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Performance of the Shewhart control chart in 
the presence of dependent data 

Olgierd Hryniewicz, Janusz Karpinsk.i, Anna Szediw 

Abstract Shewhart control charts were originally designed under the assumption 
of independerice of consecutive observations. In the presence of dependence the 
authors usual!y assume dependencies in the form of autocorrelated and normally 
distributed data. However, there exist many other types of dependencies which are 
described by other mathematical models. The question arises then, how classical 
control charts are robust to different types of dependencies. This problem has been 
sufficiently well discussed for the case of autocorrelated and norma! data.In the 
paper we use the concept of copulas to model dependencies of other types. We use 
Monte Carlo simulation experiments to investigate the impact of type and strength 
of dependence in data on the value of the ARL of Shewhart control charts. 

Key words: Shewhart control charts, correlated data, copulas; ARL 

1 Introduction 

Statistical process control (SPC) is a collection of statistical methods used by thou­
sands of practitioners who are striving to achieve continuous improvement in qual­
ity. This objective is accomplished by continuous monitoring of the process under 
study in order to quickly detect the occurrence of assignable causes. The Shewhart 
X control chart, known for mare than eighty years, is the most popular SPC method 
used to detect whether observed process is under control. Its classical and intema­
tionally standardized version is designed under the assumption that process mea­
surements are described by independent and identical!y distributed random vari­
ables. In the majority of practical cases these assumptions are fulfilled at least ap­
proximately. However, there exist production processes where consecutive obser­
vations are obviously correlated, e.g. in case of certain continuous production pro­
cesses. The presence of correlations between consecutive measurements should be 
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taken into account during the design of control charts. This need was already noticed 
in the 1970s, see e.g. the pa pers by Johnson and Bagshaw [I OJ and by Vasilopoulos 
and Stamboulis [25], but the problem was widely discussed in papers published in 
the late 1980s and in the 1990s. 

One of the visible effects of autocorrelation in observed process data is the sig­
nificant difference between statistical properties of control charts designed for in­
dependent and dependent data. There exist severa! approaches for dealing with this 
problem. First approach, historically the oldest one, consists in dealing with original 
data and adjusting control limits of classical control charts. This approach was used, 
for example, in papers by Reynolds Jr. and co-authors [13],[12],[14],[24], Schmid 
[21],[22], Vasilopoulos and Stamboulis,[25), and Zhang [29]. Other approaches are 
based on the concept of residuals (see the papers by Alwan and Roberts [2] or by 
Montgomery and Mastrangelo [16)) or on monitoring statistics related to autocor­
relations (see the papers by Yourstone and Montgomery [28] or by Jiang et al. [9]). 
There also exist more sophisticated methods for dealing with SPC autocorrelated 
data. An overview of SPC methods used for autocorrelated data can be found in 
papers by Wardell et al. [26), Lu and Reynolds [12), and Knoth et al. [11). 

While dealing with correlated data we cannot rely, even in the case of classical 
control charts, on the methods used for the estimation of their parameters in case 
independent observations. Some corrections are necessary, as it was mentioned e.g. 
in the paper by Maragah and Woodall [15] . Another problem with the application 
of the procedures designed to control autocorrelated data is the knowledge of the 
structure of correlation. In the majority of papers it is assumed that the type of a 
stochastic process that describes the process data is known. Moreover, it is also 
assumed that the parameters of this stochastic process are also known. However, 
Lu and Reynolds [12),[14] have shown that precise estimation of such parameters 
requires at least hundreds of observations. 

All these problems, noticed by many authors, make the SPC with dependent data 
very difficult, especially for not well-trained in statistics practitioners who need ef­
ficient tools to discriminate between complicated problems with dependent data and 
relatively simple problems when observed data are independent. This problem was 
considered in the paper by Hryniewicz and Szediw [8] who proposed a relatively 
simple and efficient nonparametric tool, named by them the Kendall control chart, 
for testing hypotheses about independence of SPC data. While discussing the prop­
erties of this tool they noticed that the type of existing dependence plays a crucial 
role. In this paper we continue the work along that line by analyzing the properties 
of Shewhart control charts when data are generated by different variants of a simple 
autoregression model. The mathematical model that describes serial dependence be­
tween consecutive observations of a process in terms of copulas is described in the 
second section of the paper. In the third section we present the results of Monte Carlo 
simulation experiments which show very strong dependence of statistical properties 
of control charts upon the type and the stmgth of dependence. Conclusions derived 
from these results are presented in the last section of the paper. 
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2 Mathematical models of dependence between consecutive 
observations on a control chart 

3 

Mathematical models used for the description of dependent random variables are 
well known for many years. In the simplest two-dimensional case we are interested 
in the description of dependence between two random variables X and Y having 
marginal distributions described by cumulative probability functions F (x) and G(y), 
respectively. In the context of the considered in this paper time-dependent observa­
tions we can, in the simplest case, set X = X, and Y = Xr+I, where X1 , t = I, 2, . .. 
is the time series representing consecutive observations of the process under con­
sideration. In his fundamental work Sklar (23] showed that for a two-dimensional 
probability distribution function H(X, Y) with marginal distribution functions F(X) 
and G(Y) there exists a copula C such that H(x,y) = C(F(x), G(y)). This result has 
been ]ater extended to the case of multivariate probability distributions. For more 
information about copulas the reader should refer e.g to the book by Nelsen (17]. 

