

IFAC/IFORS/IIASA/TIMS
The Intemational Federation of Automatic Control The International Federation of Operational Research Societies The International Institute for Applied Systems Analysis The listitute of Management Sciences

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES

Prejrints of the IFACIIFORSIIASATIMS Workshop
Warsaw. Poland
June 24-26, 1992

Editors:
Roman Kulitowisk:
Zbigniew Nahorsli
Ian W. Owsiniski
Ahdiacj Straseak
Systems Research Institute
Polish Academy of Sciences
War saw, Poland

VOLUME 2:
Names of first authors: $\mathrm{L}-\mathrm{Z}$

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES

Preprints, IFAC/IFORS/IIASA/TIMS Workshop, June 24-26, 1992, Warsaw, Poland

EXTENT ANAI,YSIS AND SYNTHETIC DECISION

ZHANG LI LI
Beijing Collcge of Economics
Beijing
P.R.China

CHANG DA YONG
Bcijing College of Matcrials
Bcijing
P.R.China

Abstract

In this paper, the conecpt of extent analysis and the value of extent analysis are given by using the triangular fuzzy number. To start with, we give the definition of triangular fuzzy number and its method of operation, then the concept of extent analysis and the value of extent analysis are introduced. Finally, we will use the extent analysis method to make synthetic decision.

Keywords: Fuzzy decision, Fuzay number, Fixtent analysis, Synthetic decision.

1. Introduction

There are much problems of estimation in the real world which needs to consider the extent of the object to be satisfied for the goal. For example, many pcople always say "satisricd extent", "confidence extant", "stable extent", "reliable extant", "resemblance extent" , etc. We need to quantify for them. Morcover, in some complex deci-sion-making problems, we need to be in progress the comprehensive evaluation for the multiple goals, in order to find a optimal decision.

In this paper, we will use fuzay number for the metric "extent". In section 2 the concept of fuzzy number is introduced. The concept of extent analysis and the value of extent analysis calculation method are presented in section 3. In section 4, we will use the extent analysis method to make synthetic decision. The conclusion is discussed in section 5 .

2. Fuzzy Number

We consider a special class of fuzzy number, which is suitable for the application discussed herc. First we define the triangular fuzzy number and next, we define its oprcration law.

Definition1. We definc a fuzzy number M on R to be a triangular fuzzy number, if its membership function $\mu_{\mathrm{M}}(\mathrm{x}): \mathrm{R} \rightarrow[0,1]$ is cqual to

$$
\mu_{M}(x)= \begin{cases}\frac{x}{m-l}-\frac{l}{m-l} & x \in[l, m] \\ \frac{x}{m} m^{-u} & x \in[m, u] \\ 0 & \text { otherwise. }\end{cases}
$$

where $I \leqslant m \leqslant u, 1$ and u stand for the lower and upper valuc of the support of M.
respectively. And m for the modal value. The triangular fuzzy number will be denoted by (1. m, u). The support of M is the set of elements $\{x \in R \|<x<u\}$ (Figure 1). When $1=m=u$, it is a nonfuzzy number by comention.

For any two fuzzy numbers M and N defined by their membership function μ_{M} and μ_{N}, the membership function of the fuzzy number $T=f(M, N)$ is as. sumed to be continuous function on R.

$$
\begin{align*}
\mu_{T}(z)= & \sup \min \left[\mu_{\nu}(x), \mu_{N}(y)\right] \tag{1}\\
& z=f(x, y)
\end{align*}
$$

or

$$
\begin{align*}
\mu_{\varkappa \in N}(z)= & \left.\sup _{z=x \neq y}{\min \left[\mu_{ \pm}\right.}(x), \mu_{N}(y)\right] \tag{2}
\end{align*}
$$

where is a binary operation and (0) represents to combine two fuzzy numbers M and N.

