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Abstract: Real-life decision problems arc usually so complex they cannot be modeled with a single 
objective function thus creating a need for elear and efficient techniques of handling multiple 
cńteria to support the decision process. The most widely used technique is Goa! Programming 
(GP). It is elear and appealing but strongly cńticized due to its noncompliance with the efficiency 
(Parcto-optimality) principle. In the paper we show how the GP model with relaxation of some 
traditional assumptions can be extended to an efficient decisioil support technique meeting the 
efficiency principle. 
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1. Introduction 

Consider a decision problem defined as an optimization problem with k objective functions. 

For simplification we assume, without loss of generality, that all the objective functions arc to be 

minimized_ The problem can be formulated as follows 

minimiu F(x) 

subject to xEQ 

where 

F = ( Fi, .. _, Ft) - k objective functions, 

Q feasible set of the problem, 

x vector of decision vańables. 

Consider further an achievement vector 

q = F(x) 

(1) 

(2) 

which measures achievement of severa! decisions x with respect to the specified set of k 

objectives F1, ••• ,Ft . Let Y denote the set of all the attainable achievement vectors 

Y = { q=F(x): xEQ} 

i.e., all the 'vectors q corresponding to feasible solutions. It is elear that an achievement vector 

is better than another if all of its individual achievements arc better or at least one individual 
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· achievement is better whereas no other one is worse. Such a relation is called domination of 

achievement vectors and it is mathematically formalized as follows (in minimization problems as 

that under consideration): 

if q' ;,t. q• and q;' :S q1• /orali i=l, ... ,k 

then q' dominates q• and q• is dominated by q' 

Unfortunately, there usually does not exist an achievement vector dominating all others with respect 

to all the criteria, i.e., 

there does not aisr yeY such thai for arry qeY y1 s q1 for aJJ i=l, ... ,k. 

Thus in term~ of strict mathematical relations we cannot distinguish the best achiev'ement vector. 

The nondominated vectors are noncomparable on the basis of the specified set of objective 

functions. 

The feasible solutions (decisions) that generate nondominated achievement vectors are called 

efficient or Pareto-optima! solutions to the multiobjective problem. That means each feasible 

decision for which one cannot improve any individual achievement without worsening another one 

is an efficient decision. 

It seems elear that the solution of multiobjective optimization problems should simply depend 

on identification of the efficient solutions. However, even finite characteristic of the efficient set 

for a real-life problem is usually so large that it cannot be considered as a solution to the decision 

problem. So, there arises need for further analysis, or rather decision support, to help the DM 

select one efficient solution for future ~mplementation. Of course, the original objective functions 

do not allow one to select any efficient solution as better than any other one. Therefore, this 

analysis depends on additional infonnation about the DM's preferences. 

The Goal Programming (GP) approach, originally proposed by Chames and Cooper (1961) and 

further developed by others, requires one to transform objectives into goals by specification of an 

aspiration level for each objective. An optima! śolution is then the one that minimiz.es the weighted 

deviations from the aspiration levels. The aspiration levels and weights can be considered as a set 

of parameters satisfying our implementation requirements. 

Goal Programming, unfortunately, does not satisfy the efficiency (Pareto-optimality) principle. 

Simply, the GP approach d.oes not suggest decisions that optimil.e the objective functions. It only 

yields decisions that have the closest outcomes to the specified aspiration levels. This weakness of 

Goal Programming has lcd to the devclopmcnt o~ the quasisatisficing approach. This approach deals 
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with the so-called scalarizing achievement function which, when optimized, generates efficient 

decisions related to the specified aspiration levels. The best fonnaliz.ation • of the quasisatisficing 

approach to multiobjective optimi7.ation was proposed and developed mainly by Wierzbicki (1982) 

as the reference point method. The reference point method was later extended to allow additional 

information from the DM and, eventually, led to efficient implementations with successful 

applications (sce Lewandowski and Wierzbicki., 1989). 

In this paper we show how the implementation techniques of Goa! Programming can be used 

to model the reference point approach. Thereby we also show how Goa! Programming with 

relaxation of some traditional assumptions can be extended to an efficient decision support 

technique meeting the efficiency pńnciple and other standards of multiobjective optimization theory. 

2. GP Model of the Reference Point Method 

The reference point method is an interactive technique. The basie idea of the interactive 

scheme is as follows. The decision maker (DM) specifies requirements, as in GP, in terms of 

aspiration levels. Depending on the specified aspiration levels a special scalarizing achievement 

function is built which, while being minimized, generates an efficient solution to the problem. The 

comP.uted efficient solution is presented to the DM as the current solution in a form that allows 

comparison with the previous ones and modification of the aspiration levels if necessary. 

