








{—1 if the expert preferes x to x
1 4 4
g x )= 1' ¢} - - considers x and % as eguivalent
PO i i)
bt - - preferes x to x . 3
3} 1

The result of comparison is correct if one of the following
conditions is satisfied :
sgn g(xA.xj) = sgn T(xi,xi) } (4
g% x ' = T(xl,x =0,
In oppcsite case,AthJe isult is iJncorrect.
A2. Incorrect results (errors) are of randoem nature; for the jeint
distribution of all comparisons « i.e. for all pairs (x x . € X ;
the following inequalities: R o
Pr{[sgn g(x ,x )>sgn T(x ,x );T{(.)#0] or [g(xv,x_)=T(xl,x =010 2
s Y 2 11-15 ' (5)
where: & € (0, %), :
are satisfied .
A3. Results of comparisons g(xi,xj) and g(xk,xl) are uncorrelated
for k=i, j; 1#i,] ¢
cov[g(xi,xj),g(xk,xl)] =0, (6)

The essential role in above problem formulation is played by
thich determine basic features of the
1
i of the
‘icantly weaker than the assumption

cn the independency among all the comparisons, commonly used in

8. 8 and noti
For a given partition XyrmeeX o {r<m), __Ilng a feasibie
solution t¢o the formulated probilem, i.e. such that the relations:

i\:J1 X, = X, o xn x,= {0}, (=), X, # {03, (i=1,....,r), (7
are isfied, the following notation is used:
SX - the set of all feasible solutions;
R_ - the set of all the pairs of indices <«i,j> for which the
conditions : ]
isijsm, > i (8)
hold;
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.- sk ) sones - ts th set
1(11,- X ) Pt(x1 1r) Pz(x1 x.) subse of e 3
Rx such at:

(1,...,xr) = {<{,j>} 3q, (l=qsr) :xi,xJ_ € xq} H (&)
Pi(x‘,...,xr) = i, X, € X, xje X’ k- "0} (10)
Pz(x1,...,xr) = LI xie X, xje X, kK-1>0. (11)

From (7) - (11) it follows that :
Iy v P‘(.) u Pz(.) = RX y (12)

I(.)rlPl(.) = {0}, I(.)nPﬂ(.) = {03, Pl(.)an(.) ={0}, (13)

card(R Yy =M= -m(m - 1) . (14)
The prohlem of determining the NAO solutmn can be formulated,
using the introduced notation, as the minimization problem of the

form:

'nm{E ‘g(x,x)f +§ h(”(x x)+
"y

+5 :: : R x x R (15)

PLX, X
where:
‘“(x x)= o if g(xl,xj)=-1
1 otherwise ,
[0 if g(x ,x)=1
(21 . T 77
h (xi’x,') . i 1 otherwise ,
under condition : ook, € SX

The optimal soluuon (solutlons) of the above problem will be

denoted by x ) ,x‘ ( x('),..,x") {=1,...; v - the number of

i
solutions with the same minimal value of the function (15)).
Let us define the random variable W(x1 yonnsX ) for any
r

partition XX, from SX' of the form :

WX X ) =Z(,‘ )Uu(xi.---,xr) + ¥ Vij(xl,...,xr) +

P_{.)
l(

+PZ( le(xl,...,xr) (16)
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where:

0 if g(x ,x ) =0 for <L, € I(.) -
U ()= . i an)
ij 1 if g(xi,xj) # 0 for <1, € I(.)
Voo - 0 if g(xi,xj) = =1 for <,j> € P1(.) (18)
iy 1 if g(xi xj) 2 0 for 4, € Pi(.)
O - 0 if g(xi,xj) =1 for 4,> € Pz(.) (19)
iy 1 if g(xi,xj) s 0 for <> € Pz(.) .

The family of the random variables W(.), generated by the set
SX will be denoted by W.

It follows from (15) and (16) that the optimal solution of the
problem (15) generates random varlable W(i’,...i;), which assumes
the minimal value in the family W .

To simplify the notation the variables corresponding to the
errorless solution x:,...,x: will be marked with asterisks, e.g.
i P:, P;, U:j,v’i‘j,ztj,w* ,while those corresponding to any other
solution X, ..., X will be denoted as follows: I, f’l, 152, ete.

4. Bas theorems,.
Theorem 1.
If the assumptions Al and A2 are satisfied, then for any random
variable W from W the following inequalities hold true:
E(W'-W) o0 (20)
Pr¢{ W'¢W)21-25. (21)
Proof of this theorem is given in Xlukowski and Wagner (1989).
The inequality (20) shows that the wvariakble '~'.‘ corresponding
to the soluticn x:,...,x:, assumes minimal expecred value in the
family &, while the inequality ) provides some evaluation
(based on Tchebysheff inequality) of the probability (or frequency
‘in large number of trials) of the event (W'< W). In other words
the inequality (21} evaluates the frequency of the event that the
NAO soluticen x,&r‘ is - eguivalent tc the errorless soclution;
this evaluation is close w0 one if the walue of & is close +to

zero,




Theorem 2.
Tf the assumptions Al - A3 are satisfied tner:
var(W™) s & m{m - 1)(2m - 3)&I - 8 . (22)

Proof of *his theoremL is given in Klukowski (19%0).

Twe cenclusions impertant for further considerations can Dbe
derived from the inegquality (22).
Conclusion 1. Under the assumptions Al - A3 the variance of the
random variable H‘/M converges tc zero as m -> % , i.e.

lim var(W /M)y = 0 . (23}

L]
Conclusion 2. Under the assumptions Al - A2 the variance of any

variable W from the family W satisfies the conditions :

var(W) < = m(m - 1)(2m - 3) , 124)
lim vari{W/M) = 0 . (25}
m- X

Proofs of the relations (23) - (25) are given in Kiukowski (1990).

From (23) and (25) it follows *hat if the random variabie W
satisfies the inequality :
UM EG W - W0, (26)

then the variable W*/M convert (in stochastic sense) to a  limit
lower than that ¢t 2sponding to the variable W/M. In this case
the probability of the event W Wy converges to one as m->xr, It
can be shown that the inequality (26) holds for each  partition
il,..,ir, which satisfles at least one of the fo 7 con

lim [card(I I1M/M >0, )

lim [ d(B - PDIM> 0, } (27)

Mm [ca.rd(f’g- p;)]/n >0 . j
This fact indica that for large m the application of the NAO
method makes it possible to eliminate systematic errors.

In the case, when ail the probabilitles of comparisons errors
are close to &, the evaluation (24) can be also used to construct
the rough test (based on the Tchebysheff inequality for variance)
for the hypothesis that the partition ili"‘ is errorless
against the alternative that it cannot be accepted as the solution
to the formulated problem.
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