and hare quite large antenne, the joints of which are somewhat flattened. As they grow older and increase in size, after moulting their skins a few times, they become more oval in form, and the under side of their bodies gradually acquires a dull ochre-yellow color." (LIarris.) The young attack the leares, causing them to wither up. Successive broods are said to appear through the summer. Professor Verrill has found, with the assistance of Professol' S. W. Johnson, of Yale College, that the odor of this and other hemipterons insects bears the most resemblance to that of the formate of oxide of anyl, or the formate of anylic ether. It is probable that this substance is its most essential and active ingredient. (Proceedings of the Boston Society of Natural Mistory, xi, p. 160.)

In Feüdes the body is remarkably thin and slenclex, repeating the form of Ploiaria, or of Spectrum among the Orthoptera.

In diydus the body is small, slender, the head prolonged,
while the ocelli are very near together, and the last antennal joint is often twice as long as the two preceding ones together. Alydus eornus Say is a twidely diffused species. An allied genus is Rhopalus. Another species of this group is the Metapoctius nasalus of Say, which, in the Western States, injures cherries by sucking them.

In the last group (Pentatomidx, which we place next to the Membranacei, because they are less allied to the Homoptera, and are more nearly related to Cimes) the scutellum is rery large, often covering more than one-half the abdomen, and in this respect they at least remind us of those Orthopterous genera in which the same character prevails.

This is a group of great extent, with bright colors and often of large size. The head is receired into the large broad, short prothorax, and the body is generally ovate. The second joint of the beak is the longest.

The rarions species are found on shrubs, sucking the leaves or often transfixing caterpillars on their beaks and carrying them off to suck their blood at leisure. DeGeer describes the eggs as being generally of an oval form, attached to leaves at one end by a glutinous secretion, the other being furnished with a cap, which the larra bursts off when it hatches out. The larrec are more conves and less flattened than the adults. "DeGeer has made an interesting observation relative to the care with which the females of a species of this family (Acanthosoma grisea), found on the birch, defend their young. In the month of July he observed many females accompanied by their respective broods, each consisting of from twenty to forty young, which they attended with as much care as a hen does her brood of chickens." (Westwood.)

In Pentutoma the antenme are five-jointed; the beal is slender, reaching to the end of the breast, with its first joint lying in the furrow on the throat. The satellum is tro-thircls the leugth of the abclomen. Pentatomer tristigma Harris has a series of three or fom black dots on the under side of the abdomen, of which the posterior one is largest. It is seventwentieths of an inch long. Pentatoma ligata Harris is a large green species, widely edged all around, except the head, with pale red.

In Phloëa the body is much flattened, and expanded laterally into leaf-like flaps. The antennze are three-jointed, the first joint of which is longest. P. corticata Drury is a peculiar form, which occurs in Brazil.

Arma spmosa Dallas (Fig. 550, b; a, beak, seen from beneath; c, beak of Euschistus punctipes Say) is useful since it preys on the larra of the Doryphora. Another bug of this group, the Stiretrus fimbrictus Say (Fig. 551) has similar habits.

In Thyreocoris the wing-covers are nearly covered by the scutellum, which is
 is wider behind than before. The body
 is short and transverse, being broader than long, and scale-like or semicincular in shape. Thyreoconis histeroides Harris resembles a Hister beetle, and is greenish black, with dull honey yellow antennx. The species of Corimelcena are of much the same form, and usually shining black. C. pulicotria Germar', according to Riley, injures strawberry-vines and grape-vines in Illinois. In the genus Tetyra the scatellum covers nearly the whole abdomen, but leaves the side of the wing-covers exposed. The antenna are slender; the first joint is longer than the second, the third being the shortest, and the fifth is twice as long as the fourth. Tetyra mamorata Sny is a variegated species, the costal margin of the wing being provided with transverse fuscous lines.

The genus Scutellera is remarkable for the great size of the scutellum, whence its name is derived. This piece, which is elongated triangular, covers not only the entire abdomen, but also the wings; the antenne are fire-jointed, the two first joints small, the three last ones

Fig. byั long, quite large. The species are adorned with gay metallic colors, and are especially abundant in the Island of Sunta. (Gerstaecker.) Scutellera viridipunctata Say is piceous, with green impressed punctures. It is seven-twentieths of an inch long, and is found in Florida.

Thripide (Thripsides) Fallen. This interesting group
bears much the same relation to the Corisice as the lice do to the Membranacei (Cimex), or Podura and Lepisma to the Neuropterous families abore them. A comparison with the Mallophaga is still better, for in Thrips (Fig. 552) we finch, as in the last named group, free, biting mouth-parts, accompanied by a general degradation of the body. Though the species are winged, yet the wings are partially aborted; they are long, narrow, linear, both pairs of equal size, as in the typical Neuroptera, and by the frequent absence of any veins, either longitudinal or transverse, and the long delicate silky fringe, remind us strikingly of some minute degraded hymenopterous Proctrotrypidce, Pteratomus (Plate 3, fig. 8), for example. The mandibles are bristle-like ; the maxillæ are flat, triangular, hearing two to three-jointed palpi, and the labial palpi are
 present, but rery shor't, and composed of but two or three joints.

Chiefly on account of these characters these insects were placed in a distinct order, termed Thysanoptera by Haliday, and by many recent authors
Fig. 552. they have been widely separated from what seem to us their nearest alhies. Latreille, howerer, recognized their affinities to the Homoptera, while stating that in their free biting mouth-parts they resembled the Orthoptera, to which Geoffioy referred them. To us they mpear to be, as it were, degraded Lrgaids, and to preserve the general form of that group, in the long head, the stout, thickened fore iimbs, and the large, square prothorax. They hare both compound and simple eyes, the latter three in number.

The antennæe are long and slender, with from five to nine joints. In some species the fore wings are comparatively well developed, or, as Haliday states, they are "transformed into broadish elytra, ciliated only behind, and withe longitudinal and transcerse nerves. In some species the wings are wanting, at least in the males." (Westroocl.) "The abdomen is
terminated in the male by a long attemated joint, by a fourvalved borer in the female."

The eggs of Phlæothrips have been compared to those of Culex, by Haliday, "being cylindric, rounded at one end, and crowned with a knob at the other." Both the larva (Fig. 554) and pupa are active, being found in the same situations as the adult. The larve are of softer consistence, pale, or reddish, and the thoracic rings are similar to each other, while in the pupa "the articula tions of the limbs are obseured by a film, and the wings enclosed in short fixed sheaths. The antennæ are

Fig. 234. turned back on the head, and the insect, though it mores about, is much more sluggish than in the other states." (Haliday in Westwood's "Introduction," etc.)

The different species occur under the bark of trees, and are rery injurious to grain and flowers, eating holes in the leares or corollas, and sucking the sap from the flowers of wheat, in the bottom of which they hide.

In Phleothrips and allies (Fig. 553, P. coriacea Haliday ? both sexes bave the abdomen terminating in an acute point, being either the ovipositor of the female, or the slenter terminal tube-like joins of the male. The wings are almost withont reins, with long cilia, and at rest fokled one upon the other. The anternw are eight-jointed. Three ocelli are present in the winged species, but in the wingless forms they are absent.

The Phlcoothips mali of Fitch appears "in a roundish cavity near the tip end of the young fruit." Dr. Fitch describes another species (P. carya) which is found in singularly shaped galls on the hickory, "which resemble a long, slender pool thrust half-way through the leaf." This author doubts, however, whether these galls are made by these insects. He also states that "the insect within, when disturbec, turns its tail mpward over its back in a menacing manner, the same as the rove beetles (Staphylinidæ) do, and when the point of a needle, which had been pressed upon one of these insects, is touched to the tip of the tongue, unless my imagination greatly deceives me, it will frequently be found to impart a peculiar acid biting sensation."

A second group (Terebrantia Haliday) includes the genus

Thips, in which the females are provided with a four-valved compressed ovjpositor which lies in a furroty in the two last abdominal segments. The fore wings are thickened, elytriform, with two longitudinal continuous reins. The antenne are, for the most part, ninc-jointed. Thrips cerealium Ialiday is clark reddish brown, and very injurions to wheat.

Capsini Burmeister. The species of this family are very numerous and very active in their habits, running swiftly and easily rising on the wing. They are fond of fruits, and it is the little Capsi which give such a nauseous taste to the raspbery, which they feed upon. The females are distinguished from the males "by laring the oripositor nearly half the length of the body, somewhat sabre-shaped, and received into a slit on the under side of the abchomen." The body in this group is conrex, oral, and of a soft consistence, and "distinguished by the elongated antemne haring the second joint often thickened at the tip, and the terminal joints rery slender, the rostrum long and four-jointet, while the ocelli are wanting. The pupa of Capsus Danicus is clothed with short and somewhat clavate hairs." (Westwood.)

In Capsus the body is elliptical or oval ; the head is triangular, convex. Capsus quadricittatus Harris is yellow, with four black bands. Phytocoris differs from Capsus, according to Harris, in having a smaller head, while the thorax is witer behind and narrower in front. P. linearis Beaur. is a fifth of an inch long; the head is yellowish with three narrow, longitudinal, reddish stripes; the thorax has a yellow margin, with five longitudinal yellow kines upon it. The male is much darker colored. It is excessively common on all kinds of plants. It appears early in April, but is most abmadant in summer. In the gents Miris the head is elongated triangular; the basal joint of the antenne is thickest, whereas in the preceding genus the second joint is the stoutest. Miris dorsakis Say is pale yellowish rufous, immaculate, and the antennæ are rather stont, tapering, and rufous.

Membranacei Latreille. This family includes the Bed-bug, and it is from this insect that the name "bug" has been ex-
tended to the entire suborder. The antemn are four-jointed, with the tip clarate or knobbed. The ocelli are, for the most part, wanting; the beak is gutter-like, with a threc-jointed sheath (labium). The tarsi are three-jointed, withont any foot-pads. In Cimex the beak reaches, when laid upon the breast, as far as the fore coxx ; the legs and antenna are covered with fine hairs; the second antennal joint is longest. The prothorax is elliptical, and the metathorax is nearly as broad as the circular ablomen; the wings are wanting.

The habits of Cimex lectularius Linn., the bed-hng (Fig. $555)$, are too well known to require any farther mention here. It is exceedingly tenacious of life, and ordinary bug-powders and other applications are useless unless the most scrupulous cleanliness is exercised besides. The eggs are oval, white, and the young lougs escape by pushing off a lid at one end of the shell. They are white transparent, differing from the perfect insect in hav-

Fig. 505. ing a broad triangular head, and short and thick antennæ. Indeed, this is the general form of the louse, to which the larva of Cimex has a very close affinity. Some Cimices are parasites, infesting pigeons, swallows, etc., in this way also showing their near relation to the lice.

The bect-bug is rust-red, with brown hairs, and is two and a half lines in length. It lives as a parasite on the domestic birds, such as the dove. Mr. James McDonald mrites me that he has found a nest of swallows on a court house in Iowa, swaming with bed-bugs. In Europe the Cimex hirundinis Herr. Schaeff. lives on the swallow; Cimex pipistrelli Jenyns lives on the bat ; and Cimex columbarius is found in pigeon houses.

Westwood states that the bed-lug is eleven weeks in attaining its full size. DeGeer has kept full sized individuals in a sealed bottle for more than a year withont food. The Cockroach is the natural enemy of the bed-bug, and destroys large numbers. Houses have been cleaned of them after being thoronghly fumigated with brimstone.

Bed-bugs, as well as other bugs, plant-lice, etc., may be destroyed by a preparation consisting of thirty parts of unpuri-
fied cheap petroleum, mixed with 1,000 parts of water. It can be introduced into holes and cracks in houses, and sprin-

就kled on plants. The cracks of bedsteads may be filled with mercury ; and benzine will also effectually dislodge them, as well as boiling water. The benzine may be applied by means of a surgical instrument Fig. 505. called the Atomizer.
In Syytis the head is small, compressed laterally, and the fore legs are raptorial, thus allying the genus with Redurins. Syrtis (Phymata) erosa Fabr. (Fig. 556) has swollen fore legs, and a dleep groove on the head; it is useful in devouring Aphides.

Fig. 557.
In Tingis the beak reaches to the end of the breast, and the fore legs are simple, the thorax and wing-covers are spread out leaf-like, and the species are of small size. T. Tyalina Ierrich-Schaefler is abundant on the willow. T. hystricellus Richter (Fig. 557, upper and under side, magnified twenty diameters) is a Ceylonese species. It "sticks close to the monder side of the Bringall leaf, and there undergoes all its changes, from the larval to the perfect state. The larvar are black." (Science-Gossip, p. 84, 1869.)

In Aradus the beak is longer than the head, the prothorax is widely expanded, while the wing-covers are rounded at the base. A. crenctus of Say has the cylindrical edge of the abrlomen obtusely crenated. The species are found under the bark of trees.

Pediculina Burmeister. Lice. In these low degraded Hemiptera, which stand in the same relation to the rest of the Hemiptera as the Flea does to the more perfectly organized Diptera, the body is wingless, with a small indistinctly jointed thorax, while the abdomen is large, oval, with nine segments. The antenner are filiform, five-jointed, and the eyes are minute, not faceted. The tarsi are two-jointed, with a large hook-like terminal joint, which is beat back towards the basal joint. The mouth-parts still preserve the form of a beak-like sucker, but it is flesly and retractile, and the body is white, and of minute size. The species of Pediculus are blood-suckers, and parasitic on man and various species of Mammalia; clifferent species being found on different regions of the body. Different rarieties, according to Dr: W. I. Burnett, are found living on the bodies of different races of men.

Two species live on man; Pediculus humanus capitis DeGeer (Fig. 558) inhabits the head, while the Body Louse, P. corporis of DeGeer (P. vestimenti Nitzsch) is fount elsewhere. These two species are difficult to distinguish, they are so
 closely allied. Professor J. C. Schiodte, a Scandinavian naturalist, has recently published an elaborate treatise on this genus, and describes the mode of attack used by these disgusting creatures. It thrusts its minute beak into the skin, and sucks in the blood by means of its large sucking stomach or "pumping ventricle." Schiodte placed one of these insects on his hand, and observed its movements through a glass. After the creature had fixed its beak or haustellum into his hand this naturalist noticed that "at the top of the head, under the transparent skin, between and a little in adrance of the eyes, a triangular blood-red point appears, which is in continual movement, expansion and contraction alternating with
increased rapidity. Soon this pulsation becomes so rapid that sereral contractions may be comnted in a seconcl. Howerer, we must turn our attention elsewhere, for the whole digestive tube is now in the most lively peristaltic movement, filling itself rapidly with blood, as is easily observed ; the long œsophagus is particularly agitating, throwing itself from one side to another inside the neck, bending itself so violently as to remind one of the coiling of a rope when being shipped on deck."

Schiodte states that the sucking organ or beak is a "clark brown protiuding haustellum, provided with hooks at each extremity, out of which an excessively delicate membranaceous tube, of rarying length, is hanging. This pumping "rentricle" (which is modoubtedly homologous with the pumping stomach of most sucking insects, such as the Diptera, Lepidoptera and Hymenopteral Schiodte has discovered in "those Coleopterous larwe which have powerfinl organs for biting,
 placed at a distance round a rery minute mouth-opening, such as the larve of Carabi, Hydrophili, and Hister, as well as in the larve of Dytisci, which suck through the mandibles."

The same author also shows that the month of Peclicults differs from that of Hemptera generally in the circunstance that the labium is capable of being retracted into the upper part of the head, which therefore presents a little fold, which is extended when the labium is protruded. He also shows that those parts which were, by mistake, thought to be palpi and maudibles by Erichson, Jurine and Landois, are simply lobes on the under side of a chitinous band.

In Pedirntus the thorax is a little smaller than the clongated abdomen, and all the tarsi are two-jointed. The gents Plithirius lats a very small thorax, with the abdomen much wider than the head, and the fore tarsi have but a single joint. Phthirius pmbis Linn. (Fig. 559), the Crab louse, is fomnd on the pulic region of man and also on the head.

Mallophaga Nitzsch. The Bird-lice live on the hair of Mammalia and feathers of birds. In this group there are dis-
tinct jaws. The flattened body is corneous, hard abore, and the head is horizontal, with three to five-jointed antenne; the eyes are small and simple; the mandibles are small, like a hook, and the maxillary palpi, when present, for they are sometimes wanting, are four-jointed, while the labial palpi are twojointed. The thorax is small and but two-jointed apparently, as the meso- and metathorax are united together. The abclomen is from nine to ten-jointed, while the short thick limbs liave tro-jointed tarsi and one or two claws.

Nearly every mammal and bird has its special mallophagous parasite, so that the number of species is actually rory large.

These insects are considered by Burmeister as forming a passage fiom the Hemiptera into the Orthoptera, as they possess free biting month-parts, especially free mandibles, which are not as in the rest of the suborder fused together with the other parts to form a sucking tube.

In the genus Philopterus of Nitzsch the antenna are filiform, five-jointed, and the labial palpi are wanting. Nimnus is an allied genus; both live on birds.

Trichodectes conis DeGeer lives on the dog, and has threejointed antenma, and the tarsi are provided with a single claw. The females have two movable hooks on the pennltinate ring of the abdomen.

In the genus Liotherm and allies, the antemse are clubshaperl, fonr-jointed, and the labial palpi are distinct. Liotheum anseris Sulzer lives on the goose and swan.

Gyropus has no labial pelpi; there is a single tarsal clam for elinging to the skin of its host. Gyropnes porcelli Schrank is a third of an inch long and lives on the Porpoise.

Fig. $\begin{gathered}\text { 万in。 }\end{gathered}$
Lomophoors adustus Lec., a Cucuijill see p. 4 tif.

ORTHOPTERA.

Tuis suborder may be briefly characterized as having free biting moutl-parts, with lighly developed organs of nutrition and digestion. The first pair of wings are somerthat thickened to protect the broad net-veined hinder pair, which fold up like a fan mpon the abdomen, and the hind legs are large and adapted for leaping. The transformations are less complete than in the previous groups, the larra and pupa being both active and closely resembling the imago. All the species are terrestrial, the more typical forms having remarkable powers of flight, besides leaping powerfully.

The grasshopper is the type of the group, the other families bearing more or less resemblance to the allied suborders, especially the Neuroptera. The head is very large, and much more bulky than in the Coleoptera or Hemiptera, the monthparts being so large, lequiring large and broal pieces to support the muscles of the hend; its position is rertical, rarely beconing horizontal. The ocelli are two or three in number, while often obsolete. The ejes are small, very convex, and placed far apart. The antenne are filiform, often of great length, and exceeding the length of the body several times, the joints being very numerous and much alike in size and slape. The clypeus is large, the suture very distinctly separating the base, and the labrum is large, with the edge rounded, slightly bilobate, and partially concealing the mandibles, which are strong and large, and toothed within. They are more perfect than in other insects, presenting both cutting and grinding surfaces. The maxilla are very distinctly lobed, the outer lobe (galea) somewhat dilated and (in the Blattaria) ensheathing the long, sharp-toothed inner lobe, and the palpi are fivejointed. The mentum is large and transrerse, while the labium is divided into four lobes like the maxilice, the outer pair (paraglossae) resembling those of the maxille, and in the true grasshoppers (Acrydium), being expanded into a broad, flattened, smootli, concave plate. The labial palpi are from three to fourjointed. The lingua is large, fleshy and chamelled above.

As in the Coleoptera, the prothorax is greatly developed over the other segments, and the mesothorar is rather smallex than the metathoracic ring. The pronotum is very large, broad and flattened above, while the other two segments are concealed by the wings when at rest, and the parts are soft and membranous. The sternum of each ring is very large, broad and flat, resembling that of Libellula, while the two fore pairs of legs are normal in size, though the fore legs are often raptorial, as in Mantis ; or fossorial, as in Gryllotalpa. The hinder pair are enormonsly developed for leaping purposes.

The fore wings are generally long and narrow, somewhat thickened, like parchment, or thin, transparent, and more or less rounded, while the hind pair are broad and large, folding in longitudinal plaits on the back. Both wings are net-veined, but not so much so as in the Neuroptera, as the longitudinal veins are larger and more regular, while innumerable cross veins, still more regular than in the Neuroptera, though more numerons, give a characteristic facies peculiar to the Onthopterous wing. There are also numerons wingless, degraded genera, which resemble the young of other genera. The body is usually much compressed, or greatly flattened (Blattariae), or long and cylindrical, as in the Walking Stick. The abdomen consists of eight or nine distinct segments, while the tentl forms part of the ovipositor, being somewhit aborted, the tergite only in some cases remaning, and there is in addition in the Locustarice, according to the views of La-caze-Duthicis, the tergite of an eleventh abdominal ring. We will notice more fully than usual the structure of the oripositor, as it is of great systematic value. The genital armature is more complex than in the Hymenoptera, and is generally very large and exsertel, so as to form a conspicuous part of the body. In its simplest form, in Forficula, it is represented ouly by a single tergite, all the other appendages being absent. In the Locustarice, however, the typical form is seen, consisting of a tergite and the epimera supporting the tergo-rhabdite, while the episternum supports the sterno-rinablites, and the oviduct opens out under the sternite. There are thus four pieces attached to the single ninth ring; the oriduct opening between the eighth and ninth segments, while the anal opening
is moler the eleventh ring in all the Orthoptera, according to Lacaze-Duthiers' researches. The female genital armature is farther complicated, in the Locustarice especially. The elerenth segment is composed of five parts, which surround the anus.

Two of these are lateral filaments which are, in one case, as in Mantis tessellata (Fig. 23), multi-articulate, and are proper sensory organs, like the antenuæ, and must be regarded, in our riew, as homologous with the anal prop-legs of Lepidoptera and other insects, and as true-jointed appendages like the thoracic logs, and jointed appendages of the head, such as the palpi and antenme. They also form the anal stylets of the Gryllidee, etc. These anal stylets are articulated to the posterior edge of the tenth tergite, as Lacaze-Duthiers states, and thas seem to us to be properly appendages of that ring, which, as this author affirms, "presents two articulating tectl for this purpose." The two other elements are "trịangular, surrounding the anus with three valves, which, by their mion, form a sort of pyrimidal body," which he calls the "subgenital or pregenital plate." There are then, two systems of appendages, as we liave before stated; i.e., the genital armature, consisting of two pairs of non-articulated stylets, and the single pair of anal articulated stylets, which are the homolognes of the thoracie legs, together with the pre-anal plate.

The same parts are present in the male, being converted into large, clasping, hook-shaped stylets, for retaining a firm hold of the female cluring sexual union.

The eggs as they pass from the oviduct between the valyes are deposited in a hole in the ground, made by the powerful oripositor. Certain Locustarice imitate the Cicada in laying them methodically in the stems of plants, which are drilled ont by the valves of the oripositor, which are slightly toothed on the outer sides and easily move on one another, somewhat as in the Saw-fly and Cicada. "The eggs of the Gryllidce are laid cither singly in the ground, in irregular clusters in subterranean passages, or miformly in a single row, in the pith of trigs; those of the Locustarice are never laid singly, but either in the pith of plants, in regular clusters in the ground, or in regular rows on stems of plants; those of the

Acrydii are always laid in rudely regular clusters, in the ground." (Scudder.)

The nervous system closely resembles that of the Nemroptera; it is in all three stages composed of three thoracic, and six or seven abdominal ganglia, extending the whole length of the body, and united by clonlle commissures. The splanchnic system, or analogue of the great sympathetic nerve in vertebrates, is highly developed in the Acridit and in Gryllotalpa, having in front two pairs of ganglia, and posteriorly one or two, while in the Blattaria and Phasmida the single nerve is most developed.

Organs of hearing are stated by Siebold to occur in the Acridit, consisting of two fossa or conclis, surrounded by a projecting lorny ring, and at the base of which is stretched a membrane resembling a tympanum. On the internal surface of this membrane are tro horny processes, to which is attached an extremely delicate vesicle filled with a transparent fluid, and representing a membranous labyrinth. This vesicle is in connection with an auditory nerve, which arises from the third thoracic ganglion, forms a ganglion upon the tympanum, and terminates in the immediate neighlorhood of the labyrinth by a collection of cuneiform, staff-like bodies, with very finely pointed extremities (primitive nerve-fibres?), which are surrounded by loosely aggregated, ganglionic globules. The Locustarice and Gryllidce have a similar organ, situated in the fore legs directly below the coxo-tibial articulation. M. Hensen confirms the accuracy of this description in the "Zeitschrift fur Wissenschafliche Zoölogie," vol. xvi, 1867.

The highly developed alimentary canal has the crop (proventriculus) separated by a deep constriction from the asophagus, and the gizzard is provided internally with from six to eight rows of homy dentionlated plates situated on ridges, with numerous smaller tecth between, so that the whole num ber of teeth amount to 270 . The stomach is of even width, not usually making more than one-half of a turn, or one turn; its cardiac extremity is provided with fiom two to eight creca. The salivary glands are highly developed, "consisting of two, four, or six botryoidal masses, situated in the thorax, and hav-
ing long excretory dncts, besides, also, often having long pedunculated reservoirs.

The number of chambers in the dorsal vessel is usually eight. The respiratory system does not differ essentially from that of other insects, though in the Acridii most of the transverse anastomosing tracheæ have large air-reservoirs, greatly assisting in lightening the body for their long-sustained flight.

The urinary tubules are short and very nomerons, from twenty to one hundred and fifty and over, surrounding the pylorus. The ovaries, two in number, consist of numerous multilocular tubes, while the seminal receptacle consists of a pedunculated vesicle, whose closed extremity is dilated into a pea-shaped vesicle, forming the capsula seminis. In most Or'hoptera the testes consist of long fasciculated follicles surrounded by a common envelope, and many have in addition highly developed aceessory glands, surromding a short ductus ejaculatorius.

The larva of the Orthoptera materially differ only in size from the adult, and the pupee are distinguished from them by haring the rudiments of wings. They attain the adult state by simple moultings. Several cases are on record of pupæ of grasshoppers being found sexmally united. In 1867 Mr . Trimen exhibited to the Entomological Society of London "a grasshopper of the genus Pocilocerus, of which he had found the pupse in copula; it was not an isolated case, for he had seen hundreds of pairs of the nymplas at Natal."

Some of the largest insects are included in this suborder, in fact the majority are larger than those of other suborders, and it will probably be found that many large grasshoppers and Mantido will weigh nearly as much as any Goliath or Hercules beetle, the largest of insects.

The Orthoptera range, in time, from the Upper Devonian formation ; and among the earliest forms were some Neuropter-ous-like Locustarice and Blattarice, which are likewise, with the Neuroptera, the earliest known forms of insect life. In the carboniferous rocks they become more numerous, but the forms are most mumerous and best preserved in the Tertiary formation, especially in the Amber of Prussia.

There are about 5,000 species known, which attan their greatest derelopment in size and numbers in tropical countries.

In studying these insects, the proportions of the hearl, of the prothorax, of the wings, of the hind leg's, and the external genital parts, should especially be taken into account. The ormamentation varies greatly efen in the same species, and therefore large nombers of individuals are necessary to ensure a proper knowledge of any species.

The different sounds produced by Orthoptera should be carcfully studied; every species can be distinguished by its peonliar note, and as in different families the musieal apparatus varies, so each family has a characteristic chirrup, or shrilling, consisting of a harsh, grating, rasping noise.

Mr. Scudder has contributed to the "American Naturalist," ii, p. 118, an interesting articte on the somnds produced by some of our native species of Grasshoppers, and has even reduced their notes to a written music. He states that grasshoppers stribulate in four different ways: "first, by rubbing the base of one wing-corer upon the other, using, for that purpose, the reins running through the middle portion of the wing; second, by a similar methoul, but using the reins of the imer part of the wing; third, by rubbing the inner surface of the hind legs against the outer surface of the wing-corers; and fourth, by rubling together the upper sufface of the font edge of the wings and the under surface of the wing-covers. The insects which employ the fourth method stridulate during flight, - the others while at rest. To the first gronp belong the Crickets (Gryllidæ) ; to the second the Green or Long-homed Grasshoppers (Locustarix) ; to the third and fourth, certain kinds of Short-horned or Jumping Grasshoppers (Acrydii)."

The transformations of grasshoppers need careful study. For this purpose their eggs should be sought for, and the development of the embryo in the egg be noted ; also the following facts should be ascertained: the date of deposition of the eggs ; the manner of laying them; how long before the embryo is hatched; the date of hatching; how many days the pupate lives; so also of the pupa and of the imago, while the interrening changes should be carefully observed. Crows and blackbirds feed on their eggs and larva, and hens and turkeys
feed greedily upon young and old. Ichneumon parasites prey upon them, and also the lower worms, such as Filaria, Gregarina and Gordius, and the red mites attack them. Mud wasps provision their nests with the young.

Orthoptera can be easily preserved in strong alcohol, and may afterwards be taken out and pinned and set at leisure. They can be killed with cyanide of potassium, or ether, without losing their colors, as they wonld do after remaining long in alcohol. They should be pimed through a little triangular spot between the bases of the elytra, or fore wings, when the wings can be spread to advantage. They are also often pinned throngh the prothorax, or through the right elytron, as in Coleoptera. In pinning these insects for transportation care should be taken to put in additional pins crossing each other on each side of the abdomen, and in like manner to steady the hind legs, which are very apt to fall off if too much jarred.

Gryllida Latreille. The Crickets have a somewhat eylindrical body, a large vertical head, with elliptical eyes; the ocelli are often wanting, and the long filiform antennze arise from in front of and between the eyes. The wings are of moderate size, net-reined, lying flat on the back; the fore pair are ovate, the costal edge of the fore wings being bent abruptly down on the sides of the body, while the hinder pair are triaugular. They, like the succeeding families, leap actively, the hind femora being enlarged. The genital armature is largely developed, forming long and slender stylets, often nearly as long as the body, "The subgenital plate is formed by the seventh sternite. The eighth abdominal segment is rudimentary and concealed beneath the seventh segment. The minth segment, situated beyond the outlet of the ovipositor is incomplete. Its elements, appearing to be four in number, are dereloped into a large solicl borer. The ninth sternite is bifid, its episternite not being developed." (L. Duthiers.) A second type is observed in Gryllotalpa, where the subgenital plate is formed by the eighth sternite, instead of the seventh, and the incomplete sternite and tergite of the ninth segment are present, much like those of the other abdominal rings. The oripositor is very long, while the hairy stylets arise from the eleventh
abdominal ring and are very long. In the male the long anal hairy stylets are retained, while the parts representing the oripositor are aborted. The shafling of the male is a sexmal call, made by raising the fore wings and rubbing them on the hind wings. The noise is cue to the peculiar structure of the fore wings, the middle portion of which forms, by its transparent clastic surface, on which there are but few veinlets, a resonant drum, increasing the volume of sound emitted by the rubbing of the file on the upper surface of the hind pair of wings. This file is the modified internal vein, the surface of which is greatly thickencd, rounded and covered closely with fine tecth. In the females the wing's are not thms modified, and they are silent. They have been known to lay 300 eggs, gluet together in a common mass. In July the larva appear, and by the last of Angust the grass is alive with fully grown crickets, their loud chirruping resounding through the warm days and uights of antumn. The species are generally dull black or bromish. and in the tropies attain to a large size.

In the genus Tridactylus the males have the anterior tibia three-fingered, $i . e$. , the tibia has a lateral hooked appendage to which the tarsus is attached, while a long looked projection takes the place of the feet. The species are minute. the largest known, T. apicalis Say, being one-fifth of an inch long. It is found in the Southern States, while Tridactylus terminctis Uhler is found northward. The Mole-cricket, Gryllotalpa, so-called from the enlarged fossorial fore fect, lives in wet, swampy soil, by ponds and streams, where it raises ridges while constructing its subterranean galleries in search of insects. Its fore legs are adapted like those of the mole for digging, and are remarkably short and stout, much flattened and armed with solid tooth-like projections. Their eggs. from 300 to 400 in number, are laid in the spring in tongh sacks, in galleries. Very rare northward, they are more common in the Middle and Southern States.

Grgllotalpa borealis Burmeister is found in New England. burowing in moist earth near ponds. The Southern species is Gryllotalpa longipennis Scudder, and in the West Indies another species ravages the Sugar-cane. The genus Gryphes includes the common crickets. The European Honse-cricket,
G. domesticus Linn., has been introduced into the vicinity of New York, as stated by Mr. James Angus. Our two largest species are the Gryllus luctuosus Serville, known by the great length of the fore wings, which project beyond the abdomen; and Gryllus abbreviatus Serville, which is found in the Middle States. The most common New England species is the Gryllus neglectus of Scudder, from which Gryplus nager ILarris differs
 in its much shorter ovipositor. The small cricket so abundant in our fields is Nemobius vittatus Harris, a brownish striped species; the genus differs from Gryllus in the last joint of the maxillary palpi being double the length of the penultimate, while in Gryllus, it is of the same length. In Eccuthus niveus Serville (Fig. 561 , male ; fig. 562 , female ; fig. 30 , fore wings of male and female, showing the broad thin portion between b and c, used in producing the shrilling noise) the rings are broad and revy transparent, narrower in the female, the hind legs very long and slender, and the male is ivory white. The males make a loud shrilling noise, and both sexes are found on plants, especially the grape-vine. Mr. W. Saunders states that the female does consideralole injury to the raspberry and plam twigs by boring into the branches for the purpose of laying its eggs, and the Editors of the "American Entomologist" state that it severs grapes from the branches. This genus leads to the next family.

Mr'. Scudder has described in the "Procecdings of the Boston Society of Natural History," Archegognyllus priscus, a fossil cricket from the coal formation of Ohio. "One broken hind leg and a fr'agment of a wing were found; the leg was noticeable in having the tibia furnished with sereral large prominences, while the fiemur was smooth."

Locustarlat Latrille. The large green Locusts are casily distinguished by their large heads, and their compressed hodies. The front from being rertical often inclines intrards, owing to the greatly enlarged rerter, which is often procluced
into a horn. The ocelli are either present or obsolete, and the ejes are globular in shape. The antema are of great length, as are the legs, which are long and slender. The prothorax is sadcle-shaped, and the wings are thin, the anterior pair slightly thickened, while the hinder pair are broad, these insects taking long flights. The base of the upper wings is transparent, forming a clrom by which the males produce a loud shrilling; and they also rub the hind legs agninst the wings as do the Acrydii. Sculder states that "the day song of some Locustarians differs from that of the night." The abdomen is not of great length, while the oripositor and male claspers are greatly developed, and are of much importance in classification. Lacaze-Duthiers describes the typical form as having the subgenital plate formed by the cighth sternite, while the nintly ring is complete. Its elements form the ovipositor, composed of six pieces, which are large and long, for boring into the earth and twigs in laying the eggs. Tue minth sternite is bifid. Similar parts in the males are formed for clasping the body of the female, and are large and long. The eggis are laid in the autumn, and the young hatch in the spring.

The wingless genera have curved, cylindrical bodies, with long antennæ, and are very active, leaping very vigoronsly; they are brown in color, and inhabit caves or live under stones. Ceuthophitus is a wingless genus, in which the pronotum does not extend orer the mesonotum. C.maculatus Say has the posterior tibize of the male waved. It is common under stones. C. stygius Scudder is found in the cares of Kentncky, and Hadenocus subterroneus Sculder is found in Mammoth Care. It is a slenter form, the antennæe exceeding the length of the body several times. Udeopsylla differs from the following genus, Daihinia, according to Scudder, "in the longer", more slender, less robust, and less spiny legs, in the somewhat more slender body and smaller head, in the shorter maxillary palpi, and in the structure of the tarsal joints," the first and fourth being equal in length, while the tro middle ones are small, the second joint overlapping the third above. U. robusta Haldeman is found in Nobraska. In the interesting gentrs Dailinia, the "tarsal joints of the anterior and posterior pair alie only three in number, the first and last being of mearly
eciral length, with a single small joint between them, a very interesting exception to the almost universal rule among the Locustarice." The Katydid, Cyrtophyllum conctorm Say (Fig. 563), has the fore wings concare, much produced in the middle. The eggs, according to Harris, are "slate colored, and are rather more than one-eighth of an inch in length. They resemble tiny, oval, bivalve shells in shape. The insect lays them in two contiguons rows along the surface of a twig, the lark of which is previously shaved off, or made rough with her. piercer. Each row consists of eight or nine egrs, placed somewhat obliquely, and overlapping each other a little, and they
 are fastened to the twig with a gummy substance. In hatching the egg splits open at one end, and the young insect creeps through the cleft." In Phylloptera the wings are narrower, but still concare, and the oripositor is of moderate size, while in Microcentrum it is very small. P. oblongifolia Burmeister is abundant in September, in New England, being found farther northward than the Katydid, and when it flies it makes a whizzing noise, compared by Harris to that of a wearer's shuttle. He also states that "the females lay their eggs in the autum on the twigs of trees and shrubs, in double rows, of seven or eight eggs in each rorr. These cgg's in form, size and color, and in their arrangement on the twig, strikingly resemble those of the Katydid. Phomeroptere has still narrower wings than the genera hitherto noticed, and the oxipositor is more sharply tumed upwards. The P. curvicaude of DeGeer (P. angrastifolia Farris) is wery abundant, being the most common species in Northern New England.

In Conocephalus the front of the head is produced into a conc. The species, generally pea green, often present brown individuals. C. ensiger Harris is a commonly distributed spe-
cies. Mr. S. I. Smith has observed a female of this species "with the ovipositor forced down between the root-leares and the stalk of a species of Andropogon, where the eggs are probably clepositec."

Niphidum is a genus of smaller size, with the ovipositor nearly straight. X. fasciatum Serville is green, with a brown stripe on the head and thorax. It is common in gardens. According to Mrgen and Scudder an undeseribed species of Xiphidium makes longitadinal punctures in the pith of the Cotton plant.

In Orchelimum the ovipositor is large, ensiform, and mpcurved. O. vulgare Harris (Fig. 32, d, the file in the male wing which rubs on the concare expansion of the other wing') has a large transparent shrilling organ, and is a more robust form than the preceding species. Locusta wividissima Linn. is a common form in Europe. Westrood states that "IIyperhomaila virescens Boisd. from Ner Guinea, is distinguished by the prothorax extending completely orer the abdomen like a pair of elytra," and that Condylodera tricondyloides from Java, in the elongated, constricted prothorax and fine blue colors, exactly imitates the Cicindelous genus Tricondyla.

Acridir Latreille. Grasshoppers have the body much compressed, the head large, the front vertical, the ocelli generally present, while the antenna are short, the greatest number of joints being twenty-four. The prothorax is very large, sometimes reaching beyond the abdomen, and the wings are deflexed; the hind legs are enlarged for leaping, and the tarsi are three-jointed. The stridulating noise is produced by rubbing the thighs against the fore wings, which are long and narrow, while the hind wings are broadly triangular. The oripositor, with its accessory pieces, consists of a subgenital plate formed by the seventh sternite; the ninth segment is complete, and the blades (tergo-ihabdites) composing the ovipositor consist of three secondary pieces united together between them. These rhabdites are short, thick, somerhat conical, and corneous. The cgos are laid in a cocoon-shaped mass covered with a tough glutinous secretion, and containing from fifty to one hundred eggs. The pupe are distinguished
from the larvee in having large wing-pads. On the basal joints of the abdomen are two carities covered each with a membrane, and containing a vesicle filled with liquid, which is supplied by a nerve sent from the third thoracic ganglion. They were considered by Latreille and Bumeister to be rocal organs, lut more correctly it would seem, liy J. Müler and von Sicbold as organs of hearing.

This family embraces insects of gigantic proportions. The migratory locust (Acrydium migratorium) is a mpst destrnctive insect from its voracity and immense numbers. Swarms of grasshoppers are common in the far West where they commit great havoc in crops. Our Caloptenus femur-rubrum has at times, though not of late years, gone in immense swarms. The larva of many species live through the winter, and appear often in March on unusually warm days.

In the genus Opomaled the acute antenne are broad and flattened at base. In 0 . brachyptera Scudder the fore wings are but little more than one-half the length of the body. In Chlocaltis the hinder edge of the pronotrum is square or romeded; there are no foveola on the vertex, and the lateral carine of the pronotum is parallel, or quite nearly so.

Chlocultis conspersa Harris is light bay, sprinkled with hlack spots, with a black line on the head behind each eye, and extending upon the thorax. Stenobothrus differs in having foveole on the rertex, and the lateral ridges on the pronotum incurved. Mr. S. I. Smitly states that the structure of the oripositor of this species is "beautifully adapted to a remarkable habit in the manner of depositing the eggs, which seems not to have been noticed before among Orthoptera. The eggs are deposited in old logs, in the under sides of boards, or in any soft wool lying among the grass which these insects inhabit. By means of the anal appendages the female excarates in the woon a smooth round hole about an eighth of an inch in diameter. This hole is at first almost perpendicular but is turned rapidly off in the clirection of the grain of the woorl, and runs nearly parallel with, and about three-eighths of an inch from the surface; the whole length of the hole being an inch or an inch and a fourth. A single hole noticed in the end of a \log was straight. The eggs, which are about
a fourth of an inch in length, quite slender and light brownish yellow, are placed in two rows, one on each sicle, and inclined so that, beginning at the end of the hole, each egg overlies the next in the same row by about half its lengtl. The aperture is closed by a little disk of a hard gummy substance. I have seen many of the females engaged in excarating the holes, and they always stood with the body in the direction of the grain of the wood, and apparently did not change their position during the operation. When one was just beginning a hole it was very easy to see the upper appendages rise and open, and each time scrape away a little of the wood. During this operation a frothy fluid is emitted from some part of the abclomen, but whether it serves to soften the wood or to lubricate the appendages and the sides of the hole I diul not dotermine." (Proceedings of the Portland Society of Natural History, i, 13.146.) S. curtipennis Harris is a very common species, and at once recognized by its very short wings.

In the genus Tragocephata the vertex of the head is prominent, the front rather oblique, sloping invards, and the prothorax is acutely angulated posteriorly. T. infuscate fraris and T. viridifasciata Harris are common species; the former is dusky brown, the hind wings trousparent, pale greenish yellow next to the body, with a large dusky cloud near the middle of the bind margin, and a black line on the front margin; while the latter is green, with dusky fore wings broadly banded with green.

Pezzotettix closely resembles Caloptenus, except that in some of the species it is wingless. P. boreatis Scudder is found in British America, and also on the tops of the mountains of New Hampshire and Maine. In the P. clpinus Kollar of Europe there are short wings. The genus Caloptenus has but a slight.mesial ridge on the prothorax; the lateral ridges vary in size, and the stermal tubercle is very large, while the tip of the male abdomen is much swollen. Caloptenus femurrubrum Harris (Fig. 564, b) is the common Red-legged grasshopper. It raries greatly and has been so abundant in New England and Canada, though not of late years, as to become a public calamity. It has been seen very rarely on the Labratlor coast, and it is a very willely distributed species, ranging from

Labrador to the Mississippi. The Caloptenus spretus Uhler (Fig. $564, a$), appears in immense numbers in the country between the Mississippi and the Rocky Monntains, and extending from the Saskatchewan river on the north to Texas. Mi. Scudder states that " a third, whether belonging to the same species or not is still uncertain, has invaded at different times, nearly all the country lying within the boundaries of the United States, between the Rocky Momtains and the Pacific Ocemn."

Dr. Lincecum thus describes the ravages of C. spretus in Texas: "Last spring the young were hatched from the egg in the early days of March; by the middle of the month they liad destroyed half the regetation, althongh the insects were wingless and not larger than a honse-fly. The first winged
 specimens were seen high in the air at about three in the afternooir ; as a light northerly breeze sprang up, millions dropped to the earth, cover ing the ground in an hour, and destroying every green thing with avidity. During the night they were quiet, but at daybreak commenced to eat, and continued mutil ten in the morning, when they all flew southward. At about three o'clock in the afternoon of the same day another swarm arrived, ten times as numerous as the first ; these again took flight the following day; and thus they continued, coming and going, day after day, devouring the foliage and depositing their eggs. At first they selected bare spots for this purpose, but finally the whole surface of the earth was so broken up by their borings that every inch of ground containel several patches of eggs. This visitation was spread orer many hundreds of miles." C. bivittutum Say is a large dull green, or olive colored species, with red legs, and is very aboudant in gardens.

