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1. Introduction. We consider subgradient methods for the convex minimization problem
for=min{ f(z) :z€ S} (1)

under the following assumptions. S is a nonempty closed convex set in R™, the objective function
f+R™ — R is convex, for each z € S we can find the value f(z) and a subgradient gf(z) € 8f(z) of f
at z, and for each z € R™ we can find Psz := arg ming |z — -|, its projection on S in the Euclidean norm
| 1. Finally, we assume that the optimal solution set S. ;= Argming f of problem (1) is nonempty.

This setting covers many applications, but we are mostly interested in Lagrangian relaxation (see, e.g.,
Hiriart-Urruty and Lemaréchal (19, Chap. XII}) in the framework given below.

ExAMPLE 1.1 Consider the following primal convex optimization problem:
Yo = max Yo(z) s.t. ¥i(2) 20, j=1n, z2€ Z, (2)

where the set § # Z C R™ is compact and convex, and each function ; is concave, proper and closed
(upper semicontinuous) with dom; D Z. The Lagrangian of (2) has the form g(z) + (z, ¥(z)), where
¥ = (Y1,...,¥n) and z is a multiplier. Suppose that, at each multiplier x in the dual feasible set

S :=R}%, the dual function

flx) = max{do(z) + (z,9(2)) : 2 € T} (3)
can be evaluated by finding a partial Lagrangian solution
z(z) € Z(z) = Argmax{ ¥o(z) + (z,¥(z)) : 2 € Z }. (4)

Thus f is finite convex and has a subgradient mapping gs(-) := ¥(2(-)) on S. For algorithmic purposes,
suppose that this mapping gy is locally bounded on S (e.g., f is the restriction to S of a convex function
finite on an open neighborhood of 5', or infz min;.‘=1 1; > —00, or ¥ is continuous on Z). Finally, assume
that the dual optimal set S. := Arg ming f is nonempty; e.g., if Slater’s condition holds (¥(2) > 0 for
some % € Z), then S5, is both nonempty and bounded. For § := 5', problem (1) is the standard dual of
(2). However, if we know strict upper bounds on & dual solution in the form of a point z"P such that
zU > % for some Z € S., then it may be more efficient to take S := {z : 0 <z < z"P}.
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This paper shows that in the Lagrangian relaxation setting of Example 1.1, the ballstep subgradient
method of Kiwiel et al. [26] applied to the dual problem (1) can provide a solution of the primal problem
(2) at no extra cost. In its simplest form, this method proceeds like standard subgradient methods, except
for a special choice of stepsizes. At iteration k > 1, for the current iterate z* € S and the target level
fE, < f(z*) that estimates the optimal value f, of (1), it uses the subgradient linearization of f

fe() = F@) + (gf,- =) < F() with g = gp(s*) € Bf(c¥) (8)
and its halfspace
Hy = {zx: filz) < fE,} (6)
as an outer approximation to the f,‘;v—leuel set of f:
Li(fE,) = {e: f(2) < fie,} © Hi = Ly (fe). (7)
Then, as in the algorithm of Polyak [37], successive projections onto H), and S give the next iterate
e = Py(z* + ti[Pa,a* — 2¥]) = Ps(a* — tslfu(=*) - fi%.1a5 /19717, 8
where the second equality is due to fr(z*) = f(z*) > f,’;v, and t is a relazation factor satisfying
tk € T := {tmin,tmax] for some fixed 0 < tmin < tmax < 2. 9)

The targets are chosen via a ballstep strategy that works in groups of iterations (because a single subgra-
dient iteration does not provide enough information for changing the current target). Within each group,
the target f,‘;v is fixed, and the method attempts to minimize f over a certain ball around the best point
found so far. Two outcomes may arise. Either the objective f decreases sufficiently relative to the target,
in which case the ball is shifted to the best iterate and the target is lowered, or it is discovered that the
target is too low, in which case the ball is shrinked and the target is increased. For discovering whether
the target is unattainable, we may use the two level schemes of Kiwiel et al. {26, §§2 and 5]; both schemes
ensure that infy f(z*) = f, and provide efficiency estimates when the optimal set S, is bounded.

For comparisons with other approaches, we note that although our iteration (8) with the stepsizes

v o= {file®) — fE/gi > 0 (10)
conforms with the standard subgradient iteration
2" = Po(z® — vigh)  with v > 0, (11)

our stepsizes do not have to obey the popular divergent series condition

o0 o0
Z v =00 and Zuf < 00, (12)
k=1

k=1
or other conditions typically required for convergence of subgradient methods; see Kiwiel [24].

