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A  long-term  study on the demography of an island population of 
the bank vole, Clethrionomys glareolus (Schreber, 1780), provided a 
deeper insight into the mechanisms underlying number fluctuations, also 
reproduction rate and survival of different components of the pop
ulation structure. Among these processes only reproduction was 
regulated, which stabilized population numbers during the breeding 
season. Survival, being subject to random factors (except for par
ticularly low population densities), was a destabilizing process leading 
to number fluctuations. Based on the described relationships between 
reproduction and survival, on the one hand, and population numbers, 
on the other, a stepwise simulation was run for 55 years. The results 
of this empirical model were compared with field results. It has been 
pointed out that random changes in temperature and food conditions 
in spring generate a 2.6-year cycle, while 11-year cycle in these con
ditions generates an 11-year cycle of the bank vole numbers. The 
results are discussed against the background of recent concepts con
cerning population demography. It has been shown that number 
fluctuations should not always be identified with number regulation 
of the entire population, and that they need not be subject to density- 
dependent processes.
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1. INTRODUCTION

Changes in the numbers of animal's, especially those belonging to 
species of economic importance, have attracted man’s attention from the 
remotest times, long before techniques of number estimation were 
developed and the concept of outbreaks was introduced. At those times 
it was belived that God was responsible for everything. However, obser
vation of the fate of animals and some philosophical generalizations (most 
clearly expressed by Isaac Bashevis Singer), tend to im ply that God 
stopped interfering in the course of eventjs once he had created the 
world. Thus, the animals themselves are responsible for their fates, and 
the patterns of their behaviour are called life strategies.

The basic concepts of modern ecological approaches that attempt to 
explain the underlying mechanisms of population dynamics centre upon 
two main lines of reasoning. The first one, represented by Thompson (1929) 
and Andrewartha and Birch (1954), stresses the role o f environmental 
factors in shaping population dynamics. It includes limited resources, 
climatic conditions, or finite time for population growth. The second, 
developed by Nicholson (1933, 1954), Smith (1935) and Solomon (1949), 
relates changes in numbers to density-dependent changes in demographic 
processes damping down either increases or decreases in population 
numbers.

From the latter group of ideas stems Petrusewicz’s (1966) concept 
that not all individuals are of equal importance with respect to their 
function in the population. Consequently, the population has a structure, 
and particular elements of this structure, which form  a functional 
“organized” unity, are of crucial importance to population dynamics. A c
cording to this concept, population dynamics is an effect of many 
demographic processes (birth rate, death rate, migration) related to 
different elements of the whole structure and their interaction.

However, the traditional description of changes in population dynamics 
is reminiscent o f the description of a vojl'cano, in terms of its shape, 
height, and so on. Such a description does not allow an understanding 
o f the causes o f such eruptions. To find these causes, one must go 
“inside” . In the case of a population this seems to be to its organization.

In the present paper reproduction and survival in an island pop
ulation of the bank vole Clethrionomys glareolus (Schreber, 1780) are 
analysed as a starting point for understanding the mechanisms underlying 
these two processes responsible for population dynamics. This population 
has been an object of many studies. Such problems as age structure 
(Gliwicz, 1975), sex ratio (Bujalska, 1984 a), spatial distribution (Bujalska, 
1970, 1973, Mazurkiewicz, 1971), social structure (Rajska-Jurgiel, 1976),
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reproduction (Bujalska, 1970, 1973, 1975 a, 1984 b, 1985), and mortality 
(Bujalska, 1975 a, 1984 b, Gliwicz, 1975) were analysed. Using the results 
of these studies it was possible to prepare a partial synthesis in the form 
of a simulation model for changes in numbers. This model was based 
on the analysis of reproduction and mortality in the first half of the 
breeding season, that is, from April' to July (Bujalska, 1984 b). This model 
implies that the processes occurring in the population over the first half 
of the breeding season tend to stabilize population numbers through 
damped oscillations, and the key role in the stabilization process is 
played by reproduction.

The objective of the present paper is to find the mechanisms determin
ing reproduction and survival in the second half of the breeding season, 
and also survival in the postbreeding period (from  October to April). 
It will be possible to develop an empirical model explaining seasonal 
dynamics of changes in numbers and also long-term dynamics on the 
basis of these mechanisms. A  comparison of the results of the simulation 
with selected features of the original material will demonstrate a 
verification of the parameters and processes used in the model.

2. M ETHODS OF COLLECTING, VERIFYING, AN D  PROCESSING M A TE R IA L

2.1. Procedure of Collecting Material

The study was conducted in 1966— 1970, 1972, and 1975— 1980 on Crabapple 
Island, which is located on Beldany Lake in north-eastern Poland. Since this is 
a small 4-ha island it was possible to trap over its entire area, consequently, to 
capture all individuals of trapping age. Habitat conditions were considered as 
typical for this species (Pucek, 1983); the island is covered by a mixed deciduous 
forest with a dense herb layer.

Four plant communities were distinguished there: (1) Ciraeo-Alnetum  Ober- 
dorfer 1953 (7%  of the island surface area), (2) Frangulo-Salicetum  Male. 1929 
(15%), and Tilio-Carpinetum  Traczyk 1962 in two subtypes —  (3) Tilio-Carpinetum  
stachyetosum silvaticae (35%) and (4) Tilio-Carpinetum typicum  (42%) (Traczyk, 
1965, 1970).

The entire island was covered evenly with 159 trap-sites 15 m apart. Each 
trap-site contained three live traps baited with oats. Traps were checked twice 
a day (at 7 a.m. and 7 p.m.). Individuals captured for the first time were in
dividually marked by toe clipping. On each capture, number, sex, body weight 
and trap number were recorded. Vaginal smears were taken from  all females 
with the perforate vaginal orifice to distinguish mature and immature individuals, 
and in the former category also pregnant and nonpregnant females (Bujalska, 
1970). In males from  1975— 1980 the position of testes was assessed to distinguish 
mature and immature individuals.

Each year, five one-week trapping censuses were conducted from the end of 
April to the end of October. Only from 1966— 1970, did censuses last for 10— 14
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days. Starting from the June census, all the newly captured individuals were 
assumed to have been born in the current breeding season, and they were clas* 
sified into four cohorts, depending on the date of their appearance (determined 
by the rhythm of successive censuses). This animals marked in June were included 
in cohort K t, in July in K 2, in September in K 8, and in October in K 4. Individuals 
born in the preceding year (overwintered), which constituted the basic stock of 
the population, were classified as cohort K 0. In some cases, cohorts K 4 and K . 
(born in the first half of the breeding season) were pooled, and also cohorts K s 
and K 4 (born in the second half of the breeding season) were pooled, and they 
were termed the spring and autumn generations, respectively (Adamczewska, 1961; 
Schwartz et al., 1963).

In 1975— 1980, the herb layer was sampled during each census to estimate 
the biomass of the standing crops. In each of the four communities, 20 random 
samples were taken. A  0.1 m 2 frame was used, within which the aboveground 
plant parts were clipped. Then, the material was dried to a constant weight and 
weighed to the nearest 0.1 g.

In all the study years the mean minimum temperature at a  height of 5 cm 
above the ground surface for ten-day periods were taken from  meteorological 
station at Mikołajki, located 20 km  from the study area.

The data collected in this way provided basic information on (1) the number 
of individuals captured per census, their age structure (overwintered animals and 
four current-year cohorts) and physiological structure (mature and immature males 
and females, pregnant and nonpregnant females), and (2) the standing crop biomass 
of the herb layer, the main food -of the bank vole (Obrtel & Holiśova* 1974,; 
Gębczyńska, 1983). Since further arguments are balsed on these data, it was 
necessary to verify them (sections 2.3— 2.6).

2.2. Important Moments in the History of the Study

The study population derives from the several dozen individuals introduction 
in the summer 1965. These animals originated from  the Białowieża National Park. 
They replaced the original bank vole population native to the island. Regular 
observations combined with some experiments were started in 1966.

In June of 1969 a removal experiment was conducted, in which 66%  of females 
and 43%  of males were removed, that is, 55%  of the members of cohort K 4. Since 
the population had already recovered by July (Bujalska, 1973), all information 
obtained in this year was included for further analysis.

In October of 1971, large amount of oats were supplied on the island, and 
since the oat losses were gradually replenished throughout 1972, thus the available 
food supply was increased. As a result, the onset of breeding in 1972 occurred 
earlier (mid-February), and an “additional” cohort was produced which, together 
with the overwintered animals, formed the breeding stock of the population in 
April (Bujalska, 1975 b). Also the number of individuals increased (Bujalska, 1975 b; 
Andrzejewski & Mazurkiewicz, 1976), as well as the number of mature females 
(Bujalska, 1975 b). This year is omitted from  the analysis of the effect of natural 
food supply and temperature at the beginning of the growing season on population 
dynamics (simulation 2 in section 5.2.). This year was also excluded from the 
analysis in which the regression of the number of mature and pregnant females 
on population numbers was used (section 3).

In April of 1975, the population of Apodem us agrarius (the potential competitor)
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was removed after their introduction onto the island the previous year. A)s a 
result, the number of mature females was much higher, this being caused by 
changes in their spatial behaviour (Bujalska & Janion, 1981). This year was 
excluded from  the analyses bajsed on the regression of the number of mature 
and pregnant females on population numbers (section 3.2.).

2.3. Estimation of Population Numbers

The number of individuals in the population was estimated using the method 
of the “common census”. This method, based on the summation of the individuals 
recorded over the cenjsus period, is biased, as its results depend, for example, 
on the duration of the census. It may be expected that the longer the census, 
the higher the number estimated because new individuals are continuously being 
recruited into the trappable population fraction (95% of the individuals recorded 
in a 14-day census were captured during the first 3 days of the census period).

In view of this, the “common census” method was compared with Jolly’s 
(1965) method, which takes into consideration both the recruitment and mortality 
of trappable individuals. The results obtained by Jolly’s method for 7- and 14-day  
censuses were regressed against the estimates obtained by the “common census” 
method. In both cases a linear function was found of the form  y —a + b x . For 
the 7 day census it is described by the equation y=4.275+0.981x , r = +0.981, 
p <0.001, and for the 14-day census by the equation y=1.264+0.903x , r = +0.993,
p<0.001.