All well known multivariate probability distributions, the multivariate norma! 
distribution included, can be generated by parametric families Ca of copulas, where 
real- or vector-valued parameter o: describes the strength of dependence between 
the components of the random vector. Thus, copulas have found many interesting 
practical applications. The number of papers devoted to the theory and applications 
of copulas is still growing rapidly, thanks to the increasing interest coming from e.g. 
the analysis of financial risks and the survival analysis. For more recent results the 
reader should consult already mentioned book by Nelsen [17]. 

In this paper we focus our attention on three types of copulas. First is the norma! 
copula, which in the two-dimensional case is defined as follows : 

(1) 

where cf>N ( u1, u2) is the cumulative probability distribution function of the bivariate 
norma] distribution, cp-I (u) is the inverse of the cumulative probability function 
of the univariate norma! distribution (the quantile function) . Parameter p in case of 
marginals described by the normal distribution is equal to the well known coefficient 
of linear correlation introduced by Pearson. It is worth noticing that the values of 
the linear correlation coefficient depend upon the type of marginals. Therefore, for 
the same value of the parameter p of the norma! copula, the values of the Pearson's 
correlation may be different for different distributions of X and Y. 

Second copula considered in this paper is the Farlie-Gumbel-Morgenstem (FGM) 
copula who is frequently used for modelling weak dependencies. This copula is de­
fined by the following formula: 

(2) 

The remaining three copulas considered in this paper belong to a generał class 
of symmetric copulas, named the Archimedean copulas. They are generated using a 
class <P of functions 1 : [O, 1) -> [O , 00), named generators, that have two continuous 
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derivatives on (O, 1) and fulfill the following conditions: ~(I)= 1, f(t) < O, and 
~" (t) > O for all O < t < l (these conditions guarantee that ~ has an inverse ~ -I 
that a]so has two derivatives). Every member of this class generates a multivariate 
distribution function. In this paper we consider three two-dimensional Archimedean 
copulas defined by the following formulae (copulas and their respective generators): 

• Clayton's 

C(u,v)=max([u-a+v-a-1r1fa,o),aE[-l,oo)\O (3) 

Ht)=(t-a-l)/a,aE[-l, 00)\0 (4) 

• Frank's 

C(u,v)=--ln 1+ e - e - ,aE(-00,00)\0 1 ( ( -au 1) ( -av I)) 
a e-a -1 

(5) 

( 1 -a) 
~(t)=ln 1 ~:-a, ,aE(-00,00)\0 (6) 

• Gumbel's 

C(u, v) = exp (- [(-Inu)l+a + (-Inv) 1+a ]1+,,), a E (O,oo) (7) 

~(t)=(-In(t))a+1,aE(O,oo) (8) 

In case of independence the dependence parameter aind adopts the value of O 
(in Clayton's and Frank's copulas as an appropriate limit). The copulas mentioned 
above are sometimes presented using different parametrization, and in such cases 
independence is equivalent to other va!ues of a. 

As it has been already mentioned above, a well known coeficient of Iinear cor­
relation cannot be used for measuring the strength of dependence between random 
variables whose dependence is described by a given copula. Nonparametric mea­
sures of dependence, such as Spearman's p or Kendall's -r can be used for this 
purpose. For the copulas considered in this paper the va!ues of Kendall's -r are eas­
ier to calculate, and for this reason we use this measure of dependence in further 
analyses. 

Genest and MacKay [6] considered the population version of the Kendall's co­
efficient od dependence (association) -r. This characteristic can be used for the de­
scription of the strength of dependence in copulas, and its importance in character­
izations of copulas has been shown recently in papers by Nelsen et. al. [18]. Let 
K(t) be the cumulative probability function of the random variable T = C(U1,U2), 

where U1 and U2 are random variables uniformly distributed on [O, 1 ]. The following 
relation Iinks a copula with Kendal!'s -r: 

-r = 3-4 t K(t)dt (9) 
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Estimation of K(t) for the case of two-dimensional copulas, and thus the estimation 
of i-, was considered by Genest and Rivest [7) . 

Closed formulae for Kendall's i- are available only for some copulas. In the case 
of the norma! copu!a we have the following expression 

't°Narm = arcsin(p)/(1r/2) . 

For the FGM copula we can compute Kendall's i- from a very siinple formula 

't°FGM = 20/9 . 