Romater microptera, called the "Lubber grasshopper" in Floritla, feeds on the leares of the orange. (Glover.) It is nearly three inches long; the prothorax is keeled, and the wings only cover half of the abdomen. The larva is reddish,
while the adult is yellowish brown with dark patches and spots.

In Acrydium the spine on the chest is very prominent, and the mesial crest aloove is well marked, while the tip of the male abdomen is not swollen. Acrydium ctutacerm Harris is nearly two inches long, and expands over three inches. It is brownish yellow, with a paler yellow stripe on the top of the head and thorax.

To the genus Tropidacris, separated from Acrydium loy Mr. Scudder, belongs certain gigantic grasshoppers nearly four inches in length and expanding some eight inches, with gaily colored hind wings. T. cristata Lim. has pale, greenish blue hind wings ; it is reported from Asia and Africa, and is widely distrilunted through tropical South America. T. due Drury has brick red hind wings and expands nearly seven inches; its range is from Texas to Panama.
Eetcipota is a large and well known ge-

Fig. 545. nils, in which there is no spine between the fore legs, and the front of the head is vertical and swollen. Edipolda Carolina Limn. is pale yellowish brown, the wings black with a broad yellow hind margin, and it expands oyer three and a half inches. It is abmulant ererywhere. \mathcal{E}, sulphureca Fabr. has deep yellow wings, with a broad dusky band beyond the middle, while EE. corallina Harris has hind wings of a rich coral red. (E. achithoptera Germar (Fig. 565) ranges from New England to the Mississippi. It is reddish brown ; the prothoras has a high rounded unbroken ridge; the fore wings are flecked with small dusky spots; the hind wings are yellow at the base, fuscous beyond and clonded at the tip ; the hind shanks are dusky, with a pale band below the knee. The wings of the male ex-
pand two and a quartor inches; those of the female three inches. Mr. Scudter has discovered a chalcid parasite in the eggs of Edipoda Carolina.

In Tettia the pronotum is prolonged beyond the abdomen, and the antennse are thirteen to fourteen-jointed, while Tettigidea differs from it by having twenty-two-jointed antema, and a thicker, shorter body. Tettix granulata Kirby has a very prominent vertex, with the front border angulated.

Tettigidect lateralis Say is a common species, and may be found, like all the other allied species, in the spring and antumn. It is pale brown, with the sides of the body blackish; the prothorax is yellowish clay colored, and the fore wings have a small white spot at the tips.

Batrachidea has but twelve joints to the antennx, and otherwise differs from Tettix in its more compact shorter body, and more distant eyes, while the mesial crest on the prothorar is rely high. In B. cristata Harris the crest is high, regularly archect, and on each side of the prothorax are two shallow grooves; the surface is rough, with a dark squarish spot on each side abore the terminal half of the fore wings. Sanssure describes an aquatic Tettix from Ceylon.

The gems Proscopia is wingless, with the front produced into a long slender cone, while the whole body is long and cylindrical, somewhat as in Diapheromera. The antenne are very minute, six to eight-jointed, and the leg's are long and slender. P. gigantea Kling is six inches long, and occurs in Brazil at Para.

I'masmida Leach. The Walking-sticks, or Spectres, are sluggish insects found on twigs and leares, to which they bear a strong resemblance, and are neither raptorial as regards their fore legs, nor leapers, like the grasshoppers. Their bodies are remarkably long and linear, and the wing's either aborted and very small, or strikingly leaf-like. The head is horizontal, long, while the antenne are rather short, and the abdomen is nearly trice as long as the rest of the body.

The sulbenital plate is formed by the largely developed eighth stemite, while the ninth segment is incomplete, the sternum consisting of a membranous folcl. According to L .

Duthiers there are eleven abdominal segments, and the anal stylets are not articulated as in the Mantide, but are long corneons claspers, and in some cases, very much like those of Libellula, as in Acrophyfla, while the eleventh ring is a little triangular tergite, situated between the anal claspers. The egg-sac in Diapheromera femorcta Say (Fig, 5Cb, ठ), our commonly diffused species, is flattened elliptical, with a lid in front which can be pushed open by the embryo when about to hatch, and is deposited in the autum. The young when hatched are linear, and much like the adrults except that they are wingless. The male is considerably smaller than the female, and much more slender. In Plasma, a tropical genus, the two sexes are winged, the antenme are about as long as the hody, and the limbs are slender. P. 4-guttatum Burmeister is between two and three inches in length, and green on the costal border of the hind wing, and rose colored behind. It lives in Bornco. The genus Prisojus duffers from the other tro genera in the shortened mesothoras; the legs are much flattened and leaflike; the abdomen is longer than the thorax, flattened beneath, and widened on the sides posteriorly. P. spiniceps Burmeister is a Braziliau species, and is

Fig. 505. two and a half inches long. P. flabellicomis Stoll, according to A. Muray, spends the whole of the day under water adhering to stones in the mountain strems of Brazil, and towards dusk flies about; it is the only truly aquatic Orthopteran known.

The genus Phyltium, found only in the Enst Indies, most remarkably imitates rarions leares, one species having its fore wings so reined and colored as to resemble most strikingly a dried and withered leaf. The wings are often very large and broad, and as if to aid in carrying out the analogy the legs hare broad leaf-like expansions. The antenne of the males are twenty-four-jointed, while in the females they are much sliorter,
consisting of but nine joints. The P. siccifotum Linn. is green, and about three inches long. It lives in the East Indies.

Mantida Latreille. These maptorial Orthoptera are easily recognized by their large sizo, the enormons spinons fore legs,

Fig. 567.
adapted for seizing other insects like the raptorial Hemiptera, and which has given them the name of Soothsayers and

Fig. 5 fis. Prophets, from their devotional attitude when watching for their prey. They are worshipped by the ITottentots as tutelary divinities. The head is horizontal, triangular in front, with long tiliform antenne; the prothorax is very long, and the broad wings are thin, net-reined, with long parallel veins, more strongly resembling the Neuroptera in this respect than any other family. The abdomen is long, linear oral. "The sulbenital plate is formed by the cighth sternite, the oriduct opening betreen the seventh and eighth segments. The ninth segment is complete. The elements of this ring are but little dereloped, scarcely surpassing the subgenital plate; the two episternites are distinct, and between them is the small ninth sternite." The sty-lets are concealed by the broad expanded sternum of the seventh segment, while the antenna-like appendage (or anal style, Fig. 23) is sometimes many jointed, and is said by Lacaze-Duthiers to be appended to the elerenth segment of the abomen. The mass of eggs laid by the female is attached to twig's, and enclosed in a flattened subovate case (oütheca) of hardened sill. The eggs are infested to some extent by chalcid para-
sites. The young are long and linear. The Race-horse, Mantis Carolina Limn. (Fig. 567 ; fig. 568, eggs, matural size), occurs in the Southern and Western States, and in the tropics oceur the allied genera Vates, Empusa, Harpaa and Schizocephala. According to Mr. T. Glover the eggs of Mantis Carolina are laid in a packet about an inch long attached to leaf-stalks and twigs. The body of the recently hatched young' is linear and turned up at each end, and it devonrs caterpillars and insects, holding them in the fore leg's with a firm grasp by applying the spined tibiæ and tarsi against the more stontly spined femora, and then sucking their blood at its leisure. Pro. fessor' Sanborn 'Tenney tells me he has observed the fomale after sexual union devour the male. Bumeister says that Muntis argentina Burm., of Buenos Ayres, seizes and eats small bircls. The genus Eremophila (E. Ehrenbergi of Bumbeister) innabits the deserts of Northern Africa, where it resembles the sand in color.

Blattarle Latreille. The Cockroaches are flattened ovate, with the head rounded and partially concealed by the expanded prothorax. The fore wings are large, ovate, not much smaller than the hind wings ; the antenne are long and filiform, many jointed. The bilobate subgenital plate is formed by the eightle sternite; the ninth abdominal ring is complete, the sternite being small and lodged luetreen the two epistomites which are soldered into a single annular piece. The anal stylets are short. The species, which are almost invariably reddish bromn, or paler, are nocturnal, hiding by day, and are fomd under stones. They are fond of heat, the house cockroaches frequenting heated rooms. While the common species are troublesome from eating garments, etc., they do great service in clearing houses and ships of bed-bugs, which they greedily devour. The eggs are laid in a bean-shaped capsule (oötheca) which is divided into two apartments, each containing a row of separate ciambers, about thirty in number, each of which encloses an egg. Many days are required for oviposition, and the female may be scen runing about with the eapsule partially protruding from her body. During this period embryos are forming within the capsule, and very soon after it is
dropped the larve are hatched. The common cockioach, Blatta (Stylopyga) orientalis Limn. has rudimentary wings in the fomale, while in the male they are shorter than the body. In Periplaneta the wings are longer than the body, and the supraanal plate is deeply fissured and the abdomen much swollen. Periplaneta Americanca Linn, is a commonly distributed species. The genus Platymodes differs from the preceding one in its narrower and longer body, and the supratisl plate is not fissured; the anal stylets are much shorter and turned down, while the wings extend beyond the abdomen, the anterior pair being well rounded at the tips. Platamodes Pensylvanica DeGeer is pale, shining, reddish brown, and the antemer reach back to the tips of the fore wings. It is found in
 woods under stones, entering houses by night.

In Ectobicu the wings are well developed, and the basal joints of the tarsi are shorter than the others. The Ectobia Gemanica Stephens (Fig. 569, male and female) is a pale species, and is very abundant in houses in and about Boston, where it is called the "Croton bug." Ectobia Zithoplata Harris is rery common in moods under stones in New England. The thirl joint of its antenne is as long as the next five, colleciively.

In Cimptocercus both sexes are wingless; the antemma are half as long as the whole body, and the abdominal appendages are not exserted, being very short. C. punctulatus Scudder is known by its thickly punctured body and dark mahogany brown color, with reddish beneath. It is found southmards.

In Pycnoscelus the males are wingless; no females have jet been found. It differs from Cryptocepcus in having a larger head; the eyes are placed closer together, and the stylets are slender, cylindrical, of about the same length as the cerci aud inserter just within them. Plate 1, fig. 2 represents the wing of an extinct species of cockroach (Blattina?) discovered by $M r$. Barnes in the coal formation of Nova Scotia. Thile most of the remains of cockronches found in the Carboniferous rocks
of this country and Europe have been referred to the genus Blattina, Mr. Scudder describes, in the "Palæontology of Illinois," a form unter the name of Mylumis anthracon" li (Fig. 570, upper wing; Fig. 571, prothorax) which was found in the lower part of the true coal measures at Morris, Illinois.

Folficularle Latrcille. The Earwigs are very unlike other Orthoptera, and are

Fig. 570. readily distinguished by their narrow flattened bodies, with sbort wing-covers, like the Staphylinida among beetles, on which account Linnæus placed them among the Coleoptera. The head is free, flat, horizontal; the ocelli are wanting, and the eyes round ; the antenmarise from under the eyes, and are filiform and twelse to forty-jointed. The elytra are short and thick, while the rounded, broad, hind wings are folded underneath so as to be almost entirely concenled by the anterior pair. The female genital armature is described by Lacaze-Duthiers as composed of a subgenital plate formed by the eighth sternite, while the eighth and ninth abdominal rings are partly aborted, and only represented by two horny ares closely soldered to the tergite of the tenth ring. The rhabdites of the eleventh ring are greatly developed, forming the immense forceps,

Fig. 5.1. which are often as long as the whole body. 'This family was ranked as a separate order by Leach and Kirby, muder the name of Demmaptera, and were called Euplexoptera by Westwood.

They are nocturnal insects, hiding in the day time between leaves and in flowers, flying about at dark. They feed on the corollas of flowers and on fruit, and will eat breal and meat. They are rare insects in this country, thongh troublesome in Europe from their great mombers. An Alpine species lives muder stones in Europe. In Forficula the antenne are fifteenjointed. Spongophora bipunctata Scudder has two pale spots on the elytra. In Labia the antemmare less than twelyejointed. Labia minuta Scudder is yellowish brown, with the sides of the abdomen and the head reddish brown.

NEUROPTERA.

These insects have the body, as a whole, more elongated than in other insects, with large broad, net-veined, thin, membranous wings, both pairs being very equal in size, the anterior pair being sometimes smaller than the hind wings, while in some gencra the hind ones are either diminished in size or obsolcte. The mouth-parts are free, the mandibles being well developed, and the abolomen is long and slender, with the genital armor always present, but made on the simplest plan, not forming a sting. The metamorphosis is either incomplete or complete ; accordingly the pupa is either active or inactire and when inactive resides in a cocoon. The greater number of species are aquatic; and sereral degraded forms (Lepisma, etc.) bear a strong resemblance to the Myriapods.

The description of the head and month-parts of the Orthoptera applies well to the Neuroptera, but the head is horizontal, flatter, and the mouth-parts are less symmetrical, certain parts being greatly developed orer others. As a general rule that part of the head situated behind the mouth is larger, in proportion to the rest of the head, than usual in the larve of the higher insects, and also the mouth-parts are much larger and less compact. Thus the head of a Neuropterous larra may be actually larger than the entire thorax of the same insect; in the Hymenopterons and Lepidopterous larre it is the reverse, the head is oftell smaller than eren the prothoracic ring.

The month-parts are inclined to become very large, and in the larra of Libellula the labium is enormonsly developerl, masking the jaws and other parts when at rest, and capable of great extension, while it is armed with powerful hooks, being modified palpi, for scizing other insects.

The thorax is large, the segments being well developed, and the prothorax is usually large and square, but in what in many respects are the most typical insects of the group. the Ephemeridce and Libellulida, the prothorax is very small, as in the highest insects, and in the latter group the greatly enlarged flanks of the mesothorax seem to take its place.

The wings are large, and in the Libellulide they are in constant use. The legs are generally of simple structure, these insects neither walling nor leaping much. Rarely, as in Mantispa, are they adapted for seizing their prey, as they are in many Ilemiptera and Orthoptera.

The abdomen of the Neuroptera is composed, according to Lacaze-Duthiers, of eleren segments (arthromeres), aud the ovipositor is constructed on the same plan as in the Hymenoptera, Hemiptera and Orthoptera, though in the different families the characters rary much more than in the higher suborters, in this respect perfectly according with the anatomy of the other parts of the body in the different groups. He states, howerer, as obscrration has taught us, that in its structure the oripositer is simpler than in other insects, and the firthest removed from that of the Hymenoptera.

Lacaze-Duthicis, whose work is necessarily incomplete from treating of the female oripositor alone, not regarding the analogous parts in the other sex, considers the Neuropterous ovipositor (taricre) as having three types of structure. The simplest is found in Libellula, in the abdomen of which there are ten segments much alike; "the eleventh is morc complex than the others; it las the same structure as in Eschna. It is especially in the division of [the family containing] Libellna and its allies that the two appendages take the form and the function of pincers, and that the special word 'forcipate,' has been used. These forceps serve, as is well knom, for elasping organs, and to enable them to perform the very long preliminaries to fecundation." The outlet of the oviduct lies between the eighth and ninth segments.

The nervous system of the Neuroptera consists of the cerebrellum, with its lateral productions, the optic nerves, forming a cylinder extending betreen the eyes and presenting four swellings. (Leidy.) There are three thoracic and eight ab)dominal ganglia which are of very uniform size, and connected by double commissures. (See Fig. 43.) The nervous cord is very equably developed and the brain portion is relatively smaller than in the higher suborders.

Professor Leidy has described the digestive organs of Corydalus comutus, which may serve as a type for the rest of the
suborler. It agrees with most other genera of the group in having a loug cesophagus, which is dilated posteriorly into a spacious proventriculus, which extends as far back as the fifth abdominal segment. 'The large intestine presents a large conrolution, and abreptly dilates into an oval or fusiform coecum in its lower third, which latter opens into the rectum. In some genera there is a long sucking stomach inserted on one of the sites. In Corytalas this is only present in the pupa, and is aborted in the imago ; so also in the larra the "proven triculus, with its apparatus of stomachal teeth," is adapted to the carnivorous habits of the insect, but in the popa the teeth disappear, "while in the imaro we find the esophagus again lengthenerl, still contracted at its commencement, but gradually dilating until it forms a capacions Florence flask-shaperd prorentriculus, or gizzard." (See Fig. 45.)
"With the Perlider the gizzard is wanting, but the upper extremity of the stomach has from four to cight ceea pointing forwards. With the Libellutida the œsophagus is long and large, and protrudes somewhat into the straight, oblong, constricted stomach, which is without coeca, and is succeeded by a very short ilem and colon. The digestire tube of the Ephemeridee, which in their perfect state take no food, is feebly developet. Its walls are rery thin thronghout, and the asophagus is directly continuous with the stomach, which is a badder-like dilation, and succealed by a short, straight intestine. The pretatory Panorpidee, which are rapacious, differ notably from the other Neuroptera, and resemble rather the preceding order (Orthoptera). The osopinagus is short and straight, and in the thorax is succected by a spherical musenlar gizzard which is lined internally with a brom chitinous membrane covered with stiff hairs. The stomach is tulular ant straight: the ilemm makes two convolutions before passing jato the long colon." (Sichold.) In Lepisma the cosophagous terminates in a "lind of crop, which is succeeded by a globular gizaard provited with six teeth."

There are two simple, short, salivary glands in the Sialida, while in the Phrygancidce and Hemerobida "they are ramified and highly developed. It is quite remarkable that tbere is, in this respect, a sexmal difference with the P anor-
pidac; the males have three pairs of very long, tortuous tubes, while with the females the only vestiges of this apparatus are two indistinct resicles." (Siebold.)

In their larval state the aquatic Neuroptera breathe by false gills, or brachial trachere; these generally consist of slender filaments sitnated on the sides of the abdominal segments. These filaments are fleshy, and penetrated by tracher, which take up the oxygen from the water. In the larve of the Phryguncide these false gills are simple, "rarely ramified, and united in groups of from two to fixe, which stand ont towards the back." Siebold also states that "with those of the Eplemerider each of the anterior abdominal segments has a pair of these branchise which are sometines ramified in the most ravied manner, and sometimes consist of two kinds, some being lamelliform and alternating with the others which are fasciculate. With all the Ephemeridoe these orgmes have movements which are sometimes slow and rhythmical, and somatimes rapid and oscillatory. . . . The trachean branchire of Zeschna, Libellula and the other Libellulidet are formed upon a wholly different plan. They are situated in the very large rectum, and consist of numerons epithelial folds which are traversed by a great number of very fine branches of many large trachean trunks. ($\mathrm{Fig} .62,2$.) The rectum is, moreover, invested by a very highly developed muscular tunic, ant its orifice has three pyramintal ralres which regnate the entrance and the cscape of the water required for respiration."

In the larval and achult iusect there are four man trunks to the tracheary system, tro on each side, and much less complicated than in other insects.

There are generally six or eight long, flexuons arinary or Malpighian vessels. In the Neuroptera the ovaries "consist always of multilocular tubes," and the two testes are, in the Perlide, Ephemeride and Libellulille, composed of "a multitude of round follieles, disposed botryoidally aromed a long dilated portion of each of the deferent canals. . . . With Panorpa the two testicles are rery simple and oroid: but with the other species they consist of two tufts of long or round follicles. With Myrmeleon and Hemerobius they are oral and smrounded by a distinct envelope. The two deferent
canals are short, and always have on their lower extremity two long or ovoid accessory follicles." (Siebold.)

The classification of the Nemroptera is difficult from the lowness of the 1 ype , which presents an untial number of clegradational forms, such as are indieated beyond, and because the clifferent fanilies vary so much among themselves, and contain forms which mimic the higher groups of insects. Thongh the type is the lowest among hexapodons insects, yet there constantly recur characters which are found only in the highest insects. For example the Phryganeidce are Neuropterous throughont, jet there are many of the less important characters mhich ally them most intimately with the Lepidoptera, especially the Tineide.

Howerer all Neuroptera agree in the lax composition of the body, inclucing a worm-like, elongated form. The metamorphoses are, in the more typical families, less complete than in other insects, except the Hemiptera and Orthoptera, and upon the whole the organs of vegetative life are largely developed over those of animal life, making them generally very sluggish in their motions (thongh the adnlt Libellulide are an exception), and inducing an abnomal size of the body, as this suborder contains many of the largest and most monstrous of insects. The researches of Professor Dana and Messrs. Hartt and Scudder show that the Neuroptern shared with the Orthoptera the possession of the low marshy lands of Devonian and Carboniferous times, and the forms discovered in the rocks of those periols indicate that they were often of gigantic proportions, and among the most degranded of their type. •

Dr. Anton Dohrn has described, under the name of Eugereon Bockingi (Fig. 572), perhaps the most remakable fossil insect yet discoveret. It occurred in the Permian formation in Germany. He considered it as combining Hemipterous and Neuropterous characters, though more closely alied to the Neuroptera. Dr. Hagen writes me that "Eugereon belongs to Dictyoneura Gollenberg, and is perhaps identical with one of the species described and figured by Goldenberg." Dictyoneura is said by Goldenberg to resemble the Nemopterous genus Semblis. Dr. Hagen also informs me that Gerstaceker, after an examination of Bocking's specimen, "hinks Eugereon
is next related to the Ephemerina. The parts of the mouth have nothing of the Hemiptera about them and they are even more related to the Diptera." While we would defer to the judgment of these distinguished entomologists who have actually studied the fossil itself, yet judging from Dohin's drawing we would reler the insect to the Neuroptera, and would suggest that in certain charac-

Fis. 5 .
ters we are strongly reminded of certain more abnormal genera of Memerobidte and the Panorpida. The wings while closely resembling the Ephemerids, as Dr. Hagen has suggested to us, also, in our opinion, recall those of an African species of Palpares, and of the fore wings of Nemopterit, and the antenne and beak-like mouth-parts seem analogous to those of Panorpa and Boreus.*

Fic. 572. Fugereon Bëchingi Dohm, enlarged three diameters; A, hi, Jalyrum; b, hirst pair of jaws (mandibles); c, second pair (maxilia); c, hatalal palpi; f, fragments of anteme; m, portion of legs; n, midde tibre. C, a, b, antennæ; D , a, head ; fore femm; c, pothorax; a, prostemum (?); E, tarsus and ent of the tibut of the left fore leg. - After Dohra.

* Erichson and sicbold have gronped the Termitide P socide, Embide, Ephemerido anl hibeltulifce under the name of "false" Memoptera, and considered them as O.thoptera, restricting the Neuroptera to the Sialide, Hemerobide, Panorpifore and P hrygcucidre, and this classification has veen allopted by most coninental entomologists. Now while beliering in the unity of the Nenropterous type, and that the so called "false" Temoptera (especially the May-llies and the dragon-flies) ure really the most trpical of the suborder, being the most unlike other inseste, do not we have many characters in these palrozoic netveinel insects, which unte more intimately the so callad false and true Neuropters? We would not forget the analogies shown in these fossil net-veined insects

It is a rather large insect, the lieal and mouth-parts measuring thirty-nine millimetres, the three thoracie rings twentyeight millimetres, and the part preserved of the right upper wing firty-four millimetres, and of the right under wing filtyone millimetres. The antennare ang and threat-like, as in Panorpa, and the venation of the wings are of the Neuropterous type, while the elongated mouth-parts are Hemipterous in appearance, though the labial palpi (1 e) are well dereloped, being usually absent in the Meniptera. It is the most puzzling form yet brought to light, and has been compared by Dr. Dohne to the fossil Archæopteryx of the solenhofen slates, referred by some naturalists to the birchs, and by other's to the reptiles.

We have shown elsemhere* that the Nemropterous families, except the most typical, i.e., the Ephemerida and Libellulider, mimic every other suborder of insects. They are in fact comprehensive or synthetic types, combining, as do all decephalized, embryonic forms, the structures of the other suborders of insects, and thus presenting, in adrance, features which remind nis of characters more fully wronght out in higher and more compactly finished gromps of insects.

As regards the preservation of the dragon-tlies, Mr. Uhler states that "the large, brilliant green dragon-flies (Cordnlima), as well as the yellow, brown-striped Gomphina, haring the eyes wide apart, will fumish new species in almost all parts of the comntry. In orler to prescre specimens in the neatest mamer it is well to slip them immediately, when caught, into paper bags of suitable size; first taking care to lay back the wings so that they will be applied together, to prevent mutilation. These paper bags may be placed loosely in a bos carried for the pupose. They can thas be taken out at leisure, killed ly applying a camel's hair pencil, dipped in sulphuric ether. chloroform, or bemzine, to the under side of the borly, and then have the wings spreat by placing them upon the setting t the O.thoptera, and which serve to unite the two suborders more intimately than ever. Indeen entomologitis in the future may unte the O:thoptera and Neuroptera (in the Limazen Eense) into a single subover equivalest to the Coleop tera or Hymeaptera, and theze two groms may ftme as two sulordimate divisions just as the "Momoptera" and "Hemiptera" are subdivisions of the Liunæun group of Hemiptem.
*Journal of the Boston Society of Natural IListory, fiii, p. 590.
boards. In most species the colors change after death, hence it is important to make short descriptions of the colors before killing the specimens." The smaller, more slender and delicate Nemoptera should be pinned directly in the collecting box. Many species are eaught by a light in the night time, such as Polystoechotes nebulusus and the Phryguneita; and a bright light placed in damp situations by streams, ete., will. attract large numbers, the smaller species, like moths, being attracted a great distance by light. For the proper study of the genera of these insects, and often of the species, they sloould be collected in alcohol, so as to be studied in a flexible state. Dr. J. L. Leconte has published in the "American Naturalist," iii, p. 307, some new directions for the preservation of insects which will apply to these as well as other insects. "Surgical art has given to us an instrument by which a poisonous liquid ctu be rapidly ant most effectively applied to the entire surface of large numbers of specimens as they stand in the cabinet boxes, without the trouble of moving them. I refer to the 'Atomizer.'
"Opinions may vary as to the nature of the liquid poison to be userl, but after several trials I have found the following formula to be quite satisfactory; it produces no efflorescence, even on the most highly polished specise, while the odor is quite strong, ant persistent enough to destroy any larve or egg's that may be already in the hos:- Saturated alcoholic solution of arsenious acid, eight flairl ounces; Stryclunine, twelre grains ; Crystallized carbolic acid, one drachm ; Mincral naphtha (or heary benzine) and strong alcohol, enough to make one quart. I have not stated the quantity of naphtha, since there are some varictics of light petroleum in commerce which dissolve in alcohol only to a slight extent. These should not be used. The heavier oils which mix indefinitely with alcohol are the proper ones, and for the two pints of mixture ten to twelve fluid ounces of the naphtha will be sufficient. Care should be taken to test the naphtha on a piece of paper. If" it leares a greasy stain which does not disappear after a few hours it is not suitahle for this purpose.
"The best form of atomizer is the long, plated, reversible tube; it should be worked with a gum elastic pipe, haring two
bulbs to secure uniformity in the current. The atomizing glass tubes and the bottle which asually accompany the apparatus are unnecessary: a common narrow-necked two ounce bottle will serve perfectly to hold the fluid."

The aquatic larya and pupa can easily be reared in aquaria in jurs and tumblers, taking care that the weaker species are sepurated from those more powerful and bloodthirsty. The litile Entomostraca, or water-fleas, serve as food for many of the smaller species. With very little care many species can be raised in this way, and so little is known of their transformations that figures and descriptions would be of great value. The interesting and raried habits of the different families ean be also easily noted. They can be called summer insects, since few are found late in the fall or early in the spring, though several Perlidu, Memerobius, Boreus and several species of Phryganeids are found ere the snow has gone in the spring, and a few species of the latter family are found in November.

Termimex Leach. The White Ants in the different grades of individuals, and their complex economy, foreshadow the formicaries of the ant and the live of the bee. The bocties of the winged individuals are shaped somerthat like that of the ant, but they differ in the long, narrow, straight, finely netweined wings, the costa of which is remarkably straight, while both wings are equal in shape and size, with the veins arranged in the same mamer in both. The head is of moderate size, horizontal; the eyes are rather small, glohose, and between them are two ocelli, the third and more anterior one being nearly obsolete. The anteme are short, with about twenty joints, ant the mandibles are small triangular, with fine tceth on the cutting, or inner edge. The abdomen is ovate and shorter than in the Neuroptera generally. In all these points, as well as in their habits, the white ants are the most perlectly organized of the Neuroptern. They are more cephalized, their bodies are developed more heartwards, and their intelligence and remarkable instincts ally them also, intellectually, with the most perfect of insects, the Bees, Wasps and Ants. Thus in the lowest suborder of insects we find features which strikingly remind us of the highest insects. Nature constantly repeat-
ing the same iclea in different groups, here leaps over as it were whole groups of insects, as if by prophecy pointing out the advent of still more perfect forms and higher intelligences. Geology teaches us that the white ant and other Neuroptera preceding in time, as they do in structure, their higher analogues.

The genus Calotermes differs from Termes in its small head, the large, trimsverse, oblong prothorax, the veined costal area, and in the tarsi being furnished with an apical plantula (or foot-pad situated between the claws). C. castaneus Burmeister is almost cosmopolitan, occuring in Western and tropical America. In Termonsis the head is large, the ocelli are absent, and the prothorax is small, otherwise it agrees with Calotermes. T. angusticollis Linn. is found in the Pacific States. The type of the fimily, Termes, has a large rounded head, with two ocelli, and a small heart-shaped prothorax ; the costal area is free, while the foot-pad (plantula) is absent. Our common white ant, Termes flatipes Kollar is found from Massachusetts southward, under stones, sticks and in stumps. It is of a chestnut color, headand prothorax black brown, with brownish antenne ringed with a paler hue, with white, very delicate wings, and the mouth, tibie and tarsi are yellow. The workers are white, with honey yellow heads. The white ants of Africa live together like ants in colonies of vast extent. The males and females are winged and closely resemble each other as usmal. There are two wingless forms; the soldiers, which have large square heads, and long powerful mandibles, with a large prothorax, and the arorkers which have small rounded heads and minute, nearly obsolete mandibles. There also occur among the workers certain individuals (Nasuti) which have the front of the head prolonged into a horn. All these wingless individuals are asexual, the organs of reproduction being undeveloped. They have been considered to be laryæe by eminent authorities, but they are found in the nest in abondance when the males and females have arrived at maturity. They must, therefore, be considered like the workers among bees and ants, as individuals specialized, or set apart for the performance of certain duties involving the increase and preservation of the entire colony. Thus the sol-
diers, as they are termed by Smeathman, with their warlike aspect, act as "sentinels and soldiers, making their appear'ance when the nest is invaded, attacking the intruders and inciting the laborers to work. The more peaceful and laborions workers are estimated to be one hunrleed times more numerons than the soldiers." "They collect food, form covered ways, guard the males and females and take care of the eggs and young." (Westwood.) While most of the species burror in wood, or under gromul, others, as in the Termes futale Lim. (Γ. bellicosus Smeathman), raise conical hillocks of remarkable strength and firmness, often ten or twelre feet high. After impregnation the females, as in the case of the ants, lose their wings. They are then conducted into the interior of the nest by the workers. Here the body of the female gradually becomes enormously distended with eggs, being over two inches in length, aud it is known to lay 80,000 in the course of a day.

The pupa of Termes lucifogus, a French specics, was found by Latreille in the spring, with four white tubercles, or wing pads. Other pupre are described and figured by Westrood, which by their long wing-pads, prolonged beyond the abdomen, closely resemble the Iomopterons adult Cercopide. Fossil Termites occur in the conl formation of Germany.

Embida Burmeister. These are small insects, forming a comecting link between the white ants and Psocus; they are characterized by the linear depressed body, with the head free from the thoras, the wings equal in size, with few reins, and triarticulate tarsi. The larre are found under stones and are protected by a cocoon which they renew at each moulting of the skin. (Gerstaecker.) Embia Surigni Westwood is lound in Egypt.

A species of Olynthe? the only gemus of this family found in North America, is stated by Itagen to oceur in Cuba.

Psocide Leach. These minute insects would be ensily mistaken for Aphides, both the wingless as well as the winged individuals. 'Their bodies are oral, the head fiee from the prothorax, which is small and partially concealed by the wings. The wings are unequal in size, and with few veins, thus depart-
ing willely from the usual Neuropterous type of remation, and closely resembing that of the plant-lice. Mr. R. McLachan states (Entomologist's Monthly Magazine) that 'othe eggs are laid in patches on leares, bark, or other objects, and the females cover them with a meb. The larvae and pupat greatly resemble the perfeet insects." The larve closely resemble the pupre; the ocelli in these states are absent, and the tarsi are two or threc-jointerl, according to the species. Ite has observed individuals with but partially dereloped wings. "In all their'states they probably feed on dry regetable sulbstances and lichens. 'They are universally common, living more

Fig. 573. or less in societies on tree trmks and palings, and amongst the herbage of trees, especially firs, larches and yews, and some species in houses and warehouses. I beliere that both seyes possess the power of spinning a web, not distinguishable from that of spiders. They are exceedingly active and difficult of capture." (McLachlan.)

In the nearly wingless genus Clothitla, from California, there are no ocelli, the wings are incomplete, and the tarsi threejointerl. Clothilla picea Motschulsky is but . 04 of an inch long and pitchy black in color, with a brassy reflection. In the nearly wingless Atropos the ocelli are wanting and the tarsi are three-jointed, while the rudimentary wings form minute square pads. The A. divinatorius of Otho Fabricins is a little pale, louse-like insect, seen running orer books and in insect cases, where it does considernble injury to specimens. The Atropos is in England called the "death-watch," and is supposed to make the ticking sound heard in spring. Mr. E. Newmen (Entomologist, iii, p. 66) has bred "Psocus pulicaries. or some allied species, from Alropos pulsatorius" (Fig. 573.)

The genus Psocus, which closely resembles in its appearance and habits the Aphides, though the species are not suck. ing insccts, has three ocelli, two or three-jointed tarsi, and well developed wings. The species are very numerous, and abound during the close of summer. Psocus venosus Burm. is said by Fitch to live on the maple, while P. salicis he describes as being found on the willow.

Perlide Leach. This group comprises those Neuroptera with long flattened bodies, the sides of which are parallel, while the prothoras is large; the antenne are long and thread-like, and the wings are unequal in size, the posterior ones being broad, triangular. The labial palpi are present, while the mandibles exist ordinarily in a rudimentary state. The wings are usually charged with many irregular transperse veins, and when folded flat on the back, extend beyond the abdomen. The tarsi are three-jointed, and there are, in the typical genera, two terminal setæ on the abdomen. The pupæ are actire, with prominent wing-pads. They are found in rivers uncler stones, while the adults are found resting on leares and in low damp places. The larra resemble the adult, except in being wingless, and bear a general resemblance to the larre of certain Ephemerids, showing the near relationship of the two families.

The genus Pteronarcys is remarkable for retaining in the adult state external gill-like filaments attached to the under' side of the prothorax. It consequently lives in exceedingly moist places, much nearer the water than Perla. P. regalis Newman is fuscons, the head is no broader than the thoras, while in P. moteus Newman the head is broader than the prothorax and the abdomen is yellowish beneath.

In Perla the wings are veiny, the transverse veins few and very regular, while the hind wings have a large, plicated anal space. The palpi are thread-like, and there are two abdominal setix. Westrood remarks that "there is a very great diversity in the sexes of the trpical genns Perla, the males being much smaller than the females, with rery short wings." Perla abnormis Newman is yellowish fuscons, and the wings are subhyaline with the reins clay-yellow.

The genus $I_{s o n t e r y x}$ is characterized by the wings having
the transverse reins few in number, almost absent, and there is no basal space in the posterior wings. 'The palpi are setaccous, the last joint being shortest. Isopteryx Cydippe Newman is pale yellow and immaculate.

Capnia is known by the wings being veiny, with the transverse veins very few and regular ; the anal area of the posterior wings is large, plicate, and the palpi are filiform, with the last joint ovate, longer than the preceding one, and there are two setz. Capnia pygmoed Burm. is shining black, with gray hairs. It is common in New York in February, according to Dr. Fitch. The species of Teniopteryx hare the wings inrolled and reined, with the transverse reins fery scarce, rather regular; the anal area of the postcrior wings is large and plicated ; the palpi are filiform, with the last joint orate. There are no abdominal setre, and the tarsi are dirided into three long equal joints. They fly early in spring and late in the autumn, and southwards, during the winter. T. frigida IIagen is black, with grayish hairs, with a gray band on the middle and another at the apex of the nearly transparent wings. In Vemoura the wings are veiny, flat, and the transverse reins are few, fery regular, the veins of the pterostigma forming an \mathbf{X}. The anal area of the posterior wings is large and plicate, and there are no candal setre. 'The males are smaller than the females, with shorter wings. N. albidipennis Walker is piceous, shining, with whitish wings. The genas Leuctra differs from Nemoura in the wings being rolled in when at rest. L. temeis Pictet is fuscous, with three clevated lines on the disk of the thorax.

Under the name Palceopterina, Scudder has descrilued a group considered by him as a distinct family which comprises but three fossil species discovered in the Carboniferous formation at Morris, Illinois. The fragments of the first species found were described by Professor J. D. Dana in 1864, under the name of Miamia Bronsoni (Plate 1, fiz. 1, the doted lines represent the parts restored by 3 Ir . Scurlder). He states that this insect "while Neuroptcrous in wings, closely approaching the Semblids, has broad costate femurs, and even a large spinous joint to the anterior legs, peculiaritics which seem to be almost inconsistent with the Neuropterous type,
although in part characterizing the Mantispids, and which are in complete harmony with the Orthopterons type." (American

Fig. 571. Journal of Science and Arts, 1864, p. 33.)

Professor Dana farther states "that in the broad costate femurs of the second pair of legs and the form of the prothorax, it approaches the Orthopters of the Phyllium fanily, and is very unlike any known Neuropters. 'The anterion legs are peculiar in hasing a large and broad femur armed above with very slender spines as long as the joint, three of which, though mutilated, are seen in the specimen. But something of this kind is observed meder Nemropters in the Mantispils. It is quite probable that these anterion legs were prehensile, as in Mantispa, and the fact that the tibia and tarsus are not in sight in the specimen, favors this conclusion. . . . There appears to have been a pair of short obtuse appendages at the extremity of the abdomen,

Fig. 575. much as in Phyllium. The head is mostly obliterated." Mr. S. H. Scudder in the ". Memoirs of the Boston Socicty of Natural History" for 1867, shows that the venation of this genus recalls features of sereral other Nenropterous families, such as the Ternitidce, the Hemercbidee and Sialide.

Mi'. Scuclder, who has given a restoration of this remarkable insect, states that the head is somewhat like that of Perla, being oral, depressed, with long oral lateral eyes. These two author's disagree as to the "fore legs" (Daua), Mr. Scutder calling the parts so designated by Professor Dand, the head. Gerstacerer states his opinion that Miamia is "without doubt a Perlarian."

Mr. Scudder has more recently described in the "Palseontology of the Illinois Geological Survey," iii, p. 566, two other forms of this group. He remarks, "the two specinens before me, with wings better preserved than in the individual of Miamia Bronsoni, prove that my delineation of the eonjectural parts of the wing structure of the Palceopterina was iu part erroneous, and give evidence of a closer relationship of the Paleopterina to the ancient Termitina than I had supposed possible." A second species of Miamia from Morris, Illinois, he calls M. Dance (Fig. 574; all the specimens occurred in balls of iron stone). It is four-fifths smaller than M. Bronsoni. He also remarks, "the other fossil which I would refer to the Palceopterina is Chrestotes lapidea (Fig. 575). The genus differs from Miamia in the shortness and rotundity of the wings," and in the venation, some points of which remind him of the Blattarice.

Epiemeride Leach. The May-flies, or Ephemerids, as their name implies, are, when fully grown, rery short-lived insects, the adult living but a few hours. The body is slender and weak, being very long; the prothorax is of moderate size; the antemne are subulate, or awl-like, being very small, as in the Libellulide, while the parts of the mouth are rudimentary, the insect taking no food in the adult or imago state. The wings are very uncqual in size, the hioder pair being much smaller, or in some instances (Cloce and Caenis) entirely aborted; the transrerse veins are either few or numerous; the tarsi are four or five-jointed, and appended to the long, slender abdomen are two or three long caudal filaments.

The sexes unite while on the upper surface of the water, and after a short union the female drops in the water her eggs "in two long, cylindrical yellow masses, each consisting of numerons minute erges." Wralsh states that he possesses a "subimago of Palingenia bilineata, which oriposited in that state." The larye live in ruming water and prey on small aquatic insects, the body being long and flat, with long hajrlike antennx, and small eyes situated on the side of the head, the ocelli not usually being present, and long sickle-shaped jaws, while along each side of the abdomen are leaf-like or
bushy false gills, and the body ends in long feathered anal hairs. They live, it is stated, two or three years, and reside in burrows in the mud, under stones, or anong grass and weeds, where they may be taken with the water-nct in great abundance, and are beautiful objects for the aquarium. Lubbock states that Chlozou passes through twenty-one moultings of the skin before it assumes the imago state; the pupæ are actire and have, as a general rule, the rudiments of wings. After leaving the pupa skin the insect (subimago), when its wings are expanded, taises a short flight, and then casts another skin before reaching the final imago state. They often fly in immense numbers, and become stranded in winrows along the borders of lakes. The perfect insects should be preserved in alcohol for study, as they shrivel up when pinned. They should be described when alive if possible.

The genus Ephemera of Limmas has three long and equal caudal setre; the fore wings are present, with very numerous transverse veins, while the eyes are remote, and in the males simple. Ephemera decora Walker is luteous, with the end of the antenne black and a reddish band on the side of the body.

The remains of a gigantic form clescribed by Mr. Soudder under the name of Platephemerca antiqua (Plate 1, fig. 3) has been discovered by Mr. C. F. Hartt in the Deronian formation of New Brunswick. Another fossil wing, Haplophlebium Barnesii (Plate 1, fig. 8), accompanying the preceding, has been doubtfully roforred to the May-Gies by Mr. Scudder. It indicates a very large species. Mr. Scudder also figures, in the Palæontology of the Illinois Geological Survey, certain fossils from lower Carboniferons strata, which "appear to be the wings of insects, and, being probably more nearly allied (p. 571) to the Ephemeridee than to other Neuroptera, should be grouped under the generic name Ephemerites."

In Palingenia there are three caudal setw, the middle one being short, and sometimes almost absent in the males. There are four wings with very numerous transverse veins, and the eyes are remote and simple. P. bilineata Say is a common species and one of the largest of the family ; it is found floating on the surface of lakes. It is greenish yellow, with a reddish stripe on the side of the prothorax. The genus Baëtis has but
two abdominal seta, while the four wings are provided with numerous cross-veins. The eyes are simple, and in the males of large size and placed very near each other. Bcütis interpunctata Say is a yellowish white species tinged with green, with an arenate back line on the front, and a lateral black point, while the prothorax has one black stripe on the side.

The singular genus Butiscu is very thick-bodied, and differs from the other Fphemerids in the fifth abdominal joints being twice as long as any of the others. The pupa (Fig. 576 , I; a, lateral tooth; II, antema; III, section of the abdomen, the numerals indicating the segments; a, branchir, above which is a flap, b) "cliffers," according to Walsh, "from all deseribed Ephemerinous pupa in the antenne being eight-jointed or thereabouts, not multiarticulate, and also in the branchise being internal and not used for locomotive purposes,

Fig. 576. and from all laree and pupre, and indeed fromi all known hexapod insects in any of their states, in the pro-, meso- and metanotum being comate and confluent, and extending over one-half of the abdomen in the form of a large, dilated, convex carapace, or shield, thus giving the insect a very Crustacean appearance." The larya, early in its life, has rudimentary wings, as in many grasshoppers, but in the pupa state they are not present.

Neaŕ Baëtis comes Potamantlurs, which has three caudal setae and four wings provicled with numerous cross-veins; the cyes in the males are double, large and

Fig. 577. approximate. The Potamanthus cupidus of Say is black, with a broal dorsal stripe and a lateral impressed line on each side of the thorax. P. marginatus Zetterstedt (Fig. 575), a boreal European species, we have found in abundance in Labradur tlying over pools in July.

In Cloe there are but two candal setx, and though there are usually four wings, jet the hinder pair are sometimes wanting, and there are few transverse veins. The eyes in the males are double, large and approximate. Cloe pygmaca Hagen is

Fig. 578. brownish gray, with the feet and sctre white, and the wings hyaline. It is a Canadian species.