Since in both regressions the value of zero lies within one standard deviation 
of a (intercept), the equation may be reduced to y = b x .  In this equation b totally 
defines the form  of regression. For the 7-day censuses the ¡equation is thus, 
y = 0.959x, r =  +0.962, p<0.001, showing that the results of the “common census” 
are, on average 4 .2%  higher than those of the Jolly method. For 14-day censuses 
the relationship is y=0 .909x, r = +  0.986, p<0.001. This equation implies that the 
overestimation of numbers is slightly higher here, namely, the estimates arq  
higher by 10.1% as compared with the values obtained by the Jolly method.

Since most estimates were obtained from 7-day censuses and overestimation 
by the method of “common census” is insignificant for longer than 7-day censuses, 
this method was considered to be sufficiently accurate, and has been used for) 
further analyses.

The above results justify the assumption that the method of “common  
census” is also reliable when different components of the population are estimated, 
for example, the abundance of different age classes, or physiological groups.

2.4. Reproduction

In the study years, the breeding season extended from  the beginning of April 
to September, as indicated by the observation of the dates of the first parturitions 
(in the second ten-day period of April) and last parturitions (extrapolated on 
the basis of pregnancy advancement during the Septemper census), around 1 
October (Bujalska et al., 1968; Bujalska, 1970). Small several-day shifts in both 
dates were taken into account in the reproduction analyses for a given year (Bu
jalska, 1970). Only in 1972 (feeding experiment) the onset of breeding was as much 
as 6 weeks earlier (Bujalska, 1975 b). Thus, fluctuations in the duration of the
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breeding season were not so pronounced as those observed by Zejda (1976); in 
Czechoslovakia.

A  female was considered sexually mature if the perforation of vaginal entrance 
was combined with the presence of nucleated and cornified celts, or if a copulation 
plug was observed, or if she was pregnant. Vaginal perforation alone is not 
always a reliable indicator of puberty (Bujalska, 1970).

The number of pregnant females was estimated by the methods described 
by Bujalska (1970). The analysis of vaginal smears was supplemented by the 
observation of changes in body weight, noticeable signs of pregnancy, parturition 
in a trap, or the beginning of nursing.

The number born in time t from  the beginning of breeding up to 21 days 
preceding the end of the nearest census (in April), or from  20 days before the end 
of census t— 1 to 21 days before the end of census t (censuses in June, July, 
September, and October) were estimated from  the formula (Bujalska et al., 1968):

NPtTtLt
(1)

where vt is the number born in time t, NPt is the number of pregnant females 
in time t, which has been obtained by a linear interpolation of the estimates from  
succesive censuses, Tt is the length of reproduction period. Lt is the mean litter 
size in time t, and rp is the mean duration of pregnancy in days. Data on 
seasonal variation in litter size were taken from  Zejda (1966) and used as a 
basis for estimating the value of Lt by linear interpolation. After Bujalska & 
Ryszkowski (1966), rp has been considered as a constant of 22 days.

The assumption that Lt and tp are relatively fixed seems to be reasonable. 
According to the views of many authors, litter size varies little under specified 
ecological conditions. It varies more with latitude than with population density 
(Zejda, 1966). Even Ivanter’s (1975) observations which suggest a tendency towards 
increasing litter size in low spring populations, which are increasing through 
autumn, do not show that the increased litter size stimulates a more rapid pop
ulation growth.

Similarly, the duration of pregnancy, although variable to some extent (e.g. 
in relation to t'he number of embryos; Buchalczyk, 1970), is a relatively fixed  
parameter.

Only the value of NPt varies widely. Sviridenko (1967) ha/s found that the 
proportion of pregnant females ranged from  20 to 60%  of the mature females, 
and Bujalska et al. (1968) reported 20 to 96% . Thus, it is at this point that one 
should look for functional relationships between reproduction and population 
dynamics.

It is also worth noting that the method for estimating the number of newborn 
applied here is biaised due to the assumed continuity of giving birth. Each day 
a female gives birth to 1/tp litter, which in the event of her death overestimates 
the number of births (Bujalska, 1975 a).

The number of mature and immature males was estimated using a three-degree 
scale of testes position and size: (1) abdominal testes, (2) scrotal testes less than 
1 cm, and (3) scrotal testes more than 1 cm in size. Males of categories 2 and 3 
were considered mature. Hence, the estimate of mature males can be overestimated 
due to those males of group 2 in which spermatogenesis has not yet begun.
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2.5. Survival

Survival of trappable and nontrappable parts of the population was estimated. 
To estimate the survival of nontrappable animals, the procedure described earlier 
was used (Bujalska ei al., 1968, Bujalska, 1975 a). It is based on: (1) the division 
of the study period into about 6-week isubperiods during which the individuals 
born could be trapped in the nearest census (that is, that they were born not 
later than 21 days prior to the end of this census), (2) the assumption, that the 
entire cohort (its size at the time of parturition is given by formula (1)) was born 
on the same day. This was the day on which 50%  of the individuals of this cohort 
were born, and (3) the calculated number of survivors from  the “day of birth” 
of the cohort to the last day of the census in which they were captured for the 
first time. Thus, the survival of nontrappable individuals is assessed as the pro
portion of individuals that survived during the first six weeks. Thus, the nontrap
pable population numbers comprise nestling (less than 21 day old) and newly  
weaned individuals which “waited” to the nearest census.

The survival of the trappable population members was caluclated as a dif
ference in the number of individuals of a given category (or a cohort) in the 
periods between succesive censuses.

2.6. Estimation of the Standing Crop Biomass of the Herb Layer

The reliability of the method for the estimation of the herb layer biomass 
was checked. For this purpose, 50 samples were selected at random from all the 
samples collected, in the proportion corresponding to the size of the four forest 
habitats (20 samples from Tilio-Carpinetum typicum, 18 from Tilio-Carpinetum  
stachyetosum silvaticae, 8 from Frangulo-Salicetum, and 4 from Circaeo-Alnetum). 
Then, from the pool of 50 samples, subsamples were drawn with replacement and 
combined in larger “samples”, the mean biomass of which was calculated. To 
estimate the significance of the difference between mean values of biomass in 
these “samples” a nonparametric Kruskal-W allis test (one way AN O V A) was 
applied. This test has shown that there are significant differences between mean 
values from 10 “samples” made up of 5 subsamples each (H =  18.11, d f= 9 , p<0.05), 
while there are no difference between mean value calculated for 10 “samples” 
composed of 10 subsamples each (H =  16.30, d f= 9 , p>0.05). This result allows the 
assumption that the “sample” made up of only 10 subsamples taken by the 
stratified sampling method is sufficient to characterize the mean standing crop 
biomass of the herb layer. Thus, the applied “sample” size comprising 80 subsamples 
on each census was much higher than the minimum sample size required.*

3. RESULTS OF THE ESTIM ATIO N  OF PO PU LATIO N  PARAM ETERS

3.1. Population Size and its Determinants

Population size showed seasonal changes. The lowest numbers were 
observed in April, when the population consisted only o f overwintered 
animals. The highest numbers were noted in July (when so-called peak 
numbers occurred) or in September —  October (in this case the number 
o f animals gradually increased and no drastic reduction was recorded 
in the autumn) (Fig. 1). Using 12-year observation, it is not possible to
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-state whether peak numbers occurred with a specific regularity, although 
the first five years of observation suggested a two-year cycle of numbers 
(Gliwicz, 1980).

There were also suggestions that the population size is little variable 
in spring (Petrusewicz et al., 1969, 1971). Further studies have shown, 
however, that numbers in April were the most variable of all the other 
months. It has been found that the coefficient of fluctuations CF (W hit
taker, 1975), that is, 10D1 where D1 represents the standard deviations 

calculated for logarithms of population nos. over the 12-year study period, 
were 2.095 in April, whilst they were 1.852, 1.515, 1.454, and 1.454 for 
June, July, Sept., and Oct. respectively (Bujalska, 1984 b). It has also

N

1966 1967 1968 1969 1970 1972 1975 1976 1977 1978 1979 1980 Y e a r

Fig. 1. Changes in population numbers (N) based on five censuses over the year. 
A — April, J —  June, J —  July, S —  September, O —  October.

been shown (Bujalska, 1984 b) that it was predominantly food-climatic 
conditions which accounted for this great variability in early spring. 
Besides other facts reported in that paper, this thesis is illustrated by 
the relationship between the population size in April (y ) and the standing 

•crop biomass of the herb layer in April (xi) and air temperature in the 
last ten-day period of April (that is, at the beginning of the growing 
season (0:2):

y =  39.36 +  2.837 • 10~14xi + 1.068X2 
R = 0.998, n = 5 , p<0.01

Bujalska (1984 b) has pointed out that the population size in June, 
and to a lesser extent in July, was positively correlated with the pop-
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illation size in April. No correlation was found between the population 
size in April and those in September and October.

These facts, combined with the analysis of the population growth 
rate in the periods between two censuses provided a basis for the con
clusion that the damping of fluctuations in numbers occurs in the period 
June-July. At that time the population growth rate is curvilinear: it 
is high at a low initial population and gradually declines when numbers 
are higher at the beginning of the breeding season (in the period April
June, population growth rate is a linear function of the numbers in 
April (Bujalska, 1984 b)).

No relationship was found between population numbers in the cen
suses from  June to October and the biomass of the herb layer. It has 
been found, instead, that numbers in September and October were 
positively correlated with numbers in July (r =  +  0.93, p<0.001 and 
r =  +  0.71, p=0 .01 , respectively). It may thus be expected that no great 
changes in numbers will occur in the second half of the breeding season; 
numbers in September and October are merely a simple linear function 
o f  population numbers in July, and the amplitude of fluctuations (CF) 
is relatively small.

However, numbers in October determine to some extent population 
size in April o f the following year. A regression describing this relation
ships is of the form:

y = - 1 6 .1 2  +  0.37x 
r = +0.654, p<0.05

Although the determination coefficient is not higher than 43°/oi, it is 
difficult to neglect the importance of numbers in autumn after the end 
o f  the breeding season to the breeding stock of the population.

The relationship describing the effect of population numbers in 
October (xi) and the herb layer biomass (a^), on the population size in 
April of the following year (y ) is of the form:

y = 1 2 .2 7 —0.12a:i +  0.131X2 
R = 0 .998 , p < 0 .001

Thus, it seems to describe well factors determining population size at 
the beginning of the breeding season (Bujalska, 1984 b).

