





Also let {xpi,yDi} be the i-th pair of samples of the desired input o at map  be learned.
Leaming takes place by adjusting the NN architecture parameters p(t) accoruing 1 given learning
algorithm:

O - Lp(0.xpiyDd @

Learning (i.e. computing equation (2) for a scquence of data samples { xpi,ypi)i;l may be done

online or offline, depending upon time of availability of the data, computing power and other
factors.

At present, research activities in learning for neural network focus on defining new learning
algorithms (i.c. new learning operators L{p(t),xpi.yDD), evaluating their performance in terms of
what mappings are ‘learnable’, evaluating their computational complexity and cost and study their
hardware implementation aspects. However, several additional important issues in NN and
machine learning remain open and significant. We attempt to describe some of those issues below.
2.2, The Exploratory Schedule Design Problem
From equation (2) we see that the performance of the leamning algorithm L cle:  depends on the
samples {xpj,ypi}. Thus, important issues in NN learning are:

a) What 1s the ‘best’ sequence of lcarning examples (data samples) {xp;i,ypi} for a given

learning rule, L.?
b) How do we define ‘best’ samples for NN learning?
¢) How do we generate/construct the best learning samples? Can we and should we generate
the samples ‘on the go’ i.c. in real time?
Although problem a) has been recognized in the past, no research results were found regarding its
solution or regarding posing or solving problems b) and c). In our attempt to study the above
issues we introduced the concept of Exploratory Schedules (ES). ES is a sequerce of inputs to any
learning algorithm (e.g. to L{p(t),xpi,yni) in (2)) Whose purpose is to make that learning ~ ori
efficient. The ES found so far, are expressed as functions of ' (open loop ES) \uw.insay-
891.[Guez-89b]. We believe that ideally the best ES must be gerciated in closed loop (feedback
form) and in real time, i.c. ES should be a function of the present performance or state of the NN.
Put in other words “how one learns depends on what one knows”. As we acquire more knowledge
our strategy of best future learning may change in a way v ~ ~:h depends hea ~ on our present
state or knowledge. Thus we believe, best NN learning vaanot be achieviw gy following a
preplanned set of examples computed offline ahead of time, but rather, must be generated online
depending upon the current state of the NN, that is in a feedback form (closed loop).

23.P, Optimali
A dynamic process can be expressed as
x = f(x,u) 3)
where x € A © R is the state vector with initial conditions given as x(t1) = x1 and final conditions
given by x(t2) = x2, and u € U C X, is the input vector. Here, X is a real linear topological space.
In an optimal contro) problem we define a cost functional J(u(") as

t2
J(u) = tj C(x,u) dt @)
1
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¢ C(x,u) : A x U — B C R, which is to be optimized resulting a local minimum value of
)¢ sponding to u*(-) . However, if we have more than one cost functional, Ji(u(’)), i =
1yeeey Py grvedl 88
9]
Ji(u()) = tI Ci(x,u) dt 3)
1

then the minima for all J;(u(-)) may not occur for the same u(-). In this case we can talk about a
region Uy < U such that the resulting J;(u(:)) are noninferior or unimprovable in the sense that for

all u(), u() e Uy if Ji(u()) < Ji(u()) then there exists Jju()) 2 JJG( )) for j # i This region, Uy,
is the Pareto optimal set. Formally, in the control problem, Pareto optimum is the set of controls

u*(:) € U X, such that for the cost function J(u(-)) : X = G < R9 and for all u*(-)-comparable

u() € U, Ju()) S Ju*¢)* > Ju() = J(u*(-)). Therefore, Pareto optimal solutions are also called
unimprovable, and in ger....l we obtain a set of such solutions.

A number of methods have been proposed to obtain the PO solution or the set (full or partial)
of such solutions. Some of these methods are outlined below.

Weighting Function Method [Zadeh-63],[Cohon-78]
In this method the weighted sum of objectives is

P(w) = min ):w,- £j(x) Twj=1I; w20
xeX Fl

£-Constraint Method [Haimes-73], [Marglin-67]
This method considers minimization of the kth objective while the remaining objective
functions are constrained from above by some values g;. Conditions on these constraints are
that these should be feasible and binding at the optimal solution.
Proper Equality Constraint Method [Lin-76]
Here the kth objective is minimized such that the remaining objectives keep a specified
values &i. €S are varied to generate the entire Pareto set.

