
IF A C/IFO RS/11 ASA/TllVtS 
ThL" l1,t,·rn,1t1011al fnkration ,,f Auwmatic Control 

The: I11tc:rnatli'llcil l"L' dcration of OpL'ratinnal Research Socie ties 
Thl' !11ternati<ll1al ln~titute for 1\pp!icd Systems Analysis 

Th,· !11s'lturc• of \lanagernc·nt Sciences 

SUPPORT SYSTEMS 
FOR DECISION 
AND NEGOTIATION PROCESSES 

Prcprints of the IFAC!IFORS!IIASA!Tll\1S Works/{()f) 

Warsaw. Poland 

.!une 24-26, /992 

Editors: 

1(,,111(111 Ku lii:oll'ski 

,7,/Jigniell' Nalwrs/.1 

./011 \l'.011 'si11.1J1 

1\m/r:ej Srras:uk 

Systems Research Institute 
Polish Acactemy of Scienucs 
W,•r,aw. Poland 

VOLUME I: 

Names of first authors: A-K 

SYSTEMS RESEARCH INSTITUTE. POL!SH ACADEM'f OF" IENCES 



SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES 
Preprints, IFAC/IFORS/IIASA/f!MS Workshop. June 24-26, 1992, Warsaw, Poland 

Optimization of Multiple Objectives in Control of Uncertain 
Systems 

Allon Guez, Ziauddin Ahmad 

Drexel University, Dept of Electrical and Computer Engineeńng 
32nd and Chestnut St, Philadelphia, PA 19104, USA. 

ABSlRACT 

We believe that an essential feature in machine learning is the real time satisfaction of multiple 
objectives S'QCh as identification, tracking etc. The machine learning problem may be viewed as a 
nonlinear adaptive control problem where the environment plays the role of the 'plant', while the 
l~~ is the controll~r. ~fa~tiobjective optimization_ ~00) in the control. p~ble!Il typic~y d~als 
w1th srmultaneous optrmlzatton of more than one obJecttve, where cach obJecttve IS descnbed via a 
cost functional. In sucha situation there of ten exists a region of tradeoff wherein one cost may be 
improved at the expense of others. -Such a region is called the Pareto optima! (PO) set. A 
parameterlzation of this set simplifies the attainment of the existing tradeoff. Working within the 
Pareto set guaranties optimum tradeoff. We present two examples for linear time invariant 
systems. These examples help illustrate different issues involved in this matter. · 

2. BACKGROUND 

In this paper we arc mainly concerned with the conflict between control and 
learning/ide.ntificati.on tllat has long becn identified, sec for example ([Selinsky-89),[Guez-89b)). 
Previous work by different rescarchers include stable parameter updating laws only to accomplish 
tracking, while others such as ([Bayard-85],[Gcrencs6r-90),[Caines-84),[Gustavsson-77],[Mo-
90]) aiso want to identify the parameters, but in both cases the data resulting through error in 
trackinl the cuttent trajectory is utilized for the purpose of updating the parameters. We present the 
ap\'roach whete we· utilize not only the current trajectory but also the repertoire of possible 
traJect_ories, tenned as Bxploratory Schedules (ES), in order to minirnize the overall error over an 
exJended period of time. In ([Guez-89],[Guez-],[Selinsky-89],[Guez-89b]) ES were generated 
off-line and used in an o_pen loop fashion. Moreover, these ES were used inbetween actual control 
tasks therefore lirnitin~ the proccss of estimation during idle time. Here we attempt to generate ES 
in a closed loop mlll)I\er. Such .trajectories in generał may not be the desired trajectories, resulting 
in larger ~kins errors. liowcver, ES. offer faster convergen7e to the syste!ll parameters ~nd 
thereforc y-ield smaller long term trackmg errors. The automatlon for the design of ES requrres 
online mÓdlllcation of .the aesired trajectory io enhance learning at the expensc of poorer initial 
~ki~g. N~urocoinpu~g, exP.lorątory schedules and multiobjective optimization form essential 
mgredi.ents m the solutton to this problem. 

