

Editors:
Roman Kulikowski
Zbigniew Nahorski
Jar:W.Owsiniski
Andrzej Straszali

```
Systems Research hastitute Polish Acadeny of Sciences
Warsaw, Poland
```


VOLUME 2 :

```
Names of first authors: \(\mathbf{L}-\mathbb{Z}\)
```


SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES

Preprints, IFAC/IFORS/IIASA/TIMS Workshop, June 24-26, 1992, Warsaw, Poland

EXPERT KNOWLEDGE AND COMPUTER-AIDED GROUP DECISION MAKING THROUGH DSS: SOME PRAGMAPICAL REFIECTIONS

Nicolay Stanoulov 1463 Sofia, ul. Czar mssen 100 sulgaria

ABSTRACT. The contribution of a simple outranking Multiple Attribute Decision Making (MADM) approach and the relevant LSS to group decision making is discussed. The main topics are: elicitation of expert knowledge via expertise organization, expert analysis, etce: description of DSS UNIDAS 2, its decision rules, functional architecture and users' decision modes; the group DM paradigm dealing with the piuralism of ideas and formal (group) consensus; the requisites of the interactive group DM and how this DSS utilizes them. The scope of the applications of the concerned MADM approach and the (G)DSS mostly suitable for afast diagnostics, time pressure, etc., are also mentionea.
Keywords: MADM, outranking preference aggregation techniques, group DM, expert knowledge elicitation, (G)DSS.

1. Introduction

Decision Support Systems (DSS) are still one of the advanced computer emergencies in modern information technology. A lot of contemporary DSSs assist primarily individual decision making (DM). Group DM is tine "hardest nut to crake" in decision and social choice theories because the collective outcome sought for has synergistic features. Only few DSS nowadays are capable to tackle group DM issues (Grauer,\& (1983), Steeb, \& (1984), Gray (1987), Bui, T. ...(1987)). A simple outranking MADN approach and the relevant group DSS (G)DSS are briefly outlined in the next.

2. Eliciting Expert Knowledge

We will point out here only some basic notions. The reader
may find pagers discuseing the elicitation and analysis of expert knowledge e.g. in Laricher (1.981), Steeb,\& (1984), fankova,\& (1984), Bui, T.X. (1987), Klein (1989) et al.

Organizing the expertiaes

A: prineipal distinction exists betveen knowledge elicitation from only one expert, manager, et al. (DMr: decision maker) and a group of DMrs. While the former acts voluntarily via contemplation, research, analyses, or interviews, the latter act as indissociable men in a joint discourse/fconversation medium. How to form the expert group(s), how to recruite/select the single experts. how many experts are needed. etc. are typical questions that arise when starting an expertise. The answers heavily depend on the particular DM problem to be resolved, the funds assigned, the local (country) legislation hasis," and, last but not least, the specific group technique to be adopted.

Expert analysis

Contrary to decision analysis the expert analysis doesn't require explicit data or evaluation of utility-, value, and probability. The lack of sufficient information ahout the complicated DM problem does not allow building and use of strict (mathematicall) methods. One must rely in such cases upon subjective judgments, knowledge and experience of the expert(s). After a clear definition of the goal (s) by top DMr(s), a group outranking technique for preference aggregation, see Bui, T. X. (1987), exploits the folloving trifile:

* Selecting the group of experts designated below as Ehs, $D=(1, t) ; t \geq 2$. It involves experienced men-professionalists in the concerned DP problem.
* Generating the set of alternatives $A=\left\{a_{1},\right\}, i=(1$, m ; n乙2. $a_{1 j} s$ are prespecified (or fized) coherent and mutaally exelusive, at all, options-variants that mast satisfy or help achieving the goal. $x_{1 j}$ s.can be cardinall values or ordinal entities, OR both.
* Specifying the set of criteria $K=\{K j\}$. $j=(1, n) ; n \geq 2$ 。 Kjs are significant and necessary features-properties of $a_{i} j_{j}$, the goal. too. Kjs have to be non-interdependent, or accepted to be such for. They can be quantifiable or qualifiable, OR
both. They may be interpreted also as non-equivalent/non-equally by introducing eligible weighing coefficients.
A and K are in principle constrained sets. They should contain both a practically sufficient number of admissible and feasible elements. The completeness of a set is a very sophisticated and intricate problem in mathematics.