Then the goodness of fit of the distribution of population size to 
the normal distribution was analysed for each month (April, June, July, 
September, and October) over all the study years. As the sample size 
was small (n = 12), the method of linear regression of ranked normal 
deviates on population numbers was used (Sokal & Rohlf, 1981). Accord
ing to this method, the line of regression is calculated using eight
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central values of the population numbers, without the two extreme 
values from each end (33°/o of the sample size), that is, the smallest and 
the largest. In this method, like in the graphical method of plotting 
frequencies in class intervals on so-called “probability paper” , it is 
expected that all numbers of the sample will lie on the regression line 
if they fit the normal distribution. Deviations from  the line of the 
regression have a similar interpretation. The test D of Kolm ogorov-Sm irnov 
was used to evaluate the statistical fit of those numbers from the sample 
to the normal distribution.

Although the empirical distributions were not significantly different 
from the normal distribution in any one month (p!>0.2), the scatter of

160 0 200 AGO 100 300 500 100 300 500 100 300 500
Population num bers

Fig. 2. Deviation from the normal distribution of empirical population numbers, 
as revealed by the ranked method for small samples. Solid line shows linear 
regressions calculated for 8 central empirical values. Closed circles denote empirical

data.

the points seems to suggest that: in April' the distribution tended to be 
skewed to the right or showed leptokurtosis; in June, September, and 
October there was a tendency to skewness to the i;ight; in July to 
platykurtosis or to skewness to the right (Fig. 2).

Thus, three periods can be distinguished in the population fluctuations:
(1) the most dynamic period in April-July, when intrapopulation 
mechanisms first cause an increase in numbers and then reduce the
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amplitude of fluctuations (stabilization), (2) the period July-October 
when earlier stabilized numbers are maintained; it is characterized by 
a certain inertia, and (3) the period October-April, also inert to some 
extent, in which the most violent changes are likely to occur at the 
beginning of the breeding period, when variable food conditions (deter
mined in turn by climatic conditions) determine the size of the breeding 
stock, and, consequently, the rate of population growth in period (1). 
Each of these periods is characterized by differential population pro
cesses and differential underlying mechanisms.

It seems that to understand demographic processes, it may be useful 
to rank the parameters determining these processes with respect to pop
ulation numbers, even if it is not assumed that these are density-depend
ent parameters in cause-and-effect terms. Since migration is not pos
sible, the processes shaping the size of this island population can only 
involve reproduction and mortality.

3.2. Reproduction and its Determinants

In this paper only females are considered as responsible for reproduc
tion. The reasons were that: (1) the entire process of reproduction, in 
the period before and after parturition, is modified by many physiological 
and ecological factors. The evidence for this is provided by many 
observations of maturation, oestrous cycle, copulation, fertilization, and 
pregnancy. In each of these stages the female is vulnerable to environ
mental stresses that can inhibit any of these stages. This is a clue for 
an observer that primarily breeding females depend in many ways on 
their ecological environment. In males the route from the attainment 
of sexual maturity to fertilization is much shorter, and hence the role 
o f males is mainly limited to acquiring an oestrous female. (2) Reproduc
tion, which is finalized by recruitment of new individuals into the pop
ulation, also extends over the period of lactation (nursing), which is 
performed by females. In the polygamic voles one can not expect males 
to take care of the young (Zeveloff & Boyce, 1980). In this difficult 
period, mostly due to the increased costs of maintenance (Kaczmarski, 
1966), the breeding success depends upon the fate of the females. And 
(3) in females many important mechanisms determining the course of 
reproduction have been identified and described, which in the language 
of mathematical modelling means that there are available a provision of 
specified regressions. Paraphrasing what Krebs and Myers (1974) said, 
and relating this to the bank vole, one may say: so little is known of the 
behaviour of males... and about their role in shaping population dynamics.

The analysis concerns the potential reproduction, as expressed by
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the number of mature females, and the actual reproduction, as measured 
by the number of pregnant females (Bujalska, 1970).

The number of mature females recorded on successive censuses was 
plotted against the population density. Over the entire range of observed 
changes in the population density, the number of mature females is 
given by the equation (Bujalska, 1984 b):

N M t=  -[ /~ М 0 .б г  +  35.911Vt -  0.0738Nt2
^  (2) 

R =  0.875, pCO.OOl

where NMt it the number of mature females iin time it, and Nt is the 
population density in time t.

This function indicates that the rate of maturation declines when a 
certain critical population size is exceeded (about 120 individuals), and

NM

Fig. 3. Tne number of mature females (NM) plotted against the population numbers 
(N). Solid line denotes sections of the curves considered to fit the empirical data. 
Closed circles represent empirical data, a —  the curve calculated from equation (2), 

b —  the curve calculated from  equation (3).

then the number of mature females is maintained at a relatively fixed  
level until the population density reaches the next critical value (more 
than 300 individual's), this being followed by a decrease in the number 
of mature females (Fig. 3).

Although equation (2) fits well empirical data within the range of 
numbers corresponding to the phase of relatively stabilized numbers o f  
mature females, it does not seem to be useful to interpolation of the 
number of mature females in the range of small population numbers 
(e.g. for a population made up of 20 individuals the number of mature 
females would be zero). For this purpose it is better to use a power 
regression of the form:
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N M t=  1.294Nt°-™> 

r =  +0.995, n = 32 , p<0.001

where NMt and Nt as in equation (2). This equation can be used to 
estimate the expected number of females when N t<  150. For N t^ l50  
the curves described by the equations (2) and (3) intersect.

By both approaches, three phases of changes in the number o f mature 
females can be distinguished: (1) at low  population densities (<30/ha) 
a rapid increase in the number o f mature females. This situation mostly 
occurs at the onset of the breeding season, when the population consists 
either only of overwintered animals or also of young individuals belong
ing to the first spring cohort Ki, which are recruited gradually as they 
emerge from their nests (the mean timing of their birth falls in early 
May). (2) At mean population densities, ranging from 30 to 80 individuals/ 
ha, the number of mature females is stable. This can be observed in 
June-September in the years with no peak numbers. This implies that 
the rate of reproduction and consequently the growth rate of population 
are reduced, and (3) at high population densities (of the order of 100 
and more individuals/ha) when peak numbers are reached in July, the 
number of mature females declines. This is due not only to a reduced 
rate of sexual maturation but also to the exclusion of mature females 
from reproduction (a situation similar to the winter anoestrous), which 
produced offspring at lower densities (Bujalska, 1970).

The mechanism stabilizing the number of mature females (and thus 
also the rate of maturation) consists of territorial tendencies of mature 
females, as has already been shown by an analysis of the spatial distri
bution (Bujalska, 1970) and also experimentally (Bujalska, 1973). These 
empirical results were then used as a basis for a simulation model in 
which territorial tendencies of mature females were assumed (Bujalska, 
1985). The results of the simulation fufly confirm the earlier view. 
Moreover, they indicate that the mechanism limiting the number of 
mature females can operate not only within this category o f individuals. 
But it can also affect relationships between mature and immature females. 
This mechanism, which involves competition for retaining or acquiring 
the status of mature female, can reduce the number of mature females 
when the number of all females exceeds a certain level (Bujalska, 1985).

Then the actual' reproduction was analysed. The numbers of pregnant 
females were regressed against population numbers. In April and June, 
this regression is described by a function analogical to that describing 
the relationship between the number of mature females and population 
numbers (Fig. 4), as the number of pregnant females in April and June-
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is equal to or only slightly lower than the number of mature females. 
T he equation is:

N P t=  y  — 159.46 +14.097 N t-0 .2 43  IVt2
^  '(4)

R — 0.774, n = 24 , F=15.68, p<0.001,

where NPt is the number of pregnant females iln time t, and Nt ap in 
equation (2). The above function, described by Bujalska (1984 b), cannot 
be used, however, for estimating the value of NPt at a low  population 
density. However, this variable can be better described by a power 
function of the form  (Bujalska, 1984 b):

NPi =  0.719 Nt0-83*
(5)

r =  +0.934, n = 18 , p<0.001

where NPt and Nt as in equation (4). Equation (5) can be used when 
iVt^84.7, this being the intersection point of the curves described by 
.equation (4) and (5).

NP

Fig. 4. The number of pregnant females (NP) plotted against the population 
numbers (N). Solid line denotes (sections of the curves considered to fit the 
empirical data. Closed circles denote empirical data from  April and open ones 
indicate those from  June, a—  the curve calculated from  equation (4), b —  the 

curve calculated from equation (5).

Furthermore, no relationship was found between the number of 
pregnant females and population density in July and September. It may 
thus be suggested that changes in the number of pregnant females in 
the second half of the breeding season are randomly determined, like 
those of mature females. An attempt was made to find a relationship
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between the number of pregnant females in July and September and 
the number of mature females. A linear regression was found of the 
form:

iVPt =  0.471 +  0.428 NMt 

r =  +0.484, n = 20 , p<0.05 ^

where NPt as in equation (4) and NMt as in equation (2).
Thus, it is not easy to describe changes in the number of pregnant 

females with respect to their functional relation to population dynamics. 
The limitation of the number of mature females in the population deter
mines the maximum number of breeding females. The mechanism under
lying the limitation of mature females is simple, and it seems to be well 
recognized. This allows reasonable predictions of mature females numbers 
over different ranges of population density. But a similar procedure ap
plied to pregnant females is not straightforward. In April, at a low pop
ulation density, the proportion of pregnant females approximates to 
100°/o of the mature females (Bujalska, 1970). Later, however, the rate 
o f becoming pregnant is subject to many unspecified modifications. But 
how does it happen that the number of young born over the breeding 
season is almost fixed, ranging from about 1010 to 1080 individuals 
(Bujalska, 1970, 1973, Petrusewicz et al., 1971), despite the fact that 
the number of pregnant females is a function of population density in 
the first half of the breeding season and varies in a rather unpredictable 
w ay in the second half of the breeding season? The limitation of the 
number of births (which implies a limitation of the number of pregnan
cies over the breeding season if Lt and rP vary little and Tt is fixed —  
see equation (1)) combined with the limitation of the number of mature 
females and our lack of the understanding regarding the underlying eco
logical mechanisms inclines the author to suggest that some physiological 
processes (e.g. breeding “fatigue” ) may be involved here.

3.3. Survival and its Determinants

Reproductive stability, expressed for example by the fixed number 
o f individuals born each year implies that survival and its changes alone 
account for differences in the population density (Bujalska, 1970, 1975 a). 
An analysis of the survival of different age classes has shown that the 
population peak in July was preceded by a higher number of individuals 
of nontrappable age coming from  the spring generation (Bujalska, 1975 a). 
Contrariwise, in the years of low  densities with no peak, nontrappable 
individuals of the spring generation had low  survival rate. Similarly, 
the survival o f the autumn generation at nontrappable age varied widely.
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For these two generations jointly, the proportion of individuals surviv
ing until their first capture fluctuated from  31 to 52%. The difference 
between these two extremes was thus 21°/o. The survival of the trappable 
population (from  the first capture till the end of October) showed much 
smaller fluctuations, ranging from  13 to 23°/». Thus, for the latter group 
of animals the difference between the extreme values was 10%  (Bujal
ska, 1975 a).

