





o efficiency.

The field of engineering provides examples of real life applications of noncovex  lticrit
optimization problerns. Tabek et al. (1979) model aircraft control systemsd  m with such
problems. Osyczka (1984) uses a nonconvex muticriteria model in the area of machine gear ¢

In this paper we introduce a new approach to solving multicriteria nonconvex optimizatio
problems. The approach applies generalized Lagrangian duality theory developed by Roode (
Nakayama et al. (1975), and others.

In the next section we formulate the multicriteria optimization problem and show how 1o
the generalized Lagrangian dual problem to it. In section 3 we present new theoretical founds
for generating weakly efficient solutions. Section 4 includes an example, and the paper is cot
in section 5.

2, Problem Formulation
Consider the multicriteria optimization problem (MOP) formulated as
MOP- min (£ (x), £5(x), ... (%)}

S.t. xe X

where each fj(x), j =1, 2, ..., m is a real-valued function defined on XcR" A point x% X i
an efficient solution of MOP if there is no other point xe X such that f;(x) < fi(x°), 2,
with strict inequality holding for at least one i. A point x% X is called a weakly . cient solu
MQOP if there is no other point x€ X such that fi(x) < fi(xo), i=1,2, .., m Theimage of an
(weakly) efficient solution under the vector-valued mapping (f(x), f5(x), ..., f,(x)) is called

(weakly) ......dominated solution. )
Corresponding 1o MOP is the following e-constraint problem (Haimes and Chankon;
P (e): min ()
s.t. fj(x) <§g i=LZ ....m j=k
xe X

where € = (€, ..., £_1s Epy s - Ey)- Let the function fj(x) - g be denoted by gj(x) and
2(x) 1= (€10, wwes 8 1 (XD, By 11Xy oer Bp(X)). Lt wly) :=1nf {fi(x) : g(x) Sy, xeX]} an
B := {y : there exists an xe X such that g(x) <y}. Then the epigraph of w(y) is defined as
epi w(y) := {(y, 2) : 2 2 w(y), ye B}.

The generalized Lagrangian function (Nakayama et al., 1975) corresponding to Py (€) is

A) = fi(x) + Glg(x), A]
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From (5) and the property of Gly, A] being nondt  :asing with respect to y, we get
7= -Gl¥, A] + b(¥, 2) 2 z=-G[§, A] + b, 2). )

From (5), (6), and (7) there is Z > 2 if g(X) < g(R). Hence f,(X) 2 fi(X) if g(X) < g(X). Therefore,

(¥, 2) is weakly nondominated, and X is weakly efficient.
(<) Since Re X is weakly efficient, (¥, 2) = (g(X), fi (X)) is weakly nondo:mnuwd Therefore, if

there exists an ke X such that f, (%) < fi(X) then g(X) 2 g/. ailarly, if there exists an Xe X such
that g(%) < g(%) then £, (X) 2 f (X). Hence, the hypersurface defined by

B {f;(xb ifg(x) < (R _

s ifg(x) > gX . ®
supports Y at (¥, 2). Using z =-G[y, A] + b(§, 2), A 20, we get z =-G{g(x), A} +‘b(g(i), (),
where b(g(®), (%)) = fy () and
if g0x) < gR)

0
Glg(x),A} =
(e {+ o if g(x) > g(x) ' ©®

Note that G[g(X), A] is nondecreasing with respect to g(x) and satisfies properties (1) - (4). -
Therefore, the hypersurface of the form z + Gly, A] = b(§, 2) given by (8) and (9) supports epi w(y)
at(§, ). From Lemma 1, then, & minimizes L(x,}). - n

Having generated a weakly nondominated solution as above, any duality gap associated with it,
which would be encountered with classical Lagrangian duality, is resolved with generalized

Lagrangian duality theory.
Theor " IfX isa weakly efficient soluuon to MOP and l is a solution of GLD, then f (%) = h(k)

forsomek=12,.., m _
Proof: Since A solves GLD, h(A) = h(A) for all A > 0. From the definitions of h(A) and L(x, A),
h(A) := xxgg( [LAx, M)} 2 L(%, k) := £ (%) + G[g(k), A} where the inequality follows from Theorem 1

and the fact that % is a weakly efficient solution of MOP. Therefore, h(i.) 2 fi (%) + Glg(®), A] for all
A 20 with g(%) £0. In particular, h(ﬂ) 2 fi (%) + Glg(X), 0. From {2), G{g(®), 0} =0, and
therefore

h(h) 2 fi(%). (10)

On the other hand, hk) := inf {Léx, ) = Jnf (£,(x) + Glg(x), A1} <
inf, (f(x) + G[gx), 1] : g(x) S0} Sxigg( {fi(x) : g(x) £0} := fy (%), where the last inequality