2.1 Addition and multiplication

Consider two triangular fuzzy numbers $\mathrm{M}_{1}=\left(1_{1}, \mathrm{~m}_{1}, \mathrm{u}_{1}\right) \quad \mathrm{M}_{2}=\left(1_{2}\right.$, m_{2}, v_{2}.
H:4. (2) implics, for addition

$$
\begin{align*}
\mu_{\varkappa_{1} \in \varkappa_{2}}(z)= & \sup \min \left[\mu_{\varkappa_{1}}(x), \mu_{\varkappa_{2}}(y)\right] \\
& z=x+y \\
= & \sup \min \left[\mu_{\mu_{1}}(x), \mu_{\mu_{2}}(z-x)\right] \tag{3}\\
& x \in R
\end{align*}
$$

for multiplication

$$
\begin{align*}
\mu_{\mu_{1} \odot \mu_{1}}(z)= & \sup \min \left[\mu_{\mu_{1}}(x), \mu_{\mu_{2}}(y)\right] \\
& z=x y \\
= & \sup \min \left[\mu_{\mu_{1}}(x), \mu_{\mu_{2}}\left(\frac{z}{x}\right)\right] \tag{4}
\end{align*}
$$

Hence we have

$$
\begin{equation*}
\left(l_{1}, m_{1}, u_{1}\right) \oplus\left(l_{2}, m_{2}, u_{2}\right)=\left(l_{1}+l_{2}, m_{1}+m_{2}, u_{1}+u_{2}\right) \tag{5}
\end{equation*}
$$

and the following approximation formula

$$
\begin{equation*}
\left(i_{1}, m_{1}, u_{1}\right) \odot\left(l_{2}, m_{2}, u_{2}\right) \approx\left(l_{1} l_{2}, m_{1} m_{2}, i_{1} u_{2}\right) \tag{6}
\end{equation*}
$$

We also have got the result of scalar multiplication as follows

$$
\begin{equation*}
(\lambda, \lambda, \lambda) \odot(l, m, u)=(\lambda l, \lambda m, \lambda u) \lambda>0, \lambda \in R \tag{7}
\end{equation*}
$$

2.2 Inverse

Let $\mathrm{M}=(1, \mathrm{~m}, \mathrm{u}$,$) , we obtain following approximation formula$

$$
(l, m, u,)^{-1} \approx\left(\frac{1}{u}, \frac{1}{m}, \frac{1}{l}\right)
$$

2.3 Comparison of fuzzy numbers

When comparison of fuzzy numbers, two kinds of question may arise.
(A) What is the fuzzy value of the least or greatest number from a family of fuzzy numbers?
(B) Which is the greatest or the least among several fuzzy numbers?

The answer to the first question is given by the use of the operation max and min [2]. But, the answer to the second question is more diffeult. We must evaluate the degree of possibility for $x \in R$ fuzzily restricted to belong to M, to be greater than $y \in R$ fuzzily restricted to belong to M .

Definition 2. The degree of possibility of $M_{1} \geqslant M_{2}$ is defined as below

$$
V\left(M_{1} \geqslant M_{2}\right)=\sup _{x \geqslant y} \min \left(\mu_{M_{1}}(x), \mu_{M_{2}}(y)\right)
$$

When a pair (x, y) exists such that $x \geqslant y$ and $\mu_{M_{1}}(x)=\mu_{N_{2}}(y)=1$, then we have $V\left(M_{1} \geqslant M_{2}\right)=1$. Sinec M_{1} and M_{2} are convex fuzzy numbers, it can be seen Fig. 2 that

$$
\begin{array}{ll}
V\left(M_{1} \geqslant M_{2}\right)=1 & \quad \text { iff } m_{1} \geqslant m_{2} \\
V \cdot\left(M_{1} \geqslant M_{2}\right)=h g t \quad\left(M_{1} \cap M_{2}\right)=\mu_{M_{1}} \quad(d) \tag{9}
\end{array}
$$

where d is the ordinate of the highest intersection point D between $\mu_{\mu_{1}}$ and $\mu_{\mu_{2}}$.
When $M_{1}=\left(1, m_{1}, u_{1}\right)$ and $M_{2}=\left(l_{2}, m_{2}, u_{2}\right)$, the ordinate of D is given by the equation (Fig .3)

$$
\begin{equation*}
V\left(M_{2} \geqslant M_{1}\right)=h g t\left(M_{1} \cap M_{2}\right)=\frac{l_{2}-u_{1}}{\left(m m_{1}-u_{1}\right)-\left(m_{2}-l_{2}\right)} \tag{10}
\end{equation*}
$$

Figure 1.

Figure 2.

Figure 3.

To compare M_{1} and M_{2}. we need both $V\left(M_{1} \geqslant M_{2}\right)$ and $V\left(M_{2} \geqslant M_{1}\right)$. If, for instance, $V\left(M_{1}>M_{2}\right)=1$. we know that cither $M_{1} \geqslant M_{1}$, or M_{1} and M_{2} arc too close to be separated.