The scalarizing achievement function, obviously, not only guarantees efficiency of the solution 

but also reflects the DM's expectation specified via the aspiration levels. While building the 

function the following assumption regarding the DM's expectations is made: 

Al. The DM prefers outcomes that satisfy all the aspiration levels to any outcome that does 

not. 

One of the simplest scalarizing functions takes the following form (compare Steuer, 1986): 

k 
max {s; (F; (x) - a,)} + e I: s, (F, (x) - a;) 

lSiSk i=l 
(3) 

where: a, denote aspiration levels, s, > O are scaling factors, e is an arbitrarily small positive 

number. 

Minimi7.ation of the scalarizing achievement function (3) over the feasible set Q generates an 

efficient solution. The selection of the solution within the efficient set depends on two vector 

parameters: an aspiration vector a and scaling vector s. In practical implementations the former 
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is usually designated as a control tool to be used by the DM whereas the latter is automatically 

calculated from a predecision analysis (compare Grauer et al., 1984). Small scalar e is introduced 

only to guarantee efficiency in case of a nonunique optimal solution. 

The reference point method, though using the same main control parameters (aspiration levels), 

always generates an efficient solution to the multiobjective problem whereas GP does not. ~e will 

show, however, that the reference point method can be modeled via the GP methodology. Function 

(3) is built as a sum of the weighted Chebychev norm of the differences between individual 

achievements and the corresponding aspiration levels and a small regularization term (the sum of 

the differenr.es). Usage of the Chebychev norm is important to generale efficient solutions for 

nonconvex problems (e.g., discrete ones) and it must always be accompanied by some regulariza­

tion term. 

Let us concentrate on the main term. The Chebychev norm is available in GP modeling as 

Fuzzy Goal Programming. The differences F, (x) - a; can be easily expressed in terms of goal 

deviations 11; and p, defined according to the equations 

F;(x) + 11; -p, = ai for i=l, .•. ,k 

ni ~ O, p, ~ O and 11;pi = O 

Thus nothing prohibits modeling the main tenn of .the scalarizing achievement function via the GP 

methodology. We can fonn an equivalent GP achievement function: 

(4) 

where weights vi and wi associated :with severa! goal deviations replace the scaling factors used 

in the scalarizing achievement function, e.g., for an exact model of the function (3) one needs to 

put vi = wi =si. However, there is one specificity in the function (4). Namely, there is a negative 

weight -v, associated with the negative deviation 11;. This is the reason why the reference point 

method attempts to reach an efficient solution even if the aspiration levels are attainable. This small 

change of the coefficient represents, however, a crucial change in thl' GP philosophy, where all the 

weights are assumed to be nonnegative. If we accept negative weights we can consider the function 

(4) as a specific case of GP achievement functions. 

Adding a regularization tenn to the function (4) can destroy its GP fonn. However, using 

lexicographic optimization we can avoid the problem of choosing an arbitrarily small positive 

parameter e (compare (3)) and introduce the regularization tenn as an additional priority level: 
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Finally, we can form the following lexicographic GP problem: 

Pl: lexmin g(n,p) = [ & (n,p),g2 (n,p)] 

subject to 

Fi(x) + ni -J>, = a; for i=l, ... ,k 

~ ~ O, J>, ~ O and ~Pi = O 

xeQ 

The above lexicographic GP problem generates always an efficient solution to the original 

multiobjective problem (Proposition 1) satisfying simultaneously rules of the reference point 

approach, i.e., assumption Al (Proposition 2). 

Proposition 1. 

For any aspiration levels ai and any positive weights vi and wi if (i,ii,f>) is an optimal 

solution to the problem Pl then i is an efficient solution to the multiobjective problem (1)-(2) . 

Proof 

I.et (i,ii,p) be an optimal solution to the problem Pl: Suppose that i is not efficient to the 

problem (1)-(2). That means there exist a vector xeQ such that 

F;(x) s F;(i) for all i=l, ... ,k 

and for some index j (1 Sj s k) 

Fj (x) < Fj (i) 

or in other words 

it F; (x) < it F; (i) 

The deviations I\ and /Ji satisfy the following relations: 

/Ji = ( Fi (i) - a;)+ 

I\ = ( O; - F; (i))+ 

where (.)+ denotes the nonnegative part of a quantity. 