Ccenis differs in laving three caudal setie, with no hind wings developed, and few cross-veins, and the eyes in the males are very simple and remote. Comis helaris Say is small and whitish, with black eyes, and the thorax is pale fulvous, with short obseure lines beneath and on the sides.
Hagen states that the most abnormal Ephemerid is Oligonen. ria, distinguished by the abortive condition of the legs, the large size of the longitudinal veins of the wings, the rarity of the transverse veinlets, and by a long bristle-like appendage at the base of the fore wing. A closely allied genus has been described by Dr. Hagen unter the name Lachlania. It has two caudal filaments, where Oligonemria has three, and there are three strong transverse veins in the fore wings. L. abnormis Hagen (Fig. 578 , enlarged) is a Cuban species.

Mr. Scudker regards as the type of a distinct family, which he calls the Hemeristina, a single form, the Hemeristia occidentalis of Dana, which occurrerl with Miamia Bronsoni in the Lower Carboniferous rocks of Illinois. Mr. Scudter defines this family as consisting of "Neuroptera of large size. The prothoras is quadrangular, narrower than the meso- and metathorax, though not proportionally so much so as in the Palceopterina; the femora (probably the front pair) are as in the Palcopterina, but proportionally broader. Wings large, long, about twice as broad beyond the middle as near the base, the costal border conver in its onter half, with numerous and prominent cross-veins but no reticulations; when ar rest, overlapping quite completely, even close to the base,
much as in the Perlarice, and probably with the sides protected near the base by the deffected marginal and scapular (sulocostal) areas." Scudder shows that while the venation is much the same as in Hemerobius, as stated by Professor Dana, it also resembles that of the Sialidce and Ephemerida and Libellulidce. Gerstaecker thinks that Hemeristia "at least stands nearer to the Ephemerida than to any other family." (Brom's Klassen und Ordnungen des Thier-Reichs, vol. v.)

Libellulida Latreille. Dragon-fies, Devil's-darning-needles, or Mosquito Hawks, are readily known by the cnormons head and thorax, with the remarkably long, slender, cylindrical abdomen. The head is large and globular, with immense eyes often encircling the head. The large square thorax is remark-

* Fig. 579.
able for the small size of the tergal parts, while the pieces composing the finnks are greatly cularged, rising up especially in front, taking the place of the prothorax, which is usually very large in the Neuroptera generally, but is in this family greatly aborted, as these insects scarcely ever walk. As in the Ephemeridce the antennæ are short and setiform, and the mouth is not furnished with palpi. The wings* are lurge,

[^44]densely reticulated, very equal in size, and in some cases the hind wings are a little larger than the fore wings. The tarsi are three-jointed, and the second abdominal segment of the males is furnished with accessory genital organs.
"Lamdois notices a peculiar sombl-proctucing organ in this family, and figures that of Aschna juncen. It is situated in the prothoracic stigmata, which are placed quite at the front of the thorax, and concealed by the head. These stigmata are large elongated slits, one margin of which is simple, whilst the other bears a sort of chitinons comb of abont trenty teech, between which an exceedingly delicate membrane is extended. The metathoracic stigmata, which in general are the chief organs of sound in this part of the body, are smaller, and bear on one sirle a semilunar valve with stiff hairs." (Günther's Zoological Record for 1807.)
"During the paixing of the sexes, which takes place during dight, the male seizes the neck of the female with his anal claspers; the female then curves the end of its abdomen to the second abdominal ring of the male, which has a swollen expansion of the uncler surface, containing in a longitudinal cleft the intromittent organ, which conveys the seminal fluid from the blatder-like cavity into the body of the female. But since the outlet of the testicle opens on the ninth segment of the abdomen, the males previous to union with the other sex, must fill the copulating sac with the seminal fluid, by curving its abdomen upon itself. After the union has been effected the females generally let go of the males. In many
the second or subrostal series) ; sss, postenhitals, A peas and Angles. $-\ell$, the triangle (tisecoidal); u, internal triangle; V, anal trimgle; W, basal area (or space); $x x$, median area (or space); y, membranule; z, anal angle in the mate, the dotted line z^{\prime} showing the form of the anal comer of the wing in the female Gomphus. (The angle a ought to have been engraved as mush more acute and salient.) A A, discoidal areolets (in the figure two ranges of them commencing with threc). B, pterostigma; C, ils basal (or intermal) side prolonged in the mormal manner; D, "quadrangle," "quadritateral," on" "area above the triangle," bounded above by m, helow by a, basally by q, and temminally by an unnamed cross-vein; EEE, postcostal area (or spatee).

Of the above pterological parts, q and its sectors, r, a, t, T, y, B, and in the Calopterygina and drrionina "the quadritateral" (D), and "the postaostal area" (E), are the most important in classification. - From Fugen with morliftations by Jobsh. Following the nomenclature adopted in this work, a would indicate the marginal rein; b, the costal; c, the subcostal; d, probably the median, and e, the submedian vein.
species of Libellula, however, during oviposition, the male retains his hold on the neck of the female, and both fly over the surface of standing water, the female touching the surface of the pool with the tip of her abdomen, and letting the eggs fall into the water.

- "In some genera (Libellula, Agrion) the two sexes of a species cliffer greatly in color, the males having bright variogated colors, while the females are dusky, being more of one color. The males of many species have, on the abclomen, several clays after exclusion from the pupa case, a bluish powdery exudation. The genus Calopteryx and allics differ sexually in the color of the wings." (Gerstaceker.)
"Brater indicates the occurence of dimorphism in the females of some species of the genus Neurothemis, some of them haring the wings very richly reined, as in the males, whilst others have widely netted veins like those of the ordinary Libellule." (Günther's Zoological Record for 1867.)

During July and August the various species of Libellula and its allies most abound. The eggs are attached loosely in bunches to the stems of rushes and other water-plants. In laying them, the dragon-fly, according to Mr. P. R. Uhler's obserrations, "alights upon water-plants, and," pushing the end of her borly below the surface of the water, glues a bunch of eggs to the submerged stem or leaf. Libellula aurpennis I have often seen laying eggs, and I think I was not deceived in my observation that she dropped a bunch of eggs into the open ditch while balancing herself just a little way above the surface of the water. I have also seen hor settled upon the reeds in brackish water with her abdomen submerged in part, and there attaching a cluster of eggs. I feel pretty sure that L. aumpennis does not always deposit the whole of her eggs at one time, as I have secn her attach a cluster of not more than a dozen small yellow eggs. There must be more than one hundred eggs in one of the large bunches. The eggs of some of the Agrions are bright apple-green, but I cannot be sure that I have ever seen them in the very act of oviposition. They have cmious habits of settling upon leaves and grass growing in the water, and often allow their abdomens to fall below the surface of the water. Sometimes they fly against
the surface, but I never saw what I could assert to be the projecting of the eggs from the borly upon plants or into the water. The English entomologists assert that the female Agrion goes below the surface to a depth of several inches to deposit eggs upon the submerged stems of plants." The
 Agrions, howerer, according to Lacaze-Duthiers, a French anatomist, make with the oripositor a littlo notch in the plant upon which they lay their eggs.

These eggs hatch during the midlle of the summer, and the young larva (Fig. 62) when first hatched differs from the more mature larva (Fig. 580), in not Fig. गे0. Laving the rudiments of wings, and in the long, spider-like legs. The larva is very active in its habits, being provilel with six legs attached to the thorax, on the back of which, after the first one or two moults, are the little wing'pads, or rudimentary wings. 'The large head is provided with enormons eyes, while a pair of simple, minute eyelets (ocelli) are

Fig. 581. placed near the origin of the small bristle-like feclers, or antennx. Seen from beneath, instead of the formidable array of jaws and accessory organs commonly observed in most carnivorous larvæ, we see nothing but a broad, smooth mask covering the lower part of the face, but when some unwary insect comes within strilsing distance the battery of jaws is ummasked, and opens upon the rictim. This mask (Fig. 581 , under side of heas of a dragonfly larva, with the labium fully extended ; $x, x^{\prime}, x^{\prime \prime}$, the three subdivisions; ?, maxillx. For other details of the heal of the larva of Diplas, see p. 60) is peculiar to the young, or larva and pupa, of the dragon-fly. It is the labium, or under lip greatly enlarged, and armed at the broad spoon-shaped extremity (x) with two sharp hooks, adapted for seizing and
retaining its prey. At rest, the terminal half is so bent up as to conceal the facc, and thus the creature cramls abont, to all appearance, the most inmocent and hamless of insects.

Not only does the immature dragon-fly walk over the bottom of the pool or stream it inhabits but it can also leap for a considerable distance, and by a most curions contrivance. By a syringe-like apparatus lodged in the end of the body, it dischiages a stream of water for a distance of two or three inches behind it, thas propelling the insect forwards. This apparatus combines the functions of locomotion and respiration. There are, as usual, two breathing pores (stigmata) on each side of

Fig. 589. the thorax. But the process of breathing seems to be mostly carried on in the tail. The trachere are here

Fig. 583. collected in a large mass, sending their branches into folds of membrane lining the end of the alimentary canal, and which act like a piston to force out the water. The cntrance to the canal is protected by three to five triangular horny valves (Fig. 582, 9, $10 ;$ Fig. 583 , side vicw), which open and shut at will. When open the water flows in, bathing the internal gill-like organs which extract the air from the water. This is then suddenly expelled by a strong museular effort.

In the smaller genera, Agrion (Fig. 58t, side view of false-gill, showing but one leaf), Lestes and Calopteryx, the respinatory leaves, called the tracheary, or false-gills, are not enclosed within the body, but form three broad leares, permeated by trachex, or air-vessels. They are not true gills, however, as the blood is not norated in them. 'They only absorb air to supply the trachere, which aerate the blood only within the general cavity of the body. These false gills also act as rulders to aid the insect in swimming.

It is easy to watch the dragon-flies throngh their transformations, as they can easily be kept in

Fig. 581. aquaria. Little, almost nothing, is known regarding their
habits, and any one who can spend the necessary time and patience in rearing them, so as to trace up the different stages from the larva to the adult fly, and describe and figure them accurately, will do good service to science. Mi. Uher states that we know bat little of the young stages of our species, but "the larva and propa of the Libellute may be always known from those of the Aschnca by their shorter, deeper, and more robust form, and generally by their thick clothing of hair."

The pupa (Fig. ă85, pupa probably either of AEschna constricta or \mathbb{E}. clepsydra) scarcely differs from the larva, except in having larger wing-pads. It is still active, and preys on other insects. When the insect is about to assume the pupa

Fig. 585. state the body, having outgrown the larva skin, by a strong muscular effort opens a rent along the back of the thorax, and the insect haring fastened its claws into some object at the bottom of the pool, the pupa gradually Forks its way ont of the larwa skin. It is now considerably larger than before. Immediately after this teclious operation its body is soft, but the crust soon hardens. This change, with most species, probably occurs early in summer.

When about to change into the adult fly the pupa climbs up some plant near the surface of the water. Again its back yawns wide open, and from the rent our dragon-fly slowly emerges. For an hour or more it remains torpid and lisiless, with its flably, soft wings remaining motionless. The fluids leave the surface, the crust hardens and dries, rich and ratied tints appear, and the clragon-fly rises into its new world of light and sunshine.

In Agrion and its allies (Agrionina) the antennre are fourjointed, the eyes are small compared with those of Libellila, and distinct: the wings are equal, while the abdomen is cylindrical and long and slender. In Calopteryx the wings are very broad and densely reticulated; the pterostigma is absent in the males, that of the females inegular and areolate; the
basal space has no transverse veins, and the male appendages are forcipate. (Hagen.) Calopteryx apicalis Burm. is shining brassy green, with long black feet.

In Lestes there are two antecubital transyerse venules; the fourth apical sector is broken; the postcostal space is simple; and the quadrangular space is trapezoidal, with the exterior inferior angle acate; the pterostigina is large, oblong, and the appendages in the male are forcipated. Lestes eurina Say is blue, varied with green and violet. The beantiful genus Agrion has the apical sector straight, the postcostal space simple, the quadrangular

Fig. 586 space tripezoidal, with the exterior inferior angle acute; the pterostigma small, rhomboidal, while the male abclominal appentages are short. Agrion civile Hagen is brassy-black, varied with blue or green, with a hairy head and thorax. A. sancium Burm. (Fig. 586) is red, variegated with black, and is a common species.

In the group Lischnina the wings are unequal, and atl the triangles of the wing are of the same form. In Gomphus and its allies the wings are unequal, the hinder onesbeing broader, and the triangles of both pairs of wings lave no transverse veins. Gomplues fiatemus Say is yellow spotted

Fig. 587.
with black, with black feet. The genus Anax differs in the anal angle of the posterior wings being rounded in the male, and the abdomen has a lateral interrupted ridge. Ancax Junius Drury is a large and widely spread species; it is green, spotted with blue and fuscous, with a yellow head. Aschna differs
in having the anal angle of the posterior wings of the male acute. Wsehna heros Fabr. is one of our largest and most abundant dragon-flies. It is fuscous, marked with yellowish green, and with two oblique green stripes on the side of the thorax.

In the third group of this immense family, the Libellulina, the wings are unequal, and the triangle of the anterior wings

Fig. 588,
is dissimilar, while the anterior genital hamule of the male is free. In Corclutia the anal angle of the posterior wings of the male is acute, and the body is brassy green. C. tenebrosa Say is found in the Western

Fig. 589. States.

The genus Libellula is characterized by the short, rather flattened abdomen, narrowing rapidly towarts the tip, and the male clasping organs are scarcely visible. Libellula trimaculata DeGeer (Fig. 587, male) is so called from the three dark clouds on the wings of the female. The male differs in haring a dark patch at the front edge of the wings, and a single brond cloud just beyond the middle of the wing. Libet-
luta quadrimaculata Linn. (Fig. 588) is reddish yellow, with four dark clouds on the wings which are yellow anteriorly on the base. In Diplax the abdomen is a little shorter than the wings, and is slender, flattened, compressed at the base, while the feet are long and slender. Diplax rubicundula Fabr. is a rery abundant species, being yellowish red. Diplax Berenice Drury (Fig. 589 , male ; fig. 590, female) is black, with the

Fig. 591. head blue in front, spotted with yellow, while the thorax and abromen are striped with yellow. There are fewer stripes on the body of the male. D. Elisa Hagen (Fig. 591) is black,

Fig. 590. with the head yellowish and with greenish jellow spots on the sides of the thorax and base of the abdomen. The Namophyt bella of Uhler (Fig. 592) is a smaller form, with an unusually short abdomen, and the reticulations of the wings are large and simple. It is black, while the male is frosted over with a whitish powder.

Sialide Leach. This family is not a numerous one, but the species are interesting as comprising some of the largest of insects. Hagen defines the group briefly as having the body short and thick, while the prothoras is large and square. The antennæ are long and setaccous; the wings are large, reticulated, the posterior ones with thie anal space plicated, and the tarsi are five-jointed.

Fig. 392.
"The female of Sialis," according to Westwood, "deposits an immense quantity of eggs, which she attaches one by one
to rushes or other aquatic plants. They are of a cylindrical form, terminating at the top in a sudden point; they are attached side by side with the greatest regularity." 'The larwæ, as in those of Corydalus, are broad and fattened, with a pair of long, thick, respiratory filaments attached to the side of cach ring of the abclomen. The body of the pupa is curved, with the wings laid along the breast, much as in the Pluryganeid pupæ. The larva is active and predaceous, being armed with strong jaws. When full-fed it leaves the pools or streams in which it has been living and makes an earthern cell in the bank, in which the inactive pupa undergoes its remaining transformations.

In Sialis the prothorax is large and square, almost equal in size to the head; there are no ocelli; the anteme are filiform, and the wings irregularly met-veined, the veins being stout.

Fig. 593. The fourth joint of the tarsi is dilated aud twice lobed. The larva is much like that of Corydalus, but differs in haring the abdomen terminating in a "long and slender setose tail." Sialis infumata Newman (Fig. 598, candal appendages of the male, from Walsh) is black, with the hand not narrower behind, while S. Americtun Rambur is rust-red, and the head is natrower behind. The wings expand about an inch.

Chathonles is a much larger insect, with a quadrangular prothorax nearly as large as the head. There are three ocelli placed close together, and the antemere are either pectinated or serrated. The wings are reiny, the transurse reins slender. The joints of the tarsi are eylindrical, and the caudal appendages of the male are conical and simple. Walsh describes the larva of C. rastricomis Rambur as resembling that of Corydalus, but being much smaller, measuring 1.60 of an inch, and the abclomen has one segment less, with no caudal setre, "so that Chanliodes forms a connecting link in this respect between Corydalus and Sialis, the larva of which is said to have 'one long, slender, setose tail," and the under side of the abdomen is "entirely destitute of the remarkable pacldle-like branchis found in CorydaIns." The pupa resembles that of Coryclalus.

Chauliodes pectinicomis Limn., our most common species, is yellowish ashen, with reddish pectinated antenme. In C. revricornis Say the antenme are serrate. In Corydulus, the largest form known, the prothorax is square but narrower than the head and the antennæ are stout but filiform. The male of C. comutus Limn. (Fig. 594, female; fig. 59. male; fig. 596, pupa; fig. 597, larva), has very long mandibles, about twice as long as the head, whence its specifie name. According to the Editors of the "American Entomologist," the ergs of this insect (Fig. 598) are "oval, about the size of a radislı seed, and of a pale color, with some dark markings. They are usually deposited in a squarish mass upon reeds or other aquatic plants overhanging the water." Hagen does not "think that the lateral filamentous appenrlages are connected with respiration; the litile sponges at

Fig. 57\% the base of the filaments and a little behind them are the true branchix." "The reason that the larva of Corydalus has both branchix and spiracles is, that it lives, like Sialis, some weeks out of the water before its transformation." (Hagen.)

The genus Raphidia is not aquatic in its habits as it is found under the bark of trees pursuing small insects. The adult has a long neck (prothorax), which is much narrower than the head, and the antennæ are short and filiform, while the oripesitor of the fcmale is long and ensiform, probably enabling it to deposit its cogs in the chinks in the bark. The larva is long and

Fig. Em. sleuder; before trinnsforming it makes no cocoon. At first the pupa is inactive, but according to Mr. Waterhouse (Westwood's Introductioni), it becomes active while the imago skin is developing, and wallss about, as the pupa skin is exceedingly thin. The genits is only found on the I'acilic coast of this continent, another proof of the amalogy of the insect fanma of the Western shores of this country to that of Europe, where this genns also abounds.
In their form and habits, incloding both those of the larva, and of the partially active pupa, which wiggles tiolently and eren leaps, as the larva does, as stated by Percheron, whom Mrr. Westwood quotes (jouit de la meme faculté de rontorsion et de sants, gree la larve execuie a un si haut degré), have we not brought forcibly before us the Thysanura?

Hemerobids Leach. The Aphis Lions and Lace-winged flies, which are included in this family, have long, slender, cylindrical bodies. The wings are large, with numerous veins, the posterior ones with no anal space; the ocelli are usuaily absent, and the tarsi are five-jointed.

The larva vary considerably in form, but are usually flattened or short, thick, ovate and fleshy, with large sickle-like mandibles; "the under side of these organs is deeply grooved, and the maxillæ, which are nearly equal to them in size, and of a similar form, play in this groove." (Westwood.) With these they pierce the borlies of their rictims and suck out their juices. The sides of the abdominal segments are fringed and have lateral tubercles bearing a thin tuft of radiating hairs.

The body of the pupa is more cylindrical, being curved, and with the limbs and wing's folded to the breast. The larra spins a silken cocoon, and the pupa is inactive.

In Aleuronia the body is covered with a whitish powder; the eyes are reniform, and the antennex are moniliform. The wings are ciliated; the longitudinal reins are few in number, while the transverse ones are almost absent. Aleuronia Westwoodii of Fitch is a

Fis. 596. very small insect, being black, covered with a whitish porrder, with a pale abdomen and feet. The singular genus Coniopteryx, whose larva somewhat resembles a Smynthurus, one of the Thysanura, showing the close relationship of these aberrant forms, is characterized by Hagen as being powdered with whitish scales, having globose ejes nud moniliform antenm. The wings are not ciliated, the longitudinal veins are few, and there are some transverse reins. The posterior wings of the males are small. Coniopteryx vicina Hagen is black, corered with grayish powder, and the wings have eight longitudinal yeins, all joined together by a single transrerse rein. It is about one-seventh of an inch in length. Haliday (in Westwood's Introduction) thinks that the larra of the European C. tineiformis preys on plant-lice. When about
to transform it spins an "orbicular pouch of fine white silk of close texture, generally on the trunk of a tree, in chinks of the bark, or among moss. The pupa is quiescent."

The singular genus Nemoptera is at once recognized by the remakably long, narrow, linear hind wings which reach far beyond the abdomen. The larva has a remarkably long, almost filiform thorax, and was de-

Fig. 597. scribed under the name of Necrophilus. The species are found in Western Asia and in Northern Africa.

The genus Hemerobius has moniliform antennæ, the wings having the subcostal and median veins joined together at the apex, and the costal space of the anterior wings is broader at the base, with a recurrent forked rein; the transverse series of venules are gradate (like a pair of steps). We have found in Maine a larva (Fig. 599, tergal and side view) of this genus on the bark of a birch tree in October, where it was seen preying on Aphides, and had covered its abdomen with the empty skins of its victims, forming a thick mantle as seen in the figure. Hemerobius alternatus Fitch is white or yellowish, raried with fuscous, with tawny hairs. According to Fitch it is found upon pine and hemlock bushes. H. occidentalis Fitch has hyaline wings, not mottled as usual with smoky dots or clouds, but adorned with two faint parallel lines; it expands .38 of an inch. I have raised specimens, referred to "this species by Dr. Hagen, which oceurred in the pupa state (Fig. 600), in considerable numbers under a cloth wrapped around a pear tree in a garden in Salem. The cocoon is oral, cylindrical, dense, and surrounded by a much thimer mass of sills more globular
in form. The partially active pupa crawled out of the cocoons, and were found scattered about in the paper containing them.

The genus Polystochotes is of much larger size than Hemerobius or Chrysopa, and Hagen suggests that the larva is aquatic. P. punctatus Fabr. is widely distributed, flying lazily at night-fall. The aberrant genus Mantisper is a most interesting form, from the great length of the prothorax, which with other characters remind us strikingly of the Orthopterous genus Mantis. The fore legs are, like those of Mantis, adapted for seizing other insects. Mantispa brnmea Say is our most common species, occuring in the Middle and Western States and southwaris to Central America.

Chrysopa (Fig. 601, eggs, lava, and adult of C. peria of Europe), the Lace-winged

Fig. 590. Fly, is abundant and of great use, as in the larva state it preys on plantlice. Its body is slender, with deli- Tig. 598. cate gauze like wings, and is generally green. with golden ejes. When disturbed it often emits a foctid odor. Their eggs, supported by long pedicels, are often laid in a group of Aphides or in plants infested by them. When hatehed the voracious larra finds its food ready at hand, and destroys immense numbers of plant-lice, whence its name, A plis-lion. It turns to a pupa late in summer, and thus passes the winter within a very dense, round, whitish cocoon situated in the crevices of bark, ete.

In Europe gardeners scarch for these Aphis-lions and place them on fruit trees overrun with lice, which they soon depopulate. The Chrysopa oculata of Say (Fig. 602, and eggs) is our most abundant form. It gives out a foul smell when handled. By this genus we are led to the Ant-lion, or Ayrmeleon. It is a larger insect than any of the fore-

Fig. 6000. going genera, and reminds us in many respects of the dragonflies. The antenner are short and stout, clavate, while the body
is very long and slender, and the wings are long, narrow and densely veined. The larva (Fig. 603) lears a close resemblance to that of Chrysopa. It makes a pitfall in fine sand at the bottom of which it Lides, leaving only the tips of its mandibles in
 sight, which are extended and ready to seize any insect which may full into them. The puparctains the large mandibles and uses them in cutting its way out of its cocoon. Myrmeleon obsoletus Bay (Fig. 604) is not rare in the wamer parts of the country, and has been found at Salem, Mass., by Dr. E. P. Colby. M. abdominalis Say has also been found as -a quogep far north as Milton, Mass., by Mr. J. Schofield. Mr. R. Trimen, speaking of the Entomology of Natal, South Africa (Entomological Monthly Magazine), notes the habits of a "huge Myrmelcou, of the genus Pulpares, the spotted and rariegated aspect of whose wings will cause you to mistake them for moths. . . . These great insects are rery unlike Libellulide in their flight, flapping wildly and irregularly about, as if their rig. co3. muschlar apparatus were too weak to wied their stretch of wings. In repose the wings are folded above each other' so as to form an acute-angled roof abore the abdomen. They differ in this respect from the long-horned Ascalaphi, which deflect the wings on either side,

Fig. 604. and hold the abdomen erect or nearly so."

Ascalophus with its long filiform knobbed antenne, and broad wings and gay colors is the butterfly among Neuroptera. It flies in the lieat of the day, secking the hottost places and is aboudant in the deserts of the East. The body and feet are short and the large wings are less densely veined
than in Myrmeleon. The eggs when laid are hedged around by little pales like a fence "and are so placed that nothing ean approach the brood; nor can the young ramble abroad till they have acquired strength to resist the ants and other insect enemies. The abdomen of the larra is depressed and oval, with ten pectinations on each side." (Westwood.) It closely resembles that of Myrmeleon. McLachlan states that the egos of Ascalaphus macaronius were observed by Koll:ur deposited on a grass stem. Ascalaphus hyulinus Latr, is found in the Southern States and Mexico.

Payorpide Leach. This family is interesting as affording a passage from the wingegl Neuroptera to the degraded wingless forms which are often excluded from the suborder by writers, and placed apart by themselves under the title of Thysanura. Hagen thus defines the group: "body cylindrical or conical ; head exserted ; antennee shorter than the wings; mouth rostrated; lateral palpi biarticulated; prothorax small ; wing's either almost absent or narrow, equal, longer than the body, narrowed at base; the posterior wings with no anal space ; tarsi of fire joints."

In Panorpa, the Scorpion Fly, so called from the long for-ceps-like tip of the male abdomen, there are three ocelli and the wings are narow. The genital organs of the male are greatly lengthened out, and are forcipated, with the last segment inflated; the two tarsal hooks are serrated, and the antenna are bristle-like.

Lacaze-Duthiers selects the ovipositor of Panorpa as being an intermediate type, as regards complexity, between Libellula and Eschna. "When disturbed, the female of Panorva Germanica or communis, darts ont a long slender tube towards the disturbing object. Soon a little drop of a whitish liquil appears at its extremity; it is a means of clefence. While at rest the conical abdomen, terminating in a point, appears to be composed of a less number of segments." At first sight there seems to be but two, though in reality there are three segments between the oriduct and the anal ontlet, since the ninth ring is rery small and partly aborted, being concealed bencath the others. The eleventh segment consists of five
pieces, a tergite, two sternal scales, and tro appendages articulated to the tergal piece.
M. Lacaze-Duthiers does not extend the comparison of the oripositor of Panorpa to those of Podura and smynthmrus, but we can see how easy the transition is. Only let the long flexible ovipositor of Panorpa be permanently extended, which in insects usually involves its boing bent and appressed to the uncler side of the abdomen, and with a few other slight modifications we hare the leaping oripositor of the Podura and its allies:

The larva is terrestrial, as Stein has found the pupa buried an inch deep in moist earth, at the foot of an alder stump. (Westwood.) Brauer states that the larva is long, cylindrical, with

Fig. 605. long filaments arising from tubercles on the body: In its general appearance it rescmbles certain caterpillars, and also Phryganeid larras. P.ron fescens Rambur (Fig. 605, enlarged) is the most common form in New Enghand. It is of a yellowish red color, with the antennæ black, except the three or four basal joints which are reddish. It is about half an inch long and the wings expand an inch.

The Tipula-like genus Biltacus, though it has four wings, is, in its renarkahly slender body and long legs, much like the Crane-flies. There are seven species in this country, one of which, B. pilicornis Westwood, has been found in Canala and New York. The winter insect, Boreus, is wingless in the female sex, and in its habits and form as well as its minute size, reminds us strikingly of Podura and Lepisma, thongh the resemblance has not to our knowledge been specially noticed by entomologists. In this genus the ocelli are absent, and the males have rery imperfect style-like wings, while the females are entirely wingless. "The abdomen of the female is terminated by a three-jointed ovipositor, the under side of which is defended by a produced valve-like bilobed plate arising from the under side of the serenth segment. The male has the abdomen terminated by two short, recurved, attenuated, pilose styles." (Westwood.) In this description we are reminded of
the Spring-tails (Podura), which leap by means of the long ovipositor, and corresponding male organs, bent beneath the body.

Dr. Fitch has described two forms of these winter insects which, like Podura, occur in moss and are found leaping on the snow. Boreus nivoriundus is abont one-seventh of an inch long, and is reddish, with a bronze tinge, while B. bremalis is entirely brassy-black, and is a still smaller species.

We must not pass orer the singular genus. Merope, which is interesting in this comection. It has no ocelli, while the compound eyes are large, renifom and united on the top of the bead. The antenna are short and thick, narrowed at the apex, while the wings are broad, with numerous transverse veins, and the male abdomen has large forceps. The Merope tuber of Newman is very rare. It is clay yellow (luteous), and expands nearly an inch. Hagen remarks that "the genus and species are very singular and abnomal ; perhaps the most remarkable of all hitherto known Neuroptera. It certainly belongs to the Panorpina."

Phryganeme Latreille. Some of the members of this family bear a striking resemblance to the smaller moths, such as the Tineido. As characterized briefly by Dr. Hagen, their borlies are compressed, cylintrical; the head is free, antemae long, threar-like, the mouth is imperfectly developed, and the labial palpi are triarticulate. The prothorax is small; the wings longer than the body, with few transverse veins, while the posterior wings have the anal space large, plicated (rarely alosent), and the tarsi are five-jointed. In all these characteristics, together with the cylindrical form of the larva, the quiescent pupa which is rery much like that of a moth with its wings and limbs free, instead of being soldered together, and in the habits of the larva, which in some genera resemble those of the Siculide, this family stands above the Neuroptera to be hereafter mentioned, and in a serial arrangement, such as we are forced to make in our books, this scems to us to be their proper place, while in nature they appear to us to stand off by themselves parallel with the Sialidde and Hemerobicle, certain genera of which, in the imago state (such as Coniopteryx), they closely resemble, while they seem
to rank higher than the Panorpida, which next to the Tlyysanura are in our view the lowest family among the Neuroptera.

The larve are more or less cylindrical, with well developed thoracic feet, and a pair of feet on the end of the abdomen, varying in length. The head is small, and like that of a Tortricid larra, wheh the Caddis or Case-worm, as the larra is called, greatly resembles, not only in form, but in its habit of rolling up submerged leares. They also construct cases of bits of sticks, sawclust, or giains of sand, which they d'ag over the bottom of quict pools, retreating within when disturbed. They live on regetable matter, and on water-fleas (Entomostraca) and small aquatic larve. When about to pupate they close up the mouth of the case with a grating, or as in the case of Helicopsyche by a dense silken lid witl a single slit, and in some instances spin a slight, thin, silken cocoon, within which the propa state is passed. The pupa is moch like that of the smaller moths, except that the wings and limbs are free from the borly. Dr. Hagen informs me that after leaving its case it makes its way orer the surface of the water to the shore, sometimes going a long distance. "Westwool states that "the females deposit their eggs in a double gelatinous mass, which is of a green color, and is retained for a considerable time at the extremity of the body; the mass is subsequently attached to the surface of some aquatic plant, and Mr. Hydeman has observel the female of lhryganea grandis creep down the stems of aquatic plants under the water, very nearly a foot deep, for the purpose of oriposition." Λ. Meyer mentions several instances of the umion of the sexes of different species of this family, with the production of fertile eggs. (Günther's Zonbogical Record for 1867.)

Only one exception to the aquatic habits of this family is 1he Eiovicyla musilla Burmeister which, according to McLachlan. in Eutope "lives ont of the water amongst moss at the roots of trees. The larra is destitute of the extermal respiratory filaments common to almost all caddis-worms, but the spiracles are not very evident. E. pusilla is also remarkable, inasmuch as the female is wingless, and little resembling the male." Von Siebold discovered that an Ichneumon (Agrio-
typus armatus) attacks the fully grown larva of a Phryganea (Aspatherium), which inhabits a smooth cylindrical case, which the Ichmemmon converts into a pupa case by spimning a long broad band of silk around the anterior opening. (Gerstaecker.)

In Veuronicu and Phmganea the maxillary palpi differ in the two sexes, and there are two spurs on each of the fore legs, and four on the middle and hind legs. The maxillary palpi in the males are fom-jointed, in the females five-jointed, and there are three ocelli. Neuronia differs from Pluryganea in having its

Fig. 107. antenne a little shorter than the wings, whereas in the latter they are longer, and the fore wings are hairy. Netronia semifasciata Say is fulvous, with the fore wings transversely flecked with brownish-blacis, a small basal sjot, and on abrupt, median streak at the hinder margin of the wing, while the disk has two yellowish spots, and there is a short
 fuscons subapical band on the hind wings. Fig. 606 Fig. coo. represents the ease of the European Phryganea grandis Linu.

In the group Limophilides the maxillary palpi of the males are three, those of the fe-

Fig. ©0s. males fire-jointed; ocelli three ; anterior wings rather narrow, the apex obliquely truncated or rounded. In

Fig. 609. Limnophitus the tibial spurs of the three pairs of' legs are arranged thus, $1,3,4$ (i.e., one spur on the front pair of tibise; three on the middle, and four on the hinder pair), and the aper of the anterior wings is truncated. L. perpusillus Walker is a boreal species, occurring at IIndson's Bay. Limnophithes rhombiens Linn. (Fig. 607, case made of bits of moss)

Fig. 610. is an ochreous species, with luteous hairs. Fig. 608. a. case, represents a case-worm which we have found in great abund-
ance in Labrador. Though we have not reared the imago we suppose it to be the Limnophitus subpunctutatus of Zetterstedt, the most abundant species we met in Labrador. The case is straight, cylindrical, and built of coarse gravel, and the larva is a thick, cylindrical, whitish worm. Fig. 609 represent the case of L. fuvicomis Fabre., a European species, which is often constructed of small shells. Fig.
 610 illustrates the case of the European L. pellucoitus Olivier, which is formed of large pieces of Fig. bill. leaves laid flat over each other.
In Sericostoma the ocelli are wanting, and the palpi are pilose, the maxillary palpi of the males are four-jointed, covering the face like a mask. S. Americanum Walker is black with black hairs; the antenna are twice the length of the body, while the anterior wings are much longer than the hind ones. Fig. 611 represents the tube of a European species of this genus.

In Helicopsyche the spurs are arranged thus: 2, 2, 4, and the maxillary pali of the males mask the face, being recurved. We have found the larva of Heliconsyche glabra Hagen (Fig.

612, x, lunate patch on the basal abdominal ring; a, front view of the head, enlarged; m, mandible ; e, eye; b, vertical view of the end of the abdomen, enlarged), about changing to pupre, the middle of July, in Wenham Lake, Mass. One had spun its operculum and lay with its head just behind
it. The body of the larva is curved, though not spirally, and When out of the case it is cylindrical, thickest on the basal ring of the abdomen, and is pale greenish, while the head, thorax and legs are brownish; it is . 25 of an inch in length. The head is hairy and is smaller than usual, a little narrower than the thorax, with black, acuto unidentate mandibles. The thoracic rings are horny above, somewhat hairy, and the legs are slender and hairy. The abdomen ends rather abruptly, with two short tubereles ending in a hook, both sides being alike, the body throughout as symmetrical as other larve

Fig. 613. of this family, though living in a helicoid case. On cach side of the basal segment of the abdomen is a lunate, corneous, hairy spot, by which the larva probably retains its hold in the case when the head and thorax are protruded. The case is usually very regularly helix-like in form, though the umbilicus varies in size. It is composed of fine grains of sand so arranged that the outer surface is smooth. It is closed during the pupa state by a dense, silken concare, suborbicular operculum, with concentric lines, rounded on the side, and but slightly convex on the other, with a slightly curved slit for the passage of water situated on the less convex side, each side of the slit being provided with slender straight teeth which nearly touch each other, thus forming an imperfect grate. The larra does not spin a cocoon. Fig.

Fig. 614. 613 represents the case of H. arenifera Lea, from Indiana. Mr. J. A. McNiel has brought from Pulvon, west coast of Nicaragua, similar larvæ, belonging to a species very closely
allied to that described above. They differ in being a little larger and more hairy. 'The case is similur, though with a rough exterior. The pupa (Fig, 61t, a, antennæ, curved back behind the eyes ; l, labrum ; m, mandibles ; mp, maxilhary palpi ; w, wings) of this Nicaraguan larva is curved in a slightly spiral manner, the antennre are curved over and behind the eyes, reaching to the seventh abdominal ring; the maxillary palpi are laid backwarts on the side of the thorax, and the labial palpi lie between them, though diverging from each other. The wings are pressed to the body under the legs, the latter being fringed with long hairs. On the end of the abotomen are two slender tubercles ending in fine hairs, and alike on both sides, the pupa, like the larra, being symmetrical throughout. The larva seem to live in clear water on a
 sandy bottom, often attached to submerged sticks, unio shells, etc.

In Leptocerus the antenna of the males are extremely long; tilial spurs thus: 2, 2, 2. L. niger Linn, is black, shining, with black hair ; the antenne are black, the basal half anulated with snow-white, while the basal joint is reddish ; the feet are luteons, the intermediate ones being snow-white, while the Fig. 615. anterion wings are steel-blue black, and the hind wings blackish. It is found in Europe and the Cnited States. Fig. 615 represents, Dr. Hagen informs me, a case of cither this species or L. seputchrotis. Walker, or else a similar species. The larra builds a thin, long, conical, sandy tube supported between two needles of the pine. The specimens figured were found by Rev. E. C'. Bolles at Westhrook, Maine.

In Setodes the species are snow-white; the spurs are arranged thus: $0,2,2$. S. candida Hagen is pale fellow, with the anterion wings snowy white. It oceurs in the Southern States. McLachlan states that "some species of Setodes make delicate little tubes, entirely formed of a silky secretion, without any mixFig. 616. ture of extrancons matters." Fig. 616 represents a tube of a European species of Setodes formed of sand.

In Hydropsyche and allies the ocelli are three in number, or entirely wanting, while the last division of the maxillary palpi
is very long, filiform and multiarticulate. In Hydropsyche the spurs are arranged thus: $2,4,4$. The antennse are rather long and slender, the ocelli are absent, and the intermediate feet of the fomale are dilated. H. scalaris Hagen is black gray, with white hairs, and the antemme are yellowish, and obliquely striatel with black at the base ; the first joint is covered with snow-white hairs. Philopotumus has three ocelli, and the tibial spurs are arranged thas: $2,4,4$.

In Rhyacophita the maxillary palpi have the last joint entire, straight, shorter than the rest; while there are three ocelli, and the tibial spurs are aranged thas: $3,4,4$. R. fusculu Walker is rust-red, with some black hairs and a sulufuscous spot on each side of the thorax. It comes from Indson's Bay.

Another curious Neuropterous insect found in the iron-stone concretions of Morris, Til., is the .Meguthentomum pustulatum of Scudder (Fig. 617, natural size), described and figured by him in the "Palæontology of the Illinois State Geological Sur. vey." "The fragment represents a wing (apparently an upper one) of a Neuropterous insect. It is gigantic in size, very broad, with distant nervures, simple infrequent divaricatiolls, and in the outer half of the wing, whicln alone is presented, a

Fig. 617. cross nemration, composed solely of most delicate and irregtrlar veinlets. The Fing is also furnished with a great number of larger and smaller discolored spots, the surfaces of the larger ones irregularly elevated." Mr. Scudder thinks the wing is allied to that of Coniopteryx, alding "it appears to belong to a family hitherto undescribed. I do not know of a single insect, living or fossil, which approaches it in the structure of the wings."

The two succeeding families were by Latreille placed in a group by themselves (Thysantura), which was considered equivalent to the Neuroptera, or Diptera, for example. More recently they have been placed among the Neuroptera, though Burmeister considered them as Orthopterous, by the close resemblance of the mouth-parts of Lepisma, especially the labium, to those of the Blattarice. But in descending throngh the last three families thysanurous characters have constantly revealed themselves, as we have shown above, and the transition from some Sialidan, Hemerobid and Panorpid forms is not so abrupt as it might seem. Indeed these low, apterons insects stand in the same relation to the rest of the Neuroptera as the Flea does to the rest of the Diptera, or the Lice and Thrips to the higher Hemiptera. In all these degraded forms the metamorphosis is but slightly marked. 'The pupa is active and closely resembles the larva, where in the higher insects, such as the butterfly or bee, the pupa bears a close resemblance to the adralt, winged form.

These interesting, minute, wingless forms, also afford a passage from the true winged insects to the Myriapods, by the uniform size of the rings of the body, which form a continnous series from the head to the opposite extremity, as jn the genus Lepisma and allies, without showiug the usual well marked division into head, thorax and abdomen. Even the place of abdominal legs is supplied in Lepisma by the rows of small stylets which prop up the long slender abdomen.

Lepismatid.e Burmeister. Bristle-tails. These agile creatures, which are revealed by turning orer stones and sticks in clamp situations, and are often seen about houses, have a long' flattened body, with metallic scales, in form somewhat like those of butterflies. The antenne are very long, setiform, many-jointer ; the mouth-parts are free, with long palpi; the maxillary palpi being seven-jointed and the labial palpi fourjointerl. The mandibles are stont, sunken in the head, and armed with teeth for gnawing. The prothorax is vely large, ant all the rings of the boaly are of much the same size, so that the insect bears a general resemblance to the Myriapods. The anal stylets are long and large, which with the smaller
ones inserted on the subterminal rings of the abdomen aid greatly in locomotion, though these insects run with great rapidity and do not leap like the Podurides, and thus remind us, as well as in their general appearance, of certain wingless cockroaches.

In Lepisma (Fig. 618) the eyes are minute, consisting of twelve simple eves, with short bristles on the tip of the abdumen, of which three are longest, while Machitis differs in having compounci eyes, and longer abclominal bristles. Lepisme saccharina Linn., or an allied species, is often very common in houses, where it eats holes in silks and silken tapestry, devours the paste and eats holes in the leares of books. Mr. W. C. Fish has sent me several pieces of willow from a wicker basket

Fig. 618. which he said had been bored longitudinally by these insects, the holes being perfectly round and less in diameter than the body of the insect; hundreds of these animals were scalded out of the basket.

Campoden Meinert. Under this name Dr. Meinert has established a family consisting of two but litule known genera, which have flat and elongated bodies aud no springing apparatus, nor eyes, and though the author excludes the Lepismae from the Thysanura, we would suggest that the Campodere seem intermediate between the rumning Lepismæe and the springing Podure. The antennæ are setaceous or filiform, and the feet are adapted for runuing, with clistinct, elongated, two-clawed tarsi. There are two anal cerci arising from the tentla and last abotominal segment. There are six thoracic spiracles, the Poature having none (Meinert). The genus Japy of Haliday has short, inarticulate, horny anal cerci. J. solifugus Haliday lays few eggs, but those very large. It lives under stones and when disturbed resembles "a Lithobius in the character of its movements," and bears a remakable resemblance to a young Forficula. The other genus, Campodea Westwood, has long, many-jointed, filiform anal cerci, and the body, especially the upper side, is covered with setex. C. fragitis Meinert of Earope lives in moist earth and moder stones.

Poduride Burmeister, The Spring-tails are the typical Thysanura, as they differ more than Lepisma and allies from all other insects. The anal bristles, which are free in Lepisma, are here united and bent beneath the body, forming the "spring" by which they leap to a prodigions height for such minute insects. The body is cylindrical, not flattened, and is corered cither with hairs or scales. The fom or six-jointer antenne are short and thick, and the eyes are simple, usnally form to eight on each side. The month-parts are not well developed, though mostly present, the mandibles being small, with minute teeth, and the maxillary palpi entirely wanting (Gerstaecker), though Lubbock states that the "second pair of maxillae [tabium] are membranous and dedicate." The prothorax is small, convex, while the two hinder thoracic rings are large and similar to each other. The legs are stont, with tarsi consisting of but a single joint. The abdomen consists of six, sometimes only three segments, with a long anal stylet forming the forked tail, or "spring," beneath. (Gerstaecker.) They are foturt in gardens, or hot-beds, on manure heaps in winter, and on the snow; they may also be seen leaping on the surface of the water in quiet pools. "Accovding to Nicolet these insects are very prolific, as he found 1360 eggs in a single individual. The embryo is developed in twelve days. They moult often, and at periods of fourteen days each.

