








priori articulation of preferences or a progressive articulation of preferences,
what is called the interactive approach. The different approaches which have been
proposed with regard to modeling the uncertainty of the objectives functions and
the constraints are summed up in the following section.
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Figure 1. Diagram of the PROMISE algorithm

3.1. Modeling of objective functions
-Mean value approach. If the DM is able to specify preobabilities for the ¢, of
(1), this approach simply consists of replacing those ¢, by their mean values in
the objective functions.
-Minimum risk approach. If the DM is able to specify the prok y distribu-
tions for the c, of (1) and the goi G={G,,..,G,} with respect to the objectives,
instead of maximizing Z,(x), one tries to maximize the probabili 3 P (I, (x)2G,) ,
k=1, ..,h, what provides a deterministic equivalent.
~Scenario approach. The stochastic parameters c, of (1) are approximated by some
representative values ¢}, s=1,..,r; so the stochastic objective function
2, (X)) =Cp X3 +. . +C X, 18 re ced by r deterministiec functions Zp(x)=cpyx+..+ci X,/
s=1,..,r; k=1,..,h. :
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~-Mean-dispersion approach. If the DM is aced in a situation of partial
uncertainty which enables him to specify for each ¢, the interval of var :i
[CirCiy] and a central value ¢}, then one can replace Z,(x) by a “central
tendency™ criterion 2i(x) and a "dispersion" criterion 2§{{(x)}. One can choose
22{x)=c2.x. Moreover, 2¢ can be defined by the following generalized distance
Zﬁ-D,(Z:(x),ZZ(x))-(i_tﬁ.lz:—z:l’)“‘ where 3 (s=1,.. 5§ (5 $ 2" ) is the index of the
combinations of the extreme values of c,, T, is the weight of each of the
combinations and p is a positive integer which expresses the importance that the
D.M. places on the maximal deviation between Z; and 2.

-Degree of satisfaction apprcach. In a partial uncertainty sit .ilon, one
associates to each stochastic Z, a stochastic inequality in the form {Z,(x) 2 g,},
where g, represents the goal to be attained relatively to the objective Z,(x).
It is suppesed that cue[ciy, ¢}yl and g,€[95, 91} ¢r representa.the goal that the DM
wishes to attain for 2z,(x), whereas g; represents the inferior bound which the
DM is ready to accept for the goal g,. So we look for solution x* which minimize
the difference (gy—2,(x)). More precisely, the degree of satisfaction of the DM
relatively to the attainment of the goals g, is expressed by a decreasing
function P, of (g,~Z,(x)); consequently, the initial p:obleﬁ which consisted of
"maximizing™ the objective functions Z,(x} is replaced by the problem of
maximizing the DM’s degree of satisfaction. If one choos for P, a linear form,
then the equivalent deterministic objective functions are also linear.

3.2. Modaling of stochastic constraints

In a risky situation, two well-known approaches of trans ming the stochastic
constraints consist of using constraints with recourse or constraints with
probability thresholds.
~Constraints with recourse. The p1 lem (1) is approached as a two-stage problem:
one chooses here and now and, because this solution eventually implies a
violation of the constraints A.x £ b, one is . e to take a recourse deci n
which comes to compensate that violation by penalties. In the literat . several
forms of recourse have been considered (see, for example, Kall [19761).
—Constraints with probability thresho . Here, the constraint A;.x § b, (where
A; is the i~th row of A) is replaced by P(A;.x S b;) 2 @, wh o, i=l,..,n, is
a probability threshold provided by the DM, The new deterministic constraints are
generally non-linear. It is also possible to use a joint probability threshold
on all the constraints taken together.

In a situation of partial uncertainty, according to the nature of the available
information, the transformation of the stochastic constraints can be realized by
using constraints with recourse, constraints with satisfaction thresholds and a
scenario approach.
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-Constraints with satisfaction thresholds. If the DM is able to specify the
intervals of variation [(A],A{] and [b;,b{] for A, and b;, the comstraint A;.x < b,
is interpreted as it follows: "the DM hopes that Aj.x will not be larger than b}
and his satisfaction level will be even higher that A}.x will be closer to bi".
Consequently, we introduce the DM's degree of satisfaction HN{A,.x S by}
relatively to each stochastic constraint: this degree of satisfaction can be
defined as a linear decreasing function of (bj-Aj.x). After, if the DM is able
to specify a satisfaction threshold @ on each constraint, the stochastic
constraint A;.x S b, is replaced by W{(h,.x S by) 2 @&, which is deterministic and
eventually linear.

—-Scenario approach., As for the objective functions, each stochastic constraint
A;.x S b, is replaced by r deterministic constraints A%.x € b*, where A", and b’
s=1,..,r, are plausible scenarios for A and b,.

4. Structure of the DSS

In order to help the DM to choose the MOSLP method which is the most abp:o—
priate to his MOSLP problem, we have built an interactive algorithm called
PROMISE; it is graphically summed up in the diagram of figure i. That algor hm
enables the DM to identify the characteristics of his stochastic problem and
consequently to choose an appropriate MOSLP method. For the moment, our system
includes only some methods but it can be generallzed in order to include more
methods. We will say only some words about those MOSLP methods which are
completely described in the reference papers. In most of those methods, after
that- the MOSLP problem has been transformed into a deterministic MOLP problem,
an interactive algorithm (as, for example, STEM) is used to solve this last
problem.

If the DM has a complete information about the stochastic parameters of (1),
his problem can be. solved by the PROTRADE method from Goicoechea and al.[1982];
essentially the stochastic parameters are replaced by their mean values and an
interactive algorithm which uses the DM’s utility function (calculated for mean
values) leads to a compromise solution.

In a context of partial uncertainty, one can use the scenario approach to model
the problem (1). On the one hand, the idea of separated scenarics for the
objective functions and for the constraints are used in the STRANGE method from
Teghem and al.[1986]:; it is also supposed that the DM is able to estimate the
probabilities of those scenarios. Obviocusly, it should be easy to use the same
idea of scenario and recourse but without resorting the probabilities of
scenarios: that should be the modified STRANGE method. On the other hand, Klein
and al.[195%0] have recourse to the idea of global scenarios which affect both
objective functions and constraints and also suppose that the probabilities of
those scenarics are known.



In a context of partisl uncertainty, one can also try to model that uncertainty
directly from the available incomplete information. When the DM can estimate the
intervals of variation for the stochastic parameters, Urli and Nadeau [1990a,b)
propose to replace each Z, by a criterion of central tendency and a criterion of
dispersion and to use the idea of constraints with recourse or constraints with
satisfaction thresholds; moreover, if the DM is able to specify goals for the
objective functions and constraints, Urli and Nadeau ([1991] propose to use the
degree of satisfaction approach both for the objective functions and constraints.

5. Concluding remarks

This paper gives only an ocutline of our system. Obviously, the list of contexts
of uncertainty and the MOSLP methods that it includes is not exhaustive: it will
be easy to extend the s em in order to include others contexts and others
methods {existing or to develop). We are now in the process of implementing our
algorithm on a microcomputer in such a manner that it becomes a real interactive
decision support tool for the DM.
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