3. UNIDAS 2: A Computerized Decision Support

Basic decision rules of UNIBAS 2
This (G)DSS builds workable models of observed or imaginary Eb behaviour. The main concept in the rank theory of individual and group DM, Stanoulov ($1.984,1988 / 9,11990$), underlying UWIDAS 2 is the preference ordered/rank matrix (pom) of nOBJECT (aiternatives) - FEATURES (criterias OR/AND expert judgments)" type. For example, $\left(a_{1 j}\right)=\left(A^{*}-K\right)$ is a pom composed by one Eb. A^{*} indicates the column preference ranking of $a_{1} j^{s}$ on each single \mathbb{K}_{j} nonconcurrently done by the expert Eb . The binary preference relational system used in pom encompesses strict and indifference only preferences defined aver the set Δ. The ranking of $a_{1 j} s$ is based either on wholistie ideas, i.e. building of Gestalts, see Sage (1981) when $a_{i j} s$ are ordinal or on a direct comparison of eardinal anjovalues. Incompatibilities among A_{j} s do not take plase. Occasionally available intransitivities among/between $a_{1}{ }^{3}$ in a colum of ($a_{2 j}$) are signalled autoratically and shoold be eliminated by $\mathrm{Eb}(\mathrm{s})$ afterthat. Of course some concepts based on randomess, probabilities and/or utilities, risks, too, may be of pertinent use by specifying quantitative criteria. The corresponding $\alpha_{\text {, }}$ s-values in a pom are ranked automatically while the calculations of such $K j s$ is an exogeneous expert work. The rank theory utilizes a broad aspect of rationality, see Sage (1981), to the expertise activities, accompanied by making calculations, either neat, or approximate.

The principal decision rule nidichotomy-sums-of-ranked-alternatives", a dichotomy-cut rule, in short (early known as the DIMCO method, Stanoulov (1984,1989), is as follows:

> 3.1. "Classical" row dichotomy (ROWD):

r_{i} is the rank of $a_{1 j} s$ in ($a_{1 j}$); $s=0 / 1$ if m is even/uneven. 3.2. Gradation dichotomy (GRADD):

$r_{m i}$ is the middle rank of $a_{i j} s, 1 \leq r_{m i} \leq m / 2$ whatever m.

$$
d_{i j}= \begin{cases}1 & \text { if } r_{m i}=[\mathrm{m} / 2] \\ 0.5 & \text { if } r_{m i}=[m / 2]+1 \\ 0 & \text { if } r_{m i}>[m / 2]+1\end{cases}
$$

The dichotomy of pom (dpoin) points out to eliminating that part of it which contains the less preferred a_{j} s. It is very rarely to "lose" some $\alpha_{1 j}(s)$, i.e. a part of DM information originally axailable, by this cut of a pom. In any case such lost $a_{j}(s)$ if any, are always mispreferred. A second filtration of $a_{1 j}(s)$ in dpoll accurs when one boilds the resultant (preference ordered) sequence R of $a_{i j}{ }^{s}$ (or the direct its graph). R contains the most preferred $a_{1 j}(s)$ in its first position, the next less preferred ones in the second position, etc. One should get then some $a_{j}(s)$ placed in first R-position.

A third filtration may come out when one finds the Pareto optinum (PO) $a_{\text {ce }}(s)$ in pom, occasionally also, e.g., minmax/ maxmin $a_{1 j}(s)$, and compare it/them with the preferred $a_{1 j}(s)$ in R. It is strongly argued in the rank DM theory that (i) dyom has an "information optimum" property, i.e. dpom contains always the least number of rows from the initial pom, (ii) at least one efficient (i.e. PO) $a_{i j}$ in pom is contained always in the first position of R (UNIDAS 2 can maris so far only weak PO altematives). The comitive style DM models realized by the decision rule kind's just described resembles much to the "garbage
can" model (see Sage, 198!) which makes use of simple preference assessment procedures in cases of ordinal (verbal, etc.) $a_{\text {1j }}$-values.