The intestinal canal consists in great part of a long and voluminous chyle-making stomach, into the lower end of which six free Malpighian tubes pour their contents. (Nicolet.) In Papirius Saundersii, as in many other apterous Articulata, the testis is formed on the same type as the orary. On each side of the boty is a simple tube opening into a triangular rescrroir with its base in front. The nerrons system of Smynthurus consists, accordiug to Nicolet, of four ganglia, witla a donble connecting cord. Two of these ganglia occupy the lread and form the cesophageal collar. The two other's consist of a thoracie and one abdominal ganglion. There are in Podura four pairs of stigmata in the four basal rings of the abdomen. Next to the two main tracher are six pairs of rather long vesicles united with them by loops. (Gerstaccker.)

Lubbock states that in Smynthurus there are but two spira-
cles, adding that "it is very unusual for an articulate animal to hare only two spiracles, and their position is still more extraordinary, for they open on the under side of the hearl, immediately below the antennæ, . . . on the inner side of the basis of the mandibles." "In the mauner of subxirisions the trachex of Smynthurus differ from those of the true insects, and agree more closely with the Myriapoda and tracheal Arachuida, in the fact that they do not often gife off branches nor form tufts, but generally divide dichotomously, and rum considerable distances without a separation." (Mr. Lubbock, whom we have just quoted, states that Papirius has no trachere.) In Smynthurus the oraries consist, according to Lubbock, of a single egg-tube. (He also states that he has been unable to detect the

Fig. 610.

Fig. 620. presence of any such tubes in the species of Smynthmrus he examined. Linnean Transactions, p. 441.)

In the genus Podura the body is long, with four-jointed antemme, and the flexible spring-tail is short, while in Desoria, which is found in the Alps, the tail is long. The gemus Degeeria is known by the orate body, and basal half of the spring equalling the fork in length. A species (Fig. 619) closely resembling the European D. nivalis Nicolet, we have found in summer resting on the Ieares of the Clematis. The Lepidocyrtus albinos Nic. (Fig. 620) is a miuute pearly white species found in Europe; its scales (Fig. 621) are thin and with distinet markings.

Smynthurus is short, differing greatly in

Fig. 621. form fiom Podura, and bears a striking resemblance to the larra of Coniopteryx. The body is short, nealy spherical, and
in its form approaches the spiders, as noticed by Latreille. The four-jointed antennæ are long and elbowed, while there are eight simple eyes on each side of the head. The species are found on the leaves of garden plants, and when disturbed leap like fleas, which they much resembie. In Papirius of Lubbock, the antennæ are said to be "four-jointed, but without a well marked elbow, and with a short terminal segment, offering the appearance of being many-jointed."

ORDERII. ARACHNIDA.

The typical forms of this order have the body dirided into two regions, the head-thorax (cephalothorax) and abdomen. The head is sometimes quite distinct, but is generally sunken. into the thorax, which bears four pairs of legs, while the abrlomen has no organs of locomotion, though the abdomen is provided with three pairs of jointed appendages (the spimerets), which are, however, homologous with the leg's. The metamor. phosis is very incomplete in the lower forms, while in the spiders there is none at all after the animal leaves the cgg. The head is without antennæ, or compound eyes. The order shows its close relationship with the Dipterous insects, especially when compared with the wingless Chionea and Nycteribia, and its lowest forms (certain mites) bear a close resemblance to some of the lower Crustacea, as the young stages and embronic derelopment are remarkably similar. The typical forms of the order homologize too closely with the apterous insects to allow them to be separated as a distinct class. We shall see below that the rank here assigned to the group accords well with their anatomical characters and baloits.

In some genera there is a decided line of demarcation between the head and the thorax, which is, however, very distinct during embryonic life, and we do not perceive that gradual transition from month-parts to swimming legs which obtains in the Crustacea. The order, however, has much lower, more degraded forms than the Myriapods even, as the genus Demodex testifies, which may recall readily certain intestinal worms. This we would consider as but an example
of what often occurs among all clegraded forms, of a reeurrence to the archetypal form of the articulate type, and not for this reason, as some authors have done, would we place the Arachnids of Latreille in a class by themselves, below the Myriapots; nor on recurring to the spiders alone, with their high organization and wonderful instincts, would we follow Professor Owen and others in placing them evel above the true insects.

We must look upon the Spicler as a hexapodous insect, degraded, wingless, and partially decephatized. A part of the clements, constituting the head in inscets, have been, as it were, withheld from the head and detained in the thorax, which has thus an increase in one pair of limbs. On the other hand, the sensorial, or pre-oral, region of the head, is wanting in two most important members, i. e., the compound eyes and the antenne. Both Zaddach and Claparede state that there are no organs in the spiders homologons with the antemre of insects. The simple fact that the homology of the organs generally is so close between the two groups shows that ther must fall into the same class. The same can be said of the Myriapods.

The circulatory system is rery perfect in the spiders and scorpions, but in most of the lower mites there is no dorsal vessel, or vascular system at all, the fluids being supposed to circulate in the general carity of the body, "and by the aid of the muscular morements and the contractions of the intestinal canal, transferred in an irregular manner hither and thither in the risceral cavity and in the extremities." (Sicbold.) In the Phalangidce there is a distinct, three-chambered dorsal vessel, or heart. In the spiclers and scorpions, however, the vascular system is highly organized, as shown by Newport (in the Scorpions), and Claparede (in Lycosa). Here then, is, as in Sphinx, a dursal and rentral ressel with lateral reins, or yenous sinuses, performing the functions of true veins. The main dorsal ressel is mostly situate in the abdomen, as the longs have their seat in that region, where the most important respiratory funetion, that of supplying the blood with fresh oxygen, is performed. Claparede has shown that in Lycosa the blood Hows through the dorsal ressel from the head, instearl of towards the hearl, as in the six-footed insects.

The nervous system consists of a small brain, a group of thoracic ganglia and a few abdominal ganglia, which, however. are aborted in the spiders. The cerebral ganglia, or brain, he just abore the œsophagus, and send down two cords embracing the throat, and also distribute nerves to the ocelli and mouth-parts.

In the mites (Acarina), where the body is oral, and not divided into the tro distinct regions, there is no brain, and but a single ganglion lodged in the abdonen, from which are distributed the nerves supplying the head and the peripheral parts. In the spiders the brain is of considerable size, and the thoracic ganglia or "subœesophageal ganglia," are large, send-

Fig. 022. ing off on each sicle four large processes from which proceedthe nerves supplying the feet.

In the scorpion (Peclipalpi) the nerrous system is still more highly organized. The brain is not large; it is composed of the tro spherical superœesophageal ganglia fused together, sending off the nsual nerves to the month-parts. This brainlike organ is connected by two filaments with the rentral ganglionic mass, formed lyy the probable union of several ganglia, and situated in the middle of the false cephalothorax. The continuation of the nervous cord consists of seven abdominal ganglia, with the commissures united into a single cord.

The maxillary palpi, functionally, take the place of antenne, showing how one orgnu may perform the office of another in a different group of animals. It is also evident that the spidel combines in the same organ the senses of taste, smell and feeling, which are supposed in insects to reside in the two pairs of palpi and the antenne.

The alimentary canal is formed, according to Siebold, on tro types. In the mites and spiders, the stomach is produced lat-
erally into large coeal appendages (Fig. 622, alimentary canal of 'Tegenaria civilis: a, stomach, with coca; c, liver' ; d, renal organ ; e, fat body), aud then passes into a short, small intestine, going straight to the end of the borly. In the Pedipalpes (Phrynide and scorpions) the intestinal canal is more simple, not having any cocal dilatations to the rery small stomach.

The salivary glands are often of large size, especially in Ixodes, and are thas adapted to their flesh-eating habits, much salira being needed to moisten their food. In the spiders and scorpions the liver is well developed and distinct from the intestinal tube, being in the spider a brown or dirty jellow mass filling a large part of the abdominal carity and enveloping most of the other viscera.

As during the growth of the young spicler the head is thrown back on top of the thorax to which it is thus most closely unilea, it follows that the simple eyes, from two to twelve in number, are sitmated on the upper surface of the cephalothoras, while no other sensory organs, i.e., the compound eyes and antenne, are ever developed. Thus in the adult spider the mandibles seem to be pushed far in front of the ocelli, and to occupy what is originally the proper or normal site of the ocelli, and in insects of the antemx, which no doubt has led most authors to homologize them with the antenna of hexapololls insects. Claparede says "all the appendages are postoral, hence there are no organs homologous with the antennæe." Thus the mouth-opening is bronght far forward ; it is flanked on each side by a mandible (Plate 11, fig. $3, c, a$, movable claw, or fang), a large, powerful limb, which does not move horizontally but fertically; behind are the large, well developed maxill:e (Plate 11, fig. 2, $b ; 7$, maxillary palpus; 8 , mate palpus), with their long, leg-like palpus. Thus the liunction of the insectean antenne must, in the spiders, reside in the maxillary palpi. Claparede's researehes on the embryology of the spirlers and mites have demonstrated that the front pair of legs of Arachmids are homologons with the labial palpi of insects, which, as we have previously stated (p.59), in the latter, are late in embryonic life thrown forwards, and associated with the maxille and other mouth-parts, while in the Arachnids they retain their embryonic position and are gronped with the legs (see
fig. 59,4) and are usually of the same form. Thus one cephalic segment of insects is permanently retained in the thoras among the Arachnids, whereas we have seen in the embryo of the dragon-fly (Figs. $59,61,4$) it assumes an intermediate position between the heal and thoras, the remaining anterion part of the head being clearly separated by a deep suture. In Fig. 59, we see the labial palpi (4) grouped with the three pairs of legs ; a position permanent in the Arachuida. The dragonfly, at the period represented by Fig. 59, p. 57 , may be legitimately compared with the scorpion, especially Cyclopthalmus, from the coal measures.

While, as Blackwall states, nothing is known with certainty concerning the organs of smell and hearing in spiders, Mr. R. Beck "suggests that spiders are capable of distinguishing sounds to some extent by means of very delicate waring hairs which are formal on the upper surfaces of their legs. During lite they move at their peculiarly cup-shapet bases, with the least motion of the atmosphere, but are immovable after death. It is well known that somd is clue to vibrations which are gencrally conveyed by undulations of the air; now I an perfectly satistied that if these undulations are of a certain character the hairs I am alluding to, upon the spider's leg, will more, and I wish you particulanly to notice that they are of different lengths, so that sone might more whilst others would not, and also that the longest is at the extremity of the leg, and thercfore can receive an unchatation which might die away higher up. I may just mention that there is a group of these peculiar hairs on the flea. The legs of a spicter are most sensitive organs of feeling, if they do not also embrace those of hearing." (Entomologist, London, 1866, iii, p. 216.)

The four thoracic fect lave seven joints, and it is probable that the two basal joints homologize wilh the coxa and trochantine of insects, in which the two joints are retracted, side by side, and closely fused together. The tergal part of the thoracic segments is large, overlapping the plemal, while the sternum is a rather large, broad breast-plate. The abdomen is generally somewhat spherical, and in but few instances is it drawn out and the rings well developed, as in the scorpion. In the mites it is fused closely with the cephalothorax.

In the genus Hersilla we see clearly that the three pairs of spimerets are but modified legs. The second and imer pair are generally the smallest, while the third and largest pair are the most posterior'. Their office is to recl out the silk from the silk-glands. The tip of the articulated spinnerets ends in a cone, perforated by myriads of little tubes (over 1,000 in Epeïr'a, about 300 in Lycosa, and a less number in the smaller species) throngh which the silk escapes in excessircly delicate threads, which unite to form the common thread visible to the naked cye. (INate 11, fig. 4, spimerets of Epeïra vulgaris enlarged twenty-five dianeters; fig. 5 , a spimning tube.)

The Acarina are supposed to have glands analogons to the silk glands, whose product, like silk, hardens on exposure to the air, and by which certain parasitic genera, such as Uropoda, fix themselres solidly to their host. Siebold states also, that "many species of Hydrachna fix, by a kind of glue, the anterior portion of their body on aquatic plants, and in this position arrait the completion of their moulting'. 'The organs secreting this substance have not yet been discorered. It is well known that the European Tetranychus telarits spins large webs on the leares of trees and on house-plants.

The reprodnetive system is much as described in insects, except that the extermal appendages are rarely developed in either sex. The genital armor is situated at the base of the abdomen; it is concealed when present muder the skin.

In the Acarina the two oraries open on the middle of the abdomen, or on the unter side of the thorax, either between or behind the last pair of legs. In IIydrachna the oriduct opens into an ovipositor by which the insect is enabled to lay its eggs under the skin of the fresh-water mussel on which it is parasitic, and other mites oviposit in a similar way under the epidermis of plants.

In most spiclers the two ovaries have their outlet in an orifice situated between the two lung-stes. They have a distinct receptaculum seminis, especially marked in Epeïra. "The Scorpionadce have three oraries, consisting of as many longitudial ones, united by four pairs of transverse ones." The outer two of the former are oviducts, leading out at the base of the abdomen.

The testes of Ixodes consist of four or five pairs of unequal follicles, opening out near the base of the abdomen." The males are distinguished from the females by their larger "cheliceies" (maxillary palpi) and larger pair of clasping legs. In the spiders the testes are "two long, simple, interlaced cera, concealed beneath the hepatic lobes," which lead by two deferent canals to the base of the abdomen, throngh a simple fissure, which, however, is not applied to the rulva. The complicated hollow spoon-shaped palpi are supposed to be the intromittent organs. "They are filled with sperm and applied to the entrance of the valva. For this purpose the last joint of the palpi, which is always hollow and much enlarged, contains a soft spiral body, terminated by a curved, gutter-like, horny process. Beside this there is an arched, horny filament, and several hooks and other appendages of the most varied forms. These appendages are protractile and scre, some to scize the female, aud others as contuctors of the sperm." (Siebold.) While the majority of the Arachnida are developed as usual after the laying of the eggs, a few, such as the scorpions and Oribatidee and other mites, are known to be riviparous, and it is probable that an alternation of generations occurs in some of the lower mites. The Tardigrades are hermaphrodites.

The Arachnicla breathe both by trachex and limg-like organs. The mites, the false scorpions, the harvest-men and Solpugidee are provided with traches, communicating externally by means of spiracles, generally two in nomber, and concealed between the anterior fect. In Hydrachna, which lives constantly beneath the water, the trechere "possess probably, the power to extract from the water, the air necessary for iespiration." (Sicbold.) In the false scorpions a pair of lateral stigmatil are situated on each of the two basal rings of the ablomen. From these spring "four short, but large trachern trunks from which arise numerous unbranched tracheas spreading throngh the entire body." In the Solpugida there are three pairs of stigmata and the trachee ramify and are distrib)buted much as in insects, and in the Phalangidee the tracheary system is well developed, arising from two stigmata opening between the insertion of the posterior legs.

In most of the spiders (such as Segestria, Dysdera and Argyroneta) there are both a tracheary system and lungs. The two stigmata, from which these trachere lead, open near the pulmonary opening. In two other genera, Salticus and Microphantes, there are two stigmata situated at the posterior end of the abdomen. Siebold calls attention to a tracheary system in many Araner opening by a transverse fissure placed near the spimerets. From this opening a main trunk leads in, soon dividing into four simple trachea, which are not round as usual, "but are flattened, riband-like, and without the trace of a spiral filament ; these extend, with a gradual attenuation, to the base of the ablomen. . . . The air received into these organs is separated into as fine portions as that of the lungs.**

The so called lungs of the spiders are little round sace opening by transverse fissures on the mader side of the base of the abdomen. The inner surfice is divided into thin lamella, connected together like the leares of a book. Each of these is formed by a membranons fold, between the two leaves of which the air enters from the general cavity of the lung, and is divided into very minute portions. No traces of blood vessels have been found in these pulmonary lamella." (Siehold.)

Among the organs of special secretion the poison and silk glands require description. There are two poison glands emptring into the throat, and thence opening out through hollows in the jaws. (Plate 11, fig. 3, a, b.) In the scorpion the poison gland is lodged in the last abdominal segment at the base of the sting.

The silk, as contained in the glands, is a viscid transparent fluid, which on exposure to the air hardens into silk; it is drawn out by the legs through three, rarely two pairs of spinnerets. There are usually five of these glands lodged in the abdomen, and the "theads probably have difierent qualities, according to the glants from which they are secreted." (Siebold.)
"Io form the thread his liquid is chran through the tubes,

[^45]which diride it into such small fibres that it dries almost immediately on coming in contact with the air. The spicler has the porver of uniting these fibres into one or several threads, according to the purpose for which they are to be used. The thread commonly used for the web is composed of hundreds oir simple fibres, each spun throngly a separate tube. As the thread runs from the body it is guicled by the hind feet, which hold it off from contact with surrounding objects, until the desired point is reached, when a touch of the spinners fastens it seculely." (Emerton, American Naturalist, ii, p. 478.)

The eggs are laid but once a year in June. The evolution of the embryo begins immediately, and goes on with a rapulity aceording with the temperature. The egg consists, as Herold observed, simply of a vitelline membrane, but no chorion; it is perfectly homogeneous, and has no micropyle. The contents are an emulsion of fitty globules suspended in a scanty amount of hiquid, which should not be confondet with the albumen (or white) of the eggs of vertebrates. No trace of the "germinative vesicle" has as yet been traced in the eggs of insects, though perhaps it has been overlooked from its transparency.

The first stages in the egg after they are laid, are the following: at the surface of the vitellus appear, here and there, small, rery clear and perfectly circular spots; they are the nucleus of the finture blastoherm (primitive skin, from which the organs of the embryo successively originate or "bud" out). These nuclei act as centres of attraction on the molecules of the vitellus for the formation of the cellules. The ummodified vitellus diminishes in the same proportion as the peripheric layer of granules increases. The gramules multiply rapidly, and soon the surface of the egg' appears to be divided into a certain number of areas, each of which is occupied in the centre by a circular and transparent space surrounded with small opake gramules, which become less and less dense as we go to the onter surface. These hexagonal cellules form an uniform layer orer the entire surface of the egg; it is the blastoderm. Up to this time the changes preciscly accord with those observed in the hexapodous insects.

The next stage is the formation of ventral tubcreles, the ru-
diments of the limbs of the embryo. The first change is the formation of the "primitive streak," or the splitting of the blastoderm, which is due to a local miltiplication of the cellules along the median line of the egg.

These tuborcles result from a simple thickening of the blastoderm, and what is ultimately destined to be the back (tergum) of the animal, arises from a similar thickening of the blastorerm, which he calls the "primitive cumulus." 'Chis mass, easily clistinguished by its whiteness, always floats on the top of the yolli of the egg, keeping its position next the eye of the observer. The "cumulas," at first almost hemispherical, elongates orer the surface of the blastoderm, becoming pyriform. This region is the posterior, or anal, pole of the egg.

Fig. 62t.

Fig. 693.

Fig. 625,

We see the "cumulus" sprealing from the anal pole over the surface like a veil, but it is less white than the polar region. This reil continues to spread orer the entire surface to a pole opposing the amal, which Claparede terms the cephalic pole. Each pole forms a rery prominent projection. At this stage the body of the embryo becomes well marked and subdivided, worm-like, into rings. (Fig. 623.) The extent of the dorsal region is greatly limited, while that of the ventral side is greatly increased.

The entire rentral region, oceupring most of the whole egg, is homologous with the primitive rentral streak. It is at this time that the formation of the protozoonites (elemental rings,
or primordial segments) takes place. Six of these zones or segments arise between the cephalic and anal poles; these zones represent the rentral ares. The tro anterior rings bear the mouth-parts, the mandibles and maxillae; while the others form rings corresponding to the four pair of feet. These protozoönites are very transitory, only existing for a short period; they gradually retreat towards the ventral side, enlarge and nearly touch each other.

The embryo (Fig. 624) now grows much longer, and new embryonal segments are formed in the abdomen just as they grow out in the worms, and Myriaporls, and also in the Cristacea, according to Rathke's researches. Thus while the cephatothoracic rings appear simultancously the ablominal segments appear one after the other. The first one appears between the last thoracic ring and the anal "hood," or pole. Meanwhile the lateral extremities of the protozonites have become enlarged; these enlargements form the appendages. These tubercles, or rudimentary limbs, appear on the cudominal as well as on the thoracie rings (Fig. 625). This fuct is one of great interest, as showing a resemblance to the Crustacean with its abchominal legs, and more especially to the abdominal footed Myriaporls, and the larve of many true six-footed insects. Thus the young spider is at first like a caterpillar, having "false," decidtons, abdominal leg's. Five abdominal rings are present in Pholeus.

Next follows the derelopment of the "post-abdomen," or tail, which being differentiated from the anal pole or "hood," becomes detached from the yolk mass, and is folded back upon the embryo, just as the abdomen of a crab is folded in an opposite way to the rentral side of the body.,

This "post-abdomen," after dividing' into three segments, disappears completely during the growth of the embryo. This is the more interesting, as the "post-abdomen" of the scorpion is retained permanently. Meanwhite the two cephalic

[^46]lobes have developed, and the blastorlerm has divided into a dermal, or outer layer, and a muscular, or inner layer of cells. The outer layer forms the chitinous body-wall, or crust, while from the inner layer are developed the digestire, vascular and other organs besides the muscles.

After the rudiments of the appendages are formed the epimera appen. At this period wo are struck with the perfect identity between all the appendages of the body at their first origin. In the Arachnida the formation of the primitive segments takes place much sooner than in most other articulates, where they often do not appear until after the rutiments of the limbs are dereloped.

Another characteristic of the evolution of the spiders is the tardy appearance of the rudiments of the legs. The ventral arcs, or protozoonites, subdivide into rentral and pleural parts, which signalize the formation of the permanent rings of the body. The author's figures and statement show, though he does not state the fact clarly, that development progresses from each end of the body towards the centre, as we hare shown* to be the case in insects. Thus the posterior half of the body repeats the mode of development and general form of the anterior, or cephalic pole.

The third period in the life of the embryo clates from the forma-

Fig. 6.9. tion of the rentral rudiments to the exclusion of the spider. The first change consists in the lengthening and meeting of the rudimentary legs. The mouth-parts develop first. At this period the limb-bearing (pleural) region of the body separates and the sternal piece or breast-plate appears as a "slower, later formation." Now the thoracic legs grow mach more rapidly than the month-parts and lie interlocked upon the breast. (Fig. 626.†) When the first pair of leg's are
long enough to cross each other the jointed stracture of the limbs disappears, and they soon become dirided into their nisual number of joints, though the tarsal joints are the last to be perfected. At this time the maxillix become differentiatert. or split up, into the basal lobe and its appendage, or palpus. Claparede compares the basal lobe to the cosa of the legs, though it is formed long before the core of the feet themselves. The anterior pair of appendages form the mandibles.

The formation of the lead is next in orcler. The "cephatic lobe" is divicled into what the author calls two "procephalic lobes," separated by a deep incision, and at this period the head appears rery distinct from the thorax. Afterwards the anterior or ante-oral part of the head is, as in the case of the "post-abulomen," folded back on the top, and then closely soldered to the thorax, thus forming the so called "eephalothorax." These procephalic lobes are separated by a third lobe or "triangular plate" which grows up between them, forming the epichile. The mouth first appears as a longitndinal furrow in this triangle, the posterior border of which becomes the so called labinm ("glossoide" of Latreille). The labinm thus originates in the spiders in an entirely different way from the appendages, and is not formed, as Brulle supposed, by the soldering of the maxillix, hence we shall adopt Latreille's term "glossoide" for this piece.

The two procephalic lobes afterwards mite, and are soldered together on the median line, to form the anterior face of the head. This approach takes place fiom above, over the buccal frame (epichile). The mandibles are thos in adyance of the mouth, though primitively behind it. "The head is then in the embryo of the spider very distinct from the thorax. Only towards the end of embryonic life does the soldering of the 'craniam' and of the prothorax become so intimate that their limits become indistinct. It is only from this moment that thore exists a true cephalothoran." (Claparede.)

Towards the end of embryonic life the simple eyes appear, arising from four little furows, called the "ophthalmic furrows." They are colored by the deposition of a small quantity of pigment. They appear at an earlier period in the Acarima.

Formation of the hear't and viscera. After the walls of the
body and its appendages have been formed the dorsal vessel appears. It is formed thus: when the division of the blastoderm into its muscular and onter layers takes place the cells multiply and are heaped up along the median line of the body, so as to form a sort of cordon (cord), not only in the abdominal, but in the thoracic region of the budy. The vessel probably originates in the spaces between the cells, but the author has been umble to trace either its origin or that of the bloodcorpuscles. But the rudimentary heart soon presents rhythmic pulsations, and in the limbs we see the arteries filled with a homogeneous fluid, in which can be detected the presence of small corpuscles, moving by impulses synchronous with the systole of the dorsal vessel, showing that this fluid is the blood. The heart already presents several dilatations (chambers) corresponding to the abdominal segments.

The nervous system does not appen to be formed when the embryo assumes the ventral insteal of the dorsal position. The digestive system is very rudimentary when the embryo quits the egrg. The alimentary canal is probably hollowed out of the middle of the ritelline mass, being a membranous tube formed around the remaining yolk mass. The lungs and spinnerets are well formed when the embryo is hatched, while the eyes appear later.

The same processes of development go on in the scorpions, the "post-abdomen" of the Araneina (which we have seen folded back on the base of the ablomen and finally to disappear) in them being retained, forming the long, articulated "tatil;" thus the distinction into abdomen and post-abrlomen is very artificial as the two parts merge into each other, especially in Solpuga, Chelifer and Phrynus.

In the mites the arrest of development is still more marked, as the three regions of the boty are in the atdult not differentiater, and the entire borly assumes an oval form, the abdominal parts being short, thas strikingly rescmbling the embryo of Pholeus, and the spiders generally, as seen in Claparede's fig'ures.

In the Acarina there is a true metamorphosis, the larya of some forms when first hatched being worm-like; then there is an oval stage when the young mite las but three pairs of
feet (though in others at this stage there are four pairs), and after another moulting the fourth pair of limbs appear. The young mite is analogous to the "Nauplius" stage of many low Crustacea.

Claparede* has obserred in Atax Bonzi, which is a parasite on the gills of fiesh-water mussels, that out of the originally laid egg (Plate 9, fig. B, embryo of Tyroglyphns siro, which closely resembles the earliest stages of the embrro of Atax; $m a$, mandibles ; $m 2$, maxillie; $p^{\prime}-p^{\prime \prime \prime}$, legs ; rt, yolk. Fig. 4, front view of the same ; r, beak; p, maxillx), not a larra, but an egg-shaped form hatches, which he calls a "deutorum." (Pl. 9, fig. 1, bursting of the egg-shell into two halres, mo, on the day that the dentorum, $d m$, hatches out; $m d$, mandibles ; $m x$, masille ; $p^{\prime \prime \prime}$, third pair of legs; 7 , body cavity ; sp, common beginning of the alimentary canal and nervous system; amb, hwmaboba, ammba-like bodies, which represent the blood corpuscles; there being no circulation of the blood, the movements of the hrmabobi constitute a vicarious circulation. Fig. 2, the dentorum free from the first egg-shell; lettering same as in Fig. 1, oc, rudiments of the simple eyes; r, beak; h, h^{\prime}, rudimentary stomach and liver). From this dentorum (which is not the "amnion" of insects) is dereloped a sixfooted larva. This larva passes into an eight-footed form, the "second larva," (the "nymph" or propa, of Dujardin and Robin) which transforms into the adult mite. The pupa differs from the adult in having longer feet, and four instead of ten genital cups, the latter being the usual number in the adult.

The laver are elongated oral, with six long legs and four ocelli. They swarm for' a short time orer the gills of the mussel they are living on and then bore into the substance of the gill to undergo their next transformation. Here the joung mite increnses in size and becomes round. The tissues soften, those of the different organs not being so well marked as in the first larval stage. The limbs are short and much larger

[^47]than before, the whole animal assuming an embryo-like appearance, and moring about like a rounded mass in its enclosure. Indeed is this process not (though Claparede does not say so) a histolysis of the former larval tissues, and the formation of a new body, as in the change of the six-footed insect beneath the larva skin, where the pupa is formed? A new set of limbs grow out, this time there being four instead of three pairs of legs, while the old larval skin is still embracel within the membrane containing the second larval rounded mass. Soon the body is perfected, and the pupa, as we may properly call it, slips out of the larval membrane.

The "second larra" after some time undergoes another change; the limbs grow much shorter and are folded bencath the body, the animal being immovable, while the whole body assumes a broadly ovate form, and looks like an embryo just before hatching, but still lying within the egg. This may also be comparable with the formation of the adnlt fly within the puparium. (Compare Weismann's account of this process in Musca, pp. 63, 64.) This period seems to be an exact repetition of the histolysis, and the formation of new tissues for the building up of a new body which preceded the pupal stage, while the adult mite slips out of its papal membrane just as the pupa threw off its larval membrane. This process, again, may be compared to an adult butterfly, or fly, emerging from its pupal membrane.

Thus the mites, at least sereral species, pass through a series of metamorphoses similar to those of such insects as have a complete metamorphosis (except that the Acarian pupa is active), while the absence of such a metamorphosis in the spiders is paralleled by the incomplete metamorphosis of the Orthoptera and many Neuroptera, which reach adult life by simple monltings of the skin.

In the genus Myobia there is not only a deutovam, besides the original egg, but also a tritormm-stage. The eggs of this mite are long, oval and conical at the posterior end. The embryo, with the rudiments of limbs, is represented by Fig. 5 of Plate 9. The little tubercles $m d$ and $m x$, represent the mandibles and maxillæ, whlle the three pail of legs, mprint bud out from the middle of the body; le represents the head-plate.

The maxillx and mandibles finally unite to form a beak (a Fig. 6) and the three pairs of feet ($p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}$) are folded along the median line of the body. The farther development of the embryo is now for a time arrested, and a peculiar tooth-like process (Fig. 7, d) is developed.' Claparede thinks that by means of this the anterior end of the egg-shell is cut off, and the embryo protrudes through, when, as in Fig. 7, it is seen to be surrounded by a new membrane, the dentorwm (dt), equivalent to that of Atas. The front pair of leg's (p) have grown larger and stand out in fromt and on each side of the beak (R). The growing embryo again forces off the anterior end of its dentorum, and the oral end of the egg protrudes through, and is surrounded by another membrane. This is the tritorum. The embryo is now surrounded by the membrane of the tritorum, and also by the deutovalar membrane and the original egg-shell, the last two having lost a small portion of their anterior ends. During the tritorum-stage the fore pair of feet become curved in like claws, and the beak sinks down into the body.

Now the sis-footed larva (Fig. 8) breaks through the shell and closely resembles the adult (Plate 9, fig. 9). The first pair of feet, modificd for grasping the hairs of the field-mouse, on which it is a parasite, take the place of the maxille, which have been arrested in their development, and the mandibles ($p r^{r}$) assume a stylc-like form. After one or more moultings of the skin a fonisth pair of feet ($p^{\prime \prime \prime \prime}$) are acquired, and the adult form results, which the author considers as the type of a new family of Acarina. Claparèle also suggests the affinity of Myobia to the Tardigrades (Echiniscus and Lydella), especially from the study of the structure of the style-like mandibles and their supports. We feel convinced, after examining Claparede's figures and descriptions that this comparison is very significant, and this has led us to consider the Tardigrades as a family of trine mites. related to Myobia and Demoder.

A French naturalist, C. Robin, has recently observed in certain hird sarcoptids, to which the parasite of the Downy Woodpecker noticed abore is allied, "that the males pass through forr, and the females through fire stages, indicated as follows: (1) the egg, on issuing from which the animal has the

form of (2) a hexapod larva, followed by the stage of (3) octopod nymphre [four-fouted pupx], without sexual organs. (4) From some of these nymphe issue: a, sexual males, after a moult which is final for them; b, from others issue females without external sexual organs, resembling the nympha, but larger, and in some species furnished with special copulatory organs. Finally, after a last moult following copulation, these females produce (5) the sexual and focundated lemales, which do not copulate, and in the orary of which eggs are to be seen. No moult follows that which produces males or females furnished with sexual organs; but previously to this the moults are more numerous than the clanges of contition." "The larræ undergo from two to three moults before passing to the state of nymphre." These latter also undergo two or three moults. (Annals and Magazine of Natural History, 1868, p. 78.)

In some other species of mites no males have been found, and the fomales hare been isolated after being hatched, and yet have been known to lay eggs, which produced young without the interposition of the males. This parthenogenesis has been noticed in several species. But few fossil Arachnids have been yet discorered. Roemer has described a spider from the coal formation of Germany uncler the name of Protolycosa, while two species of scorpions, and a Phalangium-like spider have been detected in the same formation in this country.

In studying spiclers, of which we have several hundred species, the number and relatire sitmation of the eyes, and the relative length of the different pairs of legs, shonld be noticed; their webs and the manner of constructing them; their habitats, whether spreading their mebs upon or in the ground, or in trees, or on herbage, or whether the species are aquatic, or erratic, and pursue their prey without building webs to entrap them, should be observed. So, also, how they deposit their eggs, and the form and appearance of the silken nidus, and whether the female bears her eggs about her, and how this is done, whether hollling on to the egg-sac by her fore or hind legs, should all be carefully noticed. Care must be taken not to mistake the joung for full-grown, mature species, and describe them as such. Spiders can be reared in boxes as
insects. The only way to preserve them is to throw them into alcohol; when pinned they shrivel up and lose their colors, which keep well in spirits.

The colors of spiders vary much at different seasons of the year, especially during the frosts of autumn, when the changes produced are greatest. All spiders are directly beneficial to agriculture by their carnivorous habits, as they all prey upon insects, and do no harm to regetation. Their instincts are wonderful, and their habits and organization worthy of more study than has yet been paid them in this country. We have no species poisonons to man, except when the state of health renders the constitution open to receive injury from their bite, just as mosquitoes and black flies often cause serious harm to some persons.

The Arachnids are divided into three groups, or suborders, the Arancina, the Pedipalpi, and the Acarina.

ARANEINA.

The Spiders are distinguished from other Arachnids by hava ing mandibles used exclusively for biting, a spherical, sac-like abdomen, not divided into segments, and attached to the headthorax by a slender pedicel. The maxillæ resemble the thoracic feet. They breathe both by lungs and trachere, and clo not undergo a metamorphosis, the young on being hatched having four pairs of legs.

The mandibles (Plate 11, fig. 3, front view, with the eight ocelli above) are rertical and end in a porterful book, in the end of which opens a duct (Plate $11,3 a, b$) connected with the poison gland situated in the head. The maxillæ, represented by the so called palpi, thongh in reality the maxille themselves, with a flattened coxal lobe at the base (Plate 11 , fig. $2, b$, palpi of female; fig. 8 , do. of male) are simple in the female, but in the male the terminal joint is enlarged and modified greatly as an accessory genital organ. The cephalothorax is not jointed, and there are usually eight, rarely six, simple eyes (ocelli). In the genus Nops from Cuba there are, however, only two, while in certain cave-inhabiting species, according to Menge,
such as the Anthrobia Mammothia of Tellkampf from Mammoth Cave, and other spiclers inhabiting European caves, there are none.

We quote an interesting account of the habits of spiders, especially the mode of spimning their webs, published by Mr. J. H. Emerton in the "American Naturalist" (ii, p. 4i8), who has studied our native species with much care.
"The feet of spiders are wonderfully adapted for walking on the web. Each foot is furnished with three claws (Plate 11, Fig. $6, a, b, b$), the middle one of which (a) is bent orer at the end, forming a long finger for clinging to the web, or for guiding the thread in spinniug. The outer claws (e, e) are curved and toothed like a comb. Opposite the claws are several stiff hairs (c) which are toothed like the claws, and serve as a thumb for the latter to shut against.
"When a spider wishes to build a web she usually selects a comer, so that the structure may be attached on several sides. She then rums a few threads along the objects to which the web is fastened, to facilitate her passage from point to point. The web is commenced by a line or two across the point where the centre is to be, which is not usually the geometric centre, but nearer the top than the bottom. Radiating lines (Plate 11, fig. $1, b, b, b$) are then spun from the centre in all directions. In doing this the spider often crosses from one side of the web to the opposite, so that the finished portion is always tightly drawn, and the tension of the completed web is the same in every part."
"Having finished the framework, the spider begins near the centre and spins a thread (Fig. 1, c, c, c) spirally, around the web to the circumference, fastening it to each radius as it crosses. The distance between the spirals varies with the size of the spiders, being about as far as they can reach. This spiral thread serves to keep the parts of the web in place during the rest of the process, and is remored as fast as the web is finished. It also furnishes a ready means of crossing from one radius to another where they are farthest apart. All the thread spun up to this stage of the process is smooth when dry, and will not adhere if tonched with a smooth object.
"The spicler, having thus formed the web, begins to put in
the final circles at the outside, walking around on the scatfolding previously prepared, which she gradually destroys as she proceeds, until in the finished web only a few turns in the centre are left. The thread of the circles last spun is corered with viscid globules, strung apon it like beads at short distances. If an insect comes in contact with the thead, it immediately adheres, and its struggles ouly bring a larger part of its body into contact with the web. Dust and seeds also stick to the web, so that in a single day it is often so clogged as to be of no farther use. The web also becomes torn by the struggles of the prey, and by wind and rain, so that it requires repair or renewal every night. In mending a web the spider usually removes all except the outside threads, biting them off and rolling them into a hard ball between her jaws, so that when released it will drop quickly to the ground. This probably gave rise to the opinion, sometimes advanced, that the old web is eaten lyy the spider.
"When the web is finished she stations herself in the centre, where a small circle is left free of the adhesire threads. Her usual position is head downward, with each foot on one of the radii of the web, and the spimers ready to fasten themselves by a thread at the least alarm. She often remains in her hole with one foot ont, and resting on a tight thread connected with the centre of the web, so that any ribration is quickly detected. If the web be gently tonched the spider will rush into the centre, and face towards the disturbed part. She will then jerk smartly several of the radii leading in that direction, to see if the intruder is a living animal. If this test is followed by the expected struggle she runs out towards the victim, stepping as little as possible on the athesive threads, seizes it in her jarrs, and as soon as it begins to fecl the effects or the bite, euvelops it in a silken covering, and hangs it up to suck at her leisure. In spiuning this envelope the insect is held and turned around mainly by the short thirct pair of feet, while a flat band of threads is drawn from the spinners by the hind pair working alternately like the hands in pulling a rope, and wound over it in crery direction, so that in a few seconds it is so covered as to be mable to move a limb. When a web is shaken by the wind the spider will sometimes draw in all her feet towards leer

body, thereby tightening the web in every direction so that the vibration is prevented.
"The construction of nets for catching food is not the only use of the thread made by these spiders. They seldom move from place to pace without spinning a line after them as they go. They are able by its use to drop sadely from any height, and when suspended by it are carried by the wind across wide spaces without any exertion on their part, except to let out the thread. The crevices in which they pass the winter and the leisure hours of summer, are partly lined and enclosed by a coating of silk resembling that used for confining captured inscets. The eggs are enclosed in a cocoon of the same material, and there the young remain until they are strong enongh to shift for themselves, growing to norrly double their size without apparent nourishment.
"Several hundred young are produced by a single female, but probably it is seldom that one-tenth of this number erer reach adult size. Nearly all the spiders which we see in wobs are females or young. They spend most of their time in the vicinity of their webs, and many doubtless pass their lives within a few yards of the place of their birth. The adult males are scldom seen builling or occupying webs: they remain concealed during the day, and at night wander about from web to web. When young there is no obsions difference between the sexes, bat as the time for the last moath approaches, the ends of the palpi of the male swell to several times their former size. When the time for the final moult arrives, both sexes retire to their holes and cast off the skins of their entire bodies, even to the claws. This process obliges them to remain concealed until the new skiu has aequired sufficient strength and firmness, when they again return to their webs. The females still resemble the foung, except in size, but the males are distinguished from them by the greater length of their limbs, the diminished size of the posterior half of the body, and the large and complicated joints of the palpi (Plate 11, fig. 8)."

Tetrapnecmones Latreille. The large hairy species of Mygale differ from other spiders in having form lung-sacs and as many stigmata, and only two pairs of spinnerets, of which
one pair is very small, while there are eight ocelli. The different species make cylindrical holes in the earth; that of M. nidulans of the West Indies is closed by a lid of earth covered beneath with silk. Mygale avicularia Linn., the Bircl spider, seizes small bircls and sucks their blood. M. Hentzii (Fig. 627, natural size) ranges from Missouri southward.

Dipnedmones Latreille. In the remaining genera of spiders there are two lung-sacs, two or forr stigmata, and three pairs

Fig. 627.
of spinnerets. They are divided into two gromps, the "Sedentary" and "Wandering" spiders. The sedentary species have the ocelli usually arranged in two transverse rows; they spin webs in which they remain and seize their prey. In the
genus Dysdera there are six ocelli, of which four lie in the front row; the cephalothorax is small, long; oval, and the first pair of legs are the longest. The species dwell in silken tubes, under stones or in crevices. D. interritce Mentz is a New England species. In Drassus there are eight ocelli, and the hinclermost pair of feet are the longest.

Clubione includes those species which have cight ocelli, the four hinder ones, with the two onter ones on the front row, forming almost a semicircle; the fore legs are the longest. They construct under the bark of trees, under leaves or beneath stones, tubes of rery white silk, from which they make nocturnal expeditions for food. C. tranquilla Hentz is common in the United States. C. medicnalis Wakenaer has been used as a vesicant. The Water spider of Europe, Aigyroneft aruatica Linn., lives beneath the water, where it makes its nest and cocoon, which is filled with air.

The genus Tegenaria has the ocelli arranged in two slightly curved rows, the third pair of feet are shorter than the others, and the abdomen is oral. The species are "sedentary, making in

Fig. 628. obscure comers a horizontal web, at the upper part of which is a tubular habitation, where the spider remains motionless till some insect be entangled in the threads." (Hentz.) T. medicinalis IIentz is "pale brown, turning to bluish black; ecphalothoras with a blackish band on each side; abdomen varied with black, or plumbeous and brown ; feet varied with blackish." It "is found in every cellar or dark place in the country. For some time the use of its web as a marcotic, in cases of fever, was recommended by may physicians." (Hentz.) Fig. 628 (enlarged) represents T. atrica, a European species.

Fitistata is a closely allied genus. F. hibernalis Hentz
" makes a tubular habitation of silk in crevices on old walls or rocks, throwing out an irregular web which is spread on the wall or stone aromil the aperture. . . . In walking it uses the palpi like feet, and these organs are very long, particularly in the male." According to Hentz it is found in South C'arolina and Alabama.

The two genera Pholcus and Theridion belong to Latreille's group, "lmequitclæ," comprising those forms in which the first pair of limbs are usually the longest. In Pholcus the legs are rery long and slender. According to Hentz the species are "seclentary, making in dark corners a rery loose web of slender threads, crossed in all directions. The eggs are collected together without a silk covering, which the mother carries with her cheliceres" (maxillary palpi). This genus "by the extreme length of its legs resembles Phalangiun. The species belonging to it may be found in apartments seldom visited, particularly churches and cares. They shake their body when threatened by an enemy, but seem to have very weak means of offence, and to feed on the rery smallest prey." P. Atlanticus Hentz inhabits the Southern States.