2.1. Leamioi in New:ocomputini 

Learning in neurocorriputing is the process of fmding the 'correct' neural network architecture; 
e.g. searching for' the best synaptic strengths and threshold values. For example, let the Neural 
Nt,twoik (NN) łn_put vector, at time t, be x(t) the NN output vector be y(t), the NN parameters 
describing its arclii'tectµte (e.g. synaptic weights) be p(t), and !et the input-output mapping defined 
by the NN for a given parameter vector value be: 

y = N(p,x) (I) 
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Also let (xDJ,YDi} be the i-th pair of samples of tbe desired input output map to be learned. 
Learning takes place by adjusting the NN arcbitectuic parametcrs p(t) according to a given learning 
algorithm: 

d~t) = L(p(t).XDi,YDi) (2) 

Learning (Le. computing equation (2) for a sequencc of data samples (XDi,YDili=l may be done 

online or offline, depending upon time of availability of tbe data, computing power and other 
faeton. 

At present, research activities in learning for neural network focus on defining new learning 
algorithrns (i.e. new learning operators L(p(t).XDi,YDi)), evaluating tbeir performance in terms of 
what mappings are 'learnable', evaluating their computational complexity and cost and study their 
hardware implementation aspects. However, several additional important issues in NN and 
machine learning rcmain open and significant We attempt to describe some of those issues below. 

2,2, The ExploratofY Schedulc Desim Problem 

From equation (2) we sec that tbe performance of the learning algorithm L clearly depends on the 
samples (XDi,YDil• Tuus, important issues in NN learning are: 

a) What is the 'best' sequence of learning examples (data samples) {XDi,YDil for a given 
learning rule, L? 

b) How do we define 'best' samples for NN learning? 
c) How do we generate/construct the best learning samples? Can we and should we generate 

the samples 'on the go' i.e. in real time? 
Although problem a) has been rccognized in the past, no research results were found regarding its 
solution or regarding posing or solving problems b) and c). In our attempt to study the above 
issues we introduced the concept of Exploratory Schedules (ES). ES is a sequence of inpqts to any 
learning algorithm (e.g. to L(p(t).XDi,YDi) in (2)) whose purpose is to make that learning algorithm 
efficient The ES found so far, arc expressed as functions of time (o~n loop ES) [Selinsky-
89],[Guez-89b]. We believe that ideally the best ES must be generated m closed loop (feedbącl: 
form) and in real time, i.e. ES should be a function of the present performance or state of the NN. 
Putin other words "how one leams depends on what one knows". As we acquire more knowledge 
our strategy of best future learning ~Y change in a way which depends heavily on our present 
state or knowledge. Tuus we believe, best NN learning cannot be achieved by followin~ a 
preplanned set of examples computed offline ahead of time, but rather, must be generated online 
dcpending upon the current state of the NN, that is in a feedback fonn (closed loop). 

2,3, Pareto Optirnality 

A dynamie process can be expressed as 

x = f(x,u) (3) 

where x e A c R0 is the state vcctor with initial conditions givcn as x(t1) = x1 and finał conditions 

given by x(t2) = x2, and u e U c X, is the input vcctor. Hcre, X is a real linear topological space. 
In an optimal control problem we define a cost functional J(u(·)) as 

. t2 

J(u(·)) = J C(x,u) dt (4) 
t1 
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where C(x,u) : A x U • B c R+ which is to be optimizcd resulting a local minimum value of 
J(u(·)) corresponding to u*(·) . However, if we have more than one cost functional, Ji(u(·)), i= 
1,. .. , p, given as 

t2 
Jj(U(·)) = f Cj(X,U) dt (5) 

t1 
then the minima for all Ji(u(·)) may not occur for the same u(·). In this case we can talk about a 

region U 1 c U such that the resulting Jj(u(·)) arc noninferior or unimprovable in the sense that for 

all u(·), ii(·) e U1 if Ji(u(·)) S Ji(ii(·)) then there exists Ij(u(·));.,; Ij(u(·)) for j * i. This region, U 1. 
is the Pareto optimal set. Formally, in the control problem, Pareto optimum is the set of controls 

u*O e U c X& such that for the cost function J(u(·)) : X • G c RQ and for all u*(·)-comparable 

u(·) e U, J(u(·)) S J(u*O) ~ J(u(·)) = J(u*(·)). Therefore, Pareto optimal solutions arc also called 
unimprovable, and in generał we obtain a set of such solutions. 

A number of methods have been proposed to obtain the PO solution or the set (full or partial) 
of such solutions. Some of these methods arc outlined below. 