Definition 3. The degree of possibility for convex fuzzy number M to be greater than K convex fuzzy numbers $\mathrm{M}_{\mathrm{i}}(\mathrm{i}=1,2, \cdots, k)$ can be defined by

$$
\begin{align*}
V\left(M \geqslant M_{1}, M_{2}, \cdots, M_{r}\right)= & \left.M\left(M \geq M_{1}\right) \text { and }\left(M \geq M_{2}\right) \text { and } \cdots \text { and }\left(M \geq M_{K}\right)\right] \\
= & \min V\left(M \geq M_{1}\right) \tag{11}\\
& i=1 . k
\end{align*}
$$

3. Extent Analysls

First at all, we will give some basic conecpts.
Assume that $X=\left\{\begin{array}{llll}x_{1}, & x_{2}, & \cdots, & x_{n}\end{array}\right\}$ is an object sct, und $U=\left\{u_{1}, u_{2}, \cdots\right.$. $\left.u_{m}\right\}$ is a goal set .l.et us consider how to uppraise the extent whose element of object set is to be satisficd for the each goal. We consider a case which contains only one goal in the goal set , we write it as $U_{0}=\{u\}$.

Definition 4. Let $X=\left\{x_{1}, x_{2}, \cdots, x_{a}\right\}$ is an object set and $U_{0}=\{u\}$ is a goal set then

$$
E_{i}=\left\{\left(x_{i}, u\right), \mu_{e}\left(x_{i}\right) \mid\left(x_{i}, u\right) \in X \times U_{0}\right\}, i=1,2, \cdots, n
$$

is called the extent of the ith object satisfied requirement of the goal.
Where $\mu_{E}\left(x_{i}\right)$ is membership function of extent of ith object, ($\left.x_{i}, u\right)$ is a binary relation on $\mathrm{X} \times \mathrm{U}_{0}$.

Our problem is how to calculate valuc of membership function for each object. We can use an approach which give point from judges. Assume that we invite t judges, let cverybody of them gives a fuzzy number for ith object (in fact, the judges need to give the lower and upper value only). Thus we obtain definition as follows

Definition 5. 1.ct $M_{a}^{\prime} k=1,2, \cdots, 1 \quad i=1$, 2, \cdots, n are some triangular fuzzy numbers, then

$$
M_{\kappa}^{\prime}=\frac{1}{l} \odot\left[M_{1}^{\prime} \oplus M_{2}^{\prime} \oplus \cdots \oplus M_{1}^{\prime}\right]
$$

is called the value of extent of ith object, and the lower and the upper value all take valuc on [0, 1] by convention.

If we note

$$
M_{k}^{\prime}=\left(l_{k}^{\prime}, m_{k}^{\prime}, u_{k}^{\prime}\right) k=1,2, \cdots, t \quad i=1,2, \cdots, n,
$$

then

$$
\begin{equation*}
M_{E}^{\prime}=\frac{1}{l} \odot\left[\left(l_{1}^{\prime}, m_{1}^{\prime}, u_{1}^{\prime}\right) \oplus\left(l_{2}^{\prime}, m_{2}^{\prime}, u_{2}^{\prime}\right) \oplus \cdots \oplus\left(l_{1}^{\prime}, m_{2}^{\prime}, u_{1}^{\prime}\right)\right] \tag{13}
\end{equation*}
$$

By applying (6) and (7). we have

$$
\begin{equation*}
M_{s}^{\prime}=\left(\frac{1}{t} \sum_{k=1}^{\prime} l_{k}^{\prime}, \frac{1}{t} \sum_{k=1}^{\prime} m_{k}^{\prime}, \frac{1}{t} \sum_{k=1}^{\prime} u_{k}^{\prime}\right) \quad i=1,2, \cdots, n . \tag{14}
\end{equation*}
$$

We stipulate $l_{k}^{\prime}, u_{k}^{\prime} \in[0,1]$, of course, $m_{k}^{\prime} \in[0,1] i$ n natural for each k.
Definition 6. If we note $\delta_{k}^{\prime}=u_{k}^{\prime}-1_{k}^{\prime} k=1,2, \cdots, 1, i=1,2, \cdots, n$, then δ_{k}^{\prime} is called degree of spread of k th point.

Where δ_{k}^{\prime} represent fizzy degree of k th point.i.e. The greater δ_{k}^{\prime} is, the fuzzier the point is. On the contrary, the less δ_{k}^{t} is, the clearer the point is.