In Theridion the four inner ocelli are larger than the four outer ones, and the first and last puir of limbs are the longest. Hentz states that the species are sedentary, forming a web made of threals crossed in all directions, while the cocoons are of various shapes. A majority of the species are very small, and their webs made on the tops of weeds, in bushes, or in retired corners, are familiar to every one. T. vulgore Hentz varies "from a cream white to a livid brown, or phumbeous color. The cephalothorax is dull rufous, the abdomen with various undulating lines, and the feet have more or less distinct, dark or phmbeous rings." Hentz says that "there is probably no spider so abundant in the United States. It makes an irregular web in somewhat retired corners, and usually in dark stuations, but occasionally also in the open air." It catches large insects and hangs them up to its nest. Hentz says of the T'. studiosum which he has deseribed, that "when its web is destroyed it does not abandon its cocoon, which is orbicular and whitish, and is placed in the central part of the web. The mother then grasps it with her cheliceres, and de-
fends her progeny while life endures. She also takes care of her yonng, making a tent like that of social caterpillars for their shelter, and remaining near them till they can protect themselves." It occurs in Sonth Carolina and Alabama. Hentz says of T. verecundum Hentz, a jet black species found in the Southern States, that "it is rery common unter stones, \log, or clods of earth, where it makes a web, the threads of which are so powerful as to arrest the largest Hymonopterous insects, such as humble bees. Its bite, if I can rely on the vague description of physicians unacquainted with entomology, is somewhat dangerons, producing alarming nervous disorters. Fig. 629 represcuts Theridion riparium (lower figure, male; upper, female, enlarged), of Europe.

Epeüra is readily known by the large globular abdomen. The species are "sedentary, forming a web composed or spiral threads crossed by other threads depart-

Fig. 629. ing from the centre; they often dwell in a tent constructed above the web; the cocoons are of various forms. E. vulgaris Hentz (Plate 11, fig. 12) is pale gray, with a pitchy lolack abclomen, with various winding white marks, and a mildle one in the form of a cross. It spins a regular geometrical web, and is almost domesticated, being fonnd aloout the outside of houses and in gardens. E. domiciliorum Hentz is a gray or brownish species, and is found in dark rooms.

The genus Nephila comprises large spiders, with long cylindrical abdomens. N. plumipes (Fig. 630, natural size) is found in the Southern States. Dr. B. G. Wilder has given an ac-
count of its habits, and considers its silk, if the spicler could be reared in sufficient quantities, as of commercial value. The males (upper figure) are minute in size, compared with the females.

The genus Thomisus is characterized by the small size of the cheliceres, and the first and second pair of feet are either the longest, or the second alone are longest. The species "wander

Fig. 630.
after their prey, making no web, but casting irregular threads, with a flattened cocoon, usually placed under leaves, and watched by the mother till the young are hatched." (Hentz.) T. vulgoris Hentz is "pale gray, with four impressed dots on the abdomen; the body is flat, and the legs are cavered with indistinct darker rings. This spider, commonly seen on fenc-
ing or prostrate timber, like those of the same genus, moves sideryise and backwards, but it is much more active than T. coler. When pursued by an enemy, like Attus and Epcïra, it leaps and hangs by a thread, which supports it in the air." It is a widely diffused species. T. celer Hentz is also a widely :distributed species, and is "found usually on blossoms, where it remains patiently waiting for Diptera, other small insects, and even butterflies, which it secures with amaziug muscular power."

The three remaining genera belong to Latreille's group of "Wanderers," as they spin no web. The species of Dolomedes

Fig. 631.
(Fig. 631, from Marris' Correspondence) wander after their prey, making no web, except while rearing their young, and hiding under stones, sometimes diving under water; the cocoon is usually orbicular, and is carried by the mother. D. lanceolatus Hentz "is always found near or on wates, ruming on it with surprising agility, preying often on large aquatic insects. A female of Dolomedes was twice found on high bushes by my friend, T. W. Harris, in Milton, Mass, 'on a large, irregular
loose, horizontal web, at one extremity of which was situated her follicle, or egy-bag, covered with young. The parent appeared watching them at some distance.' This spider can dive and stay a considerable time under water, to avoid its enemies. It was fonnd in March, in Alabama, under stones near a stream of water." It ranges northwards to Massachusetts.

The Tarantula belongs to the genus Lycosa, which comprises large stout hairy spiters, with large cheliceres and moderately sized fangs, with the fourth pair of feet the longest and the third pair shortest. The species make no web, wandering for their prey, and hiding under stones. They frequently make holes in the ground in which they dwell, spimning at the orifice a ring of silk which forms a consolidated entrance like a trap door. The cocoon is usually orbicular, and is often carried about by the mother, while the foung are borne about on the back of her abdomen. (Hentz.) L. tarantult Linn. is the celebrated Tarantula of Italy and Spain. Its bite is commonly supposed to produce the effects termed "tarantism," but Dr. Bergsöe has proved that triratism is rarely due to the bite of the tarantula, which is comparatively hammess.

The Lycosa futifera of Hentz is said by him to be bluish black, with the cephalothorax deeper in color at the sides; the cheliceres are corered with rufons hairs, and have a red elevation on their outer side near their base. It is one of the largest species of the genus. "This formidable species dwells in holes, ten or twelve inches in depth, in light soil, which it digs itself; for the envity is always proportionate to the size of the spider. The orifice of the hole has a ring made chiefly of silk, which prevents the soil from falling in when it rains. This Lreosa, probably as large as the Tarantula of the south of Europe, is common in Massachusetts, but we have not heard of serions accidents produced by its bite. Its poison, howerer, must be of the same nature and as virulent." (Hentz.)

In the leaping spiders, Sulticus, the cephatothorax is usually large, scuare, and the abdomen is oval cylindrical. Henta says that they wander after their prey, making no web, but concealing themselves in a silken valve, for the purpose of casting their skin, or for hibernation. 'The Salticus (Attus)
familiaris of Hentz is a common species throughout the United States. It is pale gray, hairy, and the abodomen is blackish, with a grayish angular band edged with whitish. Hentz says that it is almost domesticated in our houses, and dwells in cracks around sashes, between clapboards, etc., and may be seen on the sumny side of the house, and in the hottest places, wandering in search of prey. It moves with agility and ease, but usually with a certain leaping gait. . . . Before leaping this Attus always fixes a thread on the point from which it departs ; by this it is suspeuded in the air, if it miss its aim, and it is secure against falling far from its hunting grounds. These spiders, and probably all other species, a day or two before they change their skin, make a tube of white silk, open at both ends ; there they remain motionless till the moulting' time arrives, and eren some days after are seen there still, probably remaining in a secure place, for the purpose of regaining strength and activity."

PEDIPALPI.

Cnder the term Pedipalpi we would embrace besides the Pedipalps of Latreille, the Solpugits and Phatangids. They all agree in having the maxillary palpi greatly enlarged and usually ending in a forceps, and the abdomen distinctly jointed, with the end, sometimes, as in the scorpions, prolonged into a tail. In the retention of the tail in some of the forms the abnormally enlarged maxillæ, the jointed cephalothorax aud abdomen, which in the scorpions reminds us of the Myriapods, we have characters which place the Pedipalps below the true spiders.

Solpugide Gervais. In this group, the species of which are large, hairy, spider-like animals, the cephalothorax is clearly jointed, and the abdomen is elongated; respiration is carried on by tracheæ. Solpuga may at once be known by the enormons, though not very long, maxillary palpi. S. araneoides Pallas inhabits Sonthern Russia. S. (Galeodes) Americana Say inhabits the Southern States.

Phalangide Gervais. In the group of Harvest-men the cephalothorax is not jointed; the abdomen is short and thick, and the maxillary palpi end in a simple claw; the mandibles are well developed and end in a forceps. The legs are extremely long. They breathe through tracheæ. They ocenr about houses, especially in shady places and in woods and

Fig. 632.
fields. "They are carnirorous, feeding on small insects, and are said to be especially addicted to Aphis-eating." (Wood.)

The genas Phalangium has no spines on the palpi, and has two simple eyes. The species have been well deseribed by Dr. H. C. Wood, jr. (Proceedings of the Lissex Institute, vol. vi), some of whose illustrations appear here, so that the species here mentioned can be easily identified. P. dorsatum Say
(Fig. 632, a, female, natural size; b, male, natural size; c, penis, anterior and lateral view, enlarged) has been found from northern New York to Washington. When handled it emits a drop of an odorons clear fluid. We have found it frequently in Salem.
P. ventricosum Wood (Fig. 633, a, trochanter; b, femora; c, mandibles; d, maxillary palpus, male? natural size) is widely distributed in the United States. Acanthocheir is an eyeless genus with spiny palpi. A. armata Tellkampi is found in Mammoth Cave. In Gonyleptes the cephalothorax is much enlarged, and overhangs the abdomen. G, ornatum Say (Fig. 634, male, a, under surface; b, upper surface, natural size; c, penis) is found in

Fig. 633. the Southern States; the species are quite numerous in South America.

Under the name of Archetarbus rotundatus (Fig. 635) Mr. Scudder describes a fossil Pedipalp, which seems to be "allied a to the Phalangidce and to the
 Phrynide. In its fragmentary state one can scarcely judge with certainty of its exact relationship. The arrangement of the legs accords well with both families. The broad attachment of the thorax to the abdomen is a Phalangidan characteristic, while the size and shape of the abdomen, the number of the abdominal segments and the crowded state of the central portions of the basal ones, indicate closer aflinities to the Phrynido.

Phrmides Sumderal. Whip-scorpions. In this group the
anterior pair of legs are very long and slender, being much sualler than the others, while the maxillary palpi are very large; there are eight simple eyes, and the abdomen is eleven

Fig. 635. to twelve-jointed, while there are two pairs of stigmata, and they also breathe by lungs. Phrynus is at once known by the excessirely long, whip-like, multiarticulate fore legs, which apparently perform the office of antennæ; the body is short and broad, and has no appendage to the abdomen. P. reniformis Fabr. is fourteen lines long, and is fotud in Brazil. P. asperatipes Wood occurs in Lower C'alifornia. No species occur in the United States. The geuns Thelyphonus is known by the oblong body, ending usually in a slender many-jointed filament. T. coudctus Fabr. is fifteen lines long, and inhabits Java. T. giganteus Lucas occurs in the South-western States and in Mexico.

Cifernetide Menge. (Pseudo-scorpiones Latreille.) The False-scorpions are at once known by their large maxillary palpi like the scorpion's claw. The abdomen is eleven-jointed,
 flattened, without any appendage, and the living forms are minute; they breathe by tracheæ. They are found rumning about dusty books and in dark places and feed on mites and Psoci. They are often found attached to the leg of some fly or other insect by which they are transported about. "The female chelifer bears the eg'gs, seventeen in number, in a little bunch uncler her abdomen near the opening of her sexual organs. Menge has observed the Pseudo-scorpions cast their skin in a light web made for that purpose. The little animal remained fise days in the web after its metamorphosis, and did not assume its dark colors for four weeks. Three months after it returned to the same web for hibernation. Menge describes eight species from the Prussian Amber, belonging to genera still living, and Corda one (Microlabris

Sternbergi) from the coal formation in Bohemia, one inch long. Schioclte has found a curious blind species in the caves of Adelsburg, and it is very probable that a closer examination of the Kentucky caves will give a similar Anerican species." (Hagen.) In Chernes there are no eyes. C. Sanborni Hagen is found in Massachusetts.

In Chelifer there are two eyes. C. cancroides Linn. (Fig. 636, enlarged) is dark brown, with many short spines on the thorax. It occurs in Massachusetts and Illinois.

Scorpionide Latreille. The Scorpions are well known by the immense forceps-like maxilla, and the long tail continuous with the thoras, and ending in a powerful sting, in which is lodged a poison sac. The body is more distinctly flivided into segments than any other Arachnids, and hence the scorpions bear, as Gerstaecker suggests, a strong analogy to the Myriaports. The genus Scorpio is restricted to those species which have six ocelli. S. Allenii Wood is our only North American species and is found in Lower California. Our other species are mostly comprised in the genus Buthus, which has eight ocelli. B. Carolinianus Beaurois (Fig. 637) ranges from the Southern Atlantic States through Texas northward into Southern Kansas. "Scorpions are dangerons in proportion to their size, their age, the state of irritation they may be in, and the temperature of the climate in which they reside. The wounds, howerer, eren of the largest species are rarely fatal." (Moquin Tanton.)

Messrs. Meek and Worthen have described (Palicontology of the Illinois Geological Survey, iii, p. 560) two fossil scorpions from the lower part of the coal measures of Illinois, which are as highly developed, and bear a very close resem-
blance to the living species. The Eoscorpion carbonarius of Meek and Worthen is said by them to closely resemble Buthus hirsutus from California. The other fossil scorpion is the Mazonia Woodiunai Mr. and W., which differs from any known living forms in not having any lateral eyes. Very different and belonging to a much move degraded and embryonic type is the Cyclophthalmus Buchlandi from the Coal Measures of Bohemia, in which the tail is contintous with the body, being unusually thick.

ACARIN \bar{A}.

The Nites clifer from other Arachnids by their oval or rounded bodies, which are not articulated, the cephalothorax being merged with the abrlomen; the moutli-parts are adapted either for biting or sucking, and they breathe by tracher. They are usually minute in size; the ticks, which are sometimes half an inch in length, comprising the largest forms. They appear first in geological history in the Prussian Amber, where species of Trombidimm and Itydracha oceur.

Boellide Dugis. This inconsiderable family is represented by small mites with long, fire-jointed maxillary palpi, and from two to six ocelli, which are sometimes wanting. The limbs are long and thick. The young closely resemble the adults. The genus Bdella has legs of nearly equal length. B. longicomis Linn., an European species, is scarlet red, with four ocelli, and is half a line in length.

Thommbne Leach. The species of this family are red mites, with cither claw-like or style-like masillary palpi, and short mandibles. with the terminal joints scissor-like and opposed to each other. The genus Tetromychus has slender stylelike maxillie, and two ocelli. The two fore pair of legs arise at a long distance from the hind ones, the first pair being the longest. T. telarius Linn. the little ren mites of our hothouses spin webs on rose leaves. It is yellowish, with two reddish yellow spots on the sides, and is one-half a line long.

It may be killed by showering sulphur over the leaves. In Europe it is found on the linden tree. The young of this species, according to Claparede, passes through an Ixocles-like stage, as regards the mouth-parts, for this reason we place the rxodidce below them.

Hydracinide Sundeval. The Water-mites are known by having the maxillary palpi short, with five terminal hoolss, or bristles, at the end. The legs gradually increase in length, the hindermost pair being longest; they are ciliated, with two claws. There are two ocelli. These mites swim in fresh and sometimes salt water, and are seen ruming over water-plants. The young differ so much from the adults that they were described by Andouin under the name of Achlysia. In Hydrachat the mandibles are needle-shaped, and the third joint of the maxilla is the longest. 'The body is oval, with the limbs adapted for swimming, and there are two eyes. Hydrowna concharum is parasitic thronghont life on the gills of fresh water mussels. Others are parasitic during early life on fresh water Hemiptera and Coleoptera.

In Atax the body is oval, solid and corneous. The mandibles end in a stout curved claw, and the five-jointed maxillary palpi end in an acute point. The species are red in color and live in flowing streams; when in their early, and in some cases their adult stages, they are parasitic in the gills of mussels.

Ixodins Leach. The Ticks are mites of gigantic size, with bodies of a leathery consistence. The three to four-jointed maxillæ are small, not reaching beyond the beak. The mandibles are saw-like, being covered towards the end with teeth, with from two to four terminal hooks, and, with the large spatulate, dentate "glossoide" of the maxilke, form a beak which the tick pushes into the skin of its host. The ocelli are often wanting, and the legs are slender, with two claws, and in the young a distinct membranons foot-pad. The recently hatched young (Fig. 638, a, glossoide; b, mandibles; e, maxillary palpi ; e, adult gorged with blood) is six-footed, the legs being very long, and the head and mouth parts are much larger in proportion to the rest of the body than in the
adult, while the tripartite division of the bodily is very distinct, the thorax being distinct from the head and abdomen.

The genus Argas closely resembles Erodes. Gerstaccker states that the Argos Persicus Fisher is very annoying to traveellers in Persia. Travellers in the tropics speak of the intolerable torment occasioned by wood ticks, Erodes, which, occurring ordinarily on shrubs and trees, attach themselves to all sorts of reptiles, beasts and cattle, and even man himself as he passes by within their reach. Sometimes cases fall within the practice of the physician who is called to remove the tick, which is found sometimes literally buried under the skin. Mr. J. Staffer writes me, that "on June $23 d$ the laughter of Abraham Jackson (colored), playing among the leaves

Fig. 638. in a wood, near Springville, Lancaster County, Penn., on her return home complained or pain in the arm. No attention was paid to it till the next day, when a raised tumor was noticed, a small portion protruding through the skin, apparently like a splinter of wood. The child was taken to a physician who applied the forceps, and after considerable pain to the child, and labor to himself, extracted a species of Ixodes, nearly one-quarter of an inch long, of an oral form, and brown mahogany color, with a metallic spot, like silver bronze, centrolley situated on the dorsal region." This tick proved, from Mr. Staffer's figures, to be without cloubt, Ixodes mipunctata Pack. (Plate 10, fig. 11, enlarged). It has also been found in Massachusetts by Mr. F. G. Sanborn. The Erodes albipictus Pack. (Fig. 638, adult gorged with bloorl, and the six-footed young, with the mouth-parts of the young enlarged, and d, a foot showing the claws and sucking disc), was discovered by Mr. W. J. Hays in great numbers on a moose which had been partially domesticated. The females lay their eggs from the first of May until the 25 th of June, the "eggs being forced out
in large masses." "On the $3 d$ of July the entire mass of eggs seemed to hatch ont at once, the shell opening like a clam and releasing a six-legged insect." (Hays.) The opening of the oviduct is just behind the hearl, between the anterior pair of feet, so that the eggs appear as if ejocted from the mouth.

Another species is the Irodes bovis (Plate 10, fig. 10), the common cattle tick of the Western States and Central America, which is allied to the European I. rioinus. It is very annoying to horned cattle, gorging itself with their blood, though by 10 means confined to them alone, as it lives indifferently mon the rattlesnake, the iguana, small mammals, and undoubtedly any sor't of anmal that brushes by its larking-place in the forest. It is a reddish, coriaceous, flattened, seel-like creature, with the body oblong oval, and contracted just behind the middle. When fully grown it measures from a quarter to half an inch in length. We have received it from Missouri, at the hands of Mr. Riley; and Mr. J. A. MoNiel has found it very abundantly on borned cattle, on the western const of Nicaragua.

Gamaside Leach. These mites have scissor-like mandibles, free maxillie, with joints of equal length, and liairy legs of simur size and form, while the oeelli are obsolete. They live parasitically on the bodies of other animals. The genus Gamasue has long mandilles, with curred, five-jointed, acutely pointed maxillary palpi; the body is oval, flattened, the skin dense, and the first and last pair of legs are somewhat longer than the middle ones. G. coleoptratorum Limn. is clear, reddish yellow, and about a third of a line long. It occurs in Europe on beetles, especially species of Geotrupes and Necrophorus. The same, or a closely allied species, is found in this country. Uropoda regetens DeGeer, a similar form, also lives on beetles. The genus Dermanyssus has shorter jointed maxillary palpi than in Gamasus. D. aciam Dugès lives ou bircls, and D. pipistreltae Gervais on bats. In Ptetoptus the terminal joint of thie maxillæ is rery long. Pt, vespertilionis Dufour is a parasite of the bat.

Ormatide Nicolet. In these mites the body is very hard and horny. The fonr-jointed maxillary palpi are short, with
the first joint very large, forming a toothed eating surface. The ocelli are nearly obsolete, and the legs have from one to three claws. The cephalothorax has generally two wing-like

Fig. 639. projections, and two or three cup-shaped pedicellated stigmata on the edge. They gencrally live on vegetable matter. In Oribates the side of the epphalothorax is prodiced often into wing-like processes, with the aldomen orbicular, flattener, sometimes emarginate. The European O. alutus ILermann is smooth, blackish brown, and lives under moss. In Nohtrus the body is elongated, somewhat quadrangular, and has no lateral expansions, while the legs are stout, with tripartite clars. We hare observed an melescribed species of this genus sucking the eggs of the canker-worm in Salem. It may be called Nollrus ovivorus (Fig. 639). It is reddish brown, with a dense hard body, with the edge of the abdomen expanded

Fig. 610. evenly, and with three slender capitate processes on the ceplahothorax.

Acaride. This family comprises the true mites, which have soft, thinskinned bodies, with either scissor or style-like mandibles, the latter forming a retractile horny tube. The maxillæ are obsolete, as well as the ocelli. The claws are sometimes provided with a sucker. The members of this, and the following groups, are among the most lowly organized of articulates, and are found living parasitically on the skin of other animals, or buried within their integuments, while certain acari hare been detected within the lungs and air passages, the bloodvessels and the intestinal canals of vertebrate animals. The
genus Cheyletus is remarkable for having the maxillæ very large, and like a pair of legs, with the encls tripartite, the outer dirision being curved and clawlike, while the two innermost are slender lobes pectinated on the inner side; the mandibies are style-like. A European species (Fig. 640) feecls on Cheesemites. It is thonght by Mr. R. Beck that another species of Cheyletus is parthenogenous, as "he olutained several gener"ations from the first individual, without the intervention of a male." (Science-Crossip, 1860, p. 7.) Mr. J. H. Gregory, of Marblehead, Mass., has fomed a species of this genns, which we may call Cheyletus seminivorts (Plate 10, fig. 6). It injured the seeds of the cablonge stored up during the winter by sucking them dry. The genus Tyrogl?phus is known by the body being elongated oral, with scissor-like mandibles, and outstretched four-jointed feet, with a long stalked sucking dise at the end. T. domesticus DeGeer is in Europe common in houses.

Many people have been startled by statements in mewspapers and more authoritative sources, as to the immense numbers of sugar mites, T. sucheari (Fig. 641), foume in umpefned or raw sugar. Accorling to Protessor Cameron, of Dublin, as quoted in the "Journal of the Franklin Institute," for November, 1868, "Dr. Hassel (who was the first to notice their general occurrence in the raw sugar sold in Lon(lon) found them in a living state in no fewer than sixty-nine out of seventy-two samples. He did not detect them in a single specimen of refined sugar. In an

Fig. 641. inferior sample of raw sugar, examined in Dublin by Mr. Cameron, he reports finding five hundred mites in ten grains of sugar, so that in a pound's weight occurred one hundred thousand. They appear as white specks in the sugar. The disease known as grocer's iteh is, undonbtedly, due to the presence of this mite, which, like its ally the Sarcoptes, works its way under the skin of the hand, in this case, however, of cleanly persons.

Closely allied to the preceding is the Cheese-mite, T. siro Limn., which often abounds in newly made cheese. Lyonnet
states that during summer this mite is viviparous. T. farince DeGeer, as its name indicates, is found in flour. Other species have been known to occur in ulcers.

We figure the larva of the European Typhtodromus pyri (Plate 10, fig. 4) the adult of which, according to A. Schenten, is allied to 'Tyroglyphas, and lives under the eppidermis of the leaves of the pear. There are but two pairs of legs present, and the body is long, cytindrical and worm-like. Fig. 5 , plate 10, represents the four-legged larva of another species of Typhlodromus.

The Itch mite belongs to the genus Sarcoptes, in which the body is rounded orate, with needle-like mandibles, and with short threc-jointed legs. The female differs from the male in having the two hinder pairs of legs only partially developed, and ending in a long bristle. S. scubiei Linn. (Plate 10, fig. 7, female) was first recognized by an Arabian author of the twelfth century as the cause of the disease which results from its attacks. It lurics itself in the skin on the more protected parts of the body, forming minute galleries, by which its presence is detected, and by its punctures maintains a constant imitation.

Other species are known to infest the cat, dog and swine. They are best destroyed by the faithiful use of sulphur ointment. Various species of an allied genns, Dermatodectes, live in galleries on different species of domestic animals; thus D. equi lives in the skin of the lorse, D. boris in cattle, and D. onis in sheep. Various Sareoptids oceur on birds; among them are species of Dermaleichus. On March 6th, Mr. C. Cooke called my attention to certain female mites (Plate 10, fig. 1) which were situated on the narrow groove between the main stem of the barb and the outer elge of the barbules of the feathers of the Downy Woorlpecker, and subsequently we found the other forms indicated in Plate 10, figs. 2 and 3 , in the down under the feathers. These long worm-like mites are probably the females of the singular male Sarcoptes-like mite, represented by Figs. 2 and 3 of the plate, as they were found on the same specimen of woodpecker at aluout the same date.

The female (thongh there is probably a still earlier hexapodous stage) of this Sarcoptid, which we may call Dermaleichus
pici-pubescentis, has an elongated, oblong, flattened body, with four short legs, provided with a few bristle-like hairs, and ending in a stalked sucker, by aid of which the mite is enabled to walk over smooth, hard surfaces. 'The body is square at the end, with a slight median indentation, and four long bristles of equal length. They remained motionless in the groore on the barb of the feather, and when removed seemed very inert and sluggish. The male (Plate 10, fig. 3) is a most singular form, its body being rudely ovate, with the head sunken between the fore legs, which are considerably smaller than the second pair, while the thind pair are twice as large as the second pair, and directed backwards, and the fourth pail are very small, not reaching the extremity of the body, which is deeply cleft, and supports four long bristles on each side of the cleft, while other bristles are attached to the legs and boly, giving the creature a haggard, unkempt appearance. 'The genital armature is situated between the largest or third pair of legs. A preceding stage of this mite, which may be called the pupa, is represented on Plate 10, fig. 2. It (all the figures of this sareoptid being drawn to one scale by Prof. A. M. Edwards, and magnified one hundred and fifteen diameters) looks somerrhat like the adult, the borly being shorter. and brouder, but without any genital armature.

We figure on Plate 10 , figs. 8 and 9 , greatly enlarged, a most remarkable mite, discotered by Newport on the body of a lanva of a wild bee, and described by him under the name of Heteropues ventricosus. Fig. 8, in the plate, represents the body
 of the fully formed female. In this stage it reminds us Fig. 6 ± 2 of Demodex and the Tandigrades. After attaining this form its small abulomen begins to enlarge until it assumes a globular form (Plate 10 , fig. 9) and the mass of mites look like little beads. Mr. Newport was mable to discover the male, and thought that this mite was parthenogenous. Another singular mite is the Demodex folliculorum (Fig. G42), which was discovered by Dr. Simon, of Berlin, buried in the diseased follicles of the wings of the nose in man. It is a long, slender, worm-like form, with eight short legs, and in the larval state has six legs. This singular form is among the lowest and
most degraded of the order of Arachnids. It will be seen that the adult Demodex retains the elongated, worm-like appearance of the larva of the higher mites, such as 'Typhlodromus. This is an indication of its low rank, and hints of a close relationship to the Tardigrades.

Tardigrada Doyère. (Arctisca). The Tardigrades, or Bear animalcules, referred by some to the worms, were considered as mites loy O. F. Müller in 1785, and a species was de-

Fig. 613. scribed by him under the name of Acarus ursellus. They have also been referred to the Rotatoria by Dujardin, and were, by Schultze, considered as parasitic Entomostraca allied to Lernæa. With Muller we would consider then as insects belonging to the Acarina, and venture, after studying Claparede's admirable work, "Stuclien an Acariden," containing an account of the genus Myolia, to consider the Tardigrades as a fimily of mites. In form, as indicated by the accompanying figures, copied from Doyère's valuable memoir, they are essentially mites, and allied in form to Demodex and Heteropus, thongh in their internal organization differing from all other insects in being true hermaphrodites. Multer observed that they moulted their skins. The mouth is alapted for sucking, with style-like mandibles like those of Myobia. There are two ocelli, and the worm-like body is cylindrical, consisting of four thoracie segments behind the head, bearing four pairs of short, thick legs, enting in three or four claws (in these characters reminding us of the Peripatus, a from with a large, fleshy

Explanation of Plate 10.-Fig. 1, Dermerteichus pici-pubescentis Pack., female. Fig. 2, young male. Fig. 3, adnlt male. Fin. 4, larva of Typhlodromus pyri Scheuten (after Schenten). Fig. 5, lurva of another species of Thalhodromus (after Scheuten). Fig. 6, Cheyletus seminimorns Pack. Fig. 7, Sarcoptes scabiei DeGeer (alter Gertais), Fig. 8, Heteromus ventrimons Nemport, fully formed remale. Fig. 9, gratid female of the same (after Newport). Fig. 10, Jxodes bovis Riley. Fig. 11, Ixodes unipunctata Pack. All the figures are enlarged.

leg-like process attached to the sides of each ring of the body and ending in a pair of claws). In size they are microscopic and live in standing water among plants, and like the Rotatoria revive after being apparently dead and dried up. They were called Tardigrades from their excessively slow motions. The eggs are very large and are laid by the parent after the last moult ; the young is born with its full complement of legs, and moults several times before arriving at maturity. The eggs of some genera are smooth, while those of Macrobiotus are spherical and corered with little knob-like projections.

Milnesium tardigradum Schrank (Fig. 643, l, mouth-parts; b, alimentary canal ; ov, ovary) is a fifth of a line long; while Emydium testudo Doyère (Fig. 6t4, magnified one hundred and twenty times) is another European species. None have yet been noticed as occurring in this country.

Fig. 644.

ORDER III. MYRIAPODA.

The Myriapods are readily known by their long, cylindrical or somewhat flattened bodies, which are composed of from ten (counting the head as one) to over two hundred rings. The head is free from the rest of the body, and is much like that of iusects, while the thoracio rings are scarcely distinguishable, either in form or the character of their appendages, from the numerons abdominal rings, so that the head, instead of being soldered to the thorax as in the spiders, is here free, while the thorax is merged in the abdomen.

The head of Cermatia shows how closely the highest Myriapod agrees with the insects. The few (sixteen) segments composing the body (comnting the head as one); the large compound eyes, the long filiform antennæ, and well developed palpi, farther show the close relatiouship of this form to the insects. The habits of this genus also remind us of the spiders, as they are predaceous and are said to leap after their prey.

In the Myriapods generally the moulh-parts are of the same number, and follow each other in the same order as in the insects. This in advance of the mouth there are first the ocelli, and immediately behind them the antenma; behind the month are the mandibles, the maxillæ with their palpi, and the labial palpi. As each of these organs is represented by an elemental riug we have at least fire segments in the head.

In the embryo of Julus the rudiments of the first pair of legs are soon aborted, and this the first thoracic ring bears no legs in adult life. The legs are composed of a coxa, a femur, a tibia and a tarsus, as in the higher insects.

As shown by Newport the nerrons, digestive, respiratory and reproductire systems very closely resemble those of the larva of insects, as does the external form of these animals.

Newport states that the nerrous system of Myriapods approaches nearer, in the simplicity of its formation, to that of the Annelids than that of the larvæ of insects. "In the Chilopoda it has the form of a double cord comnected by large
ganglia in each segment, as in most of the Annelida, Crustacea and Insecta; but in the vermiform Chilognatha, which former researches have proved to me are most nearly connected to the Annclida, the two parts of this double cord, are so closely united laterally as to appear like a single cord that gives off a multitude of small nerwous trunks at its sides throughont its whole length, but without distinct ganglionic enlargements at their origin." The brain is "composed of at least four pairs of ganglia."

The digestive system comprises the long, tubular salitary glands, of which two are found on each side of the cosophagus and stomach, opening by a long excretory duct into the mouth; and Professor Leidy has described two others which are placed on each side of the cesophagus, and are pyriform, conglomerate, and cellular in structure. Also the long intestinal canal which is much as described in the higher insects; while, as in Julus, according to Leidy, "at the termination of the proventriculus, there open two biliary tubes, and from it, surrounding the commencement of the ventriculus, is suspended a broad, white, opaque, reticulated band, apparently composed like the reta adiposa of insects."

The circulatory system is of a much lower type than in insects, and in Julus it approaches, according to Newport, by its rudimentary development that of the worms. The vascular system consists of a dorsal ressel, or heart, with very numerous separate chambers, almost equal to the segments of the body, which connects with another system of vessels lying on the under side of the body between the alimentary canal and the nervous cord. This plexus of vessels thans forms "a vascriar collar around the anterior part of the alimentary canal." "At each constriction of the heart in the Julida, between two chambers, there are two transterse lateral orifices, as in Insects," which Newport supposes to be either the terminations of delicate veins, or simple apertures admitting the blood from the venous sinuses in the body.

The tracheary system is men as in the six-footer insects, and the stigmata have the same relative position, but are placed on the alternate segments of the body.

In the Chilopoda the sexual system is much as in the six-
footed insects, and the orifices are placed at the end of the body. The ovary is a long single tube, which opens in the last ring of the body; while in the lower suborder, Chilognatha, there is only a single long ovarian tube, provided with two short oviducts which open on the third segment of the body from the head. The mule organs in the Chilopods are much more complicated than in the other Myriapods, and the two or three, or even the single testicular tube, open on the end of the body, while in the Chilognatlis, such as Julus, there are two testes which lead out by a vas deferens to the orifice situated on the third thoracic ring. The order is divided into two suborders, i.e., the Chilopoda and Chilognatha of Latreille.

CHILOPODA.

Tris group is characterized by each ring being simple and not divided into subsegments, and bearing but a single pair of feet, while the head is divided into two regions, one placed before the mouth, the other behind the mouth. The sexual outlet is situated at the end of the body.

This suborder is the highest, as it contains those Myriapods which have the fewest segments to the body, thus approaching the six-footed insects and spiders. They are active, rapacions in their habits, and by the division of the head into the two regions, movable on each other, they can almost emulate the insects in their powers of seizing their prey. As stated by Professor Wood*, their highly organized muscular and nervous system, the compactness of their intestinal apparatus, and the length and power of their legs, all betoken habits of great activity; whilst the formidable nature of their mandibles, and the sharp spines, both lateral and terminal, with which their feet are armed, fit them for predatory warfare. Thus it will be seen that the Chilopods are the more animal, while the Chilognaths are the more vegetative; this is due to the greater concentration of the body headwards, and the more compact build of the body behind the head.

[^48]It is probable that the Centipedes and their allies appeared at a much later period in the earth's history than the Chilog' naths, as the carliest form of the present suborder known to us is the Geophilus proarus of Muenster, from the Jurassic rocks, whilst the oldest Myrispod, one of the Julido, is, according to Dawson, found in the lower Carboniferous rocks of Nova Scotia, and Dr. Anton Dohrn has recently described a Julus from the coal formation of Germany.

Cermatide Leach. This group is characterized by having only sixteen rings to the body, while the legs and antennæ hare more numerous joints than usual. The head is large, very free from the body, with compound eyes, as in the six-fonted insects, and long spiny palpi, while the tergites, or scuta, are but eight in number, and there are nine pairs of spiracles. 'The female ovipositer' is forceps-like, while the corresponding male appendages are style-like. The species are the most gaily colored of the order, being striped along the body and banded on the legs. Cermatia forceps Ralinesque is greenish-brown, with three longitudinal stripes of deep green.

Iftifobind ex Newport. In this and the lemaining families of this suborder the antema are short, and the eyes simple and sometimes wanting. In the present family there are fifteen tergites, and the antenne are longer than in the succeeding group. In Lithobins the antemme are forty-jointed, and Fig. cis. the head is broad and flat. 'The species of this genus attack earth-worms, grappling with them for several hours, and after killing them, suck their blood. They will, in coninement, destroy each other. 'Their bite is poisonons to small articnlates. The European L. forficatus, accorling to Newman ("Entomologist" 1866 , iii, p. 3 ± 2) is preyect upon by Proctotrupes calcar of Haliday. Lithobius Americames Newport (Fig. G40) is a widely diffused species, and erroneonsly passes by the name of Ear-wig. It is fond everywhere, under sticks and about manure-heaps, where it feeds upon insects and earthworms.

The gentus Bothropolys of Wood, differs in having small, ahnost round punctiform excoriations arranged in three or four series on the coxa. The B. multidentatus of Newport is found in the Eastern United States, and is recognized by having from thirty-two to thirty-seven ocelli on each side of the head.

Scolorendrida Leach. The Centipede is the type of this family. There are from twenty-one to twenty-three fcet-bearing segments, with ferv or no ocelli, while the last pair of feet are thickened and generally spinous. This genus comprises

Fig. 645. the most gigantic of all Myriaporls, Scolopendra gigantea Linn. from the East Indies, beug nine inches long. S. heros Girard is our largest species, and is found in the Southem States. The bite of the Centipede is dangerous; the poison is conreyed from two glands in the throat, along a canal in the jaws.

The geuus Scolopocryptops differs in having no ocelli, and twenty-three fect-hearing segments, while the antenne are seventeen-jointed. S. sexspinosa Say (Fig. 646) is common about Philadelphia, and is fomd in Iowa; it is deep orange, with yellow, somerhat compressed feet, with three spines on each of the last pair of feet. Wood describes the manner of moulting in this species. The skin had been crowded back so as to corer only the last two or three rings. The cast skin contains the skin of the head and all its appendages, even to the maxillse and maxillary palpi. 'The auterior portion of the skin was so torn as to show that the process of shedding probably began by the creature's withdrawing its head from its case, and then thrusting it out between some of the anterior sterna, completing the process by pushing the skin back with its legs, and aiding them by a peculiar wriggling motion. The exuria had most of the posterior segments entire, showing that the occupant had been withdrawn from it like a hand from a glove." Wood also states that the female guards her young by laying on her side, and then coiling her body passes them along by a
"rapid cilia-like action of her feet;" thus arranging them satisfactorily to herself.

Geopimbide Leach. These Myriapads are rery long and slender, with from thirty to two hundred segments, each formed of two complete, but unequal subsegments, and bearing but a single pair of feet. There are no ocelli; the antenne are fourteen-jointed, and the anal feet are short and style-like.

In Hecistocephalus the "ceplintic scgment," or anterion part of the head is more than twice as long as broad, while in Geophitus the same region of the head is square. 11. fultus Woorl is fulvous, polished, with a light orange head; according to Wood it is most often founcl under the iuner bark of decaying logs of the locnst tree. Geonhilus cenhaticus is an unnsually broad species found near Philadelphia. G. bipuncticeps Wood (Fig. 647) is found in the Western States and Sonora.

In Strigamia the cephalic segment is small, short, and generally somewhat triangular. S. bothriopus Wood is a bright red robust species, and inhabits Philadelphia. S. chionophita Wood is a diminutive species, leing only three-fonths of an inch long ; it is found far north, at Fort Simpson, on the Red River of the North. The largest species knorn is S. epitptica Wood from Oregon,

Fier. CL7. which is five and a half inches long. The last pair of male feet are represented by Wood to be antenniform, those of the female being small, short, and preserving the usual shape of the leg. This is an interesting instance of the anteroposterior symmetry of these animals, here more strongly marked than usual.

Patropodide Lubbock. The sole member of this family is the Patropus, which Sir John Labbock discovered in England living among decaying leares. "The body is composed of ten segments, including the head, and is convex, with sattered hairs; there are nine pairs of legs, and the antenm are firejointed, bifid at the estremity and bearing three long jointed
appendages." The two species, P. Ifuxteyi and P. pedunculdtus of Lubbock are white, and about one-twentieth of an inch in length. Lubbock regards this remarkable form as a "con-

necting link between the Chilopols and Chilognaths, and also as bridging over to a certain extent the great chasm which separates them from other articulata." No trachere could be detected. The six-footer young (Fig. 648) had the first pair of leg's attached to the first segment behnd the head, the two other pairs to the following one. The resemblance of Panropus to those Porlure, such as Achorutes, in which the "spring" is very short, is certainly remarkable. We may, therefore, consider the Panropus as a connecting link between the Myriapods and the Neuroptera.

CHILOGNATHA.

In this division of the Myriapods the body is divided into numerous segments, each furnished with two pairs of short legs, and the antemise are short, with but fow joints.

They are the lowest insects, and in Julus, with its large number of lings of the same form, we have a good illustration of the regetative repetition of the zoological elements, or segments, composing the body, which is the reverse of what obtains in the cephalized honey bee, for instance, and reminds us strikingly of the Worms. In the genus Brachycybe, a remote ally of Polydesmus, we are strongly reminced of some crustaceans, such as the Isopods, and the posterior end of the body of this Myriapor, in the broad lateral expansions of the segments, even recalls the tail of a trilobite.

Wood states that the eyes are frequently absent, and when present they are generally numerons and collected in patches near the lase of the antenne. The long, eylindrical-bodied Julus is the typical form of the suborder, while the flattened dilated Polydesmus is a more aberrant form.

The mouth-parts are either, as in Julas, formed for feeding
on decaying vegetable matter, or tube-like, as in Brachycybe and allies, the parts being converted into a tube or beak.

Glomerid az Leach. In this group the eyes are arranged in a linear series, and the antennæ are placed on the front of the head. The body is hall-cylindrical, short and plump, with from twelve to thirteen segments. The head is large and fiee, with the first thoracic ring small, while the last abdominal ring is large and shield-shaped. The genital openings in both sexes are situated just belind the insertion of the second pair of limbs. In Glomeris the boly consists of twelve rings and serenteen pairs of limbs, while in Sphocrotherium the body is made up of thirteen rings and twenty-one pairs of feet. The species are exotic, Glomeris marginata Latreille being found in Europe, and the Spherotheria in the tropics.

Polydesnide Leach. In this group the body is much flattened, the sterna overarching the senta, to which they are closely cemented, and the scuta are furnished witi lateral laminæ. "The head is large and massive, the absence of cyes and the small antenne point to a state of low development of the special senses. The female genitalia are placed in the third segment, just posterior to the second pair of legs. They are generally more or less hidden within the body; the male organs are situated in the seventh segment, replacing the eighth pair of legs. They generally project from the body so as to be rery prominent." (Wood.)

In Polydesmus the body is much flatened, with broad lateral expansions to the rings. Polydesmus Canadensis Newport is deep brown, with pubescent scarcely clayate antenne; cach of the scuta have eight scales,
 arranged in a clonble series. The male appendages Fig. 649. are hairy, with a curved terminal spine of moderate length. The female appendages "consist of a pair of bodies shaped somewhat like the crest of a helmet. Along their free margin is an opening surmounted by a double series of teeth-like processes. It is found in the Northern and Middle States. P. erythropygus Brandt (Fig. 649) inhabits the Middle and

Western States. In Polyxenus the body is short, clothed with short penicillate scales, and there are thirteen pairs of feet. (These scales, or hairs, as has been remarked to us by Mr. Sanborn, are remarkably like the hairs of Dermestes, and this homology is another proof that the Myriapots are an order of the class Insecta.) P. fascicultatus Say is about a tenth of an inch in lengih. It has been detected by Mr. Sanborn under the bark of trees near Boston, and I hare found it in Salem in the same situations, and also at Nantucket.

Julide Leach. Thousand Legs. Millepedes. This group embraces the typical species of this suborder. The body is almost perfectly cylindrical, with the sternom greatly reduced in size, those of the posterior sulasegments being almost absent, while the tergum is greatly in excess. The head is large, with often rather long and filiform antenm, and simple eyes arranged in variously shaped patches near the base of Le antennæ.

In Julus the body is slender and seldom more than three inches long; the siles of the first scutum are produced in the femate, while the antenne are long and filiform. Wood says the males are "farther distinguished by a peculiar alteration of the first pair of feet, which are transformed into a pair of very large, thick organs," which probably serve as clasping appendages. Julus is found commonly under sticks, etc. It is long, cylindrical, hard, with numerous feet, short and weak, attached to the under surface of the body nearly in the middle of the abdomen. The antennæ are short and filiform. They crawl rather slowly, and at rest curre the body into a ring. They live on regetable sulstances, or eat dead earth-worms or suats. "In the spring the female deposits her eggs in masses of sixty or serenty, in a hole excarated for the purpose under the ground ; after three weeks or more the young make their appearance." (Van der Hoeven.) Newport states that when hatched the young Julus consists of eight rings, including the head. The body of the embryo, seen from above, is compressed and wedge-shaped, being broadest at the second and third segments. For mauy days (seventeen) after hatching, the embryo is surrounded by a membrane which Newport re-
gards as the analogue of the amnion, or vitelline membrane, of the vertebrates. This membrane is at the end of the body connected with another, which in the unburst shell is external to the "amnion," and lines the interior of the shell. Newport compares this with the chorion of vertebrates. Before the amnion is thrown off the embryo moults, and six new segments appear (Fig. 650, b), and minute tubercles bud out on the under surface of the six and seventh rings, as at a. The new segments are always developed between the last and penultimate ones, as has been observed in the worms, the crustacea, the spiders, and as I have observed in the embryo of the Dragon-fly. In the young Julus no legs grow out on the third segment from the hear, but the outlet of the oviduct of the female is placed on this segment. The

Fig. 650. male organs find their outlet on the sixth ring from the head.