In this paper we augment the ballstep method with simple averaging schemes, using the convex weights

k
u;.‘ = u,/l?",‘ for j=k(l):k with D? = Z vy, (13)

J=k(8)

where k(1) is the iteration number at which the current {th group started. These convex weights lead
to aggregate versions of various quantities related to our method. For instance, by combining the oracle
linearizations of (5), we obtain the aggregate linearization f = Z;;k(l) u;?f_,-, which is an affine minorant
of f. We show that its gradient V fi can be used for finding asymptotically objective and constraint
subgradients involved in optimality conditions for problem (1). Similarly, in Lagrangian relaxation, we
may combine the partial Lagrangian solutions z(z7) of (4) to produce the aggregate primal solution
k= Z; 50 UJ’-‘z(zj)A We show that these aggregate solutions ¥ converge subsequentially to the set
of optimal solutions to the primal problem (2). Further, we provide practicable stopping criteria, which
allow the method to terminate when z* is an e-solution of (2) for a given € > 0. To sum up, in Lagrangian
relaxation, our method finds both primal and dual solutions. Up till now, for subgradient methods similar
results have only been known for the iteration (11) with stepsizes obeying (12) and weights given by (13)
with k(l} = 1, whose convergence can be slow; see Zhurbenko [44], Shor [42, §4.4], Anstreicher and Wolsey

[1], Larsson and Liu {28], Larson et al. [31, 32], and Sherali and Choi [41].
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Our results parallel ones given by Feltenmark and Kiwiel [12] for the proximal bundle method of
Hiriart-Urruty and Lemaréchal [19, §XV.3] and Kiwiel {20]. At first sight, this method has little in
common with our simple subgradient algorithm, since it accumulates many linearizations for its QP
subproblems, and uses the QP multipliers for averaging. But in fact there are more similarities than
differences. Our key observation is that, from the convergence viewpoint, a group of iterations of the
ballstep method is similar to one iteration of the bundle method. Thus, once suitable estimates for a
group of ballstep iterations are established, the remainder of our convergence analysis is almost identical
to that of Feltenmark and Kiwiel [12]. Also the efficiency analysis of both methods is quite similar; see
Kiwiel {23} and Kiwiel et al. [26]. Up till now, the literature has only contrasted simple subgradient
methods with more advanced bundle methods, whereas our paper highlights their similarities.

Good reviews of the subgradient algorithm may be found in Bertsekas [9], Polyak [38] and Shor [42],
and more recent variants in Ben-Tal et al. {7}, Kiwiel [24], Kiwiel and Lindberg [27], Nedi¢ and Bertsekas
[34], Nedi¢ et al. {35]. It is widely used, mainly due to its simplicity and good performance, especially in
Lagrangian relaxation. In many applications it solves the dual of an LP relaxation of the original problem,;
then even quite approximate primal solutions delivered by our averaging schemes could be useful, e.g.,
in primal hieuristics, variable fixiug, etc.; see Balas and Cerna (3], Barahona and Chudak [6], Bahiense et

al. [2}, and Ceria et al. [11].

Also the recent volume algorithm of Barahona and Anbil [4] performs well in practice; see Barahona
and Anbil {5] and Bahiense et al. [2]. Its averaging is similar to that of a version of our method that
employs past aggregate subgradients to avoid zigzags (cf. (45)). However, in contrast with our method,
the volume algorithm has no proof of convergence; see Bahiense et al. {2]. We hope, therefore, that
our results may stimulate research on the development of simple subgradient methods that are both
theoretically convergent and practically effective.

As a partial justification of our hope, we give preliminary numerical results for the traffic assignment
and message routing problems (see, e.g., Bertsekas [8]) on apparently the largest instances reported in
the literature. For modest solution accuracy (typical in such applications) our implementation seems to
be competitive with the methods reviewed in the recent survey of Ouorou et al. [36].

The paper is organized as follows. In §2 we review briefly the simplest ballstep method of Kiwiel et al.
[26] and its convergence properties. In §3 we show how averaging may produce affine minorants of f and
the indicator function ig of S, and a useful optimality estimate. Their uses for indentifying subgradients
of f and is involved in optimality conditions for ming f are discussed in §4. Applications to Lagrangian
relaxation are studied in §5. Extensions to the accelerations of Kiwiel et al. {26, §7] are discussed in §6.
Applications to multicommodity network flows are reported in §7.

Our notation is fairly standard. B(z,r) := {y : |y — 2] < r} is the ball with center = and radius r.
de(-) == infyec |- ~y| is the distance function of a set C C R™ (d¢ = o0 if C = ).

2. The ballstep level algorithm. The simplest version of the ballstep subgradient method of
Kiwiel et al. [26] stated below employs the following notation. At iteration k, xk_ is the record point
with the best objective value f%_ := nlin;?:1 f(a7) obtained so far. The iterations are split into groups