Definition 7. Let $\delta^{\prime}=\frac{1}{t} \sum_{k=1}^{d}\left(u_{k}^{\prime}-1_{k}^{\prime}\right)$, and we note $\lambda^{\prime}=\left(1-\delta^{\prime}\right) \quad 100 \%$ then
λ^{\prime} is called degree of self-assurance conecrning ith object.
Evidently, if the δ^{i} inereases, the degree of self- assurance dicreases, conversely. if δ dicreases. the degree of self-assurance increases, when $\delta^{\prime}=0$, it will be able to represent that the appraisal have got absclute self-assuranec.

4. Synthetic Decision

The task of extent analysis is to be in progress decision between some goals of con. tradict each other.

For example, assume that we have some plans, we will consider for them from two aspects of requirement and feasible, in oder to chose a best plan. The process is called the synthetic decision.

Now, we will use the method of extent analysis to solve the problem.
Let $X=\left\{x_{1}, x_{2}, \cdots, x_{2}\right\}$ is an object set, and $U=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ is a goal set, for example, $U=\left\{u_{1}, u_{2}\right\}$, where u_{1} represents requisite goal and u_{2} represents feasible goal.

According to method of extent analysis, we will take each plan, which is to be in progress extent analysis for each goal, respectively. Therefore, we can get m values of extent analysis for cach plan, with the following signs:

$$
M_{\Sigma_{1}}^{1}, M_{\Sigma_{1}}^{2}, \cdots, M_{\varepsilon_{1}}^{m} \quad i=1,2, \cdots, n
$$

To find the best plan, we must be give some definitions as dbelow
Definition 8. Let $M_{k_{i}}^{\prime}, M_{k_{i}}^{2}, \cdots, M_{K_{1}}^{m}$ are values of extent analysis of ith plan for m goals, then the weighted-sum-type fuzzy synthetic extent is defined as below

$$
\begin{equation*}
S_{1}=\sum_{i=1}^{\infty} M_{\kappa_{i}}^{\prime} \cdot r_{1}^{\prime} \odot\left[\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} m_{K_{i}}^{\prime} \cdot r_{i}^{\prime}\right]^{-1} \tag{15}
\end{equation*}
$$

Where r are weights and $\sum_{i=1}^{\sum_{i}} r_{i}^{\prime}=1$ for all i.For short S_{i} is synthetic extent for ith
plan.
In this paper, we do not have to consider weight.i.c. we have

$$
\begin{equation*}
S_{i}=\sum_{i=1} M_{L_{i}}^{\prime} \odot\left[\sum_{i=1} \sum_{i=1} M_{\mathbb{L}_{i}}^{\prime}\right]^{-1} \tag{16}
\end{equation*}
$$

Next, we may prefer to have a scalar measurc of the dominance $d\left(x_{i}\right)$ of a plan x over other ones. By using the formula (11),

$$
\begin{align*}
d\left(x_{1}\right)= & \operatorname{minv}\left(S_{1} \geqslant S_{k}\right) \quad \text { becauseV }\left(S_{1} \geqslant S_{1}\right)=1 \tag{17}\\
& k=1,2, \cdots, n \\
& k \neq 1
\end{align*}
$$

At last, we given the concept of optimal decision.
Definition 9.Let

$$
\begin{align*}
d\left(x^{*}\right)= & \operatorname{maxd}\left(x_{1}\right) \tag{18}\\
& l=1,2, \cdots, n
\end{align*}
$$

then the optimal decision will be able to corresponds the plan x°, where $x^{*} \in x$.
Now, let us use an example to illustrate the synthetic decision process.
Example. Let $X=\left(x_{1}, x_{2}, x_{3}\right)$ is a plan set, and $U=\left(u_{1}, u_{2}\right)$ is a goal set, where u_{1} represents requirement goal and u_{2} represents feasihility goal.

First at all. wc can use the approach of extent analysis to find the value of require. ment extent and the value of feasibility extent for each plan, respectively. The data is shown as bclow

pxtents goals	Requirement (u_{1})	fcasibility (u_{2})
${ }_{1}$	$M_{a_{1}}^{\prime}=(0.5,0.6,0.7)$	$M_{E_{1}}^{2}=(0.5,0.65,0.8)$
x_{2}	$M_{\Sigma_{2}}^{1}=(0.6,0.8,1)$	$M_{E_{2}}^{2}=\left(\begin{array}{lll} 0.7, & 0.8, & 0.9 \end{array}\right)$
${ }^{3}$	$M_{S_{1}}^{1}=$ (0.R, 0.9, 1)	$M_{K_{3}}^{2}=(0.5,0.6,0.8)$