Functionail architecture of UNIDAS 2
UNIDAS 2 is an interactive centralized PC computer system for assistance of individual and group DM. It has a "sandwi ch" structure with subunits: dialogue (a menu-driven interface), DM models, and data unit. The latter help user to specify and input in PC all necessary data (A \& K). (G)DSS' star-like configuration enables it to represent a localized problem solver composed by a (non)coupled group. of Ebs, users, too. The program package is in Turbo Pascal and can be realized by any PC IBM or compatible ones.

Rank theory decision modes of the user(s)
If ($A^{*}-K$) is the pom of individual $D M$, so ($A^{*}-E b$) will be a pom known of voting; it specifies a criterialess (or simplified) group DM. There is in the rank theory also a completemulticriteric group DM wherein $\mathbb{A}_{\mathrm{g}} \mathrm{K}$ and E are ALJ available - the corresponding "metan pom will be ($\left.\boldsymbol{C}_{\mathrm{i}^{\prime} \mathfrak{b}}\right)=\left(\mathrm{A}^{*}-\mathrm{Kb}\right), \mathrm{i}^{\prime}=\left(1, \mathrm{~m}^{\prime}\right)$; m'Sm. Here Rbs are the om resultant sequences of the Ebs obtained by individual DM. In a second phase Rbs should substitute for $K j s$ of any ($A^{*}-K$) of the single Ebs for to build-in ($G_{i}{ }^{\prime} b$). The basic decision rule's kind are fully applicable to all DM modes cited.

4. Group DM Paradigm

The group DM conduct of man is discernibly different from the individual DM one. According to the rank theory the group DM satisfies the following points of departure.
a) Pluralism of ideas: a freely expression of the personal opinions.
b) Formal group consensus: Ebs cannot influence the intrinsic group preference aggregation process once their own preference judgments are firmly established through composing the ($A^{*}-K$)bs poms.

Requisites of the interactive group DM

1. The top DMr entrust the group E with the DM problem. A neutral mediator Mr may be attached to the group to help it.
2. The top DMr gives the statute of E (see Sect. 2).
3. Each Eb should strive to help structuring the DM problem, i.e. specifying A and K, the measurement scales for $K j s$, if necessaru, etc. Ebs may interact or not each other.
4. Each Eb should compose the pom ($a_{1 j}$ Vo; the dpoms are constituted automatically via UNIDAS 2.
5. The metaresultant sequence mR. (analogous to R) is the finaI outcome of the collective DM process.
6. Ebs can enter into negotiatiations with other Eb(s), or each Eb (or group of them) is apt to act independently. A "pool-ed-interdependent" DM. behaviour (Bui, T.X., 1987) presupposes reuniting of (some) Ebs in one or more homgeneous subgroups when specifying E and/or A. With a "sequential-interdependent" DM behaviour some Elos or aill will specify their own sets B and $/$ or A independently from the other $E[(s)$.

For the time being UNIDAS 2 can operate with a common only agreement of all Ebs unom the set A (A-coherence). Different ways of performing gronp communcations can be used within this DSS for to reach a concerned DM information structurization.

5. hpplication Aspects

The potential and actual applications of UNIDAS 2 are very broad (see e.g. Stanoulov. Pavlov, 1984). This (G)DSS helps the users in management and control, economics, technology, ecology, etc., finance and budgeting, systems analysis and systems engineering, social activities - art and aesthetics, at that, in an easy and fast manner. Most of the applicaions up to now belong to technology, value analysis, assigning resources, etc., time pressing Group DM. Special measures can be envisaged in order to avoid or restrict possible cheating and manipulation ev-- そを,