Because o f the above observed differences, the groups of trappable 
and nontrappable individuals were considered separately in further 
analysis.

It was possible to recognize some causes of the variable survival of 
the youngest individuals. It has been found that their survival was 
positively correlated with the survival of their mothers (that is, females 
found pregnant on the preceding census):

y =  27 .304+0.834a: 

r = +0.623, p<0.001, n = 4 8

(Bujalska, 1975 a, 1984 b). It may be concluded that this relationship 
takes place first of all in the nesting period, when the young totally 
depend on maternal care for their survival (Bujalska, 1975 a). But this 
crucial process for population dynamics still exhibits a large, unexplained 
variation, as indicated by relatively low correlation coefficients of the 
calculated regressions (Bujalska, 1975 a, 1984 b).

Here it is worth noting that the survival of females depends on their 
breeding condition (Bujalska, 1975 a). The survival of females at non
trappable age (from  their birth to first capture, i.e., over a period o f 
the first 44 days of life) was 37.1%. Then the survival of mature females 
and immature females at the same age was 58.6 and 72.3%, respectively. 
Thus, reproduction “shortened” the life of females. After the breeding 
season in winter, the survival of the two categories of females was similar 
and much higher than during the breeding season (83.2 and 85.0% r 
respectively). In the following breeding season it was reduced to 54.1%, 
entirely similar to the survival of mature females during their first 
breeding season. These results relate survival to reproduction. This 
relationship may be due to higher maintenance costs for mature females, 
including also pregnant and lactating females, which have a much higher 
metabolic rate than other females (Kaczmarski, 1966). But attempts to 
find a relationship between the survival of adult females and their 
spacing behaviour failed, though one might expect that this behaviour 
(for example, the size of individual home ranges) should reflect changes 
in the quantity or quality of food, as indicated by the results of a feeding 
experiment (Bujalska, 1975 b; Andrzejewski & Mazurkiewicz, 1976).
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Using earlier experience (Bujalska, 1984 b), the survival of nontrap- 
pable individuals in the first hal'f o f the breeding season was estimated 
as a function of the natural logarithm of the population density and pro
portion of the rearing females that die:

SUt, {+ 1 =  1.033-0.0742 In N t-0 .00692 M P t,t+1
17)

R =0.666, n = 48 , F=17.96, p<0.001,

where SUt, t+i is the proportion of nontrappable individuals surviving 
over the period from t (birth date) to t+ 1  (date of the nearest census), 
InNt is the natural logarithm of the population number at time t, and 
MPt, t+i is the mortality of pregnant females in the period from t to 
t+ 1 .

In turn, the percentage mortality of rearing females in the period 
between the two censuses (6 weeks) has been calculated as a power 
function o f their numbers (Bujalska, 1984 b):

MPt, t+i=0.00179 JVPt2-66
/o\

r =  +0.674, n —24, p<0.001,

where MPt, t+i as in equation (7), NPt as in equation (4).
An attempt was made to describe in a similar way the survival o f  

nontrappable individuals in the second half of the breeding season.
Although the relationship between the survival of nontrappable young 
and that of their mothers was observed over the entire breeding season, 
no relationship was found between these two processes and the number 
of pregnant females in the second part of the breeding season. For this 
reason the survival of nontrappable individuals was calculated as a 
function of the total population size, this being the only parameter 
found to relate their survival to population dynamics. This is a logarithmic 
regression describing the proportion of surviving in the period from 
birth to the first capture:

SUt, t+ i=  1.053-0.133 In Nt 

r =  -0 .4 6 9 , n = 48 , p<0.001, (9)

where SUt, t+i and In Nt as in equation (7).
Then the survival' o f the trappable population has been described 

over the entire breeding season. The regression describing the proportion 
surviving over a 6-week period between two succesive censuses (Fig. 5) is: 

STt, £+1=2.111-0.638 In Nt +  0.0684 (In Nt)2

R =0.519, n=46, F =7.92, p<0.005, (10)

where STt, t+i is the proportion of individuals at the trappable age survi
ving from time t to t + 1, and In Nt as in equation (7).

The above correlation coefficients are statistically significant but not
high. Thus it cannot be suggested that survival is density-dependent.
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What is more, the results presented imply that factors other than pop
ulation density are more likely to differentiate the survival of the two 
categories of animals.

The attempts to relate the survival of all the categories o f individuals 
to the available food resources, such as the herb layer, failed (Bujalska, 
1984 b). So, the problem of survival, exemplified by its temporal variation 
for the different groups of individuals, remains unsolved.

O f particular importance to the fate of the population is survival in 
the period when losses due to mortality can not be compensated for by 
recruitment. This is the period between the end of the breeding season

ST

Fig. 5. Survival of trappable individuals per individual per 6 weeks (ST) plotted 
against population numbers (N). Solid line shows the curve calculated from equation 

(10). Open circles denote empirical data.

and the onset o f breeding in April of the following season. Lack of direct 
observations makes it impossible to assess changes in the rate o f survival 
in particular winter months. Therefore the information was obtained by 
the interpolation of the numbers in autumn and the following spring.

Earlier studies on the bank vole population inhabiting Crabapple 
Island have shown that survival in winter is much higher than in the 
breeding season, and it does not depend upon age. Members o f cohort 
Ki, which are 8 months old, on average, and cohorts Ka, K 3, and K< 
jointly, which were 4 monts old, on average, survived in similar pro
portions (89.2 and 86.7% per month, respectively; Petrusewicz et al.,
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1971). As has already been noted, the participation in reproduction had 
no subsequent effect on winter survival.

To find the reason for the differences in winter mortality, such factors 
as the frequency distribution of temperatures, depth of snow cover, and 
amount of food available in early spring were analysed (Bujalska, 1984 b). 
W inter mortality has been described as a com plex of the influences o f 
population density in October and the standing crop biomass of the herb 
layer in spring (see equation in Section 3.1.).

An analysis of the body weight of overwintered animals in April 
suggests that food resources in the critical period of early spring are the 
main determinant of the size of the breeding stock. A  decrease in winter 
survival was related to a decrease in the body weight of individuals that 
had survived until spring (Bujalska, 1984 b).

As has been shown, the biomass of the herb layer in April depended 
on temperature in the last ten-day period of March. It follows that the 
biomass of the herb layer can be represented by the mean minimum 
temperature of this period. The equation obtained describes well the 
relationship between the population density in April and that in the 
autumn of the preceding year and mean temperature in the last ten-day 
period of March:

lVt =  29.24 +  0.231 Nt—i +  2.112x 

R =0.884, n =  9, F =  10.70, p<0.002, (11)

where Nt is the population density in April, Nt-i is the population density 
in October of the preceding year, and x  is the mean minimum temperature 
of the third ten-day period of March;

It should be remembered, however, that the effect of temperature 
in March on the survivorship of the population is indirect, and food 
resources at this time of the year are the appropriate factor. But this 
particular function is used in further analyses because it is easier to 
measure the temperature in spring than the food available.

4. DESCRIPTION OF THE SIM U LATIO N  MODEL

The regressions presented above characterize the main demographic 
processes and differences in their patterns in various periods in the life 
of the population. Among other things, this is indicated by the “ force”  
of the relationship of these processes to population density in the first 
and second half of the breeding season. This is mainly attributable to 
survival but also to a lesser extent to reproduction. Although the depend
ence of these two processes on population density m ay suggest a direct 
effect of density on their rate or direction, it should be remembered 
that the causal mechanisms lie within the realm of other factors.
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In the light of understanding of this fact, the easily conceivable and 
readily accepted system of regulation of numbers based upon a density- 
dependent sequence of events should be revised, as it does not provide 
an adequate interpertation of the processes shaping population dynamics. 
But how can demographic processes be dealt with if their underlying 
causes are not recognized? It seems that for the immediate purpose of 
constructing a model we have to base such a model on the correlations 
obtained with population density, even though the regressions so cal
culated are not of the cause-and-effect type. Thus, at this stage o f the 
analysis it w ill not be possible to penetrate the underlying mechanisms. 
We shall stay on the surface of population processes. Our purpose w ill 
be to see whether an empirical model (constructed a posteriori) w ill be 
able to simulate the population changes empirically found.

Thus, this model should: (1) reproduce the seasonal pattern of changes 
in numbers, (2) simulate the persistance of the population in time, with 
no upward or downward trend, and (3) simulate fluctuations in a way 
which corresponds to those observed, including for example, a decreasing 
value of CF over the breeding season and deviations from  the normal 
distribution.

According to what has been stated above and to earlier results (Bu
jalska, 1984 b), it is not possible to develop a model based on a single 
set of equations for the whole year. For this reason a model has been 
built for three phases to describe fluctuations in numbers: (1) in the period 
from  April to July, i.e. in the first half of the breeding season, (2) in 
the period from July to October, i.e. in the second half of the breeding 
season, and (3) in the period October-April. Each of these three submodels 
thus describes three distinct periods in the dynamics o f the population: 
the phase of dynamic changes, the inertial phase, and the phase of clear 
environmental influences.

1. The flow  diagram of the simulation of numbers from  April' to June 
and from  June to July, that is, the model for the first half of the breeding 
season is shown in Fig. 6. Residual standard deviations occurring in regres
sion equations (2) to (11), that is, for all the three submodels are given 
in Table 1. The submodel for the period April-July fits the empirical 
data particularly well: its component equations are based on well' 
recognized ecological situations, and as a result they have high correlation 
coefficients.

2. The submodel for the period July-October. It is worth noting here 
that in this submodel the values of STt, t+i, vt, NSt+1, Nt+i (for explanation 
of the symbols see Fig. 6) are based on identical equations for both 
submodels. The flow  diagram and the necessary equations are shown 
in Figure 7.
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3. The submodel for the period October-April. The size o f the breeding 
stock at the beginning of the season was simulated by  equation (11) 
described in Section 3.3. This submodel closes the last stage of the entire 
simulation model in the period from  the beginning of one breeding season

Fig. 6. Flow diagram of the submodel simulating changes in population numbers
in the period from  April to July.

Table 1

Residual standard deviations of the regression 
equations used in the simulation model of 

population dynamics.

Equation Residual standard deviation

(2) 25.23
(3) 6.51
(4) 7.27
(5) 3.57
(6) 8.11
(7) 0.175
(8) 13.24
(9) 0.179

(10) 0.103
(11) 11.10

to the beginning of the next one, thus over the biological year. According 
to the logical scheme shown in Figure 6 and Figure 7, and using equation
(11), first a deterministic and then a probabilistic simulation was run. 

This was a discrete simulation. On the basils of numbers in April, the
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Fig. 7. Flow diagram of the submodel simulating changes in population numbers 
in the period from July to October.

reproduction was simulated and also the survival of nontrappable (new
born) and trappable individuals in the period from  April to June. In 
this way the population density in June was estimated. Then this cal
culated density in June was used to simulate reproduction in June, as 
well as the survival of trappable and nontrappable individuals in the 
period June-July, and so on, this operation being repeated for suc
cessive 6-week periods of the breeding season, and for the 6-month 
period October-April o f successive “study” years.

5. RESULTS OF THE SIM U LATIO N

5.1. Deterministic Approach

The simulation of changes in population numbers allows conclusions 
concerning the properties of the model and the validity of the functions 
used. Moreover, it enables us to follow  changes in the population living 
under ideal conditions, with no random influences, as it were in an 
unreal world (assuming that all standard deviations in Table 1 equal 
zero), in which everything is known and defined.

The simulation was run for three different initial situations. In all 
of them it was assumed that the temperature in the third ten-day period 
of March is fixed at — 10.5° C, this being the mean value observed for 
the study period. Only the initial population size at the beginning of the 
breeding season was differentiated in the model: (1) the initial population
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density was equal to the mean value observed in April (the years in 
which the population was experimentally manipulated are excluded) and 
it comprised 67 individuals, (2) the initial population was made up of 11 
individuals, thus corresponding to the lowest numbers observed at the 
onset o f breeding, and (3) the initial population consisted of 152 indi
viduals, which is the highest density observed (Fig. 8).

Fig. 8. “Fixed pattern” of changes in the population numbers (N), as revealed b y  
the deterministic version of the simulation model. Initial population numbers: I — - 

67, II —  11, and III —  152 individuals.

The results of these simulations are shown in Figure 8. After four 
years from the beginning of simulation, seasonal changes in population 
numbers in each succesive year (i.e. fifth, sixth, seventh, etc.) followed 
exactly the same fixed pattern of seasonal changes in numbers taken to- 
the 2nd place of decimals. The same pattern was established in all; 
three versions of the model. As the population dynamics in each year-
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was a faithful replica of that in the preceding year, the simulation was 
stopped after 5 “years” , admitting that the population “developed” a 
fixed pattern of changes in numbers. This pattern shows that peak 
number will be most frequent in October and rarest in April.

It is worth recalling here the results of the deterministic simulation 
for the period April-July, according to the above classification, for 
submodel 1 (Bujalska, 1984 b). In that model the population number was 
fixed at about 150 individuals after several or a dozen or so runs (depen
ding on the assumptions). This may suggest that the fixed pattern of 
number fluctuations already develops in the first dynamic period. It 
has also been noted that reproduction was responsible for number 
stabilization.

Table 2

Comparison of seasonal changes in population number observed in successive 
years of t'he study with the fixed pattern obtained from  the deterministic 

simulation, using the Kendall rank correlation coefficient.

April June July Sept. Oct. Probability associated with 
Kendall rank correlation

Fixed
pattern 56 167 168 194 211

1966 56 152 306 262 177 p>0.10
1967 68 160 167 177 201 p <0.02
1968 70 332 383 373 230 p>0.10
1969 113 173 165 187 146 p>0.10
1970 29 87 282 315 224 p>0.10
1972 152 124 406 468 473 p <0 .09
1975 134 181 284 271 181 p>0 .10
1976 27 47 119 156 130 p <0 .09
1977 46 96 158 166 170 p<0.02
1978 48 88 184 197 143 p>0.10
1979 47 62 130 141 112 p>0.10
1980 11 39 180 275 241 p<0.09

For further analysis it is ]necessary to see if there is a similarity
between the observed seasonal changes in numbers and the fixed pattern
obtained from  the simulation. The similarity is evident in the mean 
number of trappable individuals and in the direction of changes in 
numbers. In five out o f 12 years o f observation, seasonal trends o f 
numbers did not deviate markedly from  the fixed pattern, and in one 
of them (1967), the distribution o f the observed population numbers fits 
very well to the distribution characteristic of such a fixed pattern 
(Table 2).

Although this result implies an unlimited persistence of the model 
population and fits well the observed pattern, it is not satisfactory 
because it is an idealization based on a tacit assumption that correlation
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coefficients equal 1. This result only shows that both the functions 
describing population demography and their arrangement as shown in 
the flow  diagrams are correct. The deterministic simulation does not 
perform  an important task. It does not generate long-term population 
fluctuations, which are common in real' bank vole populations. Thus, a 
probabilistic simulation was undertaken.

5.2. Probabilistic Approach

Simulation 1. It was assumed that the mean minimum temperature 
of the last ten-day period of March equals the mean observed tem
perature of — 10.5° C. This mean shows a random variation. Thus the 
“initial” temperature in each year was X i a j /S x ,  where a is a normal 
random number, and Sx is a standard deviation from  the mean tem
perature (X). The simulation was run for 55 years, that ip for 275

IM

Fig. 9. Number fluctuations (N) generated by the stochastic version of the model 
over the first 275 censuses (55 years). A  —  temperature in March varies randomly, 

B —  temperature in March follows an 11-year cycle.

successive “censuses” (55 observations for each of the months considered, 
i.e., April, June, July, September and October). The result is shown in 
Figure 9.

Then the fit of the simulated numbers to the normal distribution was 
tested for each month. The interpretation of the result was based on 
the sign of the third (gi) and fourth (<72) central moment of the distri
bution. A  negative value of gx was interpreted as a tendency to skewness 
to the left, whilst a positive one was a tendency to skewness to the right. 
The negative value of g* indicated a tendency to platykurtosis, and the 
positive one to leptokurtosis. Statistical significance of these tendencies 
was tested by the methods described by d ’Agostino and Pearson (1973).
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The results of the simulation, like the empirical results, tended to 
be skewed to the right (Table 3). Moreover, population numbers showed 
leptokurtosis (p2> 0) in April and platykurtosis (02<O ) in the other 
months.

The results of simulation were compared with empirical data. The 
results of all the censuses tended to be skewed to the right (Fig. 2): 
The emprical data are rather scarce as compared with the results of

Table 3

Deviations from the normal distribution in the results obtained from two different 
simulation features of population dynamics.

f
Value of the 3rd Interpretation:

and 4th central moment tendency towards

Temperature in March fluctuates randomly

April 0i =  0.0721 Skewness to the right
gz=  0.1003 Leptokurtosis

June g i =  0.0379 Skewness to the right
02= -0 .4211 Platykurtosis

July 0 i=  0.3442 Skewness to the right
ST2= -0 .12 29 Platykurtosis

Sept. 0 i =  0.4414 Skewness to the right
02= —0.5785 Platykurtosis

Oct. 0 i=  0.5379 Skewness to the right
0 2 = -0 .0 8 9 0 Platykurtosis

Temperature in March follows an 11-year cycle

April 0 i=  0.1494 Skewness to the right
02= 0.2998 Leptokurtosis

June 0 i = -0 .0242 Skewness to the left
02= —0.9094 Platykurtosis

July 0 i=  0.1584 Skewness to the right
02= —0.6504 Platykurtosis

Sept. 0 i=  0.5136 Skewness to the right
0 2 = -0 .2 1 5 8 Platykurtosis

Oct. 0 i=  0.3390 Skewness to the right
02= -0 .7 3 0 9 Platykurtosis

the simulation, nontheless the accordance of the characteristics of the 
distributions of the empirical and simulation results shows that the model 
resonably approximates reality.

To find out if there are similar regularities in the range of fluc
tuations in successive months, the CF Whittaker’s (1975) index was used. 
A  high similarity was found in the value of this index for the empirical 
and simulation data. It clearly tended to decline in the period Aprijl- 
October (Fig. 10), showing that the range of fluctuations diminished. 
The mechanisms accounting for this damping are in the population itself 
and have been analysed elsewhere (Bujalska, 1984 b). Now it should be
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emphasized that the model replicated the situation observed in nature 
and this confirms its reliability.

This statement allows continuation of the analysis in an attempt to 
test whether the model generates long-term trends in population 
dynamics. Since the number of series in the one-sample runs test has 
been shown not to go beyond the critical values (Table 4), the con
clusion is that the model does not generate such trends.

Simulation 2. In this simulation the effects of cyclic changes in spring 
temperatures on population dynamics was analysed. The starting point 
was a selection of temperatures of the last ten-day period of March for 
the years when population dynamics were observed (the spring of 1972 
was excluded for the reasons given in Section 2.1.). A “cycle” of 11 years

Fig. 10. Whittaker’s coefficient of fluctuation (CF) calculated for empirical data 
and for simulation results, a —  empirical data, b —  results of simulation with 
random temperature fluctuations in March, c —  results of simulation with an 

11-year cycle of changes in the temperature in March.

was thus selected to compare the results of the simulation with those 
obtained on the assumption that temperatures in March vary randomly.

The amplitude of the fluctuations was analysed in successive months. 
Changes in value of CF show that it followed the same pattern as in 
simulation 1, and thus also the empirical results. That is, it was highest 
in April and than dropped in June, and stabilized in the remaining 
months (Fig. 10). Next, the distribution of the simulated population 
numbers was compared with the normal distribution. The results of 
the simulation tended to be skewed to the right (Table 3). The only 
exception was the results for June. This tendency correspond to that 
observed in the real population. As in simulation 1, there was a tendency 
to leptokurtosis in the distribution of numbers in April which was also
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present in the empirical material. In the other months of the year, the- 
simulated number distribution is characterized by platykurtosis. Thus, 
in this case the model was also consistent with the empirical pattern. 
This pattern and its demographic implications will be discussed in 
Section 6.

The tendency to leptokurtosis in April combined with the observed 
value of CF can be interpreted as follows. In April it is most probable 
that population numbers will deviate little from  the mean value, but 
the probability of large deviations from  the mean is not low. The tendency 
to platykurtosis in the other months, combined with relatively low CF 
values, can be interpreted as an indication of similar probabilities of 
the occurrence of different population numbers within some limits. Beyond 
these limits this probability is very low.

Table 4

Number of runs (a run consists of a sequence of increasing or decreasing values) 
in the results of the simulation of population dynamics over 55 successive years.

Month

Simulation feature Critical range of 
runs (for n =55 , 
p=0.05) in the 
one-sample runs 

test

Temperature in March 
follows an 11-year 

cycle

Temperature in March 
fluctuates randomly

April 33 34
June 37 33
July 38 38 27— 45
Sept. 33 39
Oct. 31 41

An ecological interpretation of the tendencies described above may 
be as follows. In early spring, prior to the onset of breeding, population 
density is determined by environmental constraints due to one or two 
factors (food and temperature). Hence, probably, a large deviation from 
the mean value may occur. In the other months of the year population 
density is stabilized within specific limits.

In the process of simulating numbers in April the population went 
extinct in one out of 110 cases (55 runs for each of the two variants),, 
and the island had to be “recolonized” . Thus, it is worth emphasizing 
that there are consequences of random variation in the size of the breeding 
stock for the fate of the population. In other words, there are no pro
cesses protecting the population from  the excessive decline. Thus, it is 
possible that under unfavourable circumstances (low population num
bers in autumn, low  temperatures at the beginning of the breeding 
season), extinction may be a common event. The only protection involved 
in the population strategy seems to be the relationship between reproduc
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tion and mortality, that has been discovered by an analysis of the results 
of simulation (Bujalska, 1984 b).

5.3. Do Population Cycles Exist in the Bank Vole?

The analyses presented so far support the thesis that the results o f  
the two simulations (with random and cyclic changes in temperature) 
reasonably well reproduce the population fluctuations observed on the 
island. An additional support for this conclusion is provided by the 
analysis of the frequency of seasonal peak numbers in a series of data 
from  observations and from  the two simulation variants (Table 5). The 
Kolm ogorov-Sm irnov test for independent samples shows that the 
hypothesis that the frequency distribution of peak numbers in particular 
months originates from the same total population cannot be rejected.

Table 5

Frequency distribution of seasonal peak numbers in empirical data and simulation
results.

Simulation feature

Month Empirical
data Temperature in 

March fluctuates 
randomly

Temperature in 
March follows an 

11-year cycle

In two
simulations

jointly

April 0 0 0 0
June 0 11 8 19
July 3 12 10 22
Sept. 6 10 18 28
Oct. 3 22 19 41

This encourages further analyses of population properties generated 
by the model under different patterns of climatic (food) condition at the 
beginning of the breeding season. Having two model populations (each 
simulated for 55 years), an attempt was made to test them for cyclic 
changes in numbers (obviously, neglecting the seasonal cycle). For this 
purpose a time series made up of population numbers (Nt) in successive 
time units, that is years (t=T , 2, ... n), was tested for periodicity. The 
data from April were considered and, separately, from  July.

To normalize the data (skewness of the distribution) a logarithmic 
transformation of population numbers was used: Zt =  ln Nt, and then 
the autocovariance function (Ck) was estimated for the value of Zt and 
the value of Z measured k units later (k = 0 , 1, 2, ... n —1):

Ck = ^  (Z t_ Z > (Zt+k—Z);
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Since the estimates based on the autocorrelation function (rk =  Ck : Co) 
can be deceptive (Box & Jenkins, 1970), the power spectrum of the time 
series was analysed. Such an analysis allows a critical evaluation of 
periodicity in population fluctuations (Jenkins & Watts, 1968). A smooth
ed estimator of the power spectrum was used (Box & Jenkins, 1970):

C(f) =  2 +  i ? .k  C k  cos(2jt/fc)j

where /  is frequency of peak numbers and fa denotes spectral windows 
used for smoothing the spectrum. The spectral windows fa have been 
accepted after Finerty (1980):

Three different values of the window width recomended by Finerty
(1980) were used: M =  ri/10, M =  1/2 [n/10 +  n/4], and M — n/4. The evidence 
for the periodicity in population numbers of the period 1/ /  is provided

Log C(f)

Fig. 11. Power spectrum of the autocovariance function calculated for the remits 
of simulation in April. 1, 2, and 3 —  bandwidth 14, 9, and 6 years, respectively. 
A —  simulation results at randomly fluctuating temperatures in March, B —  remits 
of simulation with temperatures in March following an 11-year cycle. Log C (j —  
logarithm of the power spectrum estimator, j  —  frequency, Y  —  period of the 

cycle in years. Arrow denotes occurrence of a cycle.
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by the coincidence of peaks for spectral estimators (C(f)) with the three 
above window widths.

The application of spectral estimators for analysing population cycles 
in the probabilistic simulation has revealed that when temperatures at 
the end o f March vary randomly, then the population number in April 
vary also randomly (Fig. 11) and in July is cyclic with a period ofi 
about 2.6 years (f«0 .3 8 5 ) (Fig. 12). If the temperature at the end of 
March shows an 11-year periodicity, then population number in April 
also varies in an 11-year cycle (Fig. 11), and a “trace” o f an 11-year 
cycle is also preserved in July (Fig. 12).

Fig. 12. Power spectrum of the autocovariance function calculated for the results 
of simulation in July. (Symbols as in Fig. 11).

The above results raise some questions concerning population pro
perties not revealed earlier by analytical methods. First o f all, w hy can 
the 11-year cycle in April also be traced in July? This peak is very 
distant from the initial state in April and only indirectly related to it 
(Bujalska, 1984 b). W hy do the two variants of the model transmit 
oscillations differentially? In other words, w hy do random changes in 
numbers in April yield a clear-cut 2.6 year cycle, and the 11-year cycle 
in April preserves a trace o f this rhytm in July? Is this a property of

•*'
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the model or a, so far, not recognized property of demographic proces
ses?

Let us assume that the empirical model described here generates 
processes occurring in the real world. A ll the patterns revealed by the 
model' could have been discovered in empirical studies carried out over 
a sufficiently long time.

The implications of this analysis mostly concern population cycles 
and their relation to climatic and food conditions..These relationships 
have already been discussed by many authors over many years. 
Especially, the effect of winter or early-spring conditions on the initial
population size has been frequently emphasized (Popov, 1960; Koshkina,
1965; Fuller, 1969; Ivanter, 1975; Bujalska, 1984 b). The model shows 
that the random variance of spring conditions can generate a 2.6 year 
population cycle. Thus the period of the cycle does not deviate from 
that observed in voles: in the review by Krebs & Myers (1974) there 
is information that it lasts 3— 4 years. C. glareolus is not an exception 
here. There is also information on two-year cycle (Hansson, 1979; Gliwicz, 
1980) and a longer, 3— 4-year cycle (Kaikusalo, 1972; Viro, 1974; Larsson 
& Hansson, 1977; Hansson et al., 1978; Zejda, 1981).

We cannot reject the view  that some climatic characteristics show 
cyclic variations, thus they must be determined by a superior factor (e.g. 
solar or moonlight activity as suggested by Siivonen and Koskimies, 
1955). If this is really the case then we may expect a cycle in population 
dynamics corresponding to this rhytm of climatic conditions (and the 
associated food conditions). A  similar pattern was obtained in the second 
version of the empirical model, based on cyclic changes in spring tem
peratures. Cycles of a similar period were observed in C. glareolus
inhabiting Siberia (Ivanter, 1981). As the author suggests that these 
cycles were caused by the changes in food conditions and spring tem
peratures (in May), which determine the survival of the breeding stock, 
it can be expected that climatic conditions fluctuated regularly there.

It is worth remembering, however, that not all bank vole populations 
are cyclical. Some populations are stable, as for example in southern 
Sweden (Bergstedt, 1965; Hansson, 1978, 1979), and according to Ivanter
(1981) even over the entire southern range of this species in contrast 
to the northern part of the range where there are violent fluctuations 
observed. Hence, there is only a single step to the pronouncement that 
synchronous changes in bank vole populations should not always be 
expected, and there are many examples of this (Viro, 1974; Koshkina & 
Korotkov, 1975; Ivanter, 1981). Some consequences of this situation will 
be discussed below.
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6. DISCUSSION

“Only time reveals where t*he true is” 
. Leonardo da Vinci (Cod. M., 58 verso)

Changes in numbers of small rodents have been investigated for 
many years. The attention o f ecologists has been focused upon the patterns 
o f increases and decreases in numbers in both seasonal and long-term 
cycles.

Krebs & Myers (1974) in their review of recent advances in this 
field also attempted to identify the reasons for the inadequate recognition 
o f periodic changes in numbers. But since then much has changed. The 
number o f publications discussing different aspects of number fluctuations 
has increased (Lidicker, 1978; Wiger, 1982; Bujalska 1984 b; Adl'er & 
Tamarin, 1984; Taitt & Krebs, in print). Finerty’s (1980) book provides 
not only a critical review of the current state of knowledge but also some 
new research possibilities by putting forward efficient techniques of 
analysis allowing an objective evaluation of the cycle period. Also we, 
ecologists, are less inept than heretofore. And it is no longer easy to 
concur with the suggestion of Krebs & Myers (1974) that small rodents 
are not good subject for ecological studies: simply we have not used 
appropriate tools, and have been too impatient in our work, outdoing 
each other in inventing underlying reasons of number fluctuations (often 
taking effects for causes).

The search for the causes of number fluctuations has lead to an 
omnipotent view  that they can be observed as a result o f the processes 
regulating population density. This interpretation has become an axiom 
with time. It blended so much the tradition of ecological thinking that 
all the processes important to changes in numbers were finally considered 
as having regulatory function. This approach was probably enhanced by 
achievements in the field of cybernetics, that showed new possibilities 
of interpretation, and also by the results of long-term  field studies, 
showing that mean population densities were maintained at a stable 
level (interpreted as the optimum density) about which numbers oscillated 
for tens of years.

The modern views on population fluctuations stem from  two theoreti
cal concepts. One of them emphasizes the role of environmental factors, 
most of all' food and climatic conditions, in determing changes in pop
ulation dynamics. A  depletion of available food resources (total or to a 
specified degree) accounts for an inhibition of reproduction (e.g. Pitelka, 
1958) and/or increase in mortality (Lack, 1954), this being followed, in 
turn, by population decline (Thompson, 1955; Pitelka, 1958). A fter the 
restoration of food resources the opposite process is observed and the
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population “fills” the habitat to its carrying capacity. Habitats character
ized by a higher capacity “harbour” a higher number of individuals than 
those which are poor (Zejda, 1976, 1981; Holisova & Obrtel, 1979; Hans- 
son, 1978). Thus, population numbers closely tracks environmental 
resources.

This concept gave rise to other, increasingly refined views suggesting 
that not only the amount but also the quality of food may influence 
population density (Pitelka & Schultz, 1964; Kalela, 1962; Schultz, 1969). 
As a consequence of this idea, the quantity and/or quality of food is 
frequently related to climatic conditions, leading back to the primordial 
cause, that is, the activity of the Sun.

The other concept, which gave rise to the greatest number of current 
ideas, goes back to the theory of intra-population regulation (Strecker & 
Emlen, 1953; Clarke, 1955; Southwick, 1955; Christian, 1956; 1971, 
Christian et al., 1965). According to this view, the population is a self
regulating system, able to m odify the direction of its change after 
exceding some threshold densities. At low densities, population reproduces 
at a high rate, mortality is lower, and the population density freely 
increases. W ith increasing density, however, the rate of further increase 
declines. Interactions among individual animals become more intense, 
and even heavy fights are possible (Koshkina, 1965; Christian, 1971), 
also cannibalism, etc. and then the population density drops. This is 
the result of a direct elimination of individuals or through a complex 
stress process reducing reproduction (Crew & Mirskaia, 1931), with all 
its nuances (reduction in the rate of sexual maturation, disturbance of 
the oestrus cycle, lack of fertilization because of ineffective copulation, 
resorption of embryos, and so on (Southwick, 1955; Crowcroft & Rowe, 
1957; Hoffman, 1958; Christian & Davis, 1966), and increase in mortality 
(Christian, 1950; Frank, 1953).

Although the concept of density-dependent number regulation is suf
ficient for some purposes such as an explanation of the mechanisms of 
increases and decreases in number (Wiger, 1982), it seems to be insuf
ficient and mechanistic in view of the com m only known facts of the 
biology and ecology of the species. The orthodox concept of density- 
dependence, interpreted according to the views of its authors, does not 
allow deviations from its strict and univocal definition (Murray, 1982). 
It is based on the assumption that all individuals are equal. In the play 
for survival they are nothing but pawns. They are pawns because no 
other chessmen exist. *•

At the same time, there exists a rich documentation showing that the 
population is a structured system, and the problem of who will be 
eliminated from  this system is not unrelated to its future fate (W ynne-
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Edwards, 1962). In laboratory-reared populations, where extrem ely high 
densities cannot be reduced by emigration, socially inferior individuals 
are excluded from reproduction or die under unfavorable conditions (in 
overcrowded populations in which no “horizontal” spatial structure 
exist, “vertical” structures are developed, that is, social hierarchy (Ander
son, 1961)). This has been shown in many papers (Retzlaff, 1938; Christian, 
1955 b, and others). These facts go beyond the framework of simple 
density-dependent responses.

This gave rise to the need for other interpretation of regulatory 
processes, which do not contradict the known facts. Thus, Petrusewicz 
(1966) has proposed a model' of structure-dependent regulation. According 
to this concept, each population has structures of different types, per
forming specific functions in the dynamics of the population. A recognition 
of these functions allows the understanding of population organization. 
This line of reasoning, further developed by Petrusewicz’s followers, is 
now supported by many observations. The role of different structures 
in the bank vole has been described, as has the age structure (Andrze
jewski, Petrusewicz & W aszkiewicz-Gliwicz, 1967), social structure (Raj- 
ska-Jurgiel, 1976), and spatial structure (Bujalska, 1970, Mazurkiewicz, 
1971). It has also been pointed out that specific structures, for example, 
the spatial structure of the distribution of mature females in the breeding 
season which determines reproduction, cease to exist upon termination 
of the respective process (Bujalska, 1973). This underlines the dynamical 
arrangement of structures and thus also population organization.

From these diverse structures, we should select those which are of 
fundamental importance, that is the structures directly related to 
demographic parameters. Among them first of all there is the division 
of population members into those potentially capable of reproducing 
(sexually mature) and those forming a “reserve” , temporarily not capable 
of reproducing (immature) (Bujalska, 1970, 1973, 1984 b, 1985). The 
present paper continues this line of reasoning and its intention was to 
illustrate the consequences of this aspect of organization for the fate 
o f the population. This idea will be gradually developed and falsified 
here.

The genus of Clethrionomys is usually considered as showing little 
changes in numbers. Records of its mass appearance are rare. Thus, it 
is classified as a K-strategist, in which the limitation of reproduction is 
often emphasized (Kalela, 1957; Koshkina, 1965; Jewell, 1966; Bujalska, 
1970; Koshkina & Korotkov, 1975; Saitoh, 1981). A  more detailed review 
o f this issue is given by Bujalska (1985). Reproduction is limited due to 
territorial tendencies in mature females (Tanaka, 1953; Koshkina, 1965; 
Bujalska, 1970, 1973; Koshkina & Korotkov, 1975; Saitoh, 1981). From
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this simple and well recognized mechanism (knowing that individual 
territories are incompressible and that some part of the territory, called 
a breeding territory, is always free (Viitala, 1977; Wiger, 1982)), a pattern 
o f reproduction can be deduced. This pattern involves competition among 
mature females for space, masked by our fashion o f reasoning in terms 
of density-dependence, and it seems that in the later phase all females 
can compete for maintaining or reaching the status of a mature female 
(Bujalska, 1985).

The number of mature females in the population is a function o f the 
size of the individual territories and their degree of overlap. The size of 
individual territories, in turn, is determined by  the carrying capacity 
of the habitat in terms of food (Golikova, 1958; Nikitina & Merkova, 
1963; Bujalska, 1975 b; Andrzejewski & Mazurkiewicz, 1976). Hence, food 
resources determine the maximum number of potentially reproducing 
females. This extrem ely simple way of fitting the reproduction to the 
actual food supply may have been a key when environmental capacity 
is not recognized (this being frequently the case) to solving the m ystery 
o f the balance between population processes and environmental capacity. 
Unfortunately an excessive faith in the commonplaceness of density- 
dependent processes precluded, I think, the application of this key.

The inhibition of the maturation rate in females, which limits the 
number of mature females, seems to be an important step towards the 
limitation of reproduction. A  superficial interpretation of this fact caused 
mortality to be considered as process determining changes in numbers 
(Bujalska, 1970, 1975 a).

The simulation model, in which reproduction follow s the known 
empirical functions and mortality is fixed, has revealed the fact, difficult 
to predict by deduction, that reproduction alone is the process responsible 
for reducing the range of changes in population numbers, this occurring 
in the first half of the breeding season (Bujalska, 1984 b).

Also an attempt was made to relate mortality to population dynamics, 
assuming that this process would also reveal a “corrective”  role in 
damping fluctuations. According to the earlier results (Bujalska, 1975 a), 
it was mostly the survival at the nesting age which was considered. 
Although a relationship was found between the survival of the youngest 
individuals and the survival of females, it was not possible to go out of 
the circle of mechanisms and to find an explanation upon which the 
female mortality depends. None of the factors traditionally known to 
m odify survival (e.g. food supply, population density) was correlated with 
the survival of mature females. The above results both experimental 
and those obtained from  the model suggest that the survival of the 
population analysed depend mainly on “random” events (inluding preda
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tion, infection etc.). And although field observations show that survival' 
is related to reproduction (lower survival of mature than immature 
females and an increased survival after breeding (Bujalska, 1975 a), it 
does not seem to be the driving force o f the population dynamics. This 
is even more surprising in view of paramount importance of mortality 
pointed out in many studies on populations with no migrations (e.g. 
Krebs, Keller & Tamarin, 1969).

It may be worth discussing some special problems concerning the 
fluctuations in numbers. First of all, the nature o f the influence of 
environmental' factors on the rate of processes enhancing or limiting 
population numbers. At this point we should be interested in the next 
stage in the network of causal relationships that is, interrelationships 
between the two main processes: reproduction and mortality. They do 
not seem to follow  two independent pathways but are interrelated, at 
least, within certain limits of population numbers. As the model developed 
earlier (Bujalska, 1984 b) may imply, at low population density an 
increase in reproduction is coupled with a decrease in the mortality of 
newborn individuals. This mechanism seems to protect the population 
from extinction; small populations may go extinct by purely random 
occurrences, like a sudden deterioration o f food condition or a local 
catastrophe. Later, at higher densities, this relationship between reproduc
tion and mortality seems to disappear.

At low  population densities at the beginning o f the breeding season, 
that is, when numbers start growing, both reproduction and mortality 
(thus also population numbers) are strongly influenced by the food con
ditions, although this relationship tends to disappear with time. In this 
period, the successive population sizes are not so closely related to the 
preceding numbers as in the half of the breeding season, that is when 
the population reaches higher densities. It can be suggested therefore 
that the period when population builds up its numbers is governed by 
other rules and characterized by other demographic mechanisms than 
the period when population density is high.

Let us consider what has changed in the habitat and in the population 
itself concurrently. Most of all, the dynamic growth of plant cover 
ensured an abundant food supply in the period o f high numbers. In the 
almost climax forest with new herbaceous plant species gradually ap
pearing from  spring to autumn and reaching full growth at different 
times of season, the shortage of any nutrient in the food, e.g. nitrogen, 
which could reduce the survival of the young (White, 1978), is difficult 
to imagine.

A; the same time, the high population density meant the maximum 
breeding potential had been achieved. The number of females in breeding
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condition then stabilized, and also a pool of females able to replace them 
(the “reserve” ) was present, as the current-year females were capable of 
breeding immediately when a mature female died (Bujalska, 1973). 
However, the rate of reproduction and mortality (determining, as it would 
seem the expected balance between population density and carrying 
capacity) did not depend on the population density. How did it happen 
that these crucial processes escaped from being controlled by  the whole 
population (i.e., by the parameter “population density” ), and population 
numbers drifted through the sea of chance? In the light of the sequence 
of events described above there may be only one answer: the totall 
number of individuals is not the subject of population “endeavour” .

Remaining in the worl'd of known facts, let us try to arrange them 
in a different way from that suggested by  the theory of density-depend- 
ence. It will appear then that: ( 1) only that part of the population 
structure is regulated which secures its persistence in time and space, 
and this is the breeding potential, expressed by the number females able 
to reproduce, and probably males as well, their number being also 
limited as found by Kalela (1957, 1971) and Bujalska (1984 a). This 
regulation is of a stabilizing type (consequently it tends to stabilize the 
population size), showing resistance to disturbances. The function of this 
stable system is possibly due to the reserve of immature individuals. 
By the time that this reserve is produced, we can observe in the pop
ulation some mechanisms accelerating its production (a relationship 
between reproduction and mortality); (2) the size of reserve can fluctuate 
widely. It is likely to be subject to diverse and not always recognized 
factors; and (3) total numbers (breeding individuals and the reserve) 
shows a relatively high range of fluctuation because at higher densities 
the survival of the trappable individuals increases with density (Fig. 5) 
which can destabilize the population size. Thus, to explain fluctuations 
in numbers there is no need to resort to the theory of density-dependent 
regulation which only diverts attention from actual processes.

At this point it is time for a reflection on the tortuous pathways in 
the history of research. The fundamental information given by Tanaka 
(1953) on territorial tendencies in mature females could have change the 
views of many workers and shorten the way toward understanding 
fluctuations in numbers. From this information it is possible to deduce 
that the limitation of reproduction and the differential spatial behaviour 
of females of the two categories (mature and immature) must lead to 
the negation of density-depend regulation.

It is also worth noticing that Fuller (1969), who discussed the role 
of adverse weather in population decline, pointed out that demographic
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processes should not be interpreted in terms of density-dependence when 
the knowledge of habitat quality provides sufficient explanation.

The empirical model described in this paper shows that it is possible 
to stray from the canons of the theory of density-dependent regulation. 
Population dynamics generated by this model does not deviate from that 
observed in nature; the population can persist with no upward or 
downward trends and shows fluctuations in numbers.

These findings produce some implications for the population theory. 
For example, the extent of the dispute on single- or multifactorial causes 
of population fluctuations shrinks. It is obvious that random changes in 
population numbers (reserve) open ways to causes of many types. 
Similarly, the problem of factors m odifying the survival of the reserve 
will be of secondary importance unless this survival becomes so low 
that the whole breeding potential is threatened. This view is consistent 
with the earlier concept of Hansson (1978) on local causes modifying 
population numbers.

The reality of this concept and also of the view that changes in the 
size of the reserve are at random (at the present state of knowledge) is 
supported by the results of many studies cited in Section 5.3. showing 
large variability in the amplitude of fluctuations and their frequency 
under different ecological conditions.

The model proposed above implies that the views on the importance 
of migration to population dynamics should be revised. Except for its 
genetic aspect (information), it will be of secondary importance unless, 
for instance, the emigration does not exceed the level at which the pop
ulation breeding potential1 can be threatened. At the same time, an 
increased immigration could increase the density of females above a 
certain critical level, and then the mechanisms reducing the abundance 
of the reserve could be released (through the limitation of reproduction 
until its total inhibition) (Bujalska, 1985).

Independent of the views on the role of population density in 
demography, its causes and effects, density is an actually existing 
category. Even if, according to what was stated above, it can be conr 
sidered as “by-product” o f the processes regulating the breeding potential 
of the population. The total' number of individuals in a population 
realizing a specific niche in the trophic chain, accounts for the balance 
of many processes in the ecosystem. They include consumption, inter
actions with populations of other species in the community (competition 
for food and space), as well as transfer of matter to other trophic levels. 
Also man often wants to know how many animals he can harvest, or 
how many animals can threaten his crops, and also what the chance o f 
survival is for a small populations of a species threatened with extinction,
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this latter becoming an especially urgent problem in recent times. Hence, 
the considerations of population numbers are not academic.

The earlier results (Bujalska, 1984 b), also presented and discussed 
here, show that the island bank vole population fluctuates in a rhytm 
imposed by environmental changes. The cycle of numbers is induced 
by randomly changing climatic and food conditions (2.6-year cycle) or 
by any, e.g. 11-year, cyclic changes in these conditions (a weaker, 11-year 
cycle). It would be extrem ely interesting to explain how it is possible 
to retain a trace of the 11-year cycle, or to develop a 2.6-year cycle in 
spite of the work of the demographic machinery regulating the rate of 
population growth (towards suppressing fluctuation). The present results 
do not provide an answer to the question why two models based on the 
same empirical functions yield cycles of different periods.

Although the models presented here are rooted in the bank vole 
population inhabiting the Crabapple Island, they can be discussed in a 
broader context. First of all, it is worth considering if the model 
described here can be applied only to island situations. Although Gliwicz 
(1980) has argued that island populations have different strategies as 
compared with those of “open” populations, this does not seem to have 
a bearing on all population processes. For example, the limitation of 
reproduction —  the most important process indicating the “choice” of 
the population life-strategy —  is equally frequently described for both 
open and confined bank vole populations, including island populations 
(Kalela, 1957; Jewell, 1966; Bujalska, 1970, 1973; Koshkina & Korotkov, 
1975; Saitoh, 1981). Thus, there is no reason to argue that stabilization 
of reproduction is limited exclusively to island populations.

It may be suggested that the reasoning underlying the model presen- 
ed here will hold for rodent populations the strategy of which is based 
on the limitation (regulation) of their breeding potential (Bujalska, 1981). 
It may apply not only to the populations of the genus Clethrionomys 
but also to the m ajority of so-called K-strategists.
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Gabriela B U JA L SK A

FLU KTU ACJE LICZEBNOŚCI W YSPO W EJ POPULACJI N ORN ICY RUDEJ 
W  ŚW IETLE B A D A Ń  N AD  JEJ O R G A N IZAC JĄ

Streszczenie

Dwunastoletnie badania nad wyspową populacją Clethrionomys glareolus 
'(Schreber, 1780) umożliwiły poznanie prawidłowości demograficznych, towarzyszą
cych zmianom liczebności (Ryc. 1).

Rozkład liczebności populacji cechował się w  kwietniu tendencją do wystą
pienia skośności w  prawo lub leptokurtozy, w czerwcu, wrześniu i październiku —  
do skośności w  prawo, a w  lipcu do skośności w  prawo i platykurtozy (Ryc. 2). 
Powyższe wyniki oraz analiza zmian wskaźnika fluktuacji liczebności stały się 
podstawą do wyróżnienia trzech okresów różniących się tempem przebiegu proce
sów populacyjnych: (1) Dynamicznego okresu kwiecień —  lipiec, w  którym nastę
puje zmniejszanie się zakresu wahań liczebności populacji, (2) Inercyjnego okresu 
lipiec —  poździernik, w  którym utrzymany zostaje niewielki zakres fluktuacji 
liczebności i (3) również inercyjnego okresu październik —  kwiecień roku następ
nego.

Brak migracji ogranicza istotne dla zmian liczebności populacji procesy do 
rozrodczości i śmiertelności. Scharakteryzowano zmiany rozrodczości potencjalnej, 
wyrażonej liczbą dojrzałych samic, ustabilizowaną w szerokim zakresie zmian li
czebności populacji (Ryc. 3, równania (2) i (3)) oraz rozrodczości aktualnej, w y
rażonej liczbą samic ciężarnych (Ryc. 4, równania (4), (5) i (6)).

Przeżywalność osobników w wieku do 6 tygodni (niełownych) była uzależniona 
do przeżywalności opiekujących się nimi samic i liczebności populacji (równania 
(7) i (8)). W  drugiej części sezonu rozrodczego przeżywalność niełownej części po
pulacji wyrażono jako funkcję liczebności populacji (równanie (9)). Przeżywalność 
części łownej (Ryc. 5) opisuje równanie (10), wiążące przeżywalność z liczebnością 
populacji. Niskie współczynniki korelacji w  równaniach opisujących zależność prze
żywalności różnych kategorii osobników od liczebności populacji wskazują, że przy
czyn zmiennej przeżywalności szukać należy wśród innych niż gęstość populacji 

■czynników.
Przeżywalność po zakończeniu sezonu rozrodczego (t.j. w okresie poździernik —  

kwiecień), od której zależy wielkość stada podstawowego na wiosnę, stanowi funk
cję liczebności populacji w październiku i temperatury w ostatniej dekadzie marca, 
wyznaczającej początek rozwoju wegetacji roślinnej (równanie (11)).

Funkcje porządkujące rozrodczość i przeżywalność względem liczebności po
pulacji stały się podstawą budowy modelu empirycznego, symulującego zmiany 
liczebności populacji w dwu pierwszych z trzech wyróżnionych okresów roku (Ryc. 
6 i 7, Tab. 1). Ostatni etap symulacji (w okresie trzecim, tj. październik —  kw ie

cień) przebiegał zgodnie z równaniem (11).
Dokonano najpierw symulacji deterministycznej dla trzech różnych stanów po

czątkowych populacji (Ryc. 8). Po czterech latach od rozpoczęcia symulacji ustalił 
się wzorzec sezonowych zmian liczebności, identyczny dla trzech stanów po
czątkowych. Wykazano podobieństwo między empirycznie obserwowanymi zmia
nami liczebności populacji a uzyskanymi w „stałym wzorcu” (Tab. 2). Następnie 

przeprowadzono dwie symulacje probabilistyczne (każda z nich dla 55 lat) przy 
założeniu, że: a) temperatura w ostatniej dekadzie marca zmienia się losowo i b)
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że zmienia się ona w cyklu 11-letnim (Ryc. 9). Wyniki uzyskane z symulacji po
równano z wynikami empirycznymi pod względem charakterystyk rozkładu (Tab. 3, 
Tab. 5) oraz zakresu fluktuacji liczebności w kolejnych miesiącach badań (Ryc. 10). 
Wykazano duże podobieństwo między zmianami liczebności obserwowanymi empi
rycznie i uzyskanymi z symulacji.

Zbadano więc, czy symulowane zmiany liczebności wskazywać mogą na istnie
nie cyklu. Wykazano, że losowe zmiany temperatur wiosennych indukują wystą
pienie cyklicznych zmian liczebności w lipcu (średnia długość cyklu około 2,6 roku) 
a zmieniające się w cyklu 11-letnim —  11-letni cykl liczebności w  kwietniu (Ryc. 
11) i ślad 11-letniego cyklu w lipcu (Ryc. 12).

Uzyskane wyniki przedyskutowano na tle współczesnych poglądów na demo
grafię populacji. Zwrócono uwagę, że procesem stabilizującym liczebność populacji 
była regulowana rozrodczość, a procesem destabilizującym liczebność —  przeży- 
walność. Wysunięto hipotezę, że zmiany liczebności populacji nie zawsze muszą 
być interpretowane jako rezultat regulacji. W ydaje się to dotyczyć wszystkich 
populacji należących do tzw. K-strategów.