[Corley-80], [Wendel-77}
In this method the weighted summnnon of objective functions is minimized while
constraining from: all thc tives by some specified values.
The Best Compror ffrion-68}, [Y u-73], [Zeleny-74], [Zeleny]
The best comprom.... wluuon is the solution that minimizes the following function

/o
dg = {iw]' lf;-fk\l}lu}

=1

where: f* =min fyx)
xe X

where 1 S o < »o. For fixed wj, j € {1, ..., p}, The entire range of & results in a subset of
the PO set.

Multiobjective Simplex Method [Cohon-78], [Chankong-84]

This is a direct approach, similar to the single objective simplex procedure, in obtaining the
PO set for linear programming problems.

The following restrictions are associated with the weighting function method
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1

Jo = ex0™c(x-x) + | [ (x-xa)T Qc (x-xa) + uTRcu ] dt ©)
TOtf
J1 = (xR TMy(x-Rg) + J [ (x-%a)T Qq (x-Xg) +uTRpu ] dt (10)

Here x4 defines a trajectory to be tracked and X4 as the average trajectory. Minimizing J¢ will result
in optimal tracking of x4 , lets call it X(x), while minimizing Xg results in the optimal trajectory x
%4 Now if we form the following equation

X(o) = O X(xg) + (1-0) X(xg) 0<a<l an
we get intermediate trajectories X(q), as o varies between 0 and 1. With o = 0 we get x(g=0) = X(x%g)

while with o = 1 we get X(a=1) = X(xy)- J1 and J¢ were minimized by dynamic programing of
functionals [Kirk-70]. In our simulations Mg = My = 10, Qc =Qq =10 and Rc =Ry =0.1. The
resuliing trajectories and some of the intermediate trajectories x(g) are shown in figure-1. For such

a convex mixing of optimal trajectories we observe that x(qg) lies inbetween x(x4) and x(xy).
Therefore, the role of a in x(q) is to define a2 new trajectory that takes into account both trac ~ g as

wellasle 2. Tracking such a trajectory in an optimal manner, i.¢. minimizing
t
Jo = (x-x(a)) TMa(x-x() + t(I) Ca(X X (o)) di (12)
where
Ca = (x-x(g))T Qo (x-X(g) + uTRqu 13

will result in a deviation from both the trajectories, x(xq) and xxq). Therefore, we define two
additional costs, the cost paid for tracking at the expense of leaming as:
if

Cr= I I X(x(q)) = *(xa) 12 dt (14)

tg
and the cost of learning at the expense of tracking as:
if
CL= [I (i - Kxg) 7 dt 1s)
)

These costs for the given problem relate to the area between X(x(qy) and either x(zy) Of X(xq) of

figure-1, and are plotted in figure-2 as a function of ¢, with My = 10, Qg = 10 and Ry = 0.1.
Clearly, we observe that while one cost decreases the other cost increases. It has been shown {Da
Cunha-67] that in the convex case mini zation of such a composition results is a PO solution
when the weights are positive and that the PO set is contained in the closure of this set. As stated
carlier, weighted combinations of the co  :an be made to ob =~ pareto optimal solutions if the
costs are convex. Infact for the example given as above it can be shown that Jo = a J¢ + (1-) J

and ug = a uc + (1-ot) uy.
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Figure 1: Optimal Trajectories due to Jc and Jy and their Figure 2: Control Cost (C: —) and Identification
convex combinations. Cost (Crz ----~) vs tradeoff factor "a”.

The strategy to achieve good tracking requires the ability to choose @ in a manner that the
deviation from the desired trajectory remains bounded. A diagram illustrating this purpos¢ is
shown in figure-3.

‘C _____ j
| e “‘I | LI
_ I |
£ 3
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1 | Tadectr
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Figure 3: A scheme for the control of uncertain plant.

xampl : With Nonconv

Here we shall consider the control of a DC motor. The motor equation i~ ~*ven by

iM=v)+u (16}
where
i = the motor armature current
v = angular velocity of the motor in rads/sec

} = acceleration due to friction in rads/sec2, (constant),

_dv
VE@
with
v(ty) = vy (intial velocity) : (17a)
v(t2) =va (final velocity) (17b)