6. Illustration of Group DM

Some years ago the solution of a typican mometary resource allocation problem in an acadenic RED crganization was experimentally done by a test version of TrIDAS: How to share reasonably and winnejudicely, at that quickly enough, fixed funds am-
ong seven scientific divisions $A=\{B, C, D, E, F, G, H\}$ of this organization. The top DMr (Director General) was also a member of the staff E (nine in number) of the steering council of the organization. The exogeneous work of the group E covered the speaification of the set K. Ebs, $b=(1,9)$ agreed upon the following K-elements: six qualifiable (K1-K6), five quantifiable (KT-K11), In detail: K1 - overall impression on the activity of each altemative B,...,H; K2 - expedient use and maintenance of availabIe computing unitis; K3 - significance, impact and intensity of scientific publications during the last 5 years; k4 - contribution to practice; K5 - social activity; K6 - responsiveness of the (division) personnel to the scientific activities; KT - total mean service of length of the division personnel; K8 mean service length of the personnel in a. given division; K9 published papers, etc. and citations during the last 5 years; K10 - reported papers to symposia, etc.; Ktt - number of scientific degrees of the personnel of the division. Two ordinal scales might be used (if needed) for K1-K6 (very good, good, unsatisfied: K1-K5; very good, good, moderate, unsatisfied, poor:K6). The criteria dimensions of K7-Kit were as follows: years/number (of the personnel) - K7,K8; papers and citations/number - K9; reports/number - K10; sci.degrees/number - K11. Ebs have to check (when needed) the non-interdependence of the Kjs specified by means of e.g. (mathematical) logical procedures, etc. For K7-K11 the cardinal $a_{i j} s$ have to be ranked by priority for all nine poms (see Table 1). Such quantitative ranking of a a_{i} s proceeds automatically in UNIDAS 2, the obtained arrangement of $a_{i j} s$ appears in the concerned Kjth column of the pom. One

Table I. Values of ordinal $a_{i j} s$ to be priority ranked

K7	K8	K9	K10	K11	$a_{i} j-1$
30	20	2.5	1.9	0.2	B
26	29	1.9	2.0	0.3	C
28	21	1.2	1.5	0.4	D
18	32	1.8	2.2	0.1	E
20	18	2.0	1.4	0.3	F
22	31	0.8	1.8	0.25	G
22	30	1.0	1.9	0.2	H

should now turn to the editor for initiating the concerned $a_{i j}$-quantitative values. The axailability of specifying weighing coefficients w_{j} for $K j s / E b s$ is also given in UNIDAS 2. When a pom is ready an intransitivity checking follows done automatically. It concerms wrongfully repeated $a_{i j}(s)$ during the ranking in one and the sa-
me Kjth column. In such cases a message appears on the dis"lay
indicating the axailahility and the position(s) of such repeated $z_{i f}(s)$.

In our DM problen a pooled-interdependent behaviour of Ebs was observed as far as it concerned the set K (set a evidently 1a previously fixed). However when making their judgments for $a_{1} s$ on I non-conemrremtly the gronp menbersins proeeeded sequ-ential-interdependently in that they woed all or parts of the set E at their own will. So, only one Bh have ased all 11 criteria, mother one - 10 criteria, three Ebs - 9 ones, other three Ebs - 8, and one Eb - five criteriab For all Kjs wis are equal.

The time spent for specifying the nine $\mathbb{K} j$ from the group E was about 2 h ; about 4 h were necessary for obtaining all concemed data in Table I. The author played the role of the Mr before beginning the expertise session of Ebs. His tutorial tooks about 30 min.

Iet us depict the pom, dpom and R for E6 in the foliowing example: $|A|=7,|K|=8=\{K \uparrow, K 2, K 4, K 6 \sim K t 0\},|E|=9$ (The GRADD version of the decision mule was used).

The asterisk ${ }^{\text {H* }}$ " denotes subsets of equal/equivalent
$a_{i j} s: *(i, j)=(1,1)=B G$,

* $(1,2)=$ DFG $^{*}(1,4)=B C H$,
$*(2,1)=C E, *(2,2)=$ DCEH,
$*(2,4)=E F, *(3,1)=D F$,
$(3,4)=D G, *(4,7)=G I$

The arrows point out the entries the cut passes accross a row.

$$
\left(a_{j}\right)_{G G R A D D}=\left(A^{*}-K\right)_{6 G R A D D}
$$

The anxiliary matrix for $d_{j} s$ is as follows(see Sect.3.2):