K= {k{l):k(l+1) -1}, 1>1. (14)
In group !, starting from the point zfé?, the method attempts to reach the frozen target level fl‘;v =
r";(c[) — & within the ball of a certain radius K, centered at zfe(é), where the level gap §; > 0 controls the
stepsizes (10). If sufficient descent f(z*) < Y 16, occurs for some k > k() (i.e., at least half of the
desired objective reduction d; is achieved), the next group ! + 1 starts with the same gap 6,41 = &; and
radius Riy1 = R;. Otherwise, the method eventually discovers that the target is infeasible in the sense
that
Fy = A — 6 < min{ f(z) -z € B, Ry n S} (15)
Our test for detecting (15) (see (17) below) was derived in Kiwiel et al. [26] via fairly complicated geometric
arguments; we only sketch the main idea because a much simpler validation of this test will be given in §3.
Suppose (15) does not hold: f(z) < ff, for some « € B(z*, Rj) N S. Let t = 1. Viewing the iteration
(8) as a subgradient step zFt1/2 := Py, x* followed by a projection step z**+! := Pgak+1/2) simple

estimates show that the sum of squares of these steps pgy1 = Zfzk(,)(lzj‘“/z — |2 4 g7 — 23 H1/2)2)
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satisfies ppi1 < J2F® — 2|2 — |51 — 2|2 < R, because by (7), the sets on which projections occur have a
common point z. Thus, the inequality prt1 > R? implies (15). Intuitively, if (15) holds, then oscillations
in successive projections eventually produce pry1 > Rf,' the weaker test (17) below may detect (15)
even sooner. Then the next group ! + 1 starts with a contracted gap dy;1 = %6[ and a shrinked radius
Riy1 = Ri/2°, where § € [0,1) is a parameter (typically 5= 1).

We now state a detailed description of our method. Further comments on its rules are given below
and in §3; also see Kiwiel et al. [26] for additional motivations.

ALGORITHM 2.1 (ballstep level method).

STEP 0 ([nitialization). Select an initial point ! € S, a level gap §; > 0, ballstep parameters
R >0, 8 € [0,1), aud relaxation bounds tmin, tmax (cf. (9)). Set f& := oo, p1 1= 0. Set the counters
k:=1:=k(1) :=1 (k(l) is the iteration number of the ith change of f ).

STEP 1 {Objective evaluation). Calculate f(z*) and gj(z*). If f(z*) < fE71, set fE, = f(z*) and
ok, = ¥, else set fE, = fE-1 and of, := 21 (so that f(zf) = minf; f(27)).

STEP 2 (Stopping criterion). If gf = gp(z*) = 0, terminate (z* € S.).

STEP 3 (Sufficient descent detection). If f(z¥) < fE® — 181, start the next group: set k({ + 1) =k,

8141 =81, pr := 0 and increase the group counter { by 1.

STEP 4 (Projections). Set the level ff := 5 _ 5. Choose the relaxation factor tx € T (cf. (9)).
Set
P2 = b (P — o%), pro= (2 — 2R (25), priage = o+ Bk, (162)
2F¥ = Peaf V2 e = 2R - TR piy = pegage F Brgage (16b)
STEP 5 ( Target infeasibility detection). Set the ball radius Ry := R(8;/6;)°. If
(R — {1 — 22 > RE — gy, (17)

i.e., the target level is too low, thien go to Step 6; otherwise, increase k by 1 and go to Step 1.
STEP 6 (Level increase). Start the next group: set k(1 + 1) 1= &, §41 i= 381, px = 0, replace =¥ by
z* . and g"}' by g7(zL.), increase the group counter ! by 1 aud go to Step 4.

Assuming the method doesn’t terminate, we now recall some results of Kiwiel et al. [26, §2-3].

REMARKS 2.1 (i) If group I + 1 starts at Step 3, then fr";(c[H) < f.i(c” — %51 and zFE+D = z’,‘ﬁ“) (since

flz?h) > Ho 18, for j < k). Thus, by the rules Step 6, at Step 4 we have z*(!) = o) € § and
ED = (50 for all L.

(ii) At Step 4, in view of (5) and (8) with fi(z*) = f(z*) > ff,, we have zF+1/2 = 2% — ngf by (10),
and dg, (z%) = [fi(z®) — f,’;v]/fgff. Hence the Fejér quantities g, px+1/2 and pry are positive (because
pr. is set to zero at Steps 0, 3 and 6). The réle of these quantities will be explained in §3.

(iil) At Step 5, the ball radius R; := R(8)/61)° < R is nonincreasing. Ideally, R; should be of order
ds, (z*1), and hence shrink as the ball center z*(!) approaches the optimal set S,. As shown by Kiwiel et
al. {26, Rem. 3.9(1)], for convergence it suffices to choose Ry so that §;/R; — 0; our results will additionally
require boundedness of the sequence { R;}. This makes room for other choices of R;.

(iv) By Kiwiel et al. [26, Lem. 3.1(v)] or Lemma 3.1(iv,v) below, the Fejér test (17) discovers that the
target is infeasible in the sense of (15). Then the gap & is halved at Step 6, the target f{_ is increased at
Step 4 and the candidate point 5! is recomputed. Note that the group counter ! increases at Step 6,
but the iteration counter k does not, so relations like f{f, := frke(cl) — d; always involve the current values
of & and | at Step 4.

(v) Notice that if |z*+! — z*(!){ > 2R,, then the Fejér test (17) is passed. It follows that at Step 1 we

have the basic local boundedness property: {a:"}tg':(ll; C B(z*¥ 2R)).

We shall need the following convergence properties of Algorithm 2.1, which follow from the analysis of
Kiwiel et al. [26, §3] and our standing assumption that the optimal set S. of problem (1) is nonempty.

THEOREM 2.1 We have f(z*0) | f., 8, 1 0, and each cluster point of the sequence {z*D} (if any) lies
in the optimal set S. of problem (1). Moreover, the sequence {I"(’)} is bounded if the optimal set S, is
bounded. These results require only finiteness of the objective f and local boundedness of the subgradient
mapping gy on the feasible set S (in which case f is continuous on S).
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Figure 1: Target infeasibility flt, < ming ) g, fs if dg, (z*) > R

PROOF. The first assertion follows from the results of Kiwiel et al. {26, Lemma 3.6 and Theorem 3.7,
the second one from [26, Corollary 3.8], and the third one from [26, Remark 3.9(ii)]. (]

3. Dual subgradient interpretations. For theoretical purposes, it is convenient to regard our
constrained problem f. := ming f of (1) as the unconstrained problem f, = min fg with the essential
objective
fs = f+is, (18)
where ig is the indicator function of the feasible set S (ig(z) =0ifz € S, 0o if z € §). Clearly, the
objective fs is convex. Let Vs := dig denote the normal cone operator of the feasible set S.

We now outline our main results. At each iteration, Step 1 delivers the linearization fx (cf. (5)) of the
objective f, whereas at Step 4, the projection 25+1 := Pez*+1/2 gives rise to a subgradient linearization of
the constraint function ig at < 1. At iteration k, we construct affine minorants f; and % of the functions
f and ig by combining their past subgradient linearizations with suitable weights. Then the function
fg = fi + i% is an affine minorant of fs := f + is, and hence its halfspace Hy := Llf-; (fl’;v) contains the
level set Ly, (f£,). Now, in terms of the minimum bali value f! := ming(,«w g,) fs, condition (15) reads
fE, < fL. It follows that fE, < f! if B(z*¥, Bi)n Hy = 0 (see Figure 1); the latter condition is shown to
be equivalent to the Fejér test (17) by fairly simple algebra. Next, when this condition holds, we get the
inclusion Vf% € 95, fs(z*@) and the bound |V fk| < /Ry as in Figure 1; since §; — 0 and &;/R; — 0,
these relations ensure asymptotic optimality and suggest practical stopping criteria.

3.1 Aggregate lmearlzatlons We first derive a dual interpretation of the Fejér test (17) by iden-
tifying below affine minorants f, & i, fs of the functions f, is, fs, respectively. As mentloned earlier, fi
is obtained by combining the subgradient linearizations f; of (5) with the convex weights u of (13) ie.,

the stepsizes v; of (10) divided by the cumulative stepsize 17}" =3 k() Vs SO that za—k(l = 1. For
aggregating constraint information, we shall use the fact that at Step 4, the vector
g 1= ghHL2 gt (19)

is a subgradient of ig at z**! stemming from the construction of z*+1 := Pszk*1/2 Accordingly, we
shall employ the following aggregate linearizations of f, is and fg (cf. (18)):
k &

felye= 30 U0, O = Y0 (eh -y FEC) = Rl +350), (20)
F=k(l) g=k(l)
and the corresponding aggregate halfspace Hy of fg and the aggregate level fl’;‘, given by
k
He=Lp(fh) = {=: fh@) < F& ) with fb,= > viAi,. (21)

F=k(l)
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(=3

The following technical result lists their basic properties, which are commented upon below.

LEMMA 3.1 (i) At Step 4, the point 25! and the Fejér sum pyi1 satisfy

ghtt — gk = Z (ngf +!Js) (22)
G=k(D)

3 2 k
S wah el + 3 {mlhE) - A4 ket e =t (29)
J=k(1) J=k(l)

(ii) The aggregate linearizations satisfy fi < f, 1% <is, f§ < fs. Further, b Vfg = gkD) _ gh+1

1
2

205 FE(2F0) — FiJ = 1% — O 4 oy (24)

iit) We have f5(zF®) > fE | and the distance from the point =*O to the halfspace of (21) satisfies
5 lev

dg, (z*0) = [fE(*0) — FE1/1V 8 2 03 (25)

(iv) For the minimum ball value f! := mingro gy f5, we have the following. If f,’;v > fi, then
dg, (&*W) < R,. Consequently, fE, < fHif dg («*0) > Ry.
(v) (R — [&Ft1 —2¥O02 > R — pryy (iee., the Fejér test (17) is true) iff dg («*1)) > Ry,

PROOF. (i) Since x**/2 —z* = —1; g% by Remark 2.1(ii), and 2*+1 —z5+1/2 = —gk by (19), summing
gives (22). Let ALy := Lx — Lg_1. Since by (22), ¥ — 20 = — Ej:k(,)(ujgf + ¢%) in (23), we have

ALy = —3|vgh + g51° + (vegf + g8, 2% — 2*O) + v [fi(a¥D) = FE ]+ (9§, 25D — 2T
~Hvegh P + vl fr(@® D) + (g, 2f — *O) — 5]+ {9k, 2F — 25 —ugh - Lgk)
—3lgfl® + vi(fi(z®) - fE) + (g5, 212 — gt~ Lgk)

= (~ 5tk + t){[ful®) ~ fEN/ 1951}

(g gkl G172 gkl Lz k4172 _ k+1))

I

i

Htr(2 = te)dF, (25) + |25t — 2PV22) = L+ friaye) = Lokt — on),

where the first equality follows from expansion of Ly, the third one from the definition (5) of fi and the
fact that £F+1/2 = gk _ ukg’j the fonrth one from the definitions (10) of v and (19) of g%, the fifth one
from the fact that dg, (z*) = [fk(z*) - flev}/|gf|, and the final two ones from (16). Consequently, (23)
can be obtained by mductlon starting from Lyg)~) = pry = 0 (cf. Steps 0, 3 and 6).

‘(ii) Combining the subgradient inequalities f; < f of (5) in (20) gives fe < f. Next, since 95 =
212 _ g3+l by (19) and 29! = Psz/*+1/2 by Step 4, using the well-known projection property

(gh, 7 — 27ty = (27+1/?2 _ PgadtV/? g — poadt1/?) <0 vz e §

gives i% < ig in (20) by summing, and hence f§ = fi+ i% < f+1is =: fs. Now, using the definitions
(13) and (20) yields 7§V fk = }:;;k(,)(ujgf, + g%) = aF®) — gh+1 by (22), as well as, by (21),

HFE0) = il = Y {50 Rl + (gl ).
F=k()
These two expressions allow us to rewrite (23) in the following useful form
Ly = — 30V IEL + T (*Y) — fil)] = 3okes > 0, (26)
where pryq1 > 0 by Remark 2.1(ii); then (24) follows from (26), where D}‘Vfg = ghl) — g+l

(i) By (26), Ly = —2a® + b= 1 with a := [P§V Y, b= 0§[fE(*D) ~ fE ), ¢ := pp"% > 0. Then
b= 3(a®+c*) > [ac|, so that by the definition of Hy in (21), dg, (V) = b/a > ¢ implies (25).
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(iv) Consider any point = € Argming.rw, g,) fs. If fi< fl’;v, then z € Hy by (21), because fs(z) = f!
and f§ < fs by statement (ii). Together with £ € B(z*®, R), this implies that dg, (z*1) < Ry

(V) (Rl _ ,zk+l __zk(l)i)z > Rl‘z — Pk & |zk+1 —z““)lz 4 Ppa1 > 2Rllzk+1 _zk(l)l & zl;lfclfg(zk(l)) —
fE > ZRID}‘Ifog‘[ & [fE*0) - fEIVAE > R & d,;k(z"(“) > R;, where we have used (24), the
fact that [2¥ ! — 2] = 5%V f£| by statement (ii), and (25). O

REMARKS 3.1 (i) By Lemma 3.1(v), the Fejér test (17} is equivalent to the distance test
dg, (.’L‘k(l)) > Ry. (27)
The fact that the Fejér test (17) implies £, < f! (cf. (15)) was derived in Kiwiel et al. (26, Lem. 3.1(v)]
from Fejér estimates via analytic arguments, which are quite difficult to interpret. In contrast, the distance
test (27) has a straightforward interpretation: with fl’;v = fk, in (21), (27) means that the minimum of
the linearization f§ over the ball B(z*®, R;), and hence also that of fs (since f& underestimates fs), is
greater than ff,, ie., ff, < minB(Iku)'R‘)f-g < mingro,r,) fs = ft (<t Fig. 1).
(1) To cover the modifications of Kiwiel et al. {26, §6], which need not use constant levels f7, = ff,
for j = k(I): k, note that the proof of Lemma 3.1 holds if at Step 4, for all k, we only have
FEO — &< iy <min{ £, £(z)}. (28)
In general, since fff, > minf_;k(,) f,jev by (21) and (13), if we have min};km i,z f.{:,(c” — &y, then (27)
yields fr’;(cl) — & < fL It follows that Lemma 3.1(iv,v) subsumes the corresponding result of Kiwiel et al.
[26, Lem. 3.1(v)], and hence that the level condition (28) suffices for our convergence results.
(iil) Suppose momentarily that S = R™, so that g§ = 0. It is instructive to observe that our algorithm
acts like a dual coordinate ascent method for the QP subproblem

min { Ha = 0P f3(2) = f(e* D) + (gho = 2*0) < AL, 5= k():k } : (29)
Indeed, the Lagrangian of (29) with multipliers v; is minimized by the point z*+1 (cf. (22)) to give
the dual function value Ly of (23), and vg = txix by (10), where iy = [fi(z*) — f{;v]/]g"f‘[z maximizes

ALk = —3vag§® +vilfe(a*) - fE,) (see the proof of Lemma 3.1(i)). Thus our algorithm may be regarded
as a poor man’s version of the proximal level methods of Kiwiel [21] and Lemaréchal et al. [33], which

employ subproblem (29) with f = fE, forall 5.
3.2_An optimality estimate. We now derive an optimality estimate from the aggregate lineariza-
tions fg, 7% and f§ defined in (20). These linearizations are described by their constant gradients, as well
as their linearization errors at the current ball center z(®) (cf. Fig. 1):
& = @)~ fue ), & = ), &= fH0) - e, (39)
note that is(z¥?) = 0 and fs(z*¥) = f(z*®) from zF) € S. In view of Remark 3.1(ii), from now on
we assume only that the level condition (28) holds at Step 4 for all k.

LEMMA 3.2 The linearization errors of (30) are nonnegative, with & = E’f‘ + &%, and we have
Vik € 0 f(*V), Vik € Ouis(a*?), V/§ € 8u fs(z*V).

Further,
Is() > 750) = (") — & +(VFE, - - 2F0y, (31)
where
& = f(a*W) — fi(eF) < SR fE <6, (32)
(V75| = 5 (=*Y) - £V dg, (2*0) < &1/dg, (z*P). (33)

PROOF. By Lemma 3.1(ii), fx is an affine minorant of f; thus, by (30), the inequality
F6) 2 fel) = Jel@® @) + (V i, — 2*V) = f(z*0) — & + (T fi, - — 250
means that V fj € 8E;f(z"(”) with & > 0. Arguing similarly for #§ and f¥ yields the first assertion and
(31). The inequalities in (32) stem from the facts that f(z*®)) = f,keg) by Remark 2.1(i), f&(2*®) > f.{;v
by Lemma 3.1(iii), £, > min;‘f:ku) f,{w by (21) and (13), and min;;k(,) fliv > f,:‘e(éj — & by condition (28)
used at iterations j = k(l): k. Then the equality in (33) follows from (25), and the inequality from the
fact that f5(z*®) < fg(z*®) = ) (by Remark 2.1(i)) and the last inequality of (32). ]
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3.3 Ballstep modifications. We now consider two more efficient modifications of Kiwiel et al. (26].
To detect that min;‘f:k(,) fliv < f! more quickly, Step 5 may use the additional test

(R~ j2F1/2 — kD2 S B2 — ey, (34)

replacing (17) by “(34) or (17)”. In view of the results of Kiwiel et al. [26, §3], Step 4 may set z5+! :=

z8+1/2 if condition (34) holds, so that ppy; = pr+1/2 and (17) holds; then all the preceding and subsequent

results remain valid. Further, we may replace £¥+%/2 and Pra1/2 in (34) by Py, z* and pp + de('c ), as
if ty = 1; see Kiwiel et al. {26, Rem. 3.2(it)].

Similarly, our preceding and subsequent results hold for the “true” ballstep version of Kiwiel et al. {26,
Lem. 3.10), which additionally projects the point z*+! on the ball B(z*¥, B}) to ensure that {z"}t“m; C
B(z*Y R)) (instead of {z"}t“t(l) C B(z*? 2R)) as before). Since this only needs more complicated
notation, we refer the interested readers to Kiwiel et al. (25, Lem. 3.10].

4. Optimal objective and constraint subgradients. Our asymptotic convergence results will
deal exclusively with relations holding at Step 6, using groups and iterations in the sets
L:::{l:JH]:%J[} and K :={k(l+1):leL}. (35)

The set L indexes groups | terminating at Step 6 when the distance test (27) (=(17) by Remark 3.1(i))
holds at Step 5 for the current iteration k = k(I + 1) in the set of “interesting” iterations K. Of course,
it would be nice to have results for the remaining iterations as well, but our estimate (33) involves the
quantity §,/d5 (z"(’)), which in general converges to 0 only for k = k(I + 1) € K, as will be seen below.

‘We now begin our study of asymptotlc properties of the aggregate linearizations fi, ik, fs of (20).
First, we show that their errors e/, &%, & (cf. (30)), as well as the gradient of fs: vanish asymptotically for
k € K. Our further results will require local boundedness of the gradient of fi. Since this gradient V fj,
is a convex combination of the past subgradients {gf}]_k(l (cf. (20}, (13) and (5)), its local boundedness
will follow from the local boundedness of the subgradient mapping g;.

LEMMa 4.1 (i) In the notation of (30), (20} and (35), we have
&0, &0, =+ -0 ad VAE=VAR+VE S0
(ii) Suppose the sequence {z*D} e has a cluster point . Let L' C L be such that z*® L, geo

and let K' = {k(l +1) : L € L'} (cf (35)). Then 3° € S, and f(a*V) | f. = f(z*°). Moreover, the
sequences {z* Yrerters and {.l]f}kel iers ore bounded, where K| := {k(l): k(1 + 1)}.

PROOF. (i) We have 0 < E‘j,E’g, € < 6; by Lemma 3.2 (cf. (32)), where §; | 0 by Theorem 2.1. Next,
we have |V f&| < difdg, (*®) by (33) with dg, (z*®) > Ry for k € K (see below (35)), Ry := R(8;/61)7
by Step 5 and # € [6,1) by Step 0; consequently, we obtain that é;/R; — 0 and hence Vf;’t o

(ii) Of course, z*° € S, by Theorem 2.1, but the estimate (31) combined with statement (i) and the
fact that the sequence {z"} lies in the closed set S on which f is continuous provide an independent
verification: fg(-) > fs( :°). The final assertion follows from the inclusion {z"}wﬂl; c B(z*M,2R)) of
Remark 2.1(v), since gf := g¢(z*) for all k and the mapping gy is locally bounded on the set S. [m]

In the asymptotic setting of Lenumna 4.1, let £ be an arbitrary cluster point of the sequence {z"(“},eL
corresponding to groups L’ and iterations K’ such that (cf. (35))

O L g0 with L'CLi={l:041 =18}, K ={kl+1):1e L'} C K, (36)
note that z°° € S, by Theorem 2.1. We now show that the corresponding subsequence of the aggregate
subgradients V f), converges to the optimal subgradient set of our problem ming f:

G = 0f(z*) N ~Ns(z™). (37)

This set does not depend on the point 2°°, as long as z*° € S,: G = 8f(z) N —Ns(z) Vz € S, by Burke
and Ferris (10, Lem. 2], and it is closed convex (such are the sets df(z*) and Ng(z™) = 0ig(z*)).
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THEOREM 4.1 Suppose the sequence {20 }iep has a cluster point z°°. Let L' C L be such that z#) £
2%, and let K':= {k(l+1):l € L'} (cf (35)). Then we have the following statements.

(i) The sequence {V fx}xer: is bounded and its cluster points lie in the subdifferential 8f(z>).

(ii) Buery cluster point of the sequence {ka}kg[(l {ies in the optimal subgradient set G of (37).

iii) dg(V fx X, 0, i.e., the sequence ka ker converges to the optimal subgradient set G.
g

PROOF. (i) Since Vfj € co{g}};f:k(l) by (13) and (20), the sequence {V fx}rex is bounded by
Lemma 4.1(ii). Next, since VJf € Bg:;f(z"(”) by Lemma 3.2, where z*(® L o0 and e'f L) by
Lemma 4.1(1), we see that each cluster point of the sequence {V f }xe i lies in 3f(z™), since the mapping
(z,€) — O f(z) is closed on S x Ry; see, e.g., Hirlart-Urruty and Lemaréchal {19, §X1.4.1].

(ii) Let K" C K’ be such that the sequence {Vfi}rexr has a limit V. By statement (i), V o €
3f(a*). Since VfE — Vfy = Vik € dpis(z*) (by (20) and Lemma 3.2) with V % K pandék 0

by Lemma 4.1(i), we see that Vi LA —V foo € 8ig(z™) by the closedness of d.is(z) as above.
(iii} This follows from statements (i), (ii) and the continuity of the distance function dg: pick K" C K’
such that dg(V fi) il Timee ke dg(V i) and V fi, SN ¥ foo € G to get dg(V fi) 0. I}

COROLLARY 4.1 If the sequence {z*V} is bounded (e.g., the optimal set S.. is bounded), then the sequence
{V i ker is bounded (cf. (35)), ils cluster points lie in the optimal subgradient set G defined by (37) (for

any point =™ € S,), and it converges to this set G, i.e., dg(V fi) 0.

PROOF. This follows from Theorem 2.1 and Theorem 4.1. m]

Concerning Corollary 4.1, note that the sequence {z*(!)} is bounded if such is the feasible set S;
also having .5 bounded is useful for stopping criteria; see Kiwiel et al. {25, Rem. 3.8]. As observed in
Feltenmark and Kiwiel {12, §3], in some applications one wants to find the minimum ming f for an
unbounded set 5, but one can find a bounded set S that intersects the optimal set Argming f. Then it
is natural to solve, instead of the original problem ming f, its restricted version ming f with a bounded
feasible set § = $ 5. Both problems have the same optimal subgradient set ¢ if the “bounding” set §
is “large enough”, as explained in the following result of Feltenmark and Kiwiel {12, Lem. 3.7].

FacT 4.1 Suppose ming f is a restriction of the original problem ming f in the sense that S = Sng for
two convez sets § and 5. Let S. = Arg ming f. Suppose S.nint§ #0. Then 0 # S, C 8., and we
have both G = 87 (z) N ~Ns(z) for every x in S., and G = 8f(z) N —Ng(z) for every z in ..

REMARK 4.1 Under the assumptions of Fact 4.1, Ny may replace s in Theorem 4.1; then G := 0f(z°°)N
—N3(z*) characterizes “optimal” subgradients for both ming f end ming f, also in Corollary 4.1. In
general, if 8, # 0, then it suffices to choose § “large enough” but compact to have S bounded as well.