(10) 

(11) 

For the family of Archimedean copulas there exists the following generał formula 
that links Kendall's i- with the generator function cp: 

fi </>(v) 
't°Arch = 1 +4 Jo </>'(v) dv. (12) 

For specific cases of the considered in this paper Archimedean copulas we have: 

• Clayton's copula 

• Frank's copula 

• Gumbe!'s copula 

a 
't"=-­

a+2' 

i-= 1 +4 (!_ fa _t_dt-1) /a, 
a Jo e' -1 

a 
't"= --. 

a+l 

(13) 

(14) 

(15) 

Each copula can be looked upon as a multivariate probability distribution whose all 
marginal distributions are uniform. However, by using an inverse probability distri­
bution function (a quantile function) we can transform each uniforrnly distributed 
random variable to a variable with any continuous probability distribution. In this 
paper we will consider the case when such transformation will lead to marginals 
described by the standard norma! dlstribution N(O, 1 ). This assumption definitely 
restricts generality of inferred conclusions, but - on the other hand - allows to com­
pare aur new results with those presented by other authors who usually made this 
assumption. 

3 Basic properties of the Shewhart control chart in case of 
dependencies of diff erent types 

The most frequently used statistica! characteristic of a control chart is its Average 
Run Length ARL. This characteristic describes the expected number of observations 
(points plotted on a chart) until the occurence of an alarm (e.g. when the first point 
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beyond 3-sigma control limits has been observed). When consecutive observations 
are independent, and their probability distribution is known, the random variable 
which describes the waiting time till the moment of the first observation beyond the 
control limits is distributed according to the geometrie distribution, and the value of 
the ARL can be calculated analytically. However, when observations are dependent 
(serially correlated) and/or their probability distributions are only partially known 
(e.g. the class of the distribution is known, but its parą.meters are estimated) this 
characteristic usually cannot be calcu!ated from a closed formula. Therefore, we 
need to use statistical Monte Carlo simulation in order to eva!uate the value of the 
ARL. 

In our simulation experiments we have generated consecutive observations using 
conditional probability distributions derived from two-dimensional copulas. In or­
der to arrive at comparable results we have generated serially correlated processes 
described by a fixed in advance value of Kendall's i-. By having the same norma! 
marginal distributions, and the same values of the measure of the strength of depen­
dence we can detect a possible influence of the type of dependence related to the 
type of the underlying copula. In the following two subsections we will present the 
results of experiments for two cases: 

• Parameters of the normal distribution (design parameters) are known, 
• Parameters of the normal distribution (design parameters) are estimated from an 

initial sample. 

In both cases we consider only one type of the process deterioration: the shift of the 
process level by ka. When k = O (i.e. when there is no shift) the value of the ARL 
represents the average time to a false alarm. When k = 1 we have the case of a small 
deterioration. Significant deterioration of the process is in our experiment modelled 
by setting k = 3. 

3.1 Known design parameters 

The results of the simulation experiment for known design parameters are presented 
in Tables 1-3 for different values of the shift of the process level (mean value). 
Each number in these tables has been obtained after averaging the results of 200 
OOO simula:tion runs. The maximal length of each simulation run varied from 10000 
to 100 OOO observations (for strongly dependent observations). 

In Table 1 we present the average times to a false alarm. In all considered cases 
the expected time to a false alarm in presence of dependent data is always larger than 
in the case of independence, and this difference increases with increasing strength 
of dependence. However, the way how the ARL depends on the value of i- strongly 
depends on the type of the copula that describes the data. It is interesting to see 
that for all considered copulas, with a noticeable exception of Gumbel's copula, 
the values of the ARL change insignificantly for weakly dependent data. However, 
for moderate and strong dependencies these values are changing in a completely 
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different way depending on the type of a copula. For the norma! copula (i.e. for an 
ordinary Gaussian autoregression AR( 1) process) the va!ue of the ARL increases for 
the increasing absolute value of the strength of dependence measured by Kenda!l's 
i-. The dependence of the ARL on the va!ue of i- is symrnetrical and these va!ues 
become very large for large values of i-. In case of the FGM copula, which is used 
for modelling weak dependencies, the influence of the value of i- on the ARL is 
practically non-existing. The similar situation, but extended to larger values of i-, 
has been observed for Frank's copula. 

Table 1 ARLs-Shewhart control chart(design parameters known), TEST 1: "3-cr" rule, no shift 

Kendall's -r Nonnal FGM Clayton Frank Gurnbel 

0,8 1391,0 X 759,3 385,4 1301,8 
0,5 466,8 X 622,4 373,1 633,57 
0,3 389,0 X 496,0 373,4 528,6 
O, 1 371,1 369,6 384,4 370,5 456,4 
0,05 370,5 369,3 374,7 372,1 443,3 
0,01 370,6 369,7 371,6 372,2 430,7 
o 370,S 370,S 370,S 370,S 370,S 
-0,01 372,31 369,28 370,19 372,97 X 

-0,05 371,3 370,8 370,0 371,7 X 

-0, 1 371,3 368,9 370,6 371,2 X 

-0,3 390,0 X 384,3 374,1 X 

-0,5 468,4 X 433,9 375,0 X 

-0,8 1379,4 X 898,6 384,0 X 

In the case of Clayton's copula the dependence of the ARL upon the value of i­
is not symmetric. In case of positive dependence (i-> O), and small and moderate 
strength of dependence, the ARL in this case is larger than in the case of the normal 
copula. However, in case of very strong positive dependence this value of the ARL 
is significantly smaller than in the normal case. In case of negative dependence 
( i- < O) the ARL for Clayton 's copula is always small er than the ARL in the norma! 
case. The case of Gumbel's copula requires special comments. This copula describes 
only positive dependence, and even for very weak dependencies the corresponding 
va!ues of the ARL are significantly greater than in the case of independence. Only in 
case of very strong dependence the behaviour of the Shewhart control chart seems 
to be similar to that described by the norma! copula. It means that the Shewhart 
control chart is very sensitive to this type of dependence, even if this dependence is 
very weak, and thus difficult to be confirmed. 

In case of small shifts ( equal to 1 u) of the process level the dependence of the 
ARL upon i- looks different. The values of the ARL in presence of dependent data are 
nearly always greater than in the case of independence. It means that the dependence 
in data has negative impact on discrimination abilities of the Shewhart control chart, 
and this unpleasant feature does not depend upon the type of dependence. In case of 
strongly dependent data the values oftheARL may be so large (especially for normal 
and Gumbel's copulas) that the chart becomes practically insensitive to relatively 
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Table 2 ARLs-Shewhart control chart (design parameters known), TEST 1: "3-cr" rule, shift of 
la 

Kendall's 'I" Norma! FGM Clayton Frank Gumbel 

0,8 273,21 X 90,28 86,74 653,04 
0,5 71,95 X 48,55 54,18 126,65 
0,3 52,25 X 45,18 47,7 73,07 
0,1 45,11 43,97 43,74 45,42 50,39 
o 43,78 43,78 43,78 43,78 43,78 
-0,1 43,62 43,73 43,74 44,75 X 

-0,3 44,36 X 44,63 44,55 X 

-0,5 50,96 X 50,15 45,53 X 

-0,8 135,18 X 101,04 52,44 X 

small deterioration of the process. However, in the case of Frank's copula the value 
of the ARL remains reasonable even for strongly dependent data (especially in case 
of negative dependence). 

Table 3 ARLs-Shewhart control chart (design parameters knowa), TEST 1: "3-cr" rule, shift of 
3a 

Kendall's 'I" Norma! FGM Clayton Frank Gumbel 

0,8 10,58 X 24,94 9,75 9,1 
0,5 3,29 X 4,05 4,51 3,16 
0,3 2,49 X 2,59 3,55 2,44 
0,1 2,1 1,99 2,12 3,13 2,11 
o 1,99 1,99 1,99 1,99 1,99 
-0,1 1,92 2,0 1,92 2,91 X 

-0,3 1,79 X 1,83 2,76 X 

-0,5 1,69 X 1,77 2,65 X 

-0,8 1,57 X 1,71 2,57 X 

When the shift of the process is large (e.g. equal to 30') the situation is different. 
First of all, in case of negative dependence described by the normal and Clayton's 
copulas the chart reacts faster than in the case of independence. Positive dependence 
in all considered cases has negative influence on the ability of the chart to detect 
shifts. The worse situation is in the case of Frank's copula, and this is somewhat 
unexpected because for small shifts this copula seems to be the most favourable. A 
sirriilar situation is with Clayton's copula which usually behaves quite well except 
for the case of large .shifts and strong positive dependence. 
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3.2 Estimated design parameters 

Let us consider the case when parameters of the probability distribution (mean value 
and standard deviation) that are used for the design of a control chart are estimated 
from a process (its Phase I, as the sampling period is sometimes called) with pos­
sibly dependent consecutive observations. This assumption leads to significant con­
sequences. First of all, random character of control lines which are estimated from 
a sample adds some variability resulting in wider (on average) in-control area on a 
control chart. This problem has been considered by many authors, and some con­
clusions frc!m that research may be found in the paper by Woodall and Montgomery 
[27] or in the paper by Albers and Kallenberg [1] . Second, the autocorrelation be­
tween sample observations influences the properties of estimators, as it was noticed 
already in the paper by Vasilopoulos and Stamboulis [25] . Variability related to 
both these two sources is difficult to be assessed analytically. Tuus, simulation ex­
periments are needed in order to evaluate the properties of control charts designed 
in such a way. 

Our simulation experiment has two phases as in actual applications. First we 
simulate a sample of n elements, and the results of this simulation are used for the 
design of a control chart. The minimal number of observations which is suggested 
for designing a chart should be, according to many authors, such as e.g. Quesenberry 
[20], not smaller than 300. However, in the majority of popular textbooks on quality 
control this minimal value is proposed to be equal to 100. Having in mind our main 
purpose, i.e. to investigate the influence of different types of dependence on the 
performance of control charts actually used in practice, in aur experiments we set 
the sample size (the number of consecutive observations that are used for the design 
of a chart) as equal to 100. In the experiment we have simulated 500 different control 
charts, and for each of them we have simulated 500 production runs. Tuus, for each 
experiment described by the chosen copula and the given value of Kendall's -r we 
have had altogether 250 OOO simulation runs. These runs have been used for the 
estimation of the ARL, and other statistica! properties of the chart. 

Table 4 ARLs-Shewhart control chart (design pararneters estirnated), TEST I: "3-o-" rule, no shift 

Kendall's -r Norma! FGM Clayton Frank Gurnbel 

0,8 2111 ,72 X 346,65 568,74 1192,92 
0,5 967,84 X 974;28 437,75 1142,76 
0,3 540,38 X 730,8 487,09 799,15 
0,1 473, 11 490, 15 560,42 508,98 586,61 
o 486,14 486,14 486,14 486,14 486,14 
-0, 1 503,28 458,77 447,48 458,49 X 

-0,3 589,39 X 537,13 512,63 X 

-0,5 1242,9 X 86] ,8 593,1 X 

-0,8 9966,6 X 6255,6 1253,5 X 
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Table 4 contains the results of the simulation experiment similar to those pre­
sented in Table 1, i.e. in presence of no shift in the level of a process. Somewhat 
unexpectedly these results are different not only with respect to the simulated val­
ues of the ARL. The dependence of the ARL upon the va!ue of i- is also somewhat 
different than that represented in Table 1. The results of the experiment displayed 
in Table 4 show that the existence of dependence of any type results, in generał, in 
increasing value of the ARL. Only in few cases, in presence of weak dependence, 
the values of ARL are s!ightly smaller than in the case of independence. When the 
strength of dependence is low, the values of the ARL are similar. Only for Gumbel's 
copula this value is visibly larger than in the case of independence. For moderate 
values of Kendall's i- practically acceptable worsening of the va!ue of the ARL can 
be noticed only in the case of Frank's copula. In the case of strong dependence, both 
positive and negative, the values of the ARL are large enough to make the chart in­
sensib!e to the process deterioration of that magnitude. An interesting, and difficult 
to explain, exception is the case of Clayton's copula where the large va!ue of ARL 
for i-= O, 5 decreases to a low value for i-= O, 8. A phenomenon of a similar type is 
a!so seen in the case of Gumbel's copula. 

Table 5 ARLs-Shewhart control chart (design parameters estimated), TEST 1: "3-a" rule, shift of 
la 

Kendall's -r Norma! FGM Clayton Frank Gumbel 

0,8 352,88 X 55,77 80,64 206,43 
0,5 84,7 X 102,46 55,72 205,43 
0,3 59,61 X 57,34 51,55 92,76 
0,1 54,88 51 ,4 50,51 49,12 58,54 
o 48,09 48,09 48,09 48,09 48,09 
-0,1 48,9 50,72 50,15 47,39 X 

-0,3 56,1 X 56,07 53,08 X 

-0,5 78,25 X 80,61 59,4 X 

-0,8 769,1 8 X 433,52 89,26 X 

When the magnitude of the process deterioration is large (i .e. when the shift 
in the process !evel is equal to 3u) the picture is anew different. First of all, it 
can be noticed that in the case of small and moderate negative dependencies the 
value of the ARL may be smaller than in the case of independence. It means that 
negative dependence, un!ess it is not too strong, has a positive impact on the ability 
of the chart to detect deteriorations of large magnitude. In case of strong negative 
dependence the situation is different, and the value of the ARL usually becomes too 
large. In the case of the normal copula this value becomes completely unacceptable. 
In case of positive dependence good properties of the chart are observed for Frank's 
and Gumbel's copulas. 

The results presented in Tables 4-6 show a very complicated situation. Only in 
the case of Frank's copula the performance of the Shewhart control chart is more 
or less robust to the existence of dependence between consecutive observations. In 
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Table 6 ARLs-Shewhart control chart (design parameters estimated), TEST 1: "3-CY" rule, shift of 
30" 

Kendall 's i- Norma! FGM Clayton Frank Gumbel 

0,8 7,35 X 11,95 4,80 2,00 
0,5 3,27 X 3,94 · 2,68 2,54 
0,3 2,54 X 2,70 2,26 2,55 
0,1 2,15 2,05 2,18 2,15 2,19 
o 2,06 2,06 2,06 2,06 2,06 
-0, I 1,92 2,07 1,96 1,87 X 

-0,3 1,85 X 1,95 2,00 X 

-0,5 1,92 X 2,09 2,02 X 

-0,8 21 ,47 X 4,22 2,45 X 

all remaining cases one cannot observe situations which are difficult to describe and 
explain. Only in the case of the norma! copula the dependence of the ARL on the 
strength of dependence can be described in a relatively simple way: the chart is 
completely insensible to process shifts only in the case of strong, both positive and 
negative, dependence. 

ARL is the most frequently used statistical characteristic of control charts. An­
other characteristic which is often ca!cu!ated is the variance of the run length. Spe­
cialist are fully aware of the fact that the run length is a highly skewed random 
variable, and these two characteristics are not sufficient for the comprehensive de­
scription of the statistical properties of control charts . The coefficient of skewness 
whose va!ue equal to 2 is well known for the chart with known design parameters is 
rarely calculated for other cases. In Table 7 we present the values of the coefficient 
of skewness of the run length for the case of estimated design parameters and shift 
equal to 3cr. 

Table 7 Skewness of the run length - Shewhart control chart (design parameters estimated), shift 
of3CY 

Kendall's i- Norma! FGM Clayton Frank Gumbel 

0,8 9,53 X 7,18 5,89 2,1 
0,5 3,7 X 4,05 4,11 7,16 
0,3 3,02 X 7,47 3,63 3,98 
0,1 2,7 2,54 3,3 2,7 2,94 
o 2,49 2,49 2,49 2,49 2,49 
-0,1 2,12 2,54 2,6 2,8 X 

-0,3 3,11 X 3,75 2,32 X 

-0,5 6,87 X 6,47 2,72 X 

-0,8 27,96 X 10,59 6,08 X 

The values given in Table 7 show that the times to alarm are highly skewed, 
especially in case of strong (both positive and negative) dependence. In practice it 
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means that despite reasonable values of the ARL there is qui te substantial possibility 
that even significant process deterioration may not be detected sufficiently quickly. 

4 Tests based on runs in case of dependent data 

Classical Shewhart control chart has been supported by additional decisions rules 
based on runs. Different rules have been proposed by many authors, but the most 
popular ones were proposed in the Westem Electric handbook in 1956. They are also 
described in the intemational standard ISO 8258 and in the paper by Nelson (19]. 
These rules are designed with the aim to detect deteriorations of different type. Sta­
tistical properties of control charts with supporting run rules can be computed using 
the Markov chain approach. A generał solution of this problem has been proposed 
in the paper by Champ and Woodall [3]. This methodology has been successfully 
implemented for the calculations made under the assumption of independence of 
observations, and full knowledge of the values of design parameters. However, in 
case of dependent observations, and for estimated values of design parameters such 
computations are very difficult or even hardly possible. Therefore, in our analysis 
we used the results of the Monte Carlo si,mulation experiments. The settings of these 
experiments are the same as in the cases described in the previous sections of this 
paper. 

Classical Shewhart control chart with 3-sigma control limits in the set of rules 
proposed in the Westem Electric handbook is called TEST 1. The next rule, named 
in the handbook TEST 2, triggers an alarm when 9 consecutive observations are 
plotted on the chart either above or below the center line. This rule should be sen­
sitive to upwards or downwards shifts of the process level. The average run length 
to false alarm for this test are presented in Table 8. The estimated value of the ARL 
when data are independent is quite large (512,87). However it decreases rapidiy 
when consecutive observations are positively dependent. In case of strong positive 
dependence the expected time to a false alarm is astonishingly small (about 13), 
and practically does not depend upon the type of dependence. On the other hand, 
in presence of negative dependence the va!ues of ARLo are increasing to very large 
values for the case on norma! and Frank copulas. It has to be noted, however, that 
in the ca,se of dependence described by the Clayton copula the behaviour of ARLo 
as a function of Kendall's i- is not monotonie, and in case of negative dependence is 
significantly different than in the cases of norma! and Franks copulas . 

One of the most popular rule, known as TEST 3 or "6 increasing (decreasing) in 
a row", is used for the detection ofharmful trends . The properties of this test do not 
depend upon the design parameters, and may be evaluated using recently published 
resu!ts of Ferguson et al. [ 4] . In Table 9 we present the values of the ARL for this 
particular test when the process is in the in-control state. 

These results show that dependencies have detrimental impact on the properties 
of this test. Tn case of positive dependence the average time to a false alarm be­
comes unacceptably small. On the other hand, the negative dependence (especially 
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Table 8 ARLs-Shewhart control chart (design parameters known), TEST 2: "9 consecutive be-
low(above) center" rule, no shift 

Kenda!l's -r Norma! FGM Clayton Frank Gumbel 

0,8 13,21 X 12,33 13,01 13, 18 
0,5 29,4 X 29,01 25,58 29,83 
0,3 74,96 X 70,18 65,9 74,28 
O, 1 256,53 512,17 255,74 238,02 257,31 
o 512,87 512,87 512,87 512,87 512,87 
-0, 1 1036,5 510,18 964,18 1151,15 X 

-0,3 4183,7 X 2074,9 6554,6 X 

-0,5 14756,3 X 1589,4 32137,8 X 

-0,8 85377 X 630,3 >100000 X 

Table 9 ARLs-Shewhart control chart (design parameters known), TEST 3: "6 in a row" rule, no 
shift 

Kendall's -r Norma! FGM Clayton Frank Gumbel 

0,8 24,8 X 27,3 26,1 24,3 
0,5 30,1 X 32,4 30,9 30,26 
0,3 48,2 X 47,4 48,4 46,1 
0,1 97,1 147,3 95,3 96,1 92,4 
0,05 119,2 146,4 117,1 118,5 115,0 
0,01 140,4 147,1 140,1 141,1 138,0 
o 147,1 147,1 147,1 147,1 147,1 
-0,01 153,66 148,50 153,85 155,'.>9 X 

-0,05 183,2 147,1 182,6 186,2 X 

-0,1 225,7 146,6 225,8 236,7 X 

-0,3 539,14 X 507,63 665,26 X 

-0,5 1228,96 X 1237,65 1831,29 X 

-0,8 4723,89 X 13773,52 5347,5 X 

the strong one) may decrease the ability of the test to detect trends in data. Sintilar 
results, which are not presented in this paper because of its lintited volume, have 
been observed in prelintinary experiments for the case of deteriorated processes. 

fu Table 10 we present the results of the simulation experiment for the TEST 4. 
In case of this test an alarm is set w hen 14 consecutive observations are alternating, 
i.e. the differences between consecutive values are altemately positive and negative. 
The role of this rule is to show that consecutive observations are in fact from two 
altemating sources, e.g. from two production shifts. The results of simulations are 
presented in Table 10. Positive dependence between consecutive observations in­
creases, as expected, the average run length. Negative dependence shortens the time 
to a false alarm significantly, and this behaviour is hardly unexpected as the negative 
dependence forces consecutive observation values to alternate. 

Another popular additional decision rule, known as TEST 5 or "2 out of 3 in 
a row observation in an outer zone", is used to improve the ability to detect small 
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Table 10 ARLs-Shewhart control chart (design parameters known), 1EST 4: "14 consecutive al-
temating" rule, no shift 

Kendall 's -r Norma! FGM Clayton Frank Gumbel 

0,8 9920,6 X 7878,9 7699,3 10124,l 
0,5 5541,4 X 4285,5 4982,4 5341,5 
0,3 2841,6 X 2483,2 2827,4 2816,3 
0,1 1239,2 803,9 1238,5 1274,4 1255,6 
o 796,5 796,5 796,5 796,5 796,5 
-0,1 494,8 800,7 484,2 480,1 X 

-0,3 172,1 X 160,9 164,5 X 

-0,5 59,0 X 60,5 53,9 X 

-0,8 21,2 X 19,2 22,65 X 

shifts of the process level. In Table 11 we present the values of the ARL for the case 
of known parameters of the process. 

Table 11 ARLs-Shewhart control chart (design parameters known), TEST 5: "2 out of 3 in the 
outer zone" rule, no shift 

Kendall's -r Norma! FGM Clayton Frank Gumbel 

0,8 165,6 X 206,3 102,1 169,8 
0,5 95,9 X 184,5 159,4 111,9 
0,3 143,0 X 155,5 249,2 130,9 
0,1 323,3 510,4 245,8 413,6 222,9 
o 510,1 510,1 510,1 510,1 510,1 
-0,1 321,9 510,0 620,6 598,5 X 

-0,3 401,6 X 335,4 567,6 X 

-0,5 193,2 X 165,4 379,9 X 

-0,8 209,7 X 134,8 201 ,1 X 

In the case of TEST 5 we observe non-monotonie dependence between the ARL 
and the strength of dependence. In case of positive dependence the values of ARL 
are decreasing with the increasing strength of dependence, but for the very strong 
dependence (-r = O, 8) they begin to decrease. In case of negative dependence the 
dependence of the value of the ARL and the value of -r cannot be easily explained 
at the current stage of our research. For example, in case of the normal copula this 
dependence is _highly non-monotonie. On the other hand, in case of Frank's copula 
the largest value of the ARL is observed for small negative dependence, and then the 
value of the ARL decreases with increasing (decreasing) va]ues of -r. Interesting is 
the case of the FGM copula where in contrast to other considered cases the existing 
weak dependence does not influence the value of the ARL. 

TEST 6 has a similar decision rule, and sirnilar application. The alarm is triggered 
w hen 4 out of 5 consecutive observations are beyond the inner zone on the same side 
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of the center line. The results of the simulation experiment are in this case given in 
Table 12. 

Table 12 ARLs-Shewhart control chart (design pararneters known), TEST 6: "4 out of 5 beyond 
the inner zone" rule, no shift 

Kendall's -r Norma! FGM Clayton Frank Gumbel 

0,8 30,7 X 32,8 24,9 31,0 
0,5 31,5 X 39,1 36,1 33,0 
0,3 58,3 X 56,4 68,7 54,9 
0,1 193,4 290,5 140,1 171,4 138,5 
o 291,7 291,7 291,7 291,7 291,7 
-0, 1 598,0 292,1 611,1 540,5 X 

-0,3 4561,2 X 1170,8 2823,3 X 

-0,5 >200000 X 1830,8 >50000 X 

-0,8 >500000 X 9275,9 >300000 X 

Despite the similar aim and type of construction the behaviour of TEST 6 is 
completely different than that of TEST 5. In case of positive dependence the va!ues 
of ARL are decreasing rapidly withe the increasing strength of dependence. In case 
of negative dependence the type of behaviour is reversed; the values of ARL are 
increasing to very large numbers for the case of -r = -0, 8. 