The resultant preference sequence/column for E6 will be $R_{6 G R A D D}: \begin{array}{cccc}C & 6.5 & C \text { is the most preferred } a_{i j} & \text { B the next } \\ B & 5.0 & \text { in }\end{array}$ $\begin{array}{ll}\text { B } & 5.0 \\ \text { H } & 4.0 \\ \text { EG } & 3.5 \\ D & 3.0 \\ \text { F } & 2.5\end{array}$

The resultant outcomes R for the other Ebs are given in the following meta pom ($\alpha_{i} q_{b}$), $i^{\prime}=m$ (composed according to sect. 3) including R 6 (all $\mathrm{a}_{\mathrm{j}}{ }^{\text {a }}$ are now witten out):

R1	R2	R3	R4	R5	R6	R7	R8	R9
CH	B	C	E	H	C	C	D	C
B	CG	BH	BF	BCD	B	GH	GH	B
DFG	$>$ DH	E	G	>G	H	$>$ B	CE	$>$ E
E	F	G	c	E	EG	DE	BF	DPH
	E	D	H	F	D	F		
		F	D		F			

The dichotomie meta pom $\left(Q_{i}{ }^{1}\right)_{\text {GRADD }}$ is also show. After its processing in the same manner as $\left(\mathrm{a}_{\mathrm{i}}\right)_{\text {}}$ GGRADD one obtains the final resultant grop outcome-sequence:
$\begin{array}{cccccc}m R: & \text { B, } & \text { C, } & \text { H, } & \text { G, } & \text { DE, } \\ (7.5) & (7.0) & (6.5) & (4.5) & (2.5) & (1.0)\end{array}$
The weak $P O a_{i j} s$ are B, C, D, E, H. Through the pair-wise matrix one can easily obtain alsc maxmin/minmax $a_{i j}(s)$. Other interesting conclusions can be drawn from such group expertises and group DM aided by UNIDAS 2. The time spent in PC processing here the group results was about 30 min .

REFERENCES

Grauer, M.A.s A.Lewandowski, A.Wierzbicki (1983). DIDASS: Theory, implementation and experiences. In: Interactive Decision Analysis. Springer Verlag, Berlin.

Gray, P. (1987). Group decision support systems. Decision Support Systems, 3 .

Klein, G.A. (1989). Critical áecision method for eliciting knowledge. IEE Trans. on Systems, Man, and Cybernetics, 19, 3.

Lariciev, 0.I. (1981). Decision making as e research branch: methodological probleas. In: Systems Research II. M.Gvishiani (id.). Pergamon Press, Oxford.

Pankova, I.A., A.M.Petrovski i, M. Voschneiderman (1984). Organization of Expertises and Expert Information Analysis. Nau$k a$. Moscow (in Russian).

Sage, A.P. (198t). Behavioral and organizational considerations in the design of information systems and processes for planning and decision support. IPEE Trans. on Systems, Mam, and Cybernetics, 11, 9.

Stanoulov, N. (\$984). Common theory for individual and group DM. In: 9th IFAC Congr., Budapest 1984, 5, Colloqu. 11.5.

Stanoulov, N., Ju.Pavlov. ((1984). Comparative discrete DM analysis for urban service systems. A two methods supported case study. Syst.Anal. Model. Simule: 1: 5.

Stanoulov, $\overline{\text {. }}$ (1988). Dichotomic matrix decision support gystem DNIDAS. Prospectives to a near-expert system. In: Theory and Practice of Computer-Based Decision Making Systeras. NITI, VEDA Print. House; Sofia.

Stanoulov, K. (1989. Rank Theory of Inditidaal and Group DW. Print House of the Bulgar. Academy of Sci.aSofia (In Bulg.).

Stanoular, K. (1990). Matrix dichotomy variety: How is it used in discrete DM? Syst.fnail Model.Simul..I, 4.

Steeb, R., St.C.Johnston (\$984). A computer-based interactive system for group decisionmaking. IEEE Trans. on Systems, Man, and Gybermetics, 11, 8.

Bui, T.K. (1987): Co-oP. A Group Decision Support System for Cooperative Multiple Griteria Group Decision Making. Iecture Notes in Computer Science (290). Springer Verlag, Berlin.

ACRTONLEDGMENT
The author offers his special thanks to the unknowm reviewer for the support and the valuable advise to add an illustration to the paper.