By using the formula (16) we obtain

$$
\begin{aligned}
S_{1} & =\sum_{i=1}^{1} M_{\mathbb{I}_{1}}^{\prime} \odot\left[\sum_{i=1}^{1} \sum_{i=1}^{2} M_{Z_{1}}^{\prime}\right]^{-1} \\
& =(1.00,1.25,1.50) \odot\left(\frac{1}{5.2}, \frac{1}{4.35}, \frac{1}{3.6}\right) \\
& =(0.19,0.29,0.42) \\
S_{2} & =(1.30,1.60,1.90) \odot\left(\frac{1}{5.2}, \frac{1}{4.35}, \frac{1}{3.6}\right) \\
& =\left(\begin{array}{ll}
0.25, & 0.37,0.52
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{3} & =(1.30,1.50,1.80) \odot\left(\frac{1}{5.2} \cdot \frac{1}{4.35}, \frac{1}{3.6}\right) \\
& =(0.25,0.34,0.50)
\end{aligned}
$$

And then, by using the formula (10), we have

$$
\begin{aligned}
& V\left(S_{1} \geqslant S_{2}\right)=\frac{0.25-0.42}{(0.29-0.42)-(0.37-0.25)}=\frac{0.17}{0.25}=0.68 \\
& V\left(S_{1} \geqslant S_{3}\right)=\frac{0.25-0.42}{(0.29-0.42)-(0.34-0.25)}=\frac{0.17}{0.22}=0.77 \\
& V\left(S_{2} \geqslant S_{4}\right)=1 \\
& V\left(S_{2} \geqslant S_{3}\right)=1 \\
& V\left(S_{3} \geqslant S_{1}\right)=1 \\
& V\left(S_{3} \geqslant S_{2}\right)=\frac{0.25-0.50}{(0.34-0.50)-(0.37-0.25)}=\frac{0.25}{0.28}=0.89
\end{aligned}
$$

And then, we use the formula (11)

$$
\begin{aligned}
& d\left(x_{1}\right)=V\left(S_{1} \geqslant S_{2}, S_{3}\right)=\min (0.68,0.73)=0.68 \\
& d\left(x_{2}\right)=V\left(S_{2} \geqslant S_{1}, S_{3}\right)=\min (1,1)=1 \\
& d\left(x_{3}\right)=V\left(S_{3} \geqslant S_{1}, S_{2}\right)=\min (1,0.89)=0.89
\end{aligned}
$$

At last, by using the formula (18)

$$
\begin{aligned}
d\left(x^{*}\right) & =\max \left(d\left(x_{1}\right), d\left(x_{2}\right), d\left(x_{3}\right)\right) \\
& =\max (0.68,1,0.89) \\
& =1
\end{aligned}
$$

Therefore, we have got the optimal decision whose is the plan x_{2} i.e. the optimal plan is that

$$
x^{*}=x_{2} .
$$

When the valuc of weights is given, we can use formula (15) to be calculate the synthetic extent.

5. Conclusion

In this paper, "extent" was defined a fuzzy number and by using the operation of fuzzy number to calculated the value of extent and degree of self-assurance.

A new method of decision was given which used extent analysis to make syunthetic decision, in oder to choose an optimal plan in a certain number of plans.

In this paper, formulars (15) and (16) are a situation of the weights was fixed.In fact, we sould be allso consider a situation of the change of weight, we have not been to touch on it in here.

References

[1] Dubois, D. and Prade, H., Decision-Making Under Fuzziness, in Gipua. M.M., Pagade, R.K., Yager, R.R, Advances in Furzy Sct Theory and Ap. plications, Noth-Holland, 1979. pp.279-302.
[2] Dubois, D. and Prade, H. . Fuzzy Scts and Systems: Theory and Applications, Academic Press, New York, 1980.
[3] Laarhoven, P.J.M. and Pedrycz, W., A Fuzzy Extension of Saaty's Priority Theory. Furay Sets and Systems, Noth-Holland, 11 (1983), pp.229-241.
[4] Mizumolo, M. and Tanaka, K. Some Propertics of Fuzzy Numbers, in Gupta, M.M., Pagade, R.K., Yager, R.R., Advanees in Fuzzy Set Theory and Applications, Noth-1lolland, 1970. pp.153-164.
(5) Wang, P.Z. Fuzzy Scts and Projections of Random Scts, Beijing of China, 1985.