I.et us define similar deviations for the vector A 

Pi=(Fi(x)-O;)+ for i=l, ... ,k 

~ = (a;-F;(x))+ for i=l, ... ,k 
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(x,n,p) is a feasiblc solution to the problem Pl and due to (5) and (6) for any positive weights 

v, and w. the following inequalities arc satisfied: 

wip, s wi/Ji for i=l, ... ,k 

-v,11; s -vil'I; for i=l, ... ,k 

and 

Ji<·Vi11; + W,p,) < ,t(·\1;11; + Wi/J,) 

Hencc we get 

g, (n,p) s g, (ii,p) and g2 (n,p) < g2 (ii,p) 

which contradicts optimality of (i,ii,p) for the problem Pl. Tuus i must be an efficient solution 

to the original multiobjective problem (1)-(2). • 
Proposition 2. 

For any aspiration levels . ~ and any positive weights vi and wi if. (i,ii,p) is an optimal 

solution to the problem Pl !hen any deviation /Ji is positive only if there does not exist any vector 

x e Q such that 

F; (x) s ~ for all i=l, ..• ,k 

Proof 

I..et (i,ii,p) be an optima! solution to the problem Pl. Suppose that for some j 

/Ji > O, i.e., Fj (i) > a; 
and there exist a vector xeQ such that 

F; (x) s ~ for all i=l, ... ,k 

I..et us define deviations for the vector x 

Pi= (Fi(x) ·~)+=O for all i=l, ... ,k 

ni= (a,-F;(x))+ ~ O for all i=l, ... ,k 

(x,n,p) is a feasible solution to the problem Pl and for any positive weights vi and w, the 

following inequality is satisfied: 

max (-v,11; + W,P.) s O < ~/Ji s max (-villi + wi/J..) 
lSiSk lSiSk 

Hence 

g, (n,p) < g1 (ii,p) 
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which contradicts optimality of (i,ii,p) for the problem Pl. Thus there does not exist any vector 

XE Q such that 

F. (x) s a; for all i=l, ... ,k 

and thereby the assurnption Al is satisfied. • 
Note that neither proposition assumes any specific relation between weights. It is not necessary 

because we directly put into the problem Pl the requirements 

ll;.P; = O for i=l, ... ,k (7) 

to guarantee proper calculation of all the deviations. It turns out, however, that requirements (7) 

can be simply omitted in the constraints of the problem Pl provided that the weights satisfy some 

relations natura! for the reference point philosophy. This is made precise in Proposition 3. 

Proposition 3. 

For any aspiration levels a; , if the weights satisfy relations 

O < v; < W; for i=ł, ... ,k (8) 

then any (i,ii,p) optimal solution to the problem Pl with omitted constraints (7) satisfy these 

requirements, i.e., 

14P, = O for i=ł, ... ,k 

Proof 

Let Pl' denote the problem Pl with omitted constraints (7) and let (i,ii,p) be an optima! 

solution to Pl'. Suppose that for some j 

fl;P; > o 
Then we can decrease both li; and P; by the same small positive quantity. That means, for small 

enough positive 6 the vector (i,ii-8e; ,i>-oe; ) is feasible to the problem Pl'. Due to (8) the 

following inequality i~ valid 

-V; (11; - 6) + W; (P; - 6) < -V; fi; + W;P; 

Hence we get 

gł (i,ii-8e; ,p-8e;) S gł (i,ii,p) 

g2 (i,ii-8e; ,i>-oe;) < g2 (i,ii,p) 

which contradicts optimality of (i,ii,p) for the problem Pl'. Thus fl;/J, = O for i= 1, ... ,k 
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3. Cooclusions 

In the paper we have shown !hat the implementation techniques of Goa! Programming can be 

used to model the reference point rnethod. Narnely, we have shown !hat ernploying the 

lexicographic and Fuzzy GP with properly defined weights we receive a GP achievement function 

!hat satisfies all the requirements for the scalarizing achievernent function used in the r~ference 

point approach. The properly defined weights rnean, arnong others, usage of some negative 

weights. This is the reason why the scalarizing achievement function attempts to reach an efficient 

solution even if the aspiration levels are attainable. This small technical change represents, 

however, a crucial change in the GP philosophy, where all the weights are assumed to be 

nonnegative. We do not want to debate whether Goa! Programrning with ·negative weights is stili 

Goa! Prograrnrning or not. Instead of dealing with that scholastic problem we are interested in 

practical advantages of the relations proved in the paper. 

From our point of view the most important is the possibility of using efficient GP implementa­

tion techniques to model the reference point approach. It allows one to simplify and demystify 

implementations of the reference point method and thereby extend applications of this powerful 

method. Moreover, it provides an opportunity to build unique decision support systems based oń 

both approaches: GP and reference point. 
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