Weighting Fqnction Method fZadeh-63),[Cohon-78] 
In this method the weighted sum of objectives is minirnized: 

P(w) = min !wj fj(X) I,wj = l; Wj;.,; O 
xeX .i=l 

E-Consttaint Method [Haimes-73), [Marglin-67) 
ibis method considers minimiT.ati.on of the lcth objcctive while the remaining objcctive 

functions are constrained from above by some values Ej. Conditions on these constraints are 
that these should be feasible and binding at the optimal solution. 
Pmm F,quality ConsttaintMethod [Lin-76) 
Here the kth objcctive is minimiz.ed such that the remaining objectives keep a specified 

values ą EiS are varied to generate the entire Pareto set. 
Hybrid Method [Corley-80), [Wendel-77) 
In this method the weighted summation of objective functions is minimized while 
constraining from above all the objcctives by some specified values. 
llte BQ$ Compromise ,Method {Geoffrion-68), [Yu-73), [Zeleny-74), [Zeleny] 
The bcst compromise solution is the solution that minimiz.es the following function 

da"' (f wj lf~-f)c(x)la)
1
/a 

k=l 

where: f*j "' min fj( x) 
xeX 

where 1 S a S oo. For fixed Wj, j e (1, ... , p}, The entire range of a results in a subset of 
the PO set 
M\JJtiow~ Simplex MeJbod [Cohon-78), [Chankong-84) 
This is a~ approach, similar to the single objective simplex procedure, in obtaining the 
PO set for linear prognunming problems. 

The following restrictions are associated with the weighting function method 
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(a) Solution obtaincd should be unique or weights should be positive. This is irrespective of 
the convexity off and X. 

(b) f, X convex then for x• a nondominated solution 3 w such that P(w) results in x*. Such 
w is not unique in generał 

In the weighting function method a change of preferences may be mimicked by an altemate set of 
weights. 

In the above discussion we were concerned with 'global Pareto solutions'. However, there 
also exists the notion of local Pareto optimality. A point, x*, is locally Pareto optirnal if it is Pareto 
optimal in some neighborhood, N6(x*). Local Pareto optimality comes into play in the case of 
nonconvex cost functions. In this case not all weighted combinations of the objective functions 
result in a Pareto optimal solution (see example No. 2 below). 

3, UNCĘRTAIN PLANT CON]ROL VIA MULTIOBJECTNE OPTIMIZATION 

In Ibis section we present an approach to the control of uncertain planŁ In this respect we 
provide two examples that illustrate the issues that appear in the proposed approach concerning the 
control of uncertain plants. 

The objective is to control a plant in the event when complete information about the plant is not 
known. The uncertainity in the knowledge of the plant is reflected through the uncertainty in the 
parameters of the planŁ Therefore, the way of controlling the plant is via online identification of the 
parameters which in tum arc employed by the controller in generating the control signal. However, 
as stated above the there exists a conflict between the problem of identification and the problem of 
control. We try to resolve this problem of identification vs. control by using the dichotomy of the 
cost functionals, to be minimized, one for the purpose of control and the other for the purpose of 
identification. The cost functional for control, Je, takes into account only the current trajectory, 
therefore, enabling tracking of the task at hand. T):te cost functional for identification, J1, takes into 
account the repertoire of possible trajectories for the plant via for example an average task. 
Minimizing soch a cost functional would yield lower errors over the plant's life time. Therefore, 
we call J1 the cost functional related to identification. lbese cost functionals have the form as given 
below: · 

te 
Je = D~,xr) + J Cc(x,xd,u) dt 

to 
00 

Jr = Dr(x,xr) + J C1(x,xd,u) dt 
to 

(6) 

(7) 

where x is the actual state of the system, u is the input, Xd is the desired current trajectory, Xd is the 
average desired trajectory. De and Dr arc the terminal costs and Ce and Cr arc the appropriate cost 
integrands for control and identificańon respectively. Simultaneous minimization of Je and J1 to 
result in minimum values for both is in generał not possible. Therefore, we apply the method of 
Pareto optimality to achieve an optima! solution. 