Following Feltenmark and Kiwiel [12, §4}, the results of this section can be specialized as in Kiwiel et
al. [25, §5] to the cases where we have explicit representations of f as a finite-max-type function, and of
S as the solution set of finitely many nonlinear inequalities and linear equalities. The resulting schemes
for identifying multipliers of objective pieces and constraints work under more general conditions than
those in Anstreicher and Wolsey (1] and Larsson et al. [31); see Kiwiel et al. {25, Rem. 5.15].

5. Lagrangian relaxation. For Lagrangian relaxation, in the general setting of Example 1.1, we
consider the following two choices of the dual feasible set S:

§:=8:=R? or §:={z:0<z<z"P} with z"P >  for some & € S.. (38)
For the second choice, our problem ming f is a restricted version of the classical dual problem ming f in
the sense of Fact 4.1.
In this setting, our method employs the partial Lagrangian solutions and their constraint values

2% = 2(z*) and g’j = P(z¥)  for all k; (39)
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note that, by (3)~(5),

FC) = o(z") + (=) (40)
Using the convex weights {u]’-“);;k(,) of (13), we define the kth aggregate primal solution
3
= > vk (41)
j=k()

This construction is related to the aggregate linearization Fro= Zk_k ) u;‘fj of (20). By expressing each
linearization f; as in (40), we now derive bounds on the primal function values o(2*) and ¥(z*) that
are useful for both asymptotic analysis and practical stopping criteria.

LEMMA 5.1 The kth aggregate primal solution defined by (41) satisfies z* € Z,
Yo(25) 2 fu(0) 2 f(=*P) — & — (Vf§,2*0) and (2%) 2 Vi,
where Vi > VfE if §=R%, and Vi, = $(5*) if the primal constraint function ¥ is affine.

Proor. In view of (13) and (41), we have 2* € co{z/}4_ ) C Z, %o(z*) 2 12, vivo(2?) and
Y(2*) 2 57, vEd(27) by convexity of Z and concavity of 9o, . Next, using (20) and (40), we get

Je() = 32 A0 = 32 v o) + ()] = 32 vfdo(2?) + (Vi)

with V7, = 32, vFd(z7). The above equality combined with the facts that F& = fi + 7% by (20) and
7%(0) < i5(0) = 0 by Lemma 3.1(ii) and (38), and the representation of % in (31) imply that

>, () = Jul0) = F5(0) — 75(0) 2 F5(0) = f(*0) — & — (Vf3,3*0)).

Finally, if & = R7, then the minorization # < ig of Lemma 3.1(ii) gives Vit < 0, and hence that

Vfe=Vfk-vit> Vf&. Combining the preceding relations yields the conclusion. O
Let Z,. denote the primal solution set of problem (2). We now show in the setting of (36) that the

aggregate primal solutions {#*}rc k-, generated via (41), converge to the primal solution set Z..

THEOREM 5.1 Suppose the sequence {25} e has a cluster point 2°°. Let L' C L be such that z*®
2%, and let K':={k(i+1):1 e L'} (cf (35)). Then we have the following statements.
(i) The sequence {#*}rek+ is bounded and all its cluster points lie in the set Z.
(i) f(ZF0Y | fu = F(z), & + (V75 2*DY 55 0 and limye e min? (Vi) 2 0.
(ili) Let 2 be a cluster point of the sequence {#*}xex+. Then 5 lies in the primal solution set Z,
and in the set Z(xz™) of (4). Moreover, the optzmal primal and dual values satisfy Y§'** = f. (i.e., there
is no duality gap). Finally, we have () X, Y and limge g ¥;(25) 2 0 for j = Lin.

(iv) dz, (z%) X 0, i.e., the sequence {2k]k51(« converges to the primal solution set Z,.

Proor. (i) By Lemma 5.1, each 2% lies in the set Z, which is compact by our assumption.

(ii) The first two relations follow from Lemma 4.1. By Theorem 4.1(,ii), (38) and Remark 4.1, the
sequence {V fi}kek- is bounded and its cluster points lie in the set G C —Ng(x™); since Ng(z*®) C —R}
(see, e.g., Hiriart-Urruty and Lemaréchal (19, Ex. IIL5.2.6(b)]), the third relation follows.

(iii) By statement (i), 2°° € Z. Pick K” ¢ K' such that z* K%, 7. Using statement (ii) in Lemma
5.1 together with the closedness (upper semicontinuity) of ¢¢ and ¥ on Z gives

$o(2%) 2 Tim 9o(2) 2 lim yo(2") 2 f(z%) = f., (42a)
kEK" kER"

;) > Tim 9;(25) > lim 9;(3%) >0, j=1ln (42b)
k&R keR"

Thus the point 2°° is primal feasible. Since (%) < ¥§** < f(z°°) by weak duality, (42a) yields that
Po(2°°) = P§** = f(z*) and hence 2 € Z,. Then the inequalities ¥(z®°) > 0 and z*° > 0 (due to









