Julus Conadensis Newp: is brownish chestnut, ornamented with a black dorsal line, and a lateral row of black dots. The body consists of fifly-three segments. It is found in the Northern States and Canada.
J. multistriatus Walsh (Fig. 651) inhabits the Western States. The genus Spirobolus has a much larger, thicker body, and a rather small head, with short antennr, often lying partially hidden in a groove in the side of the head. Spirobolus marginatus Say is deep brown, annulated with red, and consists of from fifty-three to fifty-seven segments, The inale appendages are described by Wood as formed of two outer parts, and a comnecting yoke-like piece.

To this family withont much doubt, as Dr. Dawson states, belongs the Xylobius sigillatice of Dawson (Plate 1, fig. 4) from the Lower Carboniferons rocks Fig. ©n. of Nova Scotia. This, in its short, thick antenne, and small head, rather approaches Spirobolus than Julus, though the antenuæ are shorter, while the twelve ocelli represented in Dr. Dawson's figure (Air-Breathers of the Coal Period. Montreal,
1863. Plate vi, fig. 58-61) are arranged much as in S. marginatus. It differs remarkably, however, in the raised posterior margin of the segments, giving a serrate ontline to the body, while the body tapers more rapidly towards each end than any recent form known to us. In this respect it seems to combine the characters of the present family and that of Spirostrephon, a genus in many respects intermediate between the Polydesmida and the Siphonantia, or sucking Myriapods. Four spiracles are represented on the tenth to the thirteenth segments from the hearl.

The genus Spirostrephon is in many respects intermediate between this and the succecting family. 'The head is free, as in Polydesmus, but the sterna are soft as in the Siphonantia.

Sipionavtia Brandt. In the sucking Myriapods (Sugantia of Branclt) we meet with the lowest, most regetative, wormlike forms of the order. According to Woorl the head is very small and concealed beneath the prothoracic ring. The parts of the mouth are fuserl and united into a sucking tube for the imbibition of fluids. The eyes are either present or absent, and the scuta, or tergites, may be prolonged laterally into lamine which afford protection only to the back and flanks, the central part of the abolomen being soft. The feet are small and hidden beneath the broad body, while the male appendages are placed on the serenth segment.

In the geuus Octoglena the eyes are eight in number, arianged in two converging rows. O. bixingata Wood is brown, with a reddish stripe on each side, with about fortyfive segments to the body.

In Brathenbe the rostrum is acnte, much shorter than the antenne, while the borty is broad and flattened. The male appendages, or chasping organs, are, as shown in Dr. Wood's figures, simply modified feet adapted for clasping purposes, as they are in Polydesmis, and are, therefore, not homologous with the male appendages of insects, which are differently developed and grow out from a different portion of the segment. The Brachyryble Lecontei of Wood is from Georgia, and has long lateral expansions to the tergites.

ENTOMOLOGICAL CALENDER.

This calendar applies mostly to the New England states, where the appearances of the insects here enumerated have been recorded. It should be borne m mind that the season of New York city is about two weeks in advance of that of Boston, and that of Yirginia aud llinois about a month or six weeks earlier. It is designed to be of special use to farmers and gardeners as indioating the times of appearance of injurious insects. When only the generic name is grem several species appear simultaneonsly. The reader in noticing an iusect mentioned here can turn to the index and find in the body of the work an account of its habits.

MARCH.

Bombus, queens; a fow Ichneumons and Chalcids; Vanessa; Grapta; a few specimens of Žoctuidæ, Turtricide :und Tineidæ; Ephippophora carsana; Canker worm, fentales and males; Anthomyia; Tachina; Chironomos; Anophiles; Bibio; Chionea; Valga, on the snow; Trichocera hiemalis; Cicindele and Carabidx; Dytiscidx, and other water Jeetles; Aquatic IIemiptera; Capmadnd Tsuiopteryx; Boreus.

APRIL.
1st-15th.-Fornica; Brephos; Adela, on willows; Aphoditu; Ptinus fur; Dermestes; Anthrenus; Attagenus; Epura; Jus; Ellychoia; Larva and remale of Meloe on loolies of widd hees and wasps; Centhophilus.
lath-3th. - Polyommatus; Lycmat Thecla; Coddling moth (Carpocapsa); mosquitoes and laver; Bombylius; Burying beetles; Taryomia Inda; Buprestids; Chateophora Virginiea; Castings of Saperda candicta; Cylindrical bark borers (Tomicus, Xylographa); Hylurgus; Pissodes strobi; Hylobius pules; Phytocoris.

MAY.

1st-1.5th. - Xylocopa, Ceratina, Osmia, Andrena and Halictus nesting; Colias; Argynnis Bellone; Melitaca Myrina; Cluysophanus Phleas; Clisiocampa larva hatehing out; Scoliopteryx ; Drastecia; Coremia; Gooseberry Pempelia; Tipulidx; Hossian-1!y and Whent-midge; Cecilomyia; Srrphus; Eristalis; Squash bectle; Plum weeril; Lister; Clerns; Elater; Limonins; Cratonychus; Meloe; Cahligrapha; © lipoda corallina; Tragocephala infuscata, viridirasciata; Libellula; Hemerobius.

18th-31st.-Cynips; Sclandria rosm and cerasi, Taving eggs; Strowberry Emphytus larva; Papilio Turnus; Pontia oleracea; Melitea Phëton, larva; Argynnis: Thanaos; Fesperin; Alypia octomaculata; Sphinx; Ceratomia d.coruis; Sesia; Hyphantria textor; Aretia; Leucarctia; Agrotis and catworms; Hypena humuli, hop-wine worm; Grapholitha and other leafrolling larvo on apple and pear; Viue Penthina larva; Carpet moth; Chrysops; Geotrupes; Haltica on turnip, tomato, cucumbers, etc ; Apion; Asemum mœstum ; Gastrophysa cœruleipennis; Galleruca.
(681)

JUNE.

lst-15th.-Pristophora identidem, cranberry fly larva; Nematus rentricosus, larfa; Cyuips; Eurytoma hordei in straw; Pteromatus; Abia, laviu; L'apilio As. terias; Eudanus 'Thtyrus; Suerinthus; Abraxas ribenia; scotosia unklulata; Antiblesia promiana, lava; larva of Lithocolletis salicifolialla, juglandiella; Septicula villosella; Cranberry Anchylopera larva; Strawbery - Inchylopera larva; Grape I'terophorus larva; Anisota pellucida; Iethyun; Tabunus; Tephritis; Oscinis; Laphtia; Asilus; Bot-llies; June beetle, Lachnosterna; Areoules linigera; Pelidnota punctata; serica sericea; Ipon Suyi; Nacrodactylus subepin osus, Ruse chaler; Dicerca difaricata; Chrysobothris dulvoguttata and Itarrisii ; Alans oculatus; Altelabus anilis and bipunctalatus; Khynchites bieolor; Aryenoles septentrionis; Telephorris; Corymbites; various firehies, Phutimus ant Phofuris; Culorado potato beetre; Coceinella; Pemphigus vitiolie; Apple bark louse, Aspidiotus conclufornis; Cieada rinnosa; Edipoda Carolina; Panompa.
 tris; Gpapta Progne, lava; Cynthia cardul, larva, Atalanta larva; Limenitis Missippus; Nymphals Ephestion; Meitaea Phaton, Pharos, Marisii; Sityrus Nephele; Actias Luma; Entry: grata, larva; Trochilium tipuliorme; Eserja exitiosa; lotysamia Ceeropia; 'Clea Pulyphemus; Hypena humuli ; Desmiamaculuis; Crambus: Asopia costalis; Goosebery Pempelia lava; lainmpelus; Chamocampa; Haksidota; Ditum muisura; Eates imperialis; Citheronia degris; IIyperehiris Io; Loxotacnia rosacema; Carpocapsa pomemella, lara; Limacodes; Locust Depressaria larvia; Strohisia levipedella; Coleopliona; Tinca, chothes-moth; Ceruma boreais; Bryophiliz; Pteroplouns larwe ; Sarcophaga; Anthomyia raphani, radish fly; Seolytus pyri ; Celasphorus cinctus; Monolammus titillatol; Anomala varians; Fidia viticidil Desmoceras pallatus; Hispa suturals; J. ̧tta cinerea; Grape Coliodes larva; Squash bug, Corens tristis; Leennium quercifex; Chinch bug; Thrips; Cicada 17-deeim; Tettigonia rosw; Chrysopa, Phryganea; Neuronia.

JULY.

1st-15th, - Yasps mesting ; Pine Lophyrus larva; Mehtrea Harrisii; Iresperia Hobomoe; Satyrus Alope; Deilephina; Darasa; Harisina Amoricana; Aypia octomaculata; Phugmatobia mbricosa; Pymuaretia Isabella; Euphanessa; Hadena aretica; Catocala; Dahlia Gorlyna larva, boring the stems; Phlox worm; Emomos snbsignaria, Angerona motataria and many other Phalenidac: Phyeita nebulo, and many other Pyrahde and Tortricide; Simulime; Estrus; Ortalis flexa; Acinia; Limmobia; Monohammus scutellatus; Trichodes humeralis; Lepmara Cunadensis; Duprestis faseiatns; Grape Daridins; Reduvius; many Libellulw
listh-. 1 st. - Pristiphora grossulatix; Tremex Columba; Heteropterus marginatus; Polyommatns Comrontus; Theda falacer; Danais, lava; Argymias Idalia and Aphrodite; Egeria cucubita; Sphinx larve; Ltetheisa bella; Lithosiu casta; Ichthy̌ura alhosigma; Clisiouampa; Lagoa crispata; Xyleutes robinix; Apatela Ametiona; lquotis telifera, devastator; IIypena humuli, od brood of larve; Brachytamia malam; Antithesia pruniana; Plerophorus; Coleoplora; Nepticula; Gracidaria; Elachista; Sema trilineata; Authonomus prunicja; Eumolpus amatas; Prionus lativollis; Orthosoma unicolor; Leptostylus; Monohammus marmoratus; Limamus caproolus, fama; Clytus; Saperda; Osmodicma seabra; Cranberny Anthonomus; Tettigonia fabx ; Clastoptera,

ADGLST.
1str-7th. - Many bees and wasps; Crabronidx; Nyssonidx; Bembecidx; Larridx; Sphex, Pompilns and other fossorial wasps; Cimbex larva; Pelecinus and various Chaleirls and Proctotrybilx ; Ecericus makes its cocoon; Gortyna zex; Agrotis subgothica; Plusia; Heliothis; Northern Army worm (Leacania); Nepti-
cula; Gelechia; Lfonetia; Phalmidæ and Noctuidw; Cranbery Antithesia; Saperda calcarata; Ciytus; Tettigonix and many other Hemiptera, Grain Aphis and other Aphides; Coccide; I'hymata erosa; Ecanhus niveus; Chloealtis; Acheta; Nemobins, and other glasshoppers.
16th-31st. - Orgyia; larve of many moths and butterfies; Lycomorpha pholus; Apple Lithoculletis larva; sac-bearmg Lyonetia larva; Tomicns and other bark boring beetles; Girdler Onvideres; Psocidz; second brood of Clirysopa.

SElttember.

Ants swarm; Males and females of Rombus; Nymphalis Disippe; Gastropachat Americana, larva; Limacodos, larva; Boll worm (larya); Zercue catenuria; Larvæ of varions Lithocolletis, Bucculatrix and other Tineids; Sciara larw; Carabida; Clytus pictus oviposits on locust; Meloĕ; Mcmbracis bimaculata; Pemphigus raising gatls; Lachuus strobi.

OCTOBER.
GEcticus, and larvæ of various Tineids; AEgeria pyri; Canker worm moth; Ąnisopteryx; Hibernia tiliaria; Bdellisusomnulentella; Phagium lineatum matures. but hibernates in its cell; Hemerobius, and larva.

The Driver Aut, see p. 182.

GLOSSART.

Acuminate. Ending in a prolonged point.
Anastomosing. Inosenkating or lumaing into onch other like veins
Annuiate. When theg, antenna, ete, is surrounded by narrow rings of a dit ferent color.
Apodins. Fontless.
dreolute. Fumnished will small areas; like a net work.
Aristate. Fornished with a hair.
Aurelia. Ancient term for pupa.
Blastoderm. The primitive skin of the embryo.
Blastohermic calls. The cells forming the blastndem.
Bullite. Blistered.
Colowrated. Armed with spurs.
Cuncellate. Crossed by lines going at right angle; to each other.
Chnitate. Ending in a knob
C.wina. An clerated ksel-like ridge.

CuTpres. Tho pter ustignta.
Cellule. A little space surrouncled by veius on the wing.
Chela. Terminal portion of a foot. with amovable lateral toc, like the "luw of a crab or mundibles of arachaids.
Chrysalis. The pupa of Lepiloptera.
Concalarous. of the same cotor with another part.
Ciliute. Flinred.
cashes.
Cinereous, Ash color; color of wood
('ingrid. A colored bind.
Clamate. Club-shaped
Coarctate. Contracted; compact.
Confuent. Running into each other.
Conmate. United.
Coritate. Huart shaped.
Corizceous. J.enther-like, thick, tough, and somewhat ririd.
Corneous. Of a homy substance; re. sembling horn.
Crenate. Scalloped, with monuded teeth. Cupreous. Coppery in color.

Dentated. Furnished with teeth.
Depressed. Flattoned down.
Dilated. Willened, expanded.
Dimidictic. Ifall round.
Discal. Relating to the disk; discoidal.
Filentulous. Destitute of teeth.
Emarginate. Notshed; terminating in an mente not'h at tip.
Entire. (Vings) with a simple, not indenter, adge.
Epistomr. That part of the face betweon the fiont annl labrum.
Eruca. The larva.

Excurved. Curved oumpards.
Exserted. Protruded; opposed to inclosed.
Exuvia. Cast-ofl skin.
Frcies, Appearance, aspect.
Filcate. Sickle-shinued
Fiscice, A stripe broule (han a line.
Fivund. An assemblage of animals peopling a recion or country.
Fenestrated. Marked with transparent spots surrounded by a darker color, like window ymes.
Ferraginous, lust-colored.
Filifurn. Thread-like.
Fhaescent. Somewhat yellow.
Fiexunus. Alnost zigzar.
Folinceous Leat-hke.
Forcipated. Forceps-like.
Fover a more or less romnded depressioll.
Free. Unrestrained in articulated movement; not soldered at the points of contact.
Front. The fore-face, bounded by the eyes, the vertex, and often leneath by the epistoma, or clypeus.
Fuligimous. Ot the eolor of dark smoko. Futhoocencous. Brazen, with a tinge of brownish yellow. |dcer. Fuluous. Tawny; color of the conmon Furcated. Forked.
Fusco-testaceous. Dill reddish hrown.
Fuscous. Dark brown; approaching black.
Fusiform. Spindle-shaped; gradually tapering at each end.

Ganglion. A centre of the nerrous sys. tem, containing nerve cella, and receiring and giving out impressinns.
Geminate. Alranqerl in pairs; twin.
Gemmiparous. Asexuat generation by new individuals arising as buds from the body of the parent.
Glabrones, smooth; omposed to nairy, downy, villons.
Glaucous. Gray; bluish green.
Hramule. A little hook.
Hastrite. Halberd shapent.
Iratestallate. Furnisherl with a proboscis ov lon que-lika nonth.
Hexrin) ofous. Provided with six feet.
Hirsute. Clothed with shamery hairs.
Fyaline. Transparent; of the color of water.
Hypostoma. The clypeus in diptera.
Incrassated. Thickened; swelled out on some particular jart.

Inficmated. Clonded
Infuscrited. Darkened with a blackish tinge.
interrupted. Suddenly stopped.
Incoluted. Rolled inwards spirally.
Irrorated. Freckled, spriukled with atoms.

Lamelliform. Sheet or leaf-liiee.
Limbute. When a flisk is surrounded by a margin of a difierent color.
Lamina. A blite or sheet-like piece.
Linear. Like a line.
Lineated. Provided with line like marks.
Mandioulate. Furnished with mandi-
bles; opposed to haustellate.
Margimated. Sumounded by an elevated or attenuated margin.
GFombranaceous. Thin; skinny, and semi-transparent like parchment.
Mreconate. Ending in a sharp point,
Nutic. Cnamed.
Nymph. Old name for pupa.
Obcoriate. Inversely heart-shaped.
Obovate. Inversely ovate; the smaller ead turned towards the Trase.
Obsolcte. Nut distinct; or almost lost to view.
obtected. Corered.
Ochreous. Of a more or less deep ochre color.
Olivaceous. Olive colored.
Operculum. A lid; a small valvular appendage.
Owal. Egg-shaped.
Ovate. More or less oval.
Oriposition. The act of depositing ergs.
Petiolated. Supported on a stem.
Piceous. Pitchy, color or pitch; shining reddish mack
pilose. Clothed with pile, or dense down.
process. A projection.
produced. Drawn out; prolonged.
Pruinose. Frusty.
Psemford, Chimpregnated eggs, which produce young, as in those haid by virgin Aphitles.
Pubescent. Coated with very fine hairs, or down.
Petrerulent. Dusty
Punctured. Marked with numerous small impressed dots.

Roptorich. Alapted for seizing prey.
Recurverd. Curved backwards.
Reniform. Ikiduey shaped.

Reticulated. Marked like net work.
Revolute. Rolled bitkwards.
Rostrum. The beak or sucking monthpats in Hemipterat.
Rufescent. Somewhint reddish.
Rufints. Jedulish.
Rugose. Wrinkled.
Sthonineous. Blood-red.
Scribrous. Rough like a file; with small raised dots.
Scolloped. Etge marked by rounded hollows, without intervening angles.
Sericeuts. Having the surrace with a silk like gloss, lisually form the pres. ence of mintute, dense hais.
Servuted. Iike saw teeth.
Sotuceons. Bristle-ike.
Sesvile. Not stalked.
Simaterl. Scooper ont.
Spinoms. Armed with spines.
Spure. Stifl bristles, or epines, on the tibix.
Stric. A line usually depressed; sometimes comprosed of punctures.
Subaduncate. Somewhat hooked or caryed.
Subulate. Shaped like an awrl.
Sulctie. With gronve-like excavations. Suture. A seam, or impressed line; usually between segments.
Texeny. Fulvous; a pale dirty yellow. Teneral. A state of the imago (Nenroptera) after exclusion from the pupa, in which it has not bully completed its coloring, clothing, etc.
Tessellate. \&potted like a checker-board. Testaceous. Dull ied; wrick color.
Tomentose. Covered with fine matted hair's.
truncated. Cut squarely ofl.
Tubertutose. Covered with tubercle-like prominences.
Thernote. Hooked at the end.
Conequal Difiering in size, or length.
Chguiculate. Armed with a hook or nail,
Tolure. A small valve-likeppocess.
Teptral. lielating to the under surface of the abdomen.
Jerticillate. Placed in whirls,
Ferriculate. With thickset turts of parallel hairs.
Fermeose. Covered wilh wart-like prominences.
rillose. Clothed with soft, rather long hairs.
Fulva. Orifice of the oviduct,

ABBREVIATIONS.

Beauv., Benuvois. Roisd., Boisduyal. Burm., Burmetster. Clem., Clemens. Dahll, Thahbom Den., Dennis. Dej., Dejean. Erich., Erichson. Esch., Escholtz. Fabr.. Eabricits. Fröhl, Frihling. Grav., Gravenhorst. G. and I.. Grote and Robinson. Guen., Guenee. Gyll., Gyllenhal. Hald., Italdeman. II. Sch., Herrich-schaeffer. Hibn., Hüher. Latr., Latreile. Lee, I, econte. Lim, Linnous. Mann., Mannerheim. Mels,, Melsheimer. Oliv., Ollyier. Pack., Packard. Sanss., Saus mue, sehief., Schiofermaller. Schouh., Schouherr. St. Farg., St, Fargeau. Tellk., Tellkampf. Walk., Walker.

INDEX．

Abdomen， 14.
Abdominallegs， 21 ．
Abia capritolrum，z1s，A．cerasi， 217 ．
Abraxits ribearia，32l．
A axnthocheil a゙unat：（ 507.
Acanthosama grise $\llcorner, 5 \ldots 6$ ，
Acaridie，bift．

Acmus meelhns，dibs．
Aclulvia，G：1．
Achormes， 675
Achatodes zee，ill．
Acidalia cuthlenta，323．A．nivosaria， 393.
Acilius mediatus， 136.
Acoloithns dmericarn， 283.
Actaca viola，25 5 ．
Acratus llavijennis， 451.
Acrocem， 3 ．
Acrocinus Jongimanus， 497
A nonycta acesis，Bon．A．oblinita，30t．
dimophylla，bis．
Acrydif，5．59，547．
Aory liom aleutaceum， 571.
A tís Azteca，293．A．Lima，23t， 208.
Ailsh Eidingsellit， 318.
Allolges cocchens，523．
Aldeln era nbtecta，$\$ 50$ ．
Ad．lops hirtas， 43 ）．
Athanes cae：u9，122， 440 ．
Agriladx，277．Ageria candata，278．W exitiosa，37，E．polistiformis， 278,

A．tipulforme，ジ！
Aggial tos dehilis，tra．

Aschn：oripositor of，16．平schna， 579 ， 581．AE clepsydua，（002，E．constricta， 602，巴．herom，60士．末，juncea， 508 ．
Agabus，43s．
Agamic reprodnction， 40.
Agathidimm seminulum， 439.
Agenia accepttis，173．A．brevis， 173. A．congrutus， 173.
Aglossa cuprealis， 329 ．A．pinguinalis， 3：3．
Agrion，590，601，602．Ovipositor of， 16. A．civile． 603 ．A．sauciuna， 603.
Aerionina，508，（6） 3 ．
Agriotes， 461 A．mancus， 451.
Agriotyples armatus， 61 h ．
Acrotis， 213 A．Cochrani，303，308．A． devastator，303．A．subgothica，30f． A．sumusa，306．A．telifera，30e，A． tessellata，306，
Air－bieathers， 679.
Ail Yesicles， 42.
Alaus oculatus， 450.
Aleochama，423．460， 441.
Alemrodes，泡解．
Aleuronia Westwoodii， 609.

Alinentary canal， $3 t$.
Alluatus bashurus， 224.
Alleculat， 47 m ．
dilotrith， 213.
Alucita，20：5．A polydactyla， 357.
Alydus eurinus， 546° ．
Nypia octo•na＇tiat．， 281.
Alyson oppositus，1．2．
A matra，tesis，
Amblychila， 429.
Amblynollis， 212.
American Silk－worm， 195
American Tent Caterpillar， 343.
Ambuophila arenaria，17．A．cementa－ rin，171．A．hirsnta，17．A．luctuosa， 171．A．sabulosa，170，171．A．umavia， 171.

Amnion，678，679．
smphlicerns bicaudatus， 171.
Amphirlasys cognataria， 322.
Amphizon insolens，tyu．
Amphizoidae，434．
Ampalex Sibirica， 106 ．
Anagres， 302.
Anal cerci， 22.
Anal forecps 81.
Lanl plate， 30.
Allaphes， 202.
Anarete， 378.
Ahata algida， 316.
1na－ppis， 47%
Anはボ Junlus， 603.
Anchylopera fiagarix， 340 ．A．medio－ 1asciann，338．1．nubeculana， 838 ．A．
 d．Vaceiniana，3iss．
Indrena，141，142，113，145，14：408．A． vicina， $14 t$.
Andrenctæ， 142.
Andrenus marginicollis， $4 t 3$ ．
Angerona crocataria， 319
Ansommois Grain－moth， 350.
Anisopteryx，231．A．pometaria， 321. 1．Vernata， $200,324,325$.
Anisota rubicunda， 300 ．A．sematoria， 3100.

Anisotoma， 439
Anobirmm notatum，47：A．panicenm， 181.
Amonnala valiams，toñ
Anomalon vesparum，127，150， 195.
Anomis xylina， 31 ．
Anomma arecns，181．A．Bummeisteri， 181.

Anopheles quarlimaculatus， 370 ．
Anophthitmus Tellkemphis， 434.
Anotia Bonnetii，53s．
Antennæ，2\％．
Antenmary serments，20， 58.
Anthetran Yama－maii， 296.
Antherophagus 446, A．ochracens， 131 ．

Anthicidæ, 476.
Anthicus, 476 .
Anthidium, 135.
Anthocharls cardamines, hermaphoo dite, 46.
Anthocoris insidiosus, 54.
Anthomyia, 131. A. brassicar, 411. Λ. ceparim, 411 . A. cunicularis, 411 A. mphani, t11. A. urcaad, 150. \&. zer, $411,41 \%$.
Anthonomu; cratrai, 487. A. prunicida, 487. A. quadrigiblus, 487 . A. scutellatue, 157. A. suturalis, 187. A. syco Hhant, 487. A. teseelliatus, 487.
Anthomphgus ceesus? 422.
Anthophora, 29, 1 :1203, 35月. A abupta, 133. A. megachilis, 206. A. taurea, $13 ;$
Anthophorabia, 11t, 135, 136, 202, 200. A. merachilis, 1:31, 1:37.
Anthrax, 1a1. A. morio, 397. A. sinteosa, 1:2, $140,397$.
Anthrenns varius, 488.
Anthribita, 53.
Anthrobia Mammothia, 645.
Anti-pil:, B4.
Antulhesia bipiutitana, 333. A. prumiana,
Ant lion, (b)l.
Apatelis Americana, 30 e,
Apathus, $1: 31,112$. A. Ashtonii, 131.
Alhille, 112, 517, 519.
Aphtces, $88,50,54,161,202,378$.
Aphichits, 198, 205, 52]. A. aventhhis, 198. A. triticuphis, 1.8.

Aphis, 69, 7:38, 20:2,213, 372, a7n, A. aceris, 021. A. avenx, 522. A. massicx, 52. A. cerasi, 522. A. clianth, 520. A. nethi, fon. A malitolix, 523, A. persicx, foz.
Aphis lion, C00, 611.
Aphodius fimelarins, 4.53. A. fossor, 453.
Aphomis colonella, ises.
Aphrophora guadrinotata, 532,
Aphrosylus, 403.
Apiatia, $115,117$.
Apion Swi, 18%
Apis mellińltạ, 117.
A postness, 79 .
Apoica pallida, 155, 150.

Apo ns lusciatns, 17.
Apple ny, ;8\%, 411.
Apple leaf crumpler, 831.
A piple tree borer, 500.
Arachnitia, 101, 625, (is)
Arachmids, (62), tiso. © $40,643,660$.
Aradus crenatus, 5.53.
Aranca dizdema, 1:3.
A ranex, 63\%.
Arancina, (39, fatt.
Arelemogryllus misches, 564.
Archetarhus rotumhatus, 06%.
Archimnlucris Aradica, 78.
Archyitera, 24.
Aretia, 239 A. Amn, 286 A. caja, 63. A pulien, 281 . A. virgo, 280 .
Arctians, 2e0.
Aretisen, iff.
Areas Persicus, gran 2.
Apermnls Avhroltic, 253. A. Atlantis,
2.5. A. Bellona, 25リ. A. Diana, 2m. A. If:liar, 2ig. A. Montimus, 2.j3. A. Murina, 253.
Argyomiges qucrifoliclla. 3 3n.
Argymeta, f:3). A. aquatica, 649 .
Arma spinosa, 517

Army worm, 77, 196, 197, 203, 385, 407.
Arthromadres, 475
Arthromere, $\mathfrak{0}, 16$.
Arliculater, $1,3,6$.
Ascalaphus, $54,612 . ~ \Lambda$. hyalinus, 613. A. machronills, 613.

Ascleva, 476.
Asethum niœestum, 496 .
$A=e x u a l$ forms, 49 .
A=h, moutatim, slug, 222.

Aslus 3i2. A. sericcus, 390.
Asopia costalis. 328.
Asparagus beetle, 70, 502.
Aspatherium, 617
Aspitiotus, 50. A. couchiformis,528. A.
THarrisil, 5:30.
Astata unicolor, 1 ch.
Asymapta, 378.
Atax, 612, 6fit. A. Bonzi, 640 .
Athalia centifolim, 44.
Athous, 461 .
Atopa, 46 .
Atropos divinatorilus, 589. A. pulsatorius, 589.
Altaci, $23 t$.
Alta clypenta, 186.
Attagninus jellio, 448.
Attactus, 2us. A. Alias, 206, A. Aurota, 2:7. A. Mylith, 296. A. Peruyi, 296.
A Y:mantar, 2 ต
Attelalme malis, 485.
A14 4 , 1:4, 655.
Angochtora purus, 143, 156.
Aulacizes mollipes, 5id.
A lular ofes nigriventris, 195.
Aulax, 212.
I Poticca, 585.
Betitis interpunctata, 505 .
Bolminus masiche, 4 ED 5.
Barirhus trinetatus, 491. B. sesostris, 491, 13. vestitus, 4il.
Bark lice, 11.
Batuchedra ealicipomonella, 352.
Betrachidea cristeta, 572.
Batrachomyia, sos.
Bat-ticke, 410, 418.
Biclla longiconais, 660 .
Btellicta, tif0.
Bear animelculas, CC8.
Fed but, 5:1.
Dee killer, 230 .
Bee lonse, 118.
Bee moth, bïs.
Dee, renation of 23.
Belostoma, 80, 518. B. griser, 537. B.
Moldmatium, 537 .
Bembecidx, let.
Bembex fascistr, 164. 13. rostrata, 164.
B. tarsata, 164 .

Fembiclium, 422, 434.
Bemis, 3/2
"Benna" ny, 412.
Bernsus, 4s.
bethylu" fuscicomis, 201.
B'bio allyipemis, 392
Tilsionirre, 391.
Richo, 3:0.
Bimhiza nigra, 211.
Burd lice, 551.
Bind saremptits, 642.
Mird ticeks, 4.14, 417.
Bite of maects, 43.
Bittacomorpha, 54. E. clavipes, 884,

Bitactus, 5 t. B. pilieomis, 0 b.
Blatk liy, 300.
Blape mutisidrat, 4-3.
Blastoderm, in.
Bhatophatgatyossorum, 207.
Blatat 194. B. Gemmanica, 481. B. ori404talis, 57:
M1 1t:riae 5%

Blood, 37.
I3lue-botile $11,407,498$.
I3 mumia gnopht:ria, 322.

Bolbo:nvia, 3\%

B. SL. Lu $31=4+1$.
bolitophida, 3\%
B min, wher bectle, 40.
is mbus, $\overline{3} 3,54$, ($5.5,130,132,135,146,400$.
13 tervidus, fol.
Bombus, he ul of, :30.
Bombycirat, 20), 234, 238, 283.
13 mbsliedte, 345.
Is mbellus, ot t, l $1 \pm 30 \%$.
Bomberx IIntoni, 24ín B, mori, 293, 294,

Benco:1 ointia, 417 .
 (615. B. nivoriunslus, 615.

Bostrichns. 171.
3 , $4 \mathrm{fl} \mathrm{y}, 2 \mathrm{n}, 10$.
13othoopolys multidentatus, $\$ 74$.
Botys cirrina, 331. B. verticalis, 330.

Thamyoybe, 6 . 6. . Leconter, 080.

Brachso 1.5 .
Bracon, 1! $5,193$.
B:aconi he, 1.7.
 4.3.

T3 'allia, 49, 30, , 88.
B atula cate ath, 127, 179.

1) aulima. t1s.

13reeze-11icz, 403.
Jeenthus septentionalis, 485.
Brephos intins, 91 d.
Pristle tail $=122$.
Burn hilie, tst
Betuchut habi, 481. B. 1isi, 4S4, 513.
Buprestida, l.sd, 4.57.
Buthus Carolinianas, 059 . B. hivsutus, (1) 1.

Futterlies, hamapsmoditism in, 238.
Butterfo, ventution of, es.

Istituth-wood Themex, 223.
Byruhila, 469.
Bymhus Americanus, $449, B$ pillula. 449.
Byrsoctypat, 52:
Byturns unicolor, 418.
Cabloge butterts, 249 .
Cabbago matgot, 411.
Caberoilos metroc:mparia, 220 .
Cactus or case-worm, 6, 615.
Oaddis-1lies, 233.
C $10 n i s, 5 \% 3$. C. hilaris, 506.

Cabl lunaia remmienlato, ass.
Callidinm antennatum, tim,
Calligrapha Philadelphica, 509. C. scalaris, 509,

Callmome, 21 .
Callman"رlia Lecontel, aso. C. intermpo to-maryimatir, 足,,

Callochilazab chturis. Zin:,

Calosoma calidum, $431 . \quad \cup$ serutator, t.il.

Caboptenns bsiltatus, sio. C. femum-

C.lnpeerymat, S5.

Calotemes eastanells, 58.
Cimpoted firtgilis, fent.
Campo Iex, ob.
Canpylomyza, 3-8.
Cuker worra, $00,3=4$
canlier-wom moth, 200.

Capsini, 5.50 . 50.50 .

Canlialk, $421,423,421,427,4: 40,45,437$, +4
Canoms anomitens, 432 . C. servatus, 432.
Carilo. 2s.
Carnus hemajterns, 41 S .
Cureutur-bee, 1:3.

Capobapsa pomonella, 341.
Corpophtas antidnus, 41 .
Curmon or sexton Beetle, 43.
Layboras, 79, Bu.
Cia=e-1ly, 6
Casmonia Penstlymica, tm.
Chasisha, tos. C. anrichalcea, 501.
('aysidomxita, 408 .
Castnia, 280.
Catacersta fulicalis, 330 .
Catocala, 302. C. piatare, 317, C. ultro 112, 317.
Calucha, 378.
Catopis. 439.
Cebrio bicolor. 463.
Cemrionilx, t 6 .
Cecidomyix, 202, 205.
Ceciolomita acrophila, 8-2. C. artemisize,
199. C. destructor: 3n, $34 . \mathrm{C}$. fuscicollis, 372. C. glutinosa, 372. C. gronsmluria, 370 , C. bavida, 372 C. piniinolis, 376. C. rigudx, 370. C. robiniae, 495. C. salicis, $364,373,3 \pi 5 . \mathrm{C}$ salieibrassicoirles, 377. C. strobiloides, 377. C. tritici, 3i5, 3it. C? vitis-coryloides, 37.

Ceritiomydix, 371.
Cecropia moth, 27, 23t, 208.
Cells of the IIoney bee, 120 .
Cemmits mornatus, 161.
Centiperles, $10,073,67 \pm$.
Ceplatizalions.i.
Cephaloinae, 476.
Ceplatoon lepurides, 476 .
Cephalothoritx. 8.
Cephus, 215. C, ablome riatue, 227. C. thimaculatus. 227.
Celimbyeirła, 425, 426, 493.
Cemphron, 109. C. Armatum, 200.
Cerasphorus cinctus, 4!5.
Ceratian, 143. $219 . \quad \mathrm{C}$, dupla, 134, 140.
Ceratocampadie, 299.
Cevatomia Amynior, $27 t$.
Ceratopogon, 3 I
 deserta, 159. C. tricincta, 159. C. tuberculata, 109.

Cercopiतæ, 588.
Cercupis, 5 社.
Cercyon, 438.
Cermatia, dio. C. forcens, 073.
Cermatidæ, 673.
Ceropalus bipinctata, 174. C. Robinsoniii, 1 F.
Cetonia, t5j, 457.
Centhophilns maculatus, 5bj. C.stygins, 5方.
Cetitorhynchite, 150.
Chatertick, 20.
Chaleids, lijl, $20 \vec{T}, 110$.
Chalcis almitions, zu3. C. bracata, 203.
Chalcophoral Virgmensis, tis.
Chaliedtoms macm"a, les.
Chatergus chatamus, 15.
Chaytophtithoralis, dus.
Chinuliodes peetinicurnis, fist. C. rastricomis, tiot. C. semiconis, 307 .
Chatiognathus Pensy Lsanicus, 467.
Cheese magrot, 113 .
Chelifer, 639 . C. cancroides, 650.
Chelvmorphat eribariat, 504
Chermes, 30,523 . C. ablietis, 525 .
Chernes. C. Sanborni, Gī̈
Chernetita, $6 \overline{8} 8$.
Cherty shat, 233.
Cheyletus, 6 if5. C, semenjportus, 668.
Chigoe, ${ }^{3}$)
Chilocorus bivulamernas, 513.
Chilugnath:t, 6711,670 .
Chilupodia, sino. biz.

Chinch thar, 543.
Chion cinctus. 495.
Chionea, 358, 535. C. araneoides, 383 . C. Yalga, 383.
Chionobas, $75.253 . \mathrm{C}$. Bore, $243 . \mathrm{C}$. Calais: 2tis. C. Clirisus, 2u3. C. Juta, 203. C. CEno, 203. C. semidea, 263 .

Chigne, 390.
Chironumide, 3io.
chironomus oceanicus, 370 .
Chronomus larva, 21 .
Chitine, 1, !.
Chlemins, the.
Chlanys plicata, 510.
Chbriaitis conspersen, 538.
С
Chorion cyanem, 107.
Chorops ITerpinii, 415 . C lincata, 413 .
Chrerotes trunsremata, 319.
Chrestotes limidea, 5 si3.
Chrysilida. 100, 190.
Chyyis, 154, 151,192, C. hilaris, 192.
Chrisobolnis fentrat 1 , .8. C. Hamisij, (53).

Chys somelidæ, 501.
Chrysopa, $4 \overline{7}$, 79. C. perla, 611. C. oculatia, 611.
Chrsophams Americanne, 20t. C. Thoe, $2(4,35 \%$.
Chrysors niger, 303. C. vitlatus, 3 an.
Cicada canicularis, 16%. C. Cassimii, $5: 5$ C. pruinosa, $534 . \mathrm{C}$. rimoza, $\mathfrak{y 3}$, C. septeudecim, $53 . \mathrm{s}$.
Cicatellina, 531 .
Cinalide, ils.
Cicindela genconsa, 430. C. hirticollis, 430. C, panctat? 430 . C. purpurea, t*o. C. sexguttata, 430 . C. nelgaris, 431.

Cicindelidre. 423, t29.
Citaria diversilineat. 325.

Cillenum, 434 .
Cimbex Anericana, 215.
Cimex, $5 \mathrm{lt} . \mathrm{C}$. columbarius, 551. ©.
 pipistrelli, 5.51.
Cioila, 47.
Circulatory system, 37 .
Cis, tie.
Cistela, ta
Cistelid $x, 425,475$.
Cutheronia Mexicana, 29\%. C. regalis,
23: C. sepulcrahs, gus.
Clatius isomerat, 2e!
Cladomacra macrophs, 114.
Cladlura indivisa, atio.
Clambus. 430.
Chassification of insects, $10 t$.
Clastontera protels, 3 3in.
Chiniger, 440
Clarola, 2's.
Cleptey semiaurata, 192.
Cletidse, 4 sis.
Clerus, 468 . C. alvearius, 469.
Clinidium, fis:
Clisioc:ampa, 15\%, 199, 343. C. Ameri-
cana, 207, 2\%8, 801 . C. elisstra, 301 .
Clivinit, 43.
Cloxeth 23.
Cloé, 593, C. prgmæa, 50
Clothes moth, 346
Clothillit picea, 580.
Clover worm, 3s.
Clubione holosericea 103. C. medicinalls, Git9. C. traticiullia, 649.
Clypens, 29 .
Clytus, liju C. ameiforms 297. C.picins, 497 . C. robinie, tis. C. speciosus, 496.

Coccus cacti, 52, C. citri, 527. C. lacea, 527. C. manniparus, 527 . C. Gloverii. 5 \% Cocciclae. 112,525.
Cocrinella bipmortita, 5Jl. C. novensnotata. 512. C. trifasciata, 512.
Coccinellidat, 511.
Coccophagu2, 527.
Cocens cacti, ins.
Cochlidie, 288.
Cockchater, 71.
Cockroach 1 194, 505.
Cocoons of silk Wrorms, 210.
Cortuling moth. 341.
Cembodes inarquas, 400.
Coblinxys octodeutata, itl.
Coelodiay \& (NoLudonta) unicornis, 202.
Colcophora ronnspipemmeht 3is]. C. rosarella, 351. C. rosarfiliella, 35.
Coleoptera, $400,4 \times 1$ Antennce of, 422. रimmber ol spectes of t2 $\overline{7}$.
Colias, 24t. C. interior 25], C. Labradntensis, 250. C. occidentalis, 251. (.. Philodice, 2.50 .
Collecting insects, 84.
Colletes, 1.11, 143, 147 .
Colon, 36.
Colorido potato beetJe, 408,598.
Colunilia, 378.
Colytitic, 415.
Colvoinm elongatum, 446 .
Colymbetes, 43 .
Common fly, 361 .
Compreherisire types, 54.
Compsidea trirleintata, 499.
Condyloderat tricondrloirles, 567.
Conioptery x, © 2 . Citineiformis, $609 . \mathrm{C}$. vicina, 609.

Conocephalus ensiger, 560.
Conopidue tu0 418.
Conope, 181, $3 ; 3$. C. Ravipes, 401.
Conorhinus sanguisuga, 5 t?
Conotrachelus nenuphar, +88 .
Copuis, 4. C. Carolian, wjo.
Coptera, 201. C. polita, 201.
Cotmens subaprerus, 511.
Comdula tenebrosa, bot.
Cordulina. $58 t$.
Coleidre, 5l?.
Corethri, 65, 370.
Cureus mateinitus, 5t4. C. Scapha, 545. C. tristis, 545.

Corimelaena mulicaria, 5t\%.
Corisise, $\overline{3}+2$
Corixa interiupta, 536.
C.n'll, inse - 5 s injurious to, 300,311 , 8.j.j.

Cormer, 8 .
Coryatalus, 7i. C. cormutus, 33, 579, 607.
Corymbites aripennis, 462. . virillis, 43. O. eyliudmommis, $102 . \mathrm{C}$. trinun dulatus, 46 , C. hieroglyphicus, 4.2 .
Corymetes, 468.
Costit, 2s.
Cotalpa lanigera, 455.
Cutt su linomis, 313.
Cotton Buammia, 329.
Cotton IICliothis, 315.
Cott m Leaf roller, 335.
Cotton 1"lasia, 312.
Coxi, 20 .
Craturo, 140, 197. U. sex-maculatus, 159. C. sindularis, 158,160 , C. stirpicolin, 158.

Crabronirdx, I 19, 155, 157, 195.
Crambidia pallida, 2s.3.
Crambus. 23 . C. mutabilis, 382.
Cisnbery Anchylopera, 33s.
Cranberry Oidaria, 325.
Ulimbery R'vistiphora, 217.
Cmbbery Tortrix, B3
Canbery weevil, 487.
Crane-flies, :3so.
Crepitoclera encumeris, 50 .
Cressonia juglandis, 271.
Crickets, 5
Crioseridas, +26
Croceris asparagi, 502.
Clocota ferwoinosa, 28.
Crossidius pulchrior; 40
Croton bing, 575.
Crustacen, tisio.
Crastaceans, typical, 5, 7, 8.
Cryphalus materarius, 4 ! 3 .
Cryptocephalus, 510 .
Cryptocereus pinnetulatus, 586. C. multispunosus, 1! 10.
Cryptophagida, 446 .
Cyptophagus hirtus, 41%.
Bryptus, Its, 197, 395. C' ormatipenuis, 197.

Ctenistes, 429.
Ctenocerns, 114.
Ctenophoris, 381.
Ctenostoma, 48.
Ctemuchat, 239, 280. C. Virginica, 23t, ± 83.
Cuckoo bee, 141, 147. Cuckoo flies, 191.
Cucujidx, 446.
Cucujus, 446.
Cnemmber flea beetle, 503 .
Culex pipiens, 369.
Culicirla, 368.
(tupes capitata, 470. C. cinerea, 470.

Cupesidæ, 469.
Cureulionida, $130,378,425,426,48$.
Cumant Ibvaxas, 32 1.
Curant Bolers, 27\%, 500.
Currant Pristumbra, 릏.
Caterebra buceata, to6. C. cminimi, 406. C. emaseulator, $405, \mathrm{C}$, bormipilum, 106.

Cut-worms, Remedies for, 308.
(Cychrtis, 43.
Cyblonotun, 438.
Uselopthalmas, 6;0. C. Rucklandi, 660.
Cylindrotoma, 3st. C. distinctissima,
381. C. (Phalacrocern) replicata, 381.

