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Abstract

The article deals with fuzzy C-equivalences and the problem of the

preservation of their properties by some aggregation functions. This paper

gives a contribution to the discussion of tolerance analysis in soft comput-

ing, decision making, approximate reasoning, and fuzzy control.

Keywords: fuzzy equivalence, fuzzy conjunction, domination, fuzzