
Acta Theriologica 45 (2): 145-153, 2000. 
PL ISSN 0001-7051 

A new four-parameter, generalized logistic equation 
and its applications to mammalian somatic growth 

Xinrong WAN, Mengjun WANG, Guanghe WANG and Wenqin ZHONG 

Wan X., Wang M., Wang G. and Zhong W. 2000. A new four-parameter , generalized 
logistic equat ion and its applications to mammal i an somatic growth. Acta Theriologica 
45: 145-153. 

A new mathemat i ca l equat ion is in t roduced in this paper : 

W = f -
b , 1 

+ ( — - )exp(A>/) 
/ f s f 

where W is t he size at any convenient un i t of t ime t, s is the init ial size, / is the upper 
asympot ic size, k is the growth coefficient (k > 0), and b is the constant . The new 
equa t ion encompasses the logistic equat ion and therefore should be considered as a 
general ized version of the classical logistic equation. With i ts addit ional fou r th para-
me te r b, t he new equat ion yields an unf ixed value of inflexion point which enables it to 
possess good flexibility for depict ing diverse growth pa t t e rns . In order to evaluate t he 
fitness of t he new growth equat ion, some commonly encountered models a re compared 
to t he new one us ing 12 sets of somat ic growth data of mammal i an species including 
h a m s t e r , r a t , vole, pika, mouse, rabbi t , cattle, and bear. The new equat ion possesses 
excellent fitness to each da ta set, suggest ing t ha t it is wor th being considered by 
growth da t a analysts . 
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Introduction 

Many growth equations have been used for many years in the life sciences to 
provide a mathematical summary of time-course data on growth of organisms, 
organs or tissues (Parks 1982, Banks 1994, France et al. 1996, Bazjer et al. 1997). 
The logistic function (Verhulst 1838, Robertson 1908) is one of the most classic 
growth models. Its major advantages are mathematical simplicity and apparent 
biological interpretation. It has played a central role in many aspects of theoretical 
and applied ecology (Krebs 1996). 

Although the logistic equation has been extensively used in a wide range of 
ecological situations, its theoretical assumptions are too simple and open to much 
criticism (Maynard Smith 1974, Cui and Lawson 1982a). In reality, the relationship 
between the relative growth rate dWKWdt) and size Wis not necessarily linear (Cui 
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Table 1. T h e expressions of some commonly applied growth models. P a r a m e t e r s s and f d eno t e t h e 
init ial and t h e u p p e r asympot ic size respectively, k is t he growth coefficient. O the r p a r a m e t e r s m a y 
have d i f fe ren t biological in te rp re ta t ions . 

Model Expression References 

Spi l lman W = / - ( / -s) e x p ( - kt) 
Gomper tz W = f exp (In (s / / ) • exp ( - kt)) 
Ber ta lanf fy W = ( / 1 / 3 - (fV3-s113) • exp ( - kt))3 

Logistic W = s • / / {s + ( / - s ) exp (-kt)} 
Richards W = s • f / {sn + ( f n - s n ) exp ( k t ) } V n 

Janoschek W = f - ( f - s ) • exp (~ktp) 

Spil lman and Lang 1924 
Gomper tz 1825 
Ber ta lanf fy 1957, Gille and Sa lomon 1995 
Verhulst 1838, Rober tson 1908 
Richards 1959 
Gille and Salomon 1995 

and Lawson 1982a, b). For this reason, the logistic model fails to fit somatic growth 
data satisfactorily in some cases (Ricklefs 1968, Cui and Lawson 1982a, Jolicoeur et 
al. 1992a, b, Wan et al. 1998b). In order to enable it to fit data sets better, many 
attempts have been made to construct a generalized form of ordinary 3-parameter 
logistic equation by various authors (Richards 1959, Cui and Lawson 1982a, 
Jolicoeur and Pontier 1989, Jolicoeur et al. 1992b, Wan et al. 1998a). 

The present paper considers a new generalized form of the ordinary logistic 
equation. In order to evaluate the appropriateness of this new equation, we used 
several commonly applied growth models, viz: the logistic, Gompertz, Bertalanffy, 
Spillman, Richards, Janoschek, and the present one to fit 12 sets of somatic growth 
data of mammalian species. The expressions of these growth models are presented 
in Table 1. 

Mathematical properties of the new model 

The new model gives: 
w = f - b — r A ( i ) 

+ ( - ) exp (kt) 
f f - s f 

Substituting t = 0 in equation (1) yields W = s, and setting t -» oo gets W = f . 
Thus, parameters s and / are easily to define as birth size and mature size, 
respectively. Parameter k is the so-called growth coefficient. The first and second 
derivative functions can be obtained by differentiate equation (1) with respect to 
time t. The results are: 

k( ^ - ^ ) e x p (kt) 
dW _ f - s / 

^ =
 + ( 1 - ^)exp(kt)]2 ( 2 ) 

/ f s f 

/ f - s f 
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d2W Setting the second derivative —— equals to zero yields the POI (point of 
dt 

inflexion) of time t': 
f' = 7 [In(—) - l n ( — — - ) ] 

k f f-s f (4) 
Substituting t = t' into equation (1) yields the POI of size W: 

H" = / ( 1 " i ) (5) 
Unlike the ordinary 3-parameter logistic equation which has a fixed value of 

POI located at f/2, this new model possesses a unfixed value of POI according to its 
f 

additional fourth parameter b. To illustrate, as b < — , equation (5) gives 
2(/ - s) 

f W < s or W > / , therefore the new equation has no POI; as b > — , equation 
2(/ - s) 

(5) can give any value of POI ranging from s to f according to a certain value of 
parameter b. For this reason, the new function has good flexibility in portraying 
diverse growth courses. 

In addition, at the point of inflexion, the degree of maturation gives: 

W / ( I - 1 / 2 6 ) . 1 
7 = 1 ~ 26 ( 6 ) 

Thus, parameter b is a shape parameter, controlling the shape of the growth 
curve and adjusting the degree of maturation when growth rate peaks. 

Returning to the analysis, the inverse function of equation (1) gives: 

t [ln(— —) - l n ( ^ —)] 
k f-W f f-s W, ( 7 ) 

Substituting equation (7) into equation (2) yields: 

dW kh 
—— = -—W2 + (26 - l)kW + {l-b)kf (-ô v 
dt f 

From equation (8) we can conclude that the first derivative of the new model is 
essentially a general parabolic function. In a special case as b = 1, equation (8) 
reduces to: 

dW k.j.o , ,JT , „r/Z-VV, = —W2+kW=kW(+ ) /Q\ 
dt f f 

Clearly, the new model is essentially a four-parameter, generalized logistic 
equation. The feature of the first derivative of this new model with respect to 
various values of parameter b are shown in Fig. 1, indicating that the new model 
encompasses the classical logistic equation. In addition, we can easily get the 
integral form of the ordinary logistic expression by substituting 6 = 1 into equation 
(1). This result is: 

W - sf /[s + (f -s)exp(-kt)] QO) 
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Fig. 1. The feature of the first derivative of the new model with respect to a various values of 
parameter 6. As b < f l [2 ( / — s)]„ there is no POI; as b > / / [ 2 ( / - s ) ] > 0.5, a sigmoidal curve will be 
observed. The new model possesses unfixed value of POI according to its additional fourth parameter b. 

b = 0 " v 

6 = 0.2 

6 = -0 .1 

if = 0.1 / = 100 
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6 = 0.5 

b = 0 8 POj_ 
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The inverse measure of growth rate of the new model 

The inverse measure of growth rate, namely ¿iq_9o> which represents the time 
required for growth between 10 to 90% of the asymptote (Ricklefs 1968), can be 
derived as follows. Substituting W = 0.1/ and W = 0.9/ into equation (7) yields: 

, l n , 1 0 / 9 6 , 1 6 
10 =~k [ f 7 } ( 7 i 7 ~ 7 ) ] ( 1 1 ) 

9̂0 = - - ) - ln(—-——)] ( 1 2 ) k f f f-s f U^J 

Minus /90 by i10 obtains the expression of /io_9o: 

1 . . 1 0 - 6 , 1 W 1 80 . 
1̂0 10 = - l n ( ) = - l n ( l + ) 10 90 k 1 0 / 9 - 6 k 1 0 - 9 6 U c W 

In a special case as b = 1, equation (13) reduces to the logistic ¿io_9o- Therefore, 
1 44 the above expression becomes i10_90 = —In81 » — , which coincides with Ricklefs 
k k 

(1976). 

Difference between the new model and the Richards equation 

Among the earlier literature, one of the most famous 4-parameter generalized 
logistic equations is the Richards equation (Table 1). Its first derivative function 
(Richards 1959, McCallum and Dixon 1990) gives: 
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—— = IW -mW" ( 1 4 ) 
dt 

where I, m, n are constants. In a special case as n = 2, equation (14) reduces to the 
ordinary logistic model. Nevertheless, comparing equation (8) with equation (14), 
we easily see that the Richards equation and the new one are quite different in their 
mathematical foundations. 

Evaluation of growth model fits with observations 

In order to compare the fits of this new equation with commonly applied ones, 
we used 12 sets of observations in data analysis. Data sets refer to the following 
measurements: Nos 1-2 - body mass of male and female plateau pika, respectively 
(Zhou et al. 1987); No. 3 - body mass of the Brandt vole (Wan et al. 1998a); No. 4 -
body mass of mouse (Koops 1986); No. 5 - body mass of rabbit (Koops 1986); Nos 
6-8 - growth data (body mass, brain mass, body length) of white rat (Jolicoeur and 
Pirlot 1988); Nos 9-10 - body mass and body length of Fujian cattle (Liang et al. 
1995); No. 11 - body length of brown bear (Zhu andXia 1991); No. 12 - body mass 
growth data of 27 male striped hamsters Cricetulus barabensis, measured on 
repeated occasions (this study). 

All of models were used to fit each data set. All of the parameters were obtained 
thrcugh the least squares method (Jolicoeur 1999). The values of R" (the percent 
variation accounted for, indicating the proportion of the variation explained) and 
RSS (residual sum of squares) were used to evaluate the fit of each model. The 
statistical program STATISTICA Release 4.5A (1993) was used in parameter 
simulating procedures. The results are presented in Tables 2-3 and Fig. 2. 

Table 2. Es t imated pa ramete r values (k, s, f , b), POI of t ime t', POI of size W, residual sum of squares 
(RSS>, and percent of variat ion accounted for (R ) obtained by f i t t ing the new growth model to each 
da ta set. 

Data set k s f b t' W RSS R2 

No. 1 0.1074 7.88 122.50 0.9917 23.79 60.70 2436.00 0.9816 
No. 2 0.1083 8.80 122.00 1.0080 24.67 61.50 1270.80 0.9902 
No. 3 0.0336 1.59 38.69 0.6436 14.21 8.63 886.40 0.9683 
No. 4 0.1101 2.77 26.09 1.0580 25.66 13.80 8.83 0.9930 
No. 5 0.0190 31.65 1385.00 0.7122 44.06 413.00 1554.00 0.9994 
No. 6 0.0419 2.17 305.00 0.9016 51.19 135.90 3966.00 0.9892 
No. 7 0.0040 286.00 1891.00 -21.5600 - - 292265.00 0.9630 
No. 8 0.0263 51.90 241.00 0.4950 - - 1575.00 0.9879 
No. 9 0.0275 14.12 369.50 0.8457 53.53 151.00 437.00 0.9951 
No. 10 0.0204 52.73 147.40 0.3564 - - 23.63 0.9963 
No. 11 0.0468 218.50 532.20 1.5400 48.85 359.00 4420.30 0.9961 
No. 12 0.0444 1.16 19.10 0.5682 3.03 2.29 4.51 0.9964 
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Table 3. The values of RSS obtained by fi t t ing each model to 12 sets of growth data. We ranked t h e 
model with best fi t as ©, the model with worse fit as © and soon for each data set. The second line of 
t he cur ren t table is the total r ank values for all of the data sets. 