Cymatophora caniphagit, atot.
Cyminalis, 433.
Craputa, 2dj. 208.
Cynips. $00,2 n 2 . \quad \mathrm{C}$. contluens, 209, 211.
O. divia, zom. O. folii, 20% C. galla-
tincturia, 211. C. querens-acienlata, 248. C. ytereus-lutilis, 210, 2ll. C. cuercus globulus, 210. C. quercus-pa-
lustris, 2ll. C. querens-papillata, 310.
C. seminator, 210 . C. tubicola, 210 .

Cymthiit, $2 \pm t$
Cyphon, 444.
Cyrcida, 3!
Cyrtoplyyllum concarmm, 566.
Datdy-long-legs, 380.
Dailuinja, $\bar{x}(i \overline{5}$.
Jawais, 245 . D. archippus, 251.
Dascy-1lidas. 494.
Dasypogon, 361, 395.
Death's head sphinx, 28t.
Tecithous legs :21.
Deformities of Insects, s:3.
Degeeria nipalis, 62 อ̄.
Deilephila lineata, 2iv. D. chamonerii, 274.

Delphax arvensis, 533.
Demodex, $62,6 t^{2}$, D. folliculorum, 69, 667.

Dendroides Canadensis, 477. D. concolor, 177.
Depressaria atrodorsella, 349. D, laterella, $3+9$. D. robinjella, $34!$.
Dermaleichus pici-pubescentis, 666 .
Dermanyssus avium, 66\%. D. pipistrelle, $6 \mathrm{jij}_{3}$.
Dermaptera, 5 :7.
Derimatobia moyocuil, 106. D. noxialis, 406.

Dermatodectes bovis, 600. D, equi, 606. D. ovis, 60.

Dermestes lirdarius, 448.
Dermestilae, 448.
Derorlontider, 447.
Desmia maculalis, 330 .
Desmocerus cymueus, 500 .
Desoria, tiv.
Development of Insects, 54 .
Devil's darining needies, 597.
Dexia, 408.
Diabrotica dnodecim-punctata, 506. D.
yittata, 503.
Diallous, t+2.
Diapheromera femorata, 5 5.
Diaphia cecinlomyiarum, 19%.
Diastrophus, 212.
Dicerca rlivauicata, 458. D. lurida, 455.
Dichelunycha elongatula, $4 \overline{0} 4$.
Dictyonenta, бsz.
Dimorphism, 5s.
Dineutes, 79, 80. D. Anericanus, 437 .

Diplax， 5 ， 50,600 D．Bereuice， 605. D． Elisa，sua．D． 1 mbicundula， 605.
Diplolepariz， 208.
Diplolepis confluens，1כゴ．D．conllucn． tus， 140.
Diplouguhus， 80 ．
Dplosis，3F：D．sociatis，3ñ．
Dipneumomes， 648.
Diptera， 3 as．Number of species of， 267. Ventition of，3teo．
Discases of insects， 81 ，品t．
Diving licetles，tias．
Dolerus arvensis， 22.
Dolichopodida，tos．
Dolometles lanceolatus， 1038 ．
Dolopins stabilis，t61．D．pataper， 461.
Donacia Kirbyi， 5 ，D．proxima， 302.
Dor bug．45．
Dorcas brevis， 451.
Dorcatomma，42．2．
Dorsal vessel， 37.
Dorthesin， $\boldsymbol{x} 26$ ．
Dorylus， 181.
Doryphora decem－lineata，508．D．juncta， 5\％．
Dtagon－flies， $584,547,630,679$ ．
Drussus， $64!$ ．
Drasterit erechtea， 317.
Drilus，etsi．
Trop－worms， 318.
Drosophilic，3ī， 414 ．
Dryopteris rosea，ens
Dnetus ejacultitorius， $4 t$ ．
 Tityus， 10% ．
Dysdera，6：33．D．interrita， 649.
Dytiscidae，tet，103，43：3，t37．
Tytisens，53．D．fasciventris， 43 ．
Tacles imperialis， 300 ．
Earwigs，bit．
Eburia？Ulkei， 495.
EChiniscus， 642.
Echinomyia， 408.
Eciton Mexicana，186，E，Sumichrasti， 18%.
Ectatomma ferrnginea， 13 ．
Eetobia Germanica，576．E．Iithophila， รั，
Erlema albifrons，ges．
Egres， 40 ．
Esg－parasites， 19 s ．
Eiphosomat ammatum， 185.
Elachista？orichatcella， 352.
Tlaphritu， 431 ．
Elasmocerus terminatus， 468 ．
Elater， 4 60．E．obliquus， 461.
Elateride， $421,405,4 \overline{2} 9$.
Elephantomyia Westwoodii， 383.
Elis costalis， 17% ．
Ellema Harrisii， 2 if．
Ellopia，318，E．lisciaria， 3 30．E．flagit－ iakili， 320 ．
Eim luatterfly，260．
Eim Ennomos， 32.
Elm Tremex， 228.
ELmis， 150.
Elodes， 473
Embia Sitvigni， 588.
Embidæ，58：3， 588.
Emesa longipes， 541.
Enmenadia， 181.
Empirctus maculatus，2：0．
Fmpida， 102
Empis， 361.

Cmpretia stimulea， 289.
Empusa，$\overline{5}$ ．
Emyrlium testuto，fif9．
Encyltus，223．E．Butus，207．E．Reate， 2u7．E．variconles，207．
Fuclomychuda，51\％．
Endropia tigrintria，： 220 ．
Emmonus maguaria，s：21．E．sulusignaria， $3: 1$.
Enowsia pusilla， 616.
Entomologicas journal， 103.
Entomological systems，ing．
Fintomologicel works， 97.
Embomostraca，（jus．
Eowrorpion carbonarius， 660
Epeira domiciliorum，G51．E．vulgaris，

Eperlus， $1 \frac{1}{2}$ ．E．variegatns， 167 ．
fophemera rlerora，5il．
Ephemeritle，588，580，581，583，593．
Euhemerids，583，593．
Ephemerina，$\overline{\text { à }}$ ．
Fhemerites，o！t．
Ephydra halophila， 414.
Evicranium， 29.
Epiflosis，372， 378.
Epilachna borealis， 513.
Epimera， 9
Epiphary 20 ， 29.
Epipone nitutulans， 203.
Eplimes， 401.
Episternum， 9.
Fpuræa，443， 446.
Eriastria carneola， 310.
Erebus A grippiat，318．E．odora， 318 －
Eremophila Ehtoblergi， 575.
Erioptera renusta， 38 ．
Er＇iosonta langerat，5is．E．pyri，525．
Fristalie，358．
Fruolites mollis， 47.
Erotylux，510．
Erythroncura ritis， 532.
Eucera，141．F．macuiata，136，
Eucerceris zonitus 159.
Euchera socialis， 24.
Euchroma Columbica， 459.
Euclea Monitor， 28% ．
Euchronith Mria，2m）．
Etucnemis， 460.
Eudanus Bathrilus，269．E．Tityzus， 269 ．
Eudryas，280．E．grata，2s1．E．unio， 282.
Eugereon Buckingi，54，78， 58.
Eulouhus basalin， 207 ．
Emmenes，147，15．5，156．E．courctata， 207.
E．Fiaterna，155．E tinctor， 1 w．
Eumolpus auratas， 509.
Enphanessia mendacia，285．
Eupithecia misernlatit， 325.
Fuplexoptera， 577.
Eupyrhoglossum Sagra， 977.
Enremia， 280.
Euryomia 1nda， 457.
Enryptyehia suligueana， 337.
Eurytoma，203，205，212，E．Havipes， 205.
E．horkei，203，2n5．E．secalis，20．
Euscirthopterus Poeyt， 252.
Eumburbitali＊，218．＇E．perturbans， 218.
E．salicis－ormm， 218 ．
Evagoras virutis， 542.
Gragorus， 80.
Grania，194，195．E．levigata， 191.
Evanidie， 194.
Eyes， 25.
Facets of eye， 25.

False legs， 17.
False Suorvions， 632.
Fatty bory， 37.
Fitmati， 71.
Femind， 21.
Fulia viticilli， 503.
Fidonim piniaria，hermaphrodite， 4 ．
Figites， 2 F ． F ．（Diplulepis）5－lineatus $\because 0 \mathrm{~B}$ ．
Fiviticke，2ld．
Filiaria，83．
Filstaba hibermalis， 649.
Fire ily，402， 665.
Fire－worms， 339.
Fir saw Hy，2u．

Flata，112， F^{\prime} ．limbata， 533 ．
Flen，11， $360,380$.
Flesh $\mathrm{H} Y, 40^{7}$ ， 418 ．
Flight of rasectis，
Funus，10），1川．F．jaculator， 105.
Forest－lifes， 118.
Porticula， $5 t, 577$.
Foblicnlarix， 575
Formina thria，18．3．F．fulvacen，I83．F． fusta，180．F．heroulanea，183．F．Pen－ sylyanica，18）．F．rubra，183．F san－ g＇ininea，180，18：， 283.
Formientie，174．
Fumnicomus， 17 仿．
Fojnis， $4 ;$
Fossil Diptera？ 363.
Front of the hetal， 31.
Futheworm，（Crinberry） 340.
Fulsora candelana，Јis．F．lanternaria， 53% ．

Fungus eating－flies， 199.

Galen， 28.

Giblerita Lecontei， 433 ．
Galmuta grlatinaria，504．G．margin－

$$
\text { elle, } 305 .
$$

Gatu－us，201．
Gulgu Lini，5．${ }^{\text {G }}$ ．
Gialgulus oculatus， 539.
Gallmia cercana，ato．
Gall－lics，190，208， 37.
Gall－minge－I！${ }^{\text {G／}}$

Gaminsus coleoptratormm， 663.
Gaztropachl Limerictan， 300.
Gast 14 philus eytui， 41 ．
Gelochiat revealills ；00．G．fungicoxella，
330．（r．roseosullu－ella， 830 ．
（rena， 2 s ．
Generation，organz ol， 43.
Genital oryanc．1s．
Geogtaplifal Distuibution， 72.
Geolonieal Distribution， 77.
Geometra iridarin， 323.
Geometritlic， 303.
（reophilinae，6：5．
Geophilus Dipuncticeps，（ion．G．cephal．
1elts，6i．）G．motwvis， 6 ．
Georyssirle，4t！
Georyssus pusillus， 450.
Geotiopes，sitis．G．splendidus，4．）．G ． stereoraritus， 32.
Gerris，5l6，5\％G．Galudum， 540 ．
G．rufoscutellatus， 540 ．
（ Mill 2,41 ．
Gilitler， 498.
Gizzalrl， 85.
Glamopis，280， 283.

Glomerida，fin．
Glomerio nearinata，6nt．
Glossina morstans， 407 ．
Elow－worma，t2y．
Glyphe， 203 ．
Gohden－cyed fly， 303.
Coldimath bexile，tõ5．
Goliathus cacieus，t50．G．Diuril，45\％．G．
Guhtitilills，tix
Gontphinit， 584.
Gomilus， 397. G．fiatermus， 603.
Gonitoplts lumatus， 199.
（ Gunit， 108.
Gonocer＇us，btw．
Gomyleptes ornatimm，Gay．
（x）oseberry Mnge，3－6．
Goosumbry Pompelia，sil．
Gootelerry Pristiphorio， 217.
Goosclerry saw－11\％， $217,219$.
（＇00－ellerr＇y worm，3：31．
worlius， 82.
Goitymi dlarago，310．G．nitela，310．G．
letucostigmm，：3l0．
Gorvtes 1 lavicomis， 163.
Grucilaria，ate．
G：ain moth，3．7． 350.
wain weerll，40．
Granatophora trisignata， 304.
Giane 1 colvithns，2s2．
Grape 11 ypia，2s1．
Grape dnomalit， 455.
Grape Burnclits， 491.
Gílje Borer， 278 ．
Grape Cidaria，zion．
Grape Desmia，b30．
Grape Eudryas， 281.
Giape Filla， 502.
Grape－leaf Eleabeetle， 007.
Girape－lear fohter，3aso．
（xape Penthinit， 336.
Grape Philampelus， 875.
Grape Pterophorus， 350.
Grate Thyreus， 276.
Grape weovil， $1 \% \%$ ．
Gmpholitha，；，²T．
Graptat c－atwentedm，©60．（c．comma，260．

 Gras：hoppers，mus．
Greuse moth，：3en．
Green－head fis．303．
Groted anguina， 197.

 $5: 3$.
Gryllus abberevitus．5月t．G．campestris， 60．G．domestime， 5 ：3．G．hethosms
 Gucst wall－fles，212，
Gyrinide， $424,436,437$ ．
Grimus，422．（4．horealis， 437.
Gyropus poreelli，505．
Tarkena chenoporlii， 30 g．
Hadencerns subtermbers，5市．

II tessellatis．
TIalietus， $1+1.112,14 t_{4} 1$ tว．H．paralellas， 14．）．
Haliplus， 436.
Falonota simulana． 997.
Haltiea rhalym， 507. H．cucumeris， 505．H．striolata， 507.
ILamamplistea comma，ide3．
Haplophlebum， 5 ．

Harpactopas, I:-
IIarpactor cincors, 542
Harpalus, 542. H. caliginosus, 420,434 .
Harpax, 5 .
Hurvest-men. $6,32,653$.
Hatching of the larva, 61,
IIend, appendiages of, 24 . Segments of, 20. structure ol: 18.

Hearing, organs of, an, selle of, wo.
Heatt, 37 . Development or, ${ }^{2}$.
Hedyehrim bidentalin, wis. H. dimidi. atum, l!2. H. lecidutum, IS1. II. regiman, 1 !.
Heammon, 45 .
Helichus, t50.
IIcliconia Melpomone, 2 and.
Helicopsyehe, blj. IL arenifera, G19. II. mhanal, (il:
Heliocheilus pardoxus, 315.
Meliothis amigeta, 31.).
Heituomorphal jutrasha, 433.
Helochara communis, 32.
Helophutas, 3:99.
Hencristia oredentalis, 77, 5̊з.
II nneristima, 0) .
Homeronidax, 257, 580, 583, 609, 223 .
llemerobius, 381, oss. II. allenhitus, 610.
II. oecidentali-, 610 .

IIemiptera, all.
II miteles, 190^{3}.
Itepiali, 301.
Hepialus, 11, 233, 236. IT. humuli, 302. II. mistelinus, 302.

II Prm uphotites, 45.
ILerminia jucchosiahs, 828.
Hersilla, 631 .
Hesperia Hobomoc, 269. H. Mastic, 270. II. Wamsutta, 2 20,

IIE
ILessian-Itr, 200, 202, 207, 372.
Deterins, 43.
Heteroceritla, 4.5
Heteromera, $£ 21$.
Heteronmetabolia, iii.
Heteropus ventricosns, 136, 667, 608.
Hexapoda, 21.
Hibernation, 12.
Itickory simller, 408.
Hickory suw-fly, 2ed.
Hinkm tree borer, $995,497$.
Hipparchia, 2 di.
Hippobosca, 353 , 364. IH. lsubonis, 417. II. equune, 417.

Mippoloscidiae, 416.
ऐipmitmia convergens, 511. H. macu. lata. bl_{1}.
Hirmoncura, 305 .
Hispal rosea, 503. II suturalis, 504.
Histerilax, 42?
Hister interrmptus, 43. H. merdarius, 45:
Hockeria, 203.
Tomolota, 441.
Homontera lunata, 318.
Homothetus fossilis, 77.
Hones-ant, $18+$
Toney bees, 43. 50. 52, 116, 147, 301.
Honcysuckle sar fiy, 216 .
Hop minterflice, 250, 260, 295.
Hop Mepialus. 302.
IIop Hypena, ?2:
Hop-rine moth, 327.
Hocia sangminipennis, 479.
Homet, 150.
Horntails, 2.27.

Horse bot fly, 404.
Sorse 1ly, wos.
IImree tick, ± 17
House fiy, 404,109 .
lfumble kee, $130,281,194,198,329$. Sting of, 15.
Ilyalomyia, 404.
Hybermataifarat, 325.
Liybos, 402.
1Iybridity, it.
[001.
ifylrachna, 6in. 63g, 660. H. conchanmm,
Ifydrachmulat dil.
Hyclrobins, 4is.
Hychocampa, 329,830
IIjurocoris, 518.
IIy, rometrit, 339.
CIJTrophilida, 424, 437. IT. picens, 438 .
ifycmphilus, 422 . H. triangularis, 43 s .
$1-1$ ydrophorms, 世 2 :
Ervlropsyele scalimis, 62 I
IIyluhates, 240 .
Hylobius pales, 486.
IIslotoma ITelenyi, $21 \overline{7}$.
Hylurgus dentatus, tiz. H. piniperda,
14.5. If. Lexelsans, 492 .

Hymenoptera, 107.
IIypema hmmuli, 32才.
HYperelibria varia, 290.
Hyperhomatil virescens, 507.
Irypembetamorphosis, (is.

Hypoderma boris, 405 . H. taviandi, 405.
Hypodelomis, 63.
Ifyponomenta millepmetatella, 348.
i Lrpoprepit incosu, $284,255$.
Hyporhagise, $\pm \overline{5}$.
Hypselonotns, 80 .

Ibalia, 213.

Ientia guttatipemnis 1.21, 153, 156.
Ichnemmonida, 1 s.

I. patatus, 197. I. suturalis, I96.

Itha Bigoti, 410.
Itliontera, 3to.
Ymago, 70.
Jnacruitele, 650,
Inosiemma inserens, 201.
lntuiline. 2l?
Insecte bisexnal, 45.
Insert Crust, composition of, 9 .
Jnmest years, 76.
Intertine. 35.
Indroctucel species, 76.
Inplocama furmosmat, 388.
Ips fisciatus, $4+5$. I. ferrugineus, 45 . I.
sasguimolentus, 4.5.
Isopteryx Cydippe, 591.
Itell mite 650 .
Ithomia, ots.
I xorlidid, 6ibl
Lxorles, (f29, G32. I. aibipictus, 662. I. bovis, fiti, G68 T. ricinus, 603. I. unipunctate, 662,668 .

Japyx solifugus, $6 \mathbf{2 0 3}$.
Thesms irroratus, 532.
fixger, 390.
Joint-woum, 203, 204, 205.
Tuglans squamos? 224.

Julus, 62, 671, 673, 670, 678. J. Canadensis, 679 . I multistriauns, 679.
June beetle, $27,450$.
Jumonia cuenia, 961.

Katydid， 530.
Killing insects lor the Cabinet， 87 ．
Labellum，29．
Labi：1 minut $i, 577$.
Labidomera trimaculata， 208.
rabithes， 18^{2} ．
Labium， 28.
Liabumm，2！
Late wingen thes， $600,011$.
Lachlthia abnomais，5hs．
Lituneites，3ut．
Lathnosterna，27．L．fuece， 4 ．
Lachnus cary w, 52．L．strobi，j22．
L． $1 \cdot$ inntl， 98 ，
Lady bird，stl．
Lamojhbous adustus，firture of，sis）．
Lagoa－rispata， 288.
L． g ！illa，ti．
Limellicornit，451．

Limproeobleted， 111.
Lampyridae，tak，＋2in，t 4 ．
Lampyris，tios．
Lupleia st，L，thurocica， 3 ． 5 ．
Large Bla\％k Cutwonnt 306．
Lambada argentat：1，10．j．
Larra nomemeta， 16 ．
Larride，1it．
［a．
Larrse，peservation of， 95 ．Renring of，
Iaryastate，（i2．
1．isioptera， 378. L．rubi， 372.
Lathädiixt： $4+7$.
Lathikhus minutus，4to．
Leat＇bestlex，is 1.
Leaf cutten bee， 1 5， 1 ： 3.
Leat rollers，332．
Lebil，ts；．L．（Dromins）liaentis， $1 t$ ）．
Lecanman，50，53s．I．neemicola 22S．L．

Less，tal－e，17，21．Joints ol，2j，
Leiopus al；ha， $\mathrm{t}^{\prime \prime 7}$ ．1．玉mnchoxydi， 407
Lema trilineata， 503.
Lepidocyrtas nibino－， 1 5．
Lepidontera，23．）．Digestre system of，
237．Nervous system of，237．
Lepiseaia 11 vonfasciatia，zo．
Lepisma，578，58），（iz2．L．Saceharima，©o3．
Lepismatide， 622 ．

Leptis vermilio，305．
Leptocerus niger，02 2 ．L．sepulchati 620.

Leptoris breviomatama， $33 t$
Lepturæ， $49 t$ ．
Lestes，Gol．L enuina， 603.
Lestremia， 378.
Leucania unipuncta， $100,203,90.5,313$.
Leucurctia acraen， 28% ．
Lencosomus ophthalmiets，15），
Lencospis allinis，20；．L．I＇oesi，20\％．
Lentatia tenuls，abi．
 pemnis，ime．L．luctuosa，81．T．ruad． rimacalata， 601. L，trimaculata，（01．
Libellulidæ， $578,579,580,581,583,597$ ．
Libellulint， 604 ，
Libythea Bichmanii，gat．
Lice， 5.3.
Lignlan，-8.
Tagyus，425．
I．macodes，228．L．senpha， 290 ．
Limentis Arthemis， 2 ．L．Ephestion， 242．L．Misippus，261．
Limobates， 540 ．

Limnolia zwaulus， 382.
Limmob n：？，wol．
Limuophnta clispar， 383.
Limnophsteles，61\％．
Limmophilus ditricomis，18．8．L．jello cidus，us．L．perpusillus，61．． 1. rhombiens，617．L subpunctuatus， 618.

Limonius ectypus，46I．L．pleveius， 431 ．
Linden slug， $2 x$.
Lingrat，as．
Liotheum ancerls，55n．
Lipoptena，+17 ．
Lithacorles fasciola， 990.
Lithentomam ILialtii， \bar{Z} ．
Litholiide 673.
Lithobins I Imericanus，67s．L．forfica－ tus，6＂：
Lithocolletis，342．L．（un－ilineatella，3\％．

Lithosia urgilhacea，281．L．casta， 284.
Lithosian $\times, \geq 80$.
Livia remalis，Ji3z
Locustariae，5ñ， 5 j4，
Loousta yimulissima，48，3：

Lochst Depresearia， 3 20．
Lounst Euchman＊， 269.
Locmst gall midge，40\％．
Locilat tree borer，t97．
Lonclæa nigra， 413.
Lonchopstera， 48.
Longicoruia，tos．
Lophrius， 115,219 I．Abbotii，220．L_{1} abolominialı，220，L．abletis，22F，223． L．Americana， 226 ．T．compar，$=25$ ． ． Fabricii，235．L．meularien z26．I．，Te． contei，2z：L．pinetum，22j．L．pini－ rugite $2.20,230$.
Lothe，Il．

Lubler graskopper，万To．
fomanirla，tain，fy
Luanlus lama，451．I．cerrus，32，ty 1. Ludius athenuatus，tol．
Lyeanal comyntas，2605．L．neglecta，205．
Lycomon＇pha Pholus，28\％．
Ijcosa， 62,631 ．L．fattigera，654，L．ta． rimitula，6ist．
Lyetus opacuhes， 472 ．
Lrens，46．3．
Lycla iuanita，215．L．scripta， 226.
Lydella， $1+2$.
Lygrikix， 5 \％．
Lygæus， $542 . L$ turciens， 543.
Lyumextlidx， 460.
Lymexjlon sericenm， 400 ．
LTonetia anccarella， 35.
Listra anmeome，583．L．Jmata， 539.
Lytta rvitata，480．I．cimereu，tso．La murina，\pm so．L．marginata， 480 ．
Macaria granitata， 823 ．
Machilis，Ce3．
Machobiotus， 609.
Macrodactslus subspinosus，4．）t.
Tacroglossa stellatarum．2オ才．
Macrolepirloptera， $2 \pm$.
Macrosiagon， 481.
Marrosila Carolina， $274 . ~ M ~ c i n g u l a t a, ~$ 272．M．cluentins，27t．M．quinque－ macnlata， 272.

Millimus ritis．tigl．
Magrdalime ols ra， 488.
Mal：ulltax， 4 I．
Mallehims， 4 by．
Malo gemital organs， 14 ．
Mathomaga，as 1.
Asumetrearctica，311．M．picta， 312.
Mandibles． 27.
Mandibular segments，20，50．
Manluke， 5 It．
Muntis jt．M，argentina， 575 ．M．Caro－ $1 \mathrm{H}, \mathrm{B}, \mathrm{B}+\mathrm{t}$ ．

Milit：－
Itan tessellata，oripositor of， 17.
Milsuris verpmires， 157.
Ma＊na bee $1 . j 0,2.2$.
Max！リル，\because 。
Maxilaty eogments， 20,58
Jay 11：es，ofs．
Mazoaia Wurdiana， 6 tho．
Meat iny， 408
Mechimitis，
Mecistorephalus linluns．fios．
Meevnorhma Silvagei，45：
Melenturts，4it．
Megachile，20，307，MI Drevis，137．M1．
 M．nut：ulia，1！31．М．1＇oeri， 203.
Megathertorimm ynstulatum， 621.
Melancurces， 1% ．

Melanthy iuse．FiJ．
Melanisin，\quad ；
Melmotn－commonis， 461.
11 Jecta， $13 ; 141$
Icliponit， 1 I8．In filyipes， 129.
 M．Ilamisi，2．27．M．CLnone，257．M． l＇uknex：i，25；M．Phatom，45．M．

Melitha（rnembite 97.1 ．
Melmuns bimacol：ttin，los．
 IL．vinlwen：48
3 lowlae 47.
Melolontha，wit．X［ ravio］osa，fit．
Monophacu＊，16．N1．ovinus，± 18 。
Menturakrel． 3.50.

Mermi－albicans， 107 ．
Morod in batkus，34，M．narcissi，3un，
Mrope tiaber（ilo．

Hetiboliz， $\mathbf{i j}$.
Mettpo lus masalur，510．
Tethowil Canatlon－is， 178
Metoeans pararloxut tsl
Mat：ocombin dR．M1．marmaritata， 820

M：1－tar，a．i．M．metiolons， 51,380 ．
dii soceras． 5 ）
Mierlemman 4 ．
Mi worentmment

Miorograte．Ins，10s，203．M．nephopte－ 1しゃた。131，1：8．
Mi molariv stembergi， 659.
Mi ronlepidontoril，－24．
Micmolipus．tis
Micropeplens，4．s
Miannulhantes，633．

Microtrinta sericing，476．
Midas eluvatus．39\％．M．fulvipes，395．

Milesia excentrica， 398.
Mallepedes，6̈̈．
Milnesium tardigrartum， 699
Biltogyamma punctata， 167.
Bimesa，lez．
Mimetic lorms，5：3．
Miris clobalio， 5 方 0 ．
Mischocrtarus Labiatus， 155,156
Mites， $628,6 \%, 630$ ．Iramsfommations of， lit3．
Mole crirket，5ins．
Monerlula Ca＇olina，164．M 4－fasciata， 144.

Monorlontomerus，13：20．
Sonolrammans scutellatis， 4 s8．M．titil－ lator， 498.
Anmomma，475．
Monommadre， 475.
Monotomidx， 445
Mindella，207，$\pm \pi$
Morrellitic，$\frac{1}{6} 6$.
Movilellstena，tion．
 2 2．M．Polvphemes， 262.
Mosyunto haviks， 507 ．
Motiuns of Ihisects，：32
 48．M1．donsestima，40！，＋10．M．（La
 Muscurdine，sa．
Muscidac，1tit， 407.
Muscres，31．
Muscular power， 32.

Jutila，17ti，17．M．Europæa，179．M． ！ertugita，173．M．ocerfentalis，10．
Mutharia，177， 181.
Mrectolia jahlipes． 387 ．M．somulda，wse
Mretophamidre，4．7．
H－eetopinaxus， 427 ．
Mraetophila seatophora， 885
Mycetophilirlx， 38.5.
Mr（alsiche，3：\％
Mranle avienlaria，6is．M．Mentzia，172， （548．N1．nitule：ns，（548
Myimimia Mexicana，］\％，M上，ustmaua， 1%.
Mrlacris methacopluita， $5=$
Simar paleleoltus，201．
3 yohial $6+1$ ，桝 2
Mrodiles． 481.
Myopa atin， 401.
Mríapoda，10，104，民25．
Mi riaporls， $626,12 \frac{1}{7},(3,36,6,0$ ．
Mrmerocystu Mexicamus，ISt．
Minmeleon，581，611．H．adtominalis， ifid．M．obsoletus，（12．
Mymica nolefaciens，185．M．molenta， 185．
Myrmicaric． 181.
Mrmosa，177．M．micolor， 178.
MYaial 10 －13umetata，512．
My－talides，（j．
Mrzine sexcincta， 177.
Nabis ferms， 511.
Finnophya bella， 605.
Satutocoris， 316.
Necrobia， 498.
Serrophilus Suriuamensis， 439.
Nerpophotus，66；N．Americants，42： t3 3.
Nectariur．153．N mollifica， 154 ．
Nërles，545．
Nematocampa filamentaria， 300

Nematus，217．N．conjugatus，21t．N． grossularia， 214 ．N．！thlineatus， 220 ．N． rertebratus，219．N．ventricosus，50， 219.

Nemoljus vittatus，564．
Nemonterti 610.
Nemourat abjuipennis， 591.
Neonympha， 2% N．Emrytris，264．

Neplati plomipes， 6.51.
Nephopteryx Eanankisii，131，108， 331.
Nepirlat，5so．
Nopticula，otz．N．amelanchierella， 359. N．Corvitioliella，35f．N．microtheriellit，
3．5．N．Matanella， 356.
Nerice bidentada，ote．
Nervous system， $2:$
Nemonia semilasciata， 017.
Nemmptert，578．
Neuroterus， 50.
Nenrotherins， 390 ．
Niv：nus， 0.5 ．
Nitilula bipustulata， 44^{5} ．
Nitiduliriee， 41 ．
Nitidulider，± 46 ．
Noetata，24；
Nocturelite 302．
Nocturdia，2：3，303．
Noctuids，ern．
Nomadr，131，141，212．N．imbiricata，112． N．putehelia． $1 \mathrm{H}^{2}$ ．
Nous，$\$ 44$.
Nothrus ovivorus， $66 t$ ．
Notoryphus， 17.3 ．
Notodonta．20．
Notonerta， 516,518 ．N．imorata，537．N． mmalulata， 537.
Notonectille， 536.
Notoxiss anchora，t7o．

Nycteribiu， $358,388,626$ ．N．Westwoodii， 118.

Nycterijinc， 418.
Njmphes． 79.
Nyssia，32z．N hispidaria， 5 ．
Njezon lateralis， 163.
Nyssonidic， $1 \% 2$.
Oak Biorhiza． 211 ．
O．th Cynips，z10．
Oak sall llies， 210.
O：tr－lonse 3 phidius， 198.
O．：iput，2！，30．
O．ell：ury semments， 20,58 ．
O．elli，19，2． 5.
O．：inati，2\％．
0．10slent bivirgata， 680.
O yptera， 108.
Orontomathns clatus， 18 ．
010e of buss，jts．
Olfnern＝， $14,7.31,192,303,211,401$ ．O． albophaleratus， $153,10 \pi 6$ ．O．lencome－ Las， $1.5 ; 218$.
（Ecanthu－， 24 （E．niveus，56t．
（Eneticu＊，2：3，291．
（Encorlomit，J7\％．（E．cephatotes，188． 180. （D．Mexicana，1si．188．（E．sexilentata， 189．（1）＇Cexoma．Iso．

（Esipolt Carolina，571．（L．comallina， 57t．（E．Xablhoptera，57．
（F）sophaguz，3is）．
（E＝trirla，403．
（Estromyia， 105 ．

Qisturs，303．©．hominis，406．©．ovis， 405．
Oil beetle， 48.
Oligirces paradoxus，51．
O）igonemria， 596.
Olyutla：＂ 8.8.
Omalium，442．
Onophron， 48.
Omusita colon， 445.
Omus， 429.
Oncicieres cingulatus， 498.
Oncories， 395.
Onivn Hy， 411.
Oniscrus，z．

Ojomalea brachyptera， 508 ．
Ophthahmic ring，lo，5R．
Orantre belten fursc－lly， 394.
OMele！ntum gracile， 1 is．O．vulgare， 24 ， 168，547．
Orgyia，70，231．O．antiqua，288．O．leu－ costigma， 288.
Oributes alaths， 664 ．
（ Oribathla，（jis）， 663 ．
Omyrus， 212.
Omithonyyia， 417.
Ornithopterar Pramus， 245.
Ortalis， 360 O．flexa， 411.
Orthoptera， 500.
Orthosia，-2.3.
Orthosoma unicolor， 495.
Oryctes nasicornis，176．O．simia， 176.
Oscinis firit，ilb．O．grimatrims，tion．O． vastator， 415.
Oamia，155， 206, 101．O leuconnelamat， 138. O．limatia，13：），O．lisnivoma，li3！，O． patilica，Jf1，1igs．O．pilretina，1s8．O． similkima， 1 上 0.
O－moderma seabra， 457.
Othniclax， 4 ± 7.
Othains mmbosus， 447 ．
Otiocerus Coguehertii，5．3．
Otiorhynchus sulcatus， 487.
Orars，：35， 44.
Ovicluet，35， 44.
Ofipositor， 15.
Ox Bot fy， 105.
4）${ }^{\text {fy }}$ behs emarginatus， 163.
Oxyporrs， 4.2 ．
Oxytelus， 422.
Predernas， 442.
Palseopterina，591，593，506．
Pale cat worm，： 10.
Palingenia hrmeata，593，594．
Pallyares．5s 3，612．
Palpif＝ッ，シャ．
Pangonia，303．

Panorp：Germanica，©l3．P．communis，
（i］3，P．rulescens， 614 ．
Panmpen camea， 104.
Panolpist，（322．
P：morpidat，520，583，613．
Panorpina，们．
Palutreits， 141.
Paper wasp， 148.
Papilio，51，234，237，245．P．Asterian， 100 ， 230， 245,247 P，brevicatutu，245， 246, 24．P．Dammas 247．L．（ilatucts，53，
 P＇Pammon，5：P．Philenor，34．P．
 nย2， $5: 3,240,-247$
Papilionida， 3,244 ．

Papirius，625，626．P．Saundersii， 621.
Puratloserb， 29.
Parahdia brumea， 494.
Paraponyx， 330.
Parnissints Smmthens， $2+8$ ．
Parniciz， 4.50 ．
Parnopes， 1 sit．
Parthengenesis， 48.
Pasimnehtis elongatas， 43
Passalioctis mandibulatis， 101.
Passalus cormutus， 51.
P’atagia，13．
Pauropodida，670．
Patiropus Huxleyi，6at．P．pedmacula－ tus， 1 示分．
Pea weevil， $4 \mathrm{n} \pm$ ；figuse of， 513.
peach tree borer， 277.
Pear shig，32．2．
Pemr Tremex，2os．
Pebrine， 82.
Pelicia allirıtta，38t．
Pedicil， $2 \boldsymbol{5}$ ．
Perliculina，593．
Pediculas eorporis， 5.53 ．I^{3} ．humanus

Pedipalpi， $6 \pm 2,6,14,1555$.
Pedipalps，（6．0，on7．
Peleemus polycerator， 195.
Peliulnoti punctata， 455.
I^{\prime} elopwus， 174 ．P．cernleus，169．P． flavipes，156， $165,170,403$.
Pempelia grossulatix，3；3．P．semirn－ bella，＂331．
Pemphigns fomicarias，524．P ．fomi－ cenorum，524．P．rhois，524．P．utht colit， $52 \pm$ ．P．varabunctus， $5=2$.
Pentamera， $42+$
Penlatona， $408 . \mathrm{P}$ ．tristigma，546， P ． ligata，otio．
Pentatomila，516，542．
Pentaina viliyorana，：326．
Pepsis cyanea， 1 弟．P．elegans， 1 尔．P． formosa，175．H．heros， 175.
Perpa Lewisii， 215.
Perilampus platygaster，306．P．triangrn－ hats， 20 s ．
Periplumeta，191．P．Americana，195，5äb．
Periplylus tertulo，5zl．
Peritacheal circulation， 39.
Peritreme， 13 ．
Perla abmormis，590，
Pertilac．580，581，586，590．
Postabiblamen，ins．
Perophora Melbeimerii．oss．
Pezomachns， $70,193,194,197^{-} 203$.
Pezzotettix alpinus，चौy．P．Worealis， 539.

Phalacmeera replicata， 38 ．
Phalacride， 44.
Phatareus，44．
Phalienide．232， 318.

Phalangids，655．
Phalanginm dor＊atum，6．56．P．ventri－ cosuln， 6.57.

Phaneroptera curvicauda， 0 ö́
Pharynx， 35.
Plasina i－gutatum， 573.
Phasmida．sta．
Pheifole notabilis，185．P．providens， 185．
Phenax varicosta， 533.
Phengodes intmossa， 167.
Phigalia pilosaria， $5 t$.

Philampelts vitis， 2 2\％．

Philanthus． $146,4 \pm 2, P$ ．apivorns， 158.
P ．ventilalnis， $\mathrm{E}, 158$.
Plilopotamus，fi21．
1 ＇hilupterus， 53.5 ．
Phove corticata， 547
1＇hleethrips carya，519．P．mali， 549,
Phlox worm，315．
队hohetrum，2st．P．pithecium， 200 ．
Phodaga aliceps， 480 ．

Phora incrassata， 127,416 ．
Photinns peralis，fif．
Photuris Pensylvanica， 466.
Phyganea grandis，616， 1317 ．
Physumeite， $236,580,581,582,583,015$.
Phy gatheils，29， 586.
Physanite，18．
1＂hryganidia，zeno．
Phrynda，［ix9，bis7．
Phrinus，（639．P．asperatipes，658．P． reniformis，ros．
Phthitine pubis， sint 2
Phycita nebulo， $8: 51$ ．
Dhy llimn siecifolimm 57.
Phy tophorus re－tulinatms，521．
Phylontera oblongiblimm，56\％．
Ihy lotereta striolata，5it．
［Ph maphora pukchella， 511 ．
Phymata， 505 ．
Ih tocoris， 516 ．P．linearis，550
Pieris，5t，236． 301 ．P．oleracea，249．P．
Protodice，240．P．xapra，76， 249 ．
Pill beethes， 449 ．
Pintula，103，19\％．P．Faimanmi，193．P． opivara，133．P．petalis， 1 ！ fata， 193.
Pine Lophyrus，200．
Pine san－1ly，2． 2 ．
Pinniner insects， 88.
Piophila casci，+13
Pipunc：uns， 40 ．
Pique，3：30．
Pirates bignttatins，541．P．picipes， 541.
Pissodes strobi， 486.
Planiceps niger， 174.
Plant－lice， 1 ， $3,37,400,519$.
Platephemeral antiqua．$\overline{-2}, 504$.
Plataceticne filoverii，2：31．
Platygeter，200，an，h2，P．error，201， 375. P．tupulq，201， 375.

Platymodes Pensylvanica， 576.
Platymus cupripeme，tä3．
Platypeza， 102.
Phatipteryx geniculata， 203.
Platypus， 40 ．
Platyroptilon Miersii， 385.
Placimmia，293．P．Cecropia， 234 ， 298. P．Euryale， 298.
Plecia，so．
Plectrodes pubescens， 45.
Plenrite， 9.
Clon， 310.5 ． 27.
Plointia brevipennis， 510.
Ploteres， 530.
Plume mothe， 35% ，
Plum gonger， 487.
Plum slug，2w2．
Plum weevil， 488.
PInsia alticola，313．P ，divergets，313 P．ignean 313．P．montana，313．P ． preeationis． 312.
Podum，11，615，624．
Polui $x, 6: 2,625$.

Poduridx，623，62土．
Poceilocerns， 500.
Poison glands， 43 ．
Poison of mserts， 43 ．
Polistes．121，147， 119 P．ammaris，151 1．7i．I＇．Canatensis，151，153， $153 . \mathrm{I}^{\prime}$ ． Lanio， 153.
Pulthia，153．154， 155.
Polydesmida， 677.
Polydesmus，676．P．Caundensis，677．P． erythropyrus， 677.
Polyergus ritiescons， 182.
Polynema ovulorum， 202.
Polyphemus， 210.
Polynhylla，tō．5．
Polyrhachis arboricola， 181.
Polystechotes，12，235．P ．nebulosus， ós．P．punctatus． 611.
Polyxenus fasciculatns， 678.
Pomplide，11t， 171 ．
Pompilus，25．P．arctus，173．P．audax， 401．P．eylindricue， 173 ．P．formosus， 172．P．funereut， $1 \overline{7}$ ．P．Marie， 1 各．
Ponera，179．P．ferruginen， 182.
Postscutchinm， 11 ．
Potamathus cupidus，595．P．margina－ tus， $5: 5$ ．
Potato bectle，503， 508.
Potato－slalk weevil， 49.
1＇rascutun， 11.
Preservative flulds， 89.
preserving insects， 8 ．
Prestwicha，1］t．
Priocera uminlata， 468.
Prionenemis unifasciatus， 173.
Pronida， 494 ．
Prionocyphon discoiaens， 464.
Prononys Thome， 167.
Prionus lurevicornes， 495.
Prisopus flabellicornis， 773 ．P．spini－ ceps， 573.
Prishiphora grossulariæ，217．P．identi－ dem，217．P ．idiota，217．P．syco． phanta， 213.
Procephalic lobes， 5 ．
Proconia quathivittata， 532.
Proctotrupes， 199.
Proctotrupid lly， 131.
Proctotrupio， 1 is．
Proctotrypita， 198.
Pronnts，± 73.
Prophers， 5 it．
Propodeun， 66 ．
1＇rop－legs， 21.
Proscopia migantea， 572.
l＇rosopis athinis，143．P，elliptica，143，
Protenma gutata，541．I＇．gutula， 539.
Trotolyeosa，this．
Protoplasma Fitchii， 385.
Proventriculus， 35.
Psammotherma， 114.
Pselaphid $2,439,410$ ，
Pseliaphus， 422,40 ．
P＇sen caliginosus，191．P．Iencopus， 162.
Psenides． 211.
Psenocerus pini，390．P．supernotatus， 499.

Psephenus I，econtei， 450 ．
Psentomylmit bicolor，187，P．flapidula， 18%.
Pseuloscorpiones，（izs．
Pseudovarium，40，
Psendovum，t！
Psoci，gins．
Psocille， $583,588$.

Psocus，है 69．P．pulicarius，589 P． salicis， 590 ．P．verostis， 540 ．
Psyche helıx， 200.
Peychinte， 20.
Peychoda phatrentides， 380
P＇sjchomprphat epimemis， 281.
I＇sylla pyri， 531.
P2yllitee， 530.
Pteratonus， 110 114．P．Putnamii，131， 202.

Pteromali， 415 ．
P＇eromalus，193，202，205，200．P．apium， 207．P．clisiocampr，206．P．үаиеssæ， 206.

Pteronareys protens，590．P．regalis， 590.
Pterophoridix，isk．
I^{P} terophorus， 202 ．P．periscclidactylus， 350.

Pteroptus vespertilionis， 663.
Prerostichus， 4 晾．
Ptilodontes，gen．
Jtinkta，197，170．
P＇times fin＇，4：0．
Ptreholma？semifuscana， 334 ．
Ptychoptera， 382, P．paindosa，38t．P．
Tutocincta， 884.
Pule intitus， $889 . \quad$ ．musculi， 389.
Pulicida，5e8．
Pulvillus， 21 ．
P＇ycmoseclus， 576.
Pyralide，：30．
Pytalis，103．P．frinails，ses．
Pyrameis Atalante，261．I＇，cardui， 261.
P．Huntera， 1 Q61．
Pyrochroa lialuellata，± 7 ，
P＇yochroilde，4Tu．
P．Y romorplat dmintiata， 283.
1Pyrophorus noetinucus． 462.
I＇yrmarctia icabelha，239， 286 ．
Prrinocoris apterus， $48,539,543$.
Pythine，4its．
1＂ytho， 476.
Quedins， 441.
Race horse， สTs．
Radish tiy， 411 ．
Raphidia，sos．
Raphiglossa odyneroites， 15% ．
Ranatra，510，537．R．finsea，53S．
lanatra，abdomen of， 17.
Kaspberry slug，22w．
Rectum，з3ू．
Red－legged Grasshopper， 569.
Reduvini， 540.
Reduvius personatus， 511 ．
Respination， 12.
Resuration，organs of， 40.
Rhatodites， $1 \overline{1}$.
rhagium lineatum，501，
Rhamphidia， 383.
luhipidumdrus， 173.
Rhipictius， 48.
Rhipicerida， 463.
1Rhipiphoridæ， 180.
Rhipiphorts Fimuicus， 481.
Rhipiphorus paraloxus， 149.
Rhizopertha prisila， 472 ．
Rhizophagus depresens，4ti．
Rnodites dichecterns，シ1․ R．rosæ，212．
Rhopalosoma Poeyi， 197.
Rhopaliam perliceliatum，158， 161.
rhopalns，ot3．
Rhymenphia fusenfo， 621.
Rhynchites licolor， 48.