Example No. 1: LTI System With Convex Costs 

Consider a scalar linear time invariant system 

i=ax+bu ~) 
Further, for the purpose of illustration we assume that the system parameters, A, B, arc known. 
We define the cost functionals Je and Jr in (6) and (7) as follows: 
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q 

Je= (x-xr)'I'Mc(x-xr) + J [ (x-xd)T Qe (x-xd) + u TReu ] dt 
to 

q 

Ji = (x-xr)'I'M1(x-xr) + f [ (x-itd)T Q1 (x-itd) + uTR1u] dt 
to 

(9) 

(10) 

Here X<! defines a trajectory to be tracked and itd as the average trajectory. Minirnizing Je will result 

in optimal tracking of Xd , lets call it X(Xd), while minimizing itd results in the optimal trajectory X( 

Xdl· Now if we form the following equation 

X(a) = a X(Xd) + (1-cx) XCid) (11) 

we get interrnediate trajectories X(a), as ex varies between O and 1. With a= O we get X(a=O) = XCid) 

while with a= 1 we get X(a=l) = X(xd)• J1 and Je were minimized by dynamie programing of 
functionals [Kirk-70]. In our simulations Me= M1 = 10, Qe =Qi= 10 and Re= R1 = 0.1. The 
resulting trajectories and some of the intermediate trajectories X(a) are shown in figure-1. For soch 

a convex mixing of optima! trajectories we observe that X(a) lies inbetween X(xd) and X(Xd)· 

Therefore, the role of IX in X(a) is to define a new trajectory that takes into account both tracking as 
well as learning. Tracking such a trajectory in an optimal manner, i.e. minimizing 

q 
Ja= (X-X(a))'I'Ma(X-X(a)) + f Ca(X,X(a),U) dt (12) 

to 
where 

Ca= (X-X(a))T Qa (X-X(a)) + uTRau (13) 

will result in a deviation from both the trajectories, X(Xd) and X(id)· Therefore, we define two 
additional costs, the cost paid for tracking at the expense of learning as: 

q 

CT= f li X(x(a)) - X(id) 112 dt (14) 
tó 

and the cost of learning at the expense of trac.king as: 
te 

ą = f li X(x(a)) - X(xd) 112 dt (15) 
to 

These costs for the given problem relate to the area between X(x(a)) and either·x(id) or X(xd) of 

figure-1, and are plotted in figure-2 as a function of a, with Ma= 10, Qa = 10 and Ra= 0.1. 
Clearly, we observe that while one cost decreases the other cost increases. It has been shown [Da 
Cunha-67] that in the convex case minimization of soch a composition results is a PO solution 
when the weights are positive and that the PO set is contained in the closure of this set. As stated 
earlier, weighted combinations of the costs can be made to obtain pareto optimal solutions if the 

costs are convex. Inf act for the example given as above it can be shown that Ja= a Je + (1-cx) J1 

and Ua = a uc + (I-a) u1. 
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Figw-c 1: Optima1 Trajcctories due IO Ie and I1 and their 
convcx combinations. 

Figure 2: Control Cost (Cr. -) acid ldentification 
Cost (Cr.····•·) vs tradeoff facia "a". 

The strategy to achieve good tracking requires the ability to choose a in a manner that the 
deviation from the desired trajectory remains bounded. A diagram illustrating this purpose is 
shown in figure-3. 

Fig= 3: A scheme fOI' the control of ancertain planL 

Example No. 2: LU System With Npnconvex Costs: 

Here we shall consider the control of a DC motor. The motor equation is given by 

i(t) = v(t) + µ 
where 

i = the motor annature current 
v = angular velocity of the motor in rads/sec 

µ = acceleration due to friction in rads/sec2, (constant). 
. dv 
V= dt 

with 
V(l1) = VI 
v(t:z) = v2 

(intial velocity) 
(finał velocity) 

Three cost functionals to be minimizcd are considmxl, as defined below 

t2 

h= - Jv dt 
t1 
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J3 = Jf(i) dt 
t1 

(16) 

(17a) 
(17b) 

(18) 



where f(i) is an arbitrary loss function of the armature current It is seen that individual 
minimization of these functionals leads to minimizing the time (11), maximizing the angular 
displacement (]z) and minimizing the energy losses (J3). The problem statement that we shall 
consider is: . 
(P) Minimize li and J3 subject to lJ=tt, and equations (1) and (2) 
By employing the weighted convex combination method we form the new objective, J, to be 
minimm:d as: 

1 = 13 J3 + (l-13) ]z 
t2 

= J (l3 f(i) - (l-l3) v )dt 
t1 

(19) 

along with the isoperimetric constraint J 1 = tf. Here Os; 13 s; 1 is the parameter. For the purpose of 
illustration we shall consider f(i) in eq. (18) as given below 

f(i) = (i-i1)2 (i-i2)2 + a (i-i3)2 (20) 
where ii, i2. i3 are some specified constants. We shall consider positive values for a. Here we arc 
interested in optimizing a nonconvex functional. The reason for the selection of the f(i) as given by 
(20) is that under some conditions on a, J3 is nonconvex. For i1=-i2=i3, with i1 = -1 and a=0.2, 
f(i) is as shown in figure 4. These values were used in the simulation. Although, this loss 
function, (f(i)), is unrealistic it was considered as it results in a nonconvex losses functional, (J3). 
Also for this exampleµ was taken to be zero therefore, from eqn. (16) we observe that the current 
is equal to the acceleration. Further, t{was taken as 1 and v1 = v2 = O were considered. 