TEST 7, with the rule "15 consecutive observations in the inner zone", is used for 
the detection of faul ty (too wide) decision rules. The values of the ARL in this case 
are given in Table 13. The values of ARL's are decreasing with increasing values of 
the abso!ute value of -r. In the case of this rule the type of dependence described by 
different copulas does not seem to influence the results of the experiment. 

Table 13 ARLs-Shewhart control chart (design parameters known), TEST 7: "15 consecutive in 
the inner zone" rule, no shift 

Kendall's -r Norma! FGM Clayton Frank Gurnbel 

0,8 41,7 X 50,1 56,6 42,2 
0,5 186,7 X 180,4 236,1 163,8 
0,3 513,0 X 435,8 577,3 403,2 
O, I 937,1 963,9 810,4 909,2 772,0 
o 963,2 963,2 963,2 963,2 963,2 
-0,1 898,5 969,3 991,9 905,2 X 

-0,3 506,3 X 456,7 577,5 X 

-0,5 187,7 X 144,1 237,5 X 

-0,8 41,6 X 41,4 56,9 X 

TEST 8 is designed to to detect stratification. Its decision rule "15 consecutive 
observations beyond the inner zone" let us detect inhomogeneous data coming from 
two sources with significantly different average va!ues. In Table 14 we present the 
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values of the ARL for false alarms triggered by this rule. The behaviour of the values 
of ARL requires further investigations. The values of ARL are increasing rapidly 
when data are weakly (both positively and negatively) dependent, and then begin to 
decrease rapidly with the increasing strength of dependence. 

Table 14 ARLs-Shewhart control chart (design parameters known), TEST 8: "15 consecutive be­
yond the inner zone" rule, no shift 

Kendall's -r Norma! FGM Clayton Frank Gumbe! 

0,8 70,2 X 136,J 103,6 74,9 
0,5 319,3 X 186,7 785,8 220,2 
0,3 2648,2 X 533,4 4230,8 854,0 
0,1 13281,9 14086,9 7385,3 12320,1 6895,9 
o 963,2 963,2 963,2 963,2 963,2 
-0, I 11797,8 14280,0 14423,3 12374,4 X 

-0,3 2636,7 X 1938,1 4249,1 X 

-0,5 318,8 X 273,7 778,3 X 

-0,8 70,2 X 62,4 103,1 X 

In our experiments we have also calculated the properties of chart with combined 
decision rules. When TEST 1 is combined with TEST 5 theARL in case of estirnated 
design parameters and independence has been evaluated as equal to 293, 11. The ex­
act calculations performed for this case, but for known values of design parameters, 
by Champ and Woodall [3] gave the value of the ARL equal to 225,44. 

Table 15 ARLs-Shewhart control chart (design parameters known), TEST !+TEST 5, no shift 

Kendall's -r Norma! FGM Clayton Frank Gumbel 

0,8 165,44 X 180,76 91,68 168,74 
0,5 93,46 X 151,39 122,71 105,92 
0,3 120,51 X 130,32 161,28 I 15,87 
0,1 187,27 226,65 169, 16 207,24 165,62 
o 225,45 225,45 225,45 225,45 225,45 
-0, I 250,41 226,58 244,68 240,57 X 

-0,3 222,3 X 201,0 235,94 X 

-0,5 168,26 X 145,03 202,07 X 

-0,8 209,72 X 131,67 149,55 X 

The results presented in Table 15 confirm this value, and additionally show how 
the ARL in the case of this combination of tests depends on the type and the strength 
of dependence. It can be noted that the dependence of the AL on the value of -r is 
similar to that of TEST 5. 
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5 Conclusions 

The results presented in this paper confirm without any doubts the findings of many 
authors who considered the bahaviour of Shewhart control charts in case of depen­
dent data described by autoregressive stochastic processes. What seems· to be new 
is the demonstration that that the type of dependence, encapsulated in the type of 
respective copula, plays important role. Moreover, it becomes very elear that the 
knowledge of the strength of dependence, measured using popular statistical mea­
sures of dependence such as Kendall's -r is not sufficient for the evaluation of the 
properties of the Shewhart control chart. 

From the results presented in this paper one can derive the following recommen­
dations. First, it is necessary to detect the existence of dependence in data. This can 
be done using the Kendall control chart proposed by Hryniewicz and Szediw [8]. 
Then, it is necessary to indicate the copula which fits to the observed data. Unfor­
tunately, the appropriate tests, such as presented e.g. in the paper by Fermanian [5], 
seem to be not simple enough to be used by quality control practitioners. Therefore, 
a lot has to be done in order to propose even approximate but simple methods for 
the identification of an actual copula. Then, the future investigations should be con­
centrated on finding appropriate corrections to c!asical procedures, similar in spirit 
to those that has been proposed in case of dependencies described by the norma! 
copula. 
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