Rhyparochromus leucopterus, 5t3.
Rhyphidee, 3 ;12.
Rhyphus alternatus, 392.
Rhyssa atruta, 196, 228.
Rhyssa lunator, 196, 228.
Rhyssa persuasoria, 193.
Rhy ssodes, 446 .
Rityssomata, 460.
Rice weevil, 480.
Robuer-fics, 395.
homalea microptera, 50.
Ruse bug, $4 \overline{5} 4$.
Rose chater, 451.
Rose gill diy, 212.
Rose slug, wh.
Rotatorit, 168.
Rove-bectles, 440 .
Salda, $5 \not \pm 1$.
Salivary glands, 36
Salix cordata, 218.
Salticus, 633. . (Attus) tamiliaris, $65 \pm$.
Sania, 298. S. Cynthia, 296.
Santlalus petrophya, feis.
Sand wasps, 157 ,
Saperda biviltata, 500. S. canclida, 500.
Satprinus, 443
Sapysa, 178. S. Martinii, 1\%6. S.xepanda, $13+$.
Sarcopluaga, 213. S. carmaria, 408. S. nudipeninis, 170, 408.
Sarcopsylla penetrans, 3\%0.
Sarcoptes scabiei, 666, 668.
Sargus, 392.
Saturnia Pronethea, 239.
Satyrus, 262. S. Alope, 263. S. Nephele, 263.

Stiv-17ies, 213 .
Scape, 26.
Scaphidiidax, 443.
Scaphidium, 443 .
Scarabeida, 422, 424, 451.
Scarites, tiz2. S. I'yrachmon, 83.
Scatopee, 377,
Seenopinus, 1. S. pallipes, 401.
Schizocephala, 575.
Schizoporide, $+7 \% 3$.
Schizopodus lretus, 463.
Schizotus, 477.
Sciara, bitt. S. (Molobrus) mali, 386.
Sciophila, 385.
Sclerorlerma contracta, 178.
Scolia, 231. S. Azteca, 176. S. bicincta,
176. S. navifrous, 176. S. oryctophaga,
176. S. quadrimaculata, 176 .

Scoliaræ, 175.
Scolopemitra gigantea, 674 . S. heros, 674.
Scolopocryptops sexspinosa, Git.
Scolytidæ, 49, fes.
Scolytus, 416 . S. destructor, 492.
Scorpio Allenii, 0 an9.
Scorpion lly, 613.
Scorpionider, 631, 659.
Scorvions, $12 \overline{7}, 629,643,6 \overline{2} 0$.
Sculellera viridipunctata, 547.
Scydmxnus, 440 .
Scydmrenidæ, 439
Scymmus cervicalis, 513.
Secretion, organs of, 43 .
Sedentary spilers, 043.
Seed-corn naggeot, 411.
Segestria, 633.
Selmdria caryæ, 224. S. cerasi, 222. S.
rosæ, 223. S. rubi, 222. S. tiliz, 22\%.
S. vitis, 222 .

Semblis, 582.
Semiotclus (Ceramhon) destructor: 207 35%
Semi-pupa, 87.
sericostomil A mericanum, 618.
series of insecti, 104.
Sesta, 5t. S. dillinis, 277 . S. Thysbe, 277.
Sctina anrita, $28+$
Setodes candidi, cioo.
Sheep bot-fy, the.
sheeptick, $360,416,418$.
Sialidæ, 2:37,580,583, 605.
sialis Americana, 60%. S. infumata, 606.
siderea? nubilaцa, 333.
Sigahphus catadatus, 475 .
Silk moth, 50 .
Silk weed Labidomera, 508.
silpha Lapponica, 439.
Silphide, 422, tios.
simulidx, 390.
Sinnlinn molestum, 390. S. (Thagio)
Columbaschense, 391.
Siphonantít, 680.
Siphonia, 408.
Siphonura, 207.
silex, 193.
Sitaris, 470 .
Sitodnepa panicea, 470.
Shophilus granarius, 490 . S. oryzer, 490 .
size of insects, normal, 107.
skippers, 269.
Smell, organs of, 20.
Smerinthas excecatus, 275. S. geminatus, 275. S. modestus, 275.
Smy nthurus, 624, 6205.
Snout-moths, 32 b.
Solenobia? Walkhella, 346.
Solpuga, 639 . S. araneoides, $65 \overline{5}$. S. (Cialeotes) Americana, 65 .
Solpugid 2,632, ($\overline{0} 5$.
Solpurids, 6.5 .5 .
Soothsaycrs, 574
Sounds produced by insects, 362,561,563.
Spanioceri, 378.
Spanish fly, 480 .
Species of meects, number of, 10 .

spectres, $5 \mathrm{H}_{2}$.
Spercheus tessellatus, 438.
sperm, 4.
Spharotherinm, 677.
Sphecorlos, 142, 143. S. Iichroa, 143.
Sphegide, 142, 149, 160, 16t.
Sphex, 142. S. fliwipennia, 401. S. ichnemmonca, 167. S. Lanerii, 169. S. tibializ, 10.
Shlinges, 235.
Sphingide , 238, 27
Sphinx, 627. S. chersis, 272 . S. diupiferarum, 272. S. gordins, 272. S. kilmix, 2r2. S. lignetri, 63, 23i。
Sphinx ligustri, anatomy of, 35.
Spnoridiunn, t38.
Sphyracephata brevicomis, 413.
Spider fy, 358. 416.
Spillers, 643, 644 .
Spiders, evolution of, 637, 638:
Spider's web, method of spinning, 645.
Spilosoma Virginica, 287 .
Spinnerets, 21.
Spiracle, 40 .
Spirobolts marginatus, 679.
Spirostrephon, 680.
Sponilylis, 484.
Spongophora bipunctata, 57\%.

Spring beetles， 499.
Sprimg－tails，615，1524．
Squash beetle， 505.
squash vine borer， 279.
Star beetle， 32.
Stanhylimure，181，423，427，440， 577.
Staphslinus， 54,441 ，
Stalyaia， 47 s ．
Stegamoptycha？ochreana， 337.
Stemma， 2 ．
Stenobothrns curtipennis， 569.
Stenocerus，53．S．pututor， 89 ．
Stenopota， 80 ．
Stenus Juno， $4+2$ ．S．stygicus， 44^{2} ．
Sterinite， 9.
Sterno－thablites， 15.
［lata， 30 ？
Sthenopis，236，237．S．argenteomatet
Stimmes，142．S．fiaternus，108， $1 \neq 1$ ．
Stilbum splendidum， 192.
Sting， 14
Stipes， 28.
stiretrus dimbriatns， 547 ．
Stizus speciosuz， 1 lis．
Stomach，sucking， 3.5
Stomoxys caltricans， 407.
Strategus， $12 \overline{3}$ ．
Stratiomy itie，392
Stratiomys， 303.
Strawherry Corimelrena，547．
Strawhery Emplytus， 221.
Straw berry saw th，221
Strawberry leaf roller，310．
Strawberry Lozotemia， 335.
Strepsiptera， 481.
strigamia bothriopus， 675 ．S．chionophi－ lat，（175．5．S．epileptica， 675.
Stylopida，424， 481 ．
Stylons， $34,131,143.116,149,194,691$ ．S．
Childrenii，131， 482.
Stylopsga， 56.
Styringomsia， 383.
Suibmentum， 28.
sucking myriapods， 680.
Sugantia，（i80．
Sugar mite，665．
Sylvanus Surinamensis， $4 t 6$ ．
Symmetry，antero－posterior，2， 21
Symmetry，bilateral， 2.
synerges， 212.
Syweca， 3.33. S．cyanea， 154.
Synophrus，212，
Sypulhile，164， 397.
Symphes， $54,23,308,400$ ．
Sullis erosil， 55
Systropus， 397.
Tabanile， 303.
Tabamus atratus，394．T．cinctus， 394.

Tachina，敩．T．（Lydella）doryphora， 408．T．（Senometupia）militaris， 107.
Tachina－bike fiy，1：3， 147 ．
Tachydromia， 402
Tachyporlas， 411.
Cachytes antulentus， 165.
Twniontery firgitia， 591.
Tanarthrus salinus， 46 ．
Tanypus varius， 37.
Tapinoma tomentosa， 183.
Tardigradia， 6 ，
Tardigrales， $45,69,632,642$.
Tarsus， 21.
Tatua，15：s．T．morio，122，154， 150 ．
Tegenaria atrica，619．T．civilis，629．T． medicinalis， 649.

Telea Polyphemms，11，195，243， 997.
Teleaz，19！，200．T．Limexi， 200 ．
Telephorus Carolima， 467 ．T．Dineatus， 187.

Tenebrio molitor， 474.
Tenebrionida， 873.
Tent－eaterpillar， 207.
Tenthresimula， 213
Tergite，！， 14.
Terias ibela，eãt．T．Lisa， 251
Lermes， 54 T bellicosus，as8．T．fatale，
 Termites， 5×8.
Termitikac， $583,586,59 \%$.
Termopsis angusticollis， 587.
Testis，落，tt．
Tetracha V＇irrinica， 429.
Tetrialline， 114.
Tetranola，424，484．
Tetranychus telarius，631，660
Tetrapmenmones，617．
Tettigidea lateralis，万iz
Tettigonia bifila， 50 ．
Tettigronix．163．
Pettix grammata，572．
Tetyral mammorata，$\overline{0} \operatorname{la}_{6}$
Thaumatosoma，J14
Thecla inadica，265．T．Intmuli， 205 T．
 goza， 267.
Thelaxes ulmicola， $52:$
Thelyphonus callaztus，658．T．gigan－ teus， $6,8$.
Therevt， 396
Therevidar， 395
Theridion studiosmm，650．T．verecun． dann，（：51．＇I＇vulgare，ti50．
Thinophilus， 403.
Thomisus celer，652，653．T．valgaris， 653.

Thomax，stmoture of， 11 ，
Thonsand Legs， 678.

Thrips，49，80，378．T．cerealium， 500 ．
I＇mosechix， 459.
Thratira，301．
Thyroocuris histeroides， 517
Thyreopus，159．T．latipes， 100 ．
Therens 1 blootii， $2 \boldsymbol{6} 6$ ．
＇lhyridopteryx，soo．＇I＇．ephenereformis， 289,291 ．＇T＇，nigricans， $25^{\prime}:$
Thesinoptera，－318．
Thysanura， $608,609,013,682$, ， 923.
Ticks， 6 n ．
Tiger Beetles， 428.
linagma，3．z．
Tinea，201，T．flavifrons，346．T，gran elia， $34 \overline{4}$ ．＇I＇tapetzella， 347 ．
Tineicla，303，234，3f，5s2．
Tineide，transionmation of， 67.
Tineirls， $2: 30,237$
Tingi：hyalina，55z．T．hystricellus．
Trphia inornata， 177.
Tıйla， 360,381 ．T．trivittata，382．
Tipulirlac，199， 381.
＇mesiphorus， 422
Tolsteco worm，271．
Tolype Velleda， 300.
Tolyphits，det．
Tonnichs monographus，493．T．pini， 493. T．xylographus， 43 ．
Cortricida， $3: 32$.
＇I＇Ortricodes， 290.
Tortrix gelidana，334．T，oxycoccana， 334.

Torymus Harisi； 205.
Touch，sense of， 26.
Tosophora fasciata，164．
Toxarbilit， 383.
Tracher， 40 ．
Trechys pyrmaca， 459.
Tragoceptata infuscata，509．T．vindedi－ tasciatin， 549.
Transformations of insects， 5 ol．
Transportation of inseets，9t．
l＇rechus，tist．
Tremex，laf．T．Columba，228．T．lati－
（171514，2．28
Trichii， 4.57.
Trichiosomia bicolor，216．T．triangulum， ©lfi，
Trichocera，281，383．
Trichoriectes conis，555，
Trichodes apiaims，l2̄，468．T，Nuttallii， $t 5^{2}$ ．
Trichoptervidix， 443 ．
Thichoptergx intermedia， 444.
Tricondylia， \bar{y} ； 7 ．
Tricrania， 475
Triblactylus apicalis，T ．terminalis， 563.
Tyigoma，1：8，729．2．carlonaria，2ey．
Triennilyz lipustulatus， 153.
Trílueha， 290.
Trimera，421， 481.
Trocbanter， 21.
Trochathline， 21
Trogosit： 4 ， 5
Trosonatide，445，
r＇rogus exesolius， 196.
Trombirtidæ，sisio．
Tuombilium，fifo．
Tropirladix cristata，5il．T．dax，571．
Tros，425．T．Carolina，453．T．scabro－ sus， $1 . \%$ ．
Tfayancat apivora，304，
Trypeta 412．T．pomongla， 415.
Tryposvom，19．3．T．trigidum，102．T． politum， 16^{23} ．
T－ctize lly，tut．
Tumble bug，+7 ．
Itump lea bectle， 507.
Tychиs，tze．
Typhlorsba，60， 531 ．
Typhotromme prri，666，068
Typhlopone，ī！，「．pallipes，181．
Tyしnslyhbus domesticus，fibs．I＇fatine， （136，I．sacchari，（6i5．T．siro，（ 640 ， 6t5．

Udeopsylla robustit，565．
Cha，3si．
Upis ceramboides， 474.
Uraniat Tecilus，：379．
Uraptery yolitia，si̊． U ．sambncaria， 311）．
Urinaly tubes，$f 3$.
Trimary vessels，ion．
Urite， $\mathrm{j}:$ ．
Uroceridx，2． 7.
U1onerths allicomis， 227.
Croplatar msea，503．U．sutumalis， 504.
Uropocka，631．U，vegetans，6b3．
Utetheisa bella， 285.
Vanessa Antiopa，206，24t，258．V．Cali－ formica， 259 V．Milbertil， 259 ．V．ut－ tice，237

Variety breeding， 75
Fas deferens， 3 ．
Vasa dolerentia， 44.
Vates， 075
Felia，518，538， 540.
Fenation， 22
Yenation of Jepidoptera， 229.
Yentriculus， 3 ．
Yer macague， 406.
Ver moyornil，tot
Fertex of the head，31．
Tesicula zentinales， 5
Fespat，117，1\％5，400．V．arenaria， $148,149$. V．crabro，150．V．maculata， $148 . \mathrm{V}$ ． orientalis，lı．V．rufit，12：V．vulga－ ris，le：3．
Yespatio，147，
Fine slug，220．
Volucellia，131，149， 400.
Wandering spiclers，048．
Whlling sticks， 5 iz．
Whaega Ily， 100 ．
Wasp， 8 ．
Water boatmen， 536 ．
Whater lleas，if16．
Water mites， 661.
Water tigers， 435.
IV ax， 111.
Weeping willow saw－fly， 220.
Weevils， 15 st ．
Wheat beetles， 146
Wheat－fly， 199.
Wheat joint worm， 203.
Wheat－lonse A！hiskus， 198.
Wheat－midge，：01，372．
Wheat moths， 347,3500 ．
Whip scorpions，tis7．
Whinlisigs，536．
White ant，$] 30,586$ ．
White－pine sab－lly，205．
Willow Cedidomyia，解．
Wine－cask burer； 403.
Wine－1ty,+1.4 ．
Winges， 23.
Wiae worms， 460 ．
W－mabled cut－worm， 309.
Wood ticks，662．
Wood Witsp，8， 157.
Xinnthia， 243
Xinthopterta semicrocen， 316 ．
Xenoneura antiquorum， 7 ．
Xenos． 182.
X（phiclum forciatum， 507.
Kibhichria albicornis，a，zT．

Fylentes rabinia， 301 ．z．crepera， 302.
Xrlobins sipillarire，bin．
Nylocopa，130．X．violatcea，let．X．Vir－
ginica，168， 397.
X ylophatgidx， 392.
Xylophagus， 392.
Yellow－legged Barley－fly， 205
Zenoa picer， 433 ．
Zerene catenaria，32S．
Zoönule，zoönte， 9.
Zygrena exulams． 280.
Zyganidat，23＋．237，270
Zy moneura， 3 亿．

$24+6$

[^0]: Fig. 1. Worm-like larfa of a Fly, Scenopinus - Original.

[^1]: in the figure, also to the dorsal vessel (c), the intestine (b), and the nervous cord (a). The trachex and a nerrous filament are also sent into the legs and to the wings. The tracher are also distributed to the dorsal vessel and intestine loy numerous braches which serve to hold them in place. - Original.

 Fig. 5. Young Terebella, soon after leaving the egg. - From A. Agassiz.
 Fig. 6 represents the embryo of a worm (Autolytus cormutus) at a later stage of growth. a is the middle tentacle of the head; e, one of the posterior tentacles; b, the two eye-spots at the base of the hinder pair of feclers; c is one of a row of oar-like organs (cirni) at the base of which are inserted the locomotive bristles,

[^2]: With the cirri serving as swimming and locomotive organs; d, the caudal styles, or tail-feelers. In this figure we see how slight are the differences between the feelers of the head, the oar-like swimming organs, and the candal filaments; we can easily see that they are but modifications of common form, and all arise from the common limb-bearing region of the body. The alimentary canal, with the proventriculus, or anterior division of the stomach, occupies the middle of the body; while the month opens on the under side of the head. - From A. Agassiz.

 Fig. i. Embrya of the Crawfish. - From Rathke.

[^3]: Fig. 9. A Shrimp, Pandalus annulicornis, a, cephathorax: b, abdomen.

[^4]: * In two papers on the Classification of Animals, published in the Americar Journal of Science rend Aris, Second Series, vol. xxxy, p. Ga, vol. xxxvi, July, 1863, and also in his earlier paper on Crustaceans, "the principle of cephalization is shown to be exhibited anong aumals in the following ways:

 1. By a transfer of members from the locomotire to the cephatio scries.
 2. By the anterior of the locomotive organs participating to some extent in ce. phatic finctions.
 3. By increased abbreviation, concentration, compactness, and perfection of structure, in the parts and organs or the anterior portion of the boty.
 4. By increased abbreviation, condensation, and perfection of structure in the posterior, or gastric and caudal portion of the body.
 5. By an upward rise in the cephalic end of the vervous system. This rise reaches its extreme limit in Man."
[^5]: Fig. 13. a, tergal view of thorax of Hepialus (Sthenopis) ; 1, prothorax ; 2, mesothorax; 3, metathorax. The prothorax is very small compared with that of Polystochotes (13 a, 1), where it is nearly as long as broad. - Original.

[^6]: * In Canatra, hovever, Lacaze-Duthiers has noticed the curious fact that in order to form the loug respiratory tube of this insect, the tergite and sternite of the pregenital (eighth) segment are aborted, while the plenrites are enomonsly enlarged and elongated, so as to carry the stigmata far out to the end or the long tube thus formed.

 Fig. 23. End of the abromen of Jfuntis tessellatr; p, many-jointed anal style rescmbling au antema. $5-11$, the seven last abdominal segments; the $8-11$ th sternites being olnsolete--From Lacaze-Duthiers.

 Fic. 2t. Ideal pian of the stacture of the ovipositor in the adult insect. 1-it, the tergites, connected by dotted lines with their corresponding stemites. b, the eighth tergite, or anal scale; c, epimerum; a, a, two píeces forming the outer par of rhablites; i, the second pair, or stylets; and f, the inner pair, or sting; d, the

[^7]: Support of the sting; e, the support of the stylet (i). R, the anus; O, the outlet of the oviduct. The seventh, eighth, and ninth stemites are aborted, - From LacazeDuthiers.

[^8]: Fig. 42. Sile view of the front part of the head, together with the mouthparts of the Humble-bee (bombus). a, clypens covered with hairs; b, labrum; c, the feshy epipharynx partially concealed by the base of the mandibles (d); e, lacinia, or blarle of the maxilla, with their two-jonted palpi (f) at the base; j, the labium to which is appender the ligula (fi); below are the labial palpi; h, the two basal joints, being greatly enlarged; k, the compound eyes- original.

 * These lobes are fokled back upon the top of the base of the head, and they scem to form the terghl portion of the hypothetical, clemental ying, or rings, to which they respectively belong, and flo not seem to us to be the stermal portion, as suggested hy Huxley, for they are apparently developed in frontof the mouth-opening, and form the root of the mouth.
 f"Lastly, there arecertain parts developed singly in the median line in the Articulata. Of this nature are the frontal spines of Crustacea, their telson, and the sting

[^9]: * Bennet on the Anatomy of the Thorax in Insects, and its Function during Flight. Zoological Ioumal, vol. i, p. 304 .
 \dagger The brain of insects is former of several pars of ganglia, corresponding, probably, to the number of primitive segments composing the head. The nervous corl is thus, in the heut, massed together and compacted to form a brain.

 Fig. 43. Nervons system of Corydthlus cornutus. a, "cerebrum;" b, "cerebrellum;" c, thoracic ganglia, which distribute a nerve to each leg; d, eight pairs of abdominal ganglia. The dotted lines represent the wings. - From Leily.

[^10]: * We give a list from Gerstaecker (Drom's Classen und Ordnungen des Thierreichs) of all the known cases of agamie reproduction in this suborder, with the number of times the phenomenon has been observed, and the names of the observers.
 - Spher ligustri, onec (Treviranas).

 Smerinters populi, four times (Nord. minnt.
 Smerinthus ocelloftus, once (Johnstom),
 Euprtpica caja, five times (Brown, ete.). rilliche, onfe (stowell).
 Telen Polyphemus, twice (Curtis).
 Giatronvech pini, thee times (Scopoli, etc).
 Getronache quercifolit, once (Ba-ler). potaforia, once (Bummeis-
 ter).
 The subject has been also discussed by Siebold in his work entitled, A true Parthenogenesis in Lemioptera anl Bees; by Owen, on his "Parthenogenesis," and by Sir J. Labbock in the Philosophical Transactions, Lomelon, rol. 147, pt. 1.

[^11]: *K. E. Von Baer, "Report on a New Ascxual Mode of Reproduction observed by Professor Wagner in Fasan." Bull. Acad. St. Petersburg, 1863, pt. vi, p. 239. Also, Wagner in the Joumal of the University of Kasan, 1861.
 fon the Asexual Reprometion of Cecidonyia Larve, Amnals and Magazine of Natural History, March, 1st66. Translated from Zeitschrint fur Wissenschaflliche Zoologie, Bd. xiv.

[^12]: Fig. 59. An embryo much farther advanced. C, clypeus; e, eye; A, bi-lobed extremity of the abdomen; I, the rudiments of the intestines.

[^13]: Fig. 63. Side view of the head of the larva of Diplex before the first moult. c, deciduous tubercles terminating in a slender style; their use is unknown; they have not been observed in the full-grown larva, e, the compound eyes, 1 , the three jointed antenna, the terminal joint nearly three times as long as the two basal ones. 2, the mandibles, and also enlarged, showing the anting edge divided into fou teeth. 3, maxilla divided into two lobes: d, the outer and anterior lobe, $1-$ jointed, the basal joint terminating in two seta; and a, the inner love concealed from view, in its mutual position, by the outer lobe, d, s, the base or pedicel of the second maxilæ, or labium, the expanded terminal portion being dram en sealately; dank a, two movable stout styles representing, perhaps, the labial pali; the lobe to which they are attached is multiclentate, and adapted for seizing bree; on the right sill the two styles are appressed to the lobe, x represents, perhaps, the ligula; but we have not yet studied it, homologies carefully: this pat is attached to a transversely linear piece soldered to the main part of the labium, y, the 1 th abdominal ring, with its pair of conical anal styles. z, the last tarsal joint and pair of long slender claws.

 Fig. G4. The pupa of Diphase, having rudimentary rings, in which the eyes are munch larger, and the legs much shorter than in the recently hatched larva; introunced to be compared with the young larva. Figs, 57-61, original.

[^14]: * Philosophical Transactions, Pt. 2, 1841, p. 111.

[^15]: * The larye of some of the higher Diptera spin a slight cocoon, while the true flies, such as the Muscide and Syrphidx, ete, change to pupe within the larva skin which contracts into a cylindrical "puparium" corresponding in use to the cocoon; such pupx are called "coarctate."

[^16]: *The number of wingless forms is comparatively fow. The Diptera have but one pair.
 \dagger The so-calied "cephatothorax" of Spiders is not fise that region in the Crabs, the head being much freer from the thoras.
 \ddagger Leuckart's elassification is an advance on others in his eonsidering the Hexapoda, Arachmida, and Myriupodil as orders instead of classes, but he says nothing

[^17]: * Dr. Gerstrecker, on the other hand, states that "from the brood-cells of a nest of Bombus muscomun, fond by him on the 1sth of September, there were developed at the end of the same month only workers."

[^18]: * Txplanamon of Plate 2. Parasites of the IToner-bee. Fig. 1, phora incrassata; Fig. 2, pupa; Fig. 3, larva. Fig. 4, Branta cceca, Fig. 5, lava. Fig. 6, Trichodes apiarilts: a, larfa; b, pupa. Fis. 7 , Meloedangesticollis; Fig. \&, freshly hatcheal Inva; Fig. 9, second stage of larra; Fig. 10, first stage of semi-pupa; Fig. 11, pupa. Fig. 12, Styops Childreni in the body of a wild bee, Andrena; Fig. 19, top view of the same removed from its host; Fig. 1t, male of the same; a, side view. Fig. 15, wheor mellitophows, a parnsitic fungus. Fig. 16, unknown lawa found in nest of Humble-bee. Descriptions of the insect parasites will be given beyond.

[^19]: * Explanation of Plate 3.-Parasites of the Humble aur Leafentter Bees. Fig. 1, Aputhus Ashtonii. Fig. 2, Nephonteryx Edmandsii; a, 1arva; b, pupa. Fig. 3, 3 ft, Michogaster mephoptericis, an Ichnemmon parasite of Nephopteryx. Fig, 4, Antherophuffus ochrocus. Fig. 5, duthomyia? lavva; a, sirle view. Fig. 6, Recently hatched larra of Styops Childrenti; a, side view. Fig. 7, larva; a, pupa of Anthoblorabia megorhilis, a Chalcid parasite on Megachale. Fig. 8, Pteratomes Putnomii, an exceedingly minute Proctotupid fly, supposed to be parasitic on Anthorphorabia megachilis; a, a hind wing. Fig. 6 , a Nite fonnd in the nests of Humble-bees.

[^20]: *"Since writing the above I have opened one of the new holes of Xrbocopa which was commenced letween three and four weeks ago, in a pine slat used in the staging of the greenhouse. The dimensions were as follows: Opening fully $3-8$ wide ; depth $7-16$; whole length of tumel 6 and $5-16$ inches. The tunnel branched both ways from the hole. One end, from opening, was 2 and $5-8$, contaning three cells, two with harva and pollen, the thitd empty. The ather side of the opening, or the rest of the tumnel, was empty, with the exception of the old bee (only one) at work. I think this was the work of one bee, and, as near as I can judge, about twenty-fure days' work. Width or tumel inside at widest $3-16$ meh.

 For some days this bee has been discharging a great quantity of saw-dust and pollen, which I had collected by placing a vessel under it. It would seem that she hat cells constructeri also in the opposite side of the hole, and that she removed them to enlarge the tumel. Among the stuff thrown out, I fiad a partition of a cell nearly entire.

 I have just fount a Xylocopa bobbing at one of the holes, and in order to ascertain the depth of the tumnel, and to see whether there were any others in them, I somnded with a priable rod, and fomm others in one side, at a depth of five and one half inches; the other site was four inches deep, without bees. The moming was cool, so that the object in bobbing could not be to introduce fresh currents of air, but must have had some relation to those inside. The legs on such oceasions are, as I have noticed, loaded with pollen." - American Naturalist, vol. 1, p. 370.

[^21]: * According to a note in MSS. deposited in the Lilurary of the Boston Society of Nataral Ilistory.

[^22]: * Explavatiox of Plate t.-Fig. 1, a cell of the Fumble-bee; natural size, with the pollen mass upon the top. Fig. a, end view of the same mass, showing the three eggs laid in three divisions of the cavity. Fig. 3, Aylocopa Virginich, the Carpenter Bee. Fig. \&, the larva of Fhompa Firginica; natural size. Fig. 3 , the nest containing the colls of the same, with the partitions and polten masses, on which the young larva is seen in the act of feeding; natural size. Fig. 6, young Larva of Anthrax simosa; side view. Fig. 7, pupa of dnthrax simosa, side riew; natural size. Fig, 8, the Leaf-entter Bee (Megachile), on a rose leat, in the act of cutting out a circular piece. Fig. 9, cells of Merachile, in the eller; natural size. Fig. 10, larra of Cerotina dupla, the little green Upholsterer Bee; enlarged. Fig. 11, cells of the same in the stem of the elder; natural size. Fig. 12, cells of Ownir lignirona, now species, the wood-devouring Mason-bee, excayated in the maple; natural size. Fig. 13, cells of Osmir simillima, the common green Mason-bee, built in the deserted gall of the Oak-gall Fly. Fig. 14, a single earthen cell of the same; matural size. Fig. 15, pollen mass, or bee-hread of Osmia lignaric; matural size. It is made up of distinct pellets of pollen, which are probably stuck together with saliva.

[^23]: * Explatation of Plate j. Fig. 1. Mouth of the tamuel of Augochlore purvo; from Emerton. Fig. 2. Cells of Osmia pacinita ; communicated by Mr. Sanborn. Fig. 3. Vertical section of nest of Tespa with a group of primitive cells surrounded by one layer of paper, and part of another; fiom stussure. Fig. 4. Nest of Po-
 view of the stme, one being eggless. The sides anjoining are ungular. Figs. 6 and $\{a$, a cell farther advanced, consisting of tour cells, each containing an egg, and with the edges of the cells built up higher and more decidedly six-sided; original. Fig 7. Cells of Icarin guttctipemais, showing that each cell is built up independently in regular hexagons. Fig. 8. Ground plam of a similar nest. Fig. 9. Ground plan of eclls of Tutur morio; from Smith. Fig. 18. Nest of Mischocyttarms labiutus; from Saussure. Fig. 11. Nest of Apoïca pallide; from Sanssure. Fig. 12. Nest of Odynerts: origimal. Fig. I3. Nest of Odymerus albophateratus: original. Fig. 14. Mull cell of Pelopens jlavipes; original. Fig. 15. A row of spherical cells of Eumenes fraterna, with the female; original, from Harris.

[^24]: * A query (?) arter the name of a species indlicates a doubt whether the insect really belongs to that species; so with a ? after the name of a genus. A? berore both the genus and species expresses a doult whether that be the insect at all.

[^25]: * Fig. 1上. I, abdomen of Cynips quercus-aciautata Osten Sarleen, with the ovipositor exscrted; II, the same with the owipositor retracted; III, the abrdenmen of the female of Figites (Diplolepis) J-lineatus Say; IV, the same showing the ventral portion, in mature covered by the tergal portion of the abdomen; V, end riew of the

[^26]: ablomen of Cymips, showing the relations of segments $7-8$, the stermal portion of the eighth segment being obsolete; sp, the single pair of abdominal spiracles; VI, torminal rentral piece, from which the sheaths (s s) and the oripositor (0) take their origin: it is strongly attached at m to the tergites of the sixth and serenth rings; o, oripositor; s, s its sheaths; a, an appendage to r, the terminal sternite.

 - From Filsh.

[^27]: * In treating of this family we avail ourselves largely of the important work on the American species, publishing at the time of writing, by Ma. F. Norton, in the Transactions of the American Entomological Society, vols. 1, 2. We therefore

[^28]: cony his diagram (Fig. 14t), showiug the renation of the wing (compare Fig. 29 and our nomenclature), with the explanation of parts given by him.
 a, stigma; b, costa or costal margin; c, apical margin; d, costal and postcostal veins; $\epsilon_{\text {, }}$ externomedial; f, f, anal; h, posterior margin; i, maginal vein; j, summarimal vein; k, first, second, and third (transverse) summarginal nervures; l, recurrent nerrures (discoidal); m, discoid vein; n, nrst and second inner apical or submarginal nervutes. Bulte or clear spots, on the veins or neryures, with bullar or clear lines eroseing them. 1,2, marginal or radial cells; $9,4,5,6$, submarginal or cubital cells; $7,8,9$, discoilal cells; 10 , costal cell; 11, 12, brachial or medial colls; 13, 14, immer and outer apical cells. (Hindel cells, IIartig. Cellule du Jimbe, St. Farg.) Ko. 11 is sometimes the medial, and Nos. 12 and 1.3 the submedial cells; Nos. 0 and 14 the apical cells; Xos. 7 and 13 discoirlal; Nos. $10,11,12,15$, the first, second, third and fourth brachital cells; 15, laneeolate cell. 1, open; $\underset{\text {, eou- }}{ }$ tracted; 3, petiolate; 4, subcontracted; 5, with oblique cross nerrure; 6, with straight cross nervure.

[^29]: * Mr. Norton has communicated the following deseription of the larra of another saw-lly of this genus which infests the weeping-willow.
 "Jematus trilineotus Norton. The larvo of this were first seeu upon the weep-ing-willows about August $1 s s_{\text {, }}$ in immense numbers, almost wholly stripping large trees of their leaves. They begin upon the edge of the lean and cats all of it excent the inner miduib. They ane very sensiture to disturbances, very lifely, and are generally found with the hader part on their hodies bent wh over the batk. They are twenty-footed, of a bight grean color, pallest at head and tail, with fre rows of black dots down the back, the outer now upon each side irregular and with intervals. On ench side abore the feet is another row of larger black dots, and the three auterion pair of feet are biack at the base, midalle and tip.
 " A great number of the saw-flies were found flying about the trees, August 19th, in the proportion or about ten males to one female. The males leing almost wholly black upon the thoras."

[^30]: * Selandia caryce Notton, not. sp. (Belonging to tribe 2. Cuder wings with one mistle cell. Div, A. Antemare filiform, short).

 Femalc. Color shining black. The pros and mesothorax and scutellum rufons. the apex of the hatter black; the nasus and legs white, with their tarsi blackish: the base of coxa sud a line down the upper side of the legs black. Antenne short, the scoond joint as long as the first; the four final joints together, not longer than the two preceling. Nasus slightiy incurven. Clats of tarsi apparently bifti, Wings subrinaceous. Lanceolate cell petiolate, the first submedial cell abore it, with a distinct cross vein. Under wings with one snbmarginal midlle cell (all other species have this cell discoidal), the marginal cell with a cross nervine, and all the outer cells closed br an outer nerwure, which does not touch the margin. The sulmedial cell extended nearly to margin. Length, .25 of an inch. Expanse of wings 40 of an inch.
 "The male resembles the female, but the under wings are without middle cells. The larve feed upon the leaves of the hickory (Juglans squamosa.) They are found upon the lower side of the leaf, sometimes fifteen or twenty upon one leaf, which they eat from the outer extremity inward, often leaving nothing but the stronn midxibs. They cover themselves wholly with white flocenlent tufts which are rubbed off on being touched, leaving a green twenty-two legged worm, about . 75

[^31]: "The females of Lophyrus are all much alike and I have found the number and forms of the joints of the tutenne, so far, the only reliable guide. The male looks preciscly like that of L. abictis, but the form of the antenme difers in being much shorter. The female looks much like L. abdominalis Say, taken on the pine near New Yock. The following list will show how the species may be distinguished by counting the number of joints."
 L. Farricii Leach, male, not described, female, 10 joints.
 L. compar Learh, " " " " 16 "
 L. pinus.rigida Norton, " I5 joints
 L. Abbotii Lench, " not described
 L. alietis ILarris, " 21 joints,
 L. abrlominalis Say, " not described,
 L. pinetum Norton, " 19 joints,
 L. Americanus Leach, " not lescribed,
 L. insularis Cresson, " 17 joints,
 L. Lecontei Fitch, " 17 "

 | $"$ | 16 | $"$ | |
 | :---: | :---: | :---: | :---: |
 | $"$ | 17 | $"$ | Pine. |
 | $"$ | 17 | $"$ | $"$ |
 | $"$ | 18 | $"$ | |
 | $"$ | 18 | $"$ | Pine. |
 | $"$ | 18 | $"$ | $"$ |
 | $"$ | 19 | $"$ | |
 | $"$ | 20 | $"$ | Pine. |
 | $"$ | 21 | $"$ | |

[^32]: * Fig. 168. A, hear of Ctenuela Vinginica demuted; oe, oceput; ec, epicranium, with the two occlif, o, and the base of the antemm, at e, eye; c, clypens; \boldsymbol{f}, la brom; m, madible: $m x$, tonge, or maxilla, with the end split apart; \mathcal{B}, runtmentary manila of Actias $\mathrm{I}_{\text {mat }}$ with its single-juinted rudimentary papus, shoming the mode of attachment to the baze of the maxala; C , two-jointed, yudimentary labial palpus of A. Luna; D, the same, single jointed, of Platysania Cecropia.

 Figs. 199, 170. Ilead of a moth in relation to the prothorax (1). Fig. 171, -1, B, side view aud (C) front view of the head of a moth; a, antema; b, eve; a, the " fromt;" e, oflit of the eye; f, ocellus; g, maxilla sitmated between h, the three-jointed lalial paipi ; i, the maxillary palpus, sometimes very large and three-jointed.

[^33]: * "'opilio breateauda Saunders. Female. Expands three and one-dith inches; head, palpi and antemise black; thorax black, finged with yellow hairs on ench side, for about hall its length; boty above black, with a row of seven or pight yeilow spots along each side which are largest abont the milde of the row; under

[^34]: * The upper side of the wings are figured on the left side, and the under side on the right, in this and in Figs. $18 \pm$ and 188.

[^35]: * FIgs. 189, 190 and 198, are from Temey's Zoulogy.

[^36]: *The artist has reprezenter the last hranch of the median rein forked at the tip. It should have been the middle brameh. (ctomens.)

[^37]: *Tig. eso; la, represents the head of A. nubeculom, described by Clemens in the Proceedings of the Entomological Society of Philadelphis; $1 b$, the venation of the fore wint ; mhll 1 , the himd wing; 2 a, the head of A ocellun Clemens; $2 b$, the fore wing; $2 c$, the hind wing; $3 a$, the head of A. mediofacciand Clemens; $3 b$ the fore wing; axd $3 c$, the hind wing.

[^38]: *"In general, it may be sail, the mines of the leaf miners are characteristic of the genns to which the larva may belong. A single mine once identifien, enables the colle tor to pronounce on the genta of all the species he may find thereafter. This added to the ease with which the larva are collected, and the little subsequent care required to bring them to maturity, crecpt to keep the leaves in a fresh and healthy state, makes the study of this group, in every respect, pleasant and satisfuctory to the entomologist." (Clemens.)

[^39]: *This "larva" is probably the semipma, or "begiming of the pupa state" (Harris), and may be comparel with the sempupa of the Bee. (Fig. 27.)

[^40]: *.Indes Funckel has recenty detected a true peritrachial circulation in Fristalis, thme contiming the discoveries of Blanchart and doatsiz. He saw the blood imprisoned between the immer air tuhe and the envelope of the trachea, and penetrating into the capilary termination of thove trachere, and satw the flow of the blood globules in the peritracheal space. This peritracheal circuation thas seems to correspond with the arterial circulation of the fertebrate amimat, ant the minute branches of the trachew are capillaries, and the bloou is arterial. "En resume, the thachem of insects, air tubes in their center portion, blood vessels in Their peripheral portion [i, e_{w}, the space surrounding the air tube] become at their extremities tro arterial capilimies." "The blond in the peritracheal space remains through all its course in contact with the oxygen; it arrives at the capilla-

[^41]: ries perfently vivifed; it is a true arterial blood. These capillaries are not in communication with the renous capillaries; the blood is taken up by the tissues, it nourishes them and flows into the renons lacune, and the lacunar currents carry it to the dorsal yessel." Anmales des Sciences Naturelles, 1868.

[^42]: * Hippobosca bubonis n. sp. female, Uniform home color, with a reddish tinge, and blackish hairs; legs paler, with dark tarsi, body beneath paler: tip of abdomen blacks, with long bristles. Length of body . 30 inch; of a wing . $3 \pm$ inch. Didfirs from $I V$, attune in being larger, and in its uniform reddish color. Taken Oct. 5; Museum of the Peabody Academy of science.

[^43]: * Frg. 3 is illustrates the extemal anatomy of this family: -1 , head of Cicindela; 2, maxilla of Cicmelelia; 3, mentum of Onus; 4 , mentum of Tetrachat ; , mentum of Cicindela; 6 , antenne of the some; 7 , abdomen of the male of the same; $8, p o s-$ terior cona of the same; 9 , anterior tarsus of Omas (male); 10, anterior tarsus of Cicindela. - From Leconte.
 \dagger Fig. 3na illnstrates the external anatomy of the Cor abide:-1, extremity of the anterion thbla of Catabs, inner face; 2 , maxilhe of Cychrus; 3 , heat of Cychus; 4, head of Carabus; 5, antema and part of head of Loxicera; 6 , mentum of Caralme; 7, maxilla of Carabus: 8 , under suface of Pasimachus; 9 , under surface of mesoand metathorax of Jetrius; 10, anterior thbia of Metrius; 11 , under surface of meso-and metathorax of Plyser; 19, antenne of Pasimachus: 13, mentum of Pasimarhus: 11. maxilla of Pasimachus: 15, anterion tibla of Pasimachus; 10, hear of Promesognathas; 17, mentum of Pseudomorphns, showing the indistinct gular suture.- From Leconte.

[^44]: * Fig. 579. Venation of a core wing of Gomphus. Teins.- α, a, costal rein; b, subcostal vein; c, c, median vein ; d, eulmedian vein; e, postcostal vein. Sectors(branches springing from areas, reins, cross-veins, or other soctors). Iff, princir pal sector; g, nodal sector; h, subnodal sector; h, medtin sector; mm, short sector; n, unper sector of the triangle (nomally a prolongation ot a); o, lower sector of the triangle (normally a prolongation of e); a^{\prime}, $a^{\prime \prime}$, its brauches. (The figure gives an angle where o^{\prime} hifureates from o, which should have been a flowing chre. Both n and o should have been engraved as springing from the lower angle of the triangle, t.) Cross-reins.- p, nodus; q, are or areulus; rrr, . . anten cubitals. (The wasal antecubital is wrongly engraved as dislucated with that of

[^45]: * According to Dr. Burnett, Blanchatd regards these amomalous trachea as only ehnamed pumonay sacs. Leurkart, however, cousinders hat the argans are onlf in somt of tracher depriver of the usmal spiral filament to keep their walls from collapsing, and he considers that the pumonary sacs of the spider are simply monlited trachex.-Dr. IF. I Burnett's Transtation of Siebolds's duatomy of the Invertebrata.

[^46]: * And in like manner the cephalic lohes, contaning the ocelli, are seen in the author's figures folded back upon the hase of the head, so that the antemma are never developed, and the mantibles of the spider take theil place, in advance of the eyes. The structure and succession of the rings of the insectean hend are most realily explatined, and some che is giren to their number and succession by comparison with the embryo of spiders.

[^47]: * The development of spiders and or the Arachints genemally, has been traced by Rathke, Iferold, and more especially by Clapadede, in a work of great ability, foom whith we have drawn the preceling account, often using the authon's ofn wolde. His observations there made on varons genera of spiders (Pholcus, ete.) His. "Studies on Mites." from which Plate 9 is copied, uppeared in Sicbold's and Kollikers Jommal of seientinte Zoblogy, 1868, wart iv.

[^48]: * The Myriapoda of North America, by Prof. If. C. Wood Jr., M. D., Philadelphia, 1865.