Data Logistic Gompertz Bertalanffy Spillman Richards Janoschek New one 
set rank: 68 60 56 71 19 33 29 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 
No. 6 
No. 7 
No. 8 
No. 9 
No. 10 
No. 11 
No. 12 

2438.00 
1272.00 
1109.00 

9.38 
19019.00 

5047.00 
672694.00 

1996.00 
5247.00 

228.70 
1221.00 

19.68 

2623.00 
1651.00 

907.70 
15.16 

5410.00 
© 3534.00 
© 537953.00 
© 1629.00 
© 2886.00 
© 167.20 
© 1584.00 
© 5.07 

© 

© 
© 

3039.00 
2146.00 

871.00 
18.65 

© 2692.00 
© 3547.00 
© 490388.00 
© 1576.00 
© 2119.00 
© 146.60 

1728.00 
3.55 

© 

5465.00 
4755.00 

973.20 
29.35 

7754.00 
© 6792.00 
© 401056.00 
© 1633.00 

1025.00 
106.90 

2044.00 
6.84 

© 

© 

© 2388.00 © 
© 1267.00 © 
© 867.20 © 

7.902© 
2147.00 © 
3488.00 © 

©289369.00 © 
© 1568.00 © 
© 959.70 © 
© 37.31 © 
© 604.40 © 
© 3.38 © 

© 

© 

2500.00 © 
1339.00 © 
869.50 © 

11.71 © 
2116.00 © 
3880.00 © 

287512.00 © 
1571.00 © 
960.90 © 

40.90 © 
455.6.0 © 

3.51 © 

2436.00 © 
1271.00 © 

886.40 © 
8.83 © 

1554.00 © 
3966.00 © 

292265.00 © 
1575.00 © 
437.00 © 

23.63 © 
420.30 © 

4.51 © 

Discussion 

In the logistic hypothesis, the maximum velocity occurs at / /2 , which is not 
necessarily the t ruth. A lot of authors have revealed that in many species the peak 
growth rate does not occur at exactly half equilibrium (Ricklefs 1968, Cui and 
Lawson 1982a, Wan et al. 1998b). In these cases, the ordinary logistic equation may 
fail to give a suitable fit to the relevant data set. One the contrary, with its 
additional fourth parameter b, the new generalization possesses an unfixed value of 

POI located at the point W = / ( I ), which enables it to possess more flexibility 
2b 

for describing diverse growth patterns than the ordinary logistic equation. 
The values of RSS are used to evaluate the fit of these models. The smaller a RSS 

value is, the better a model fit to a data set. In many cases, adding more parameters 
to a model always improves the goodness of fit. Therefore 4-parameter models 
usually yield better fits than 3-parameter ones (Gille and Salomon 1995, Wan et al. 
1998a). From Table 3 we can see that the Richards, Janoschek and the new model 
usually yield lower values of RSS and higher values of R than the logistic, 
Spillman, Bertalanffy, and Gompertz equations. 

Based on the numerical results presented in Table 3, the new model yields the 
least RSS for rabbit body mass (No. 5), cattle body mass (No. 9), cattle body length 
(No. 10), and brown bear body length (No. 11). The new model yields better fits 
than the logistic, Gompertz, Bertalanffy, Spillman, Richards, and Janoschek 
models in 12, 11, 9, 12, 4, and 7 out of 12 cases, respectively. According to the total 



New model applied to mammalian growth 151 

30 60 90 

Age (days) 

Fig. 2. Growth curves obtained by f i t t ing the new model to 12 sets of mammal ian growth data. 
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of rank values given in Table 3, the new model yields the second best fit among 
these growth functions, indicating that the new model has excellent fits to diverse 
mammalian somatic growth courses and therefore should be considered by data 
analysts. 
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