For the problem (P) intennediate function is given as 

The Euler equation 
H = 13 f(i) - (1-13) V + A 

oH · 
Hv- ?=O 

2. 6 

1.6 

-2 -1 

Figure 4: l.osscs cost integrand. f(i), as a 
function of cunent. i. 

(21) 

(22) 

results in a cubic e<J_uation for the acceleration. Solving this equation and plugging the results in 
eqn. (1) and integratin_g we gct the velocity profiles and eqn. (3) yields the costs }i and 13- Figures 

(5) and (6) indicate thesc results graphically for different values of 13 ranging from 0.1 to 0.9. 
Figure (5a) shows the plots of the inputs (= current = acceleration). We observe that as the 
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weighting of the losses functional (J3) is increased by increasing 13 the maximum positive 
acceleration is decreased while the maximum negative acceleration increases. This increase in the 
negative acceleration is accompanicd by a shift of the acccleration switching towards later in time. 
From figure (Sb) it is seen that with the increasc in beta the area under the velociy curve decreases 
therefore, a decreased amount of distancc is COV!=[ed. This is indicated by figure (6a) which shows 
the distancc cost (]2) as a function of 13. As 13 increases h increases. However, this monotonicity 

is not true for the losses cost (13) as given in figure {6b). As 13 increases from 0.1 to 0.3 the losses 

decrease while as 13 varies from 0.3 to 0.9 the losses increase. Such a behavior is a result of 
J3 being nonconvex and is attributed to the fact that low values of the current result in higher 
values of the cost function intcgrand, f(i). From the figures (Sa) and (Sb) we make the following 
observation: 

"As 13 varies from O.I to 0.3 J2 increases while J3 decreases. Whereas, when 13 varies from 
0.3 to 0.9 both h and J3 increase." 

Therefore, we observe that the region when 13 varies from 0.1 to 0.3 is locally Pareto optima! 

wbile the region when 13 varies from 0.3 to 0.9 is not Pareto optimal. Note that these 

ranges are only approximate, a fmer resolution of f3 will generale an imP.roved set of ranges. 

Further, this set in not a completc Pareto optima! set. The ranges O~ 13 < 0.1 and 0.9 < 13 ~ 1, 
remain to be explorcd. Nevertheless, such a procedure can be applied to find the !ocal Pareto 
optimal sets and therefore, the entire Pareto optima! set. 

From this example we observe that in the nonconvex case not all convex combinations of the 
costs will result in a Pareto optima! solution. Therefore, one must be careful in making such a 
combination and a procedure sirnilar to the one de~ribed above should be applied to ensure the 

• !ocal Pareto optimality of the result 

4. CONCLUSION 

A Decision proccss involves satis.f.action of a number of objectives. Control of uncertain 
system involves such a decisions process. Here, this problem has been delt with by considering 
different costs to be optimiz.ed. Resulting optimum solution, tenned as the Pareto optimum, entails 
a tradeoff between different costs involved. The set of all such solutions is the Pareto optima! set 

-1 

-2 ~-------------...J 
o . 0.2 0.4 0.6 0.8 

Figure 5(a): Cwrent prof des flr diff=ntvalues of~-
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0.65 
-0.25 

0.6 

-0.3 
O.SS 
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o tl.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8 

Figure 6(a): Distance cost (J:z} as a function of~ Figure 6(b): Losses cost (J3) as a ftmetion of~ 

A procedure of generating the Pareto optimum set is applied to the optima] control of a linear time 
invariant systept with quadratic costs defined for the purpose of track:ing and identification. The 
results indicate that the convex mixin_g of the costs results in the same convex mixing of the 
controls. A similar procedure applied to the control of a D.C. motor with nonconvex cost 
functionals indicates that no generał conclusion can be infered when the costs involved are 
nonconvex and a convex combination may not yield a Pareto optima] solution. 
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