Three cost functionals to be minimized are considered, as defined below
tz V)

t2
1= Jdt ; Jp= - Jvdt ; . Ia= ff(i) dt (18)
t t 3]
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where f(i) is an arbitra nction of the armature current. It is seen that individual
nimization of these fi leads to mi ~ iizing the time (J1), maximizing the angular

wsplacement (J2) and Muumnnezuy the energy woses (J3). The problem statement that we shall

consider is:

P) Minimize J; and J3 subject to J1=t, and equations (1) and (2)

By employing the weighted convex combination method we form the new objective, J, to be

minimized as:

J=BI3+(1-PJ2

2
= @16 - (1-p) v)at @as)
11

along with the isoperimetric constraint J1 =tr. Here 0 < B < 1 is the parameter. For the purpose of
illustration we shall consider f(i} in eq. (18) as given below

() = (i-i1)2 (-i)2 + a (i-i3)2 Q0)
where i1, iz, i3 are some specified constants. We shall consider positive values for a. Here we are
interested in optimizing a nonconvex functional. The reason for the selection of the f(i) as given by
(20) is that under some conditions on a, J3 is nonconvex. For i1j=-i9=i3, with i} = -1 and a=0.2,
f(i) is as shown in figure 4. These values were used in the simulation. Although, this loss
function, (f(i)), is unrealistic it was considered as it results in a nonconvex losses functional, (J3).
Also for this example p was taken to be zero therefore, from eqn. (16) we observe that the current
is equal to the acceleration. Further, t; was taken as 1 and v; = v = Q were considered.

For the problem (P) intermediate function is given as )
H=Bf@)-A-pv+ir an

Hy - 2%‘Léo 2)

The Euler equation

3
2.5

1.6

! _
-2 -1 1 2
i

Figure 4: Losses cost integrand, (i), as a
function of current, i.

results in a cubic equation for the acceleration. Solving this equation and plugging the results in
eqn. (1) and integrating we get the velocity profiles and eqn. (3) yields the costs J7 and J3. Figures

(5) and (6) indicate these results graphically for different values of P ranging from 0.1 to 0.9.
Figure (5a) shows the plots of the inputs (= current = acceleration). We observe that as the
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weighting of the lo s functional (13) is increased by increasing B the maximum po ve
acceleration is decreased while the maximum negative acceleration increases. This increase in the
negative acceleration is accompanied by a shift of the acceleration sv  hing towards later in time.

From figure (5b) it is seen that with the increase in beta the area under tne velociy curve decreases
therefore, a decreased amount of distance is ca  ed. This is indicated by figure (6a) which shows
the distance cost (J2) as a function of . As B mwreases Jz increases. However, this monotonicity
is not true for the losses cost (J3) as given in figure (6b). As P increases from 0.1 to 0.3 the losses
decrease while as P varies from 0.3 to 0.9 the losses increase. Such a behavior is a result of
J3 being nonconvex and is attributed to the fact that low values of the current result in higher
values of the cost function integrand, £(i). From the figures (5a) and (5b) we make the following
observation:

“As B varies from 0.1 to 0.3 J2 increases while J3 decreases. Whereas, when f varies from
0.3 o 0.9 both J3 and J3 increase.” :

Therefore, we observe that the region when B varies from 0.1 to 0.3 is locally Pareto optimal
while the region when § varies from 0.3 to 0.9 is not Pareto optimal. Note that these
ranges are only approximate, a finer resolution of B will generate an improved set of ranges.

Further, this set in not a complete Pareto optimal set. The ranges 0 S B < 0.1 and 09<B <1,
remain to be explored. Nevertheless, such a procedure can be applied to find the local Parcto
optimal sets and therefore, the entire Pareto optimal set.

From this example we observe that in the nonconvex case noi ~ convex combinations of the
costs will resul © a  :to optimal solution. Therefore, one mus: ve careful in making such a
combination anu a pruovedure similar to the one described above should be applied to ensure the

» local Pareto optimality of the result.

4 ."\‘vr- wrmreay
pu. 3

A Decision process involves satisfaction of a number of objectives. Control of uncertain
system involves such a decisions process. Here, this problem has been delt with by consi
different costs to be optimized. Resulting ¢~+~wm solution, termed as 1 reto o ,

a tradeoff between different costs involved. __e set of all such solution: ¢ Paretu UpLAL SeL

0.2 0.4 0.6 0.8 1
3 t
Figure 5(a): Cwrrent profiles for different values of B. Figure S(b); Velocity profiles for different values of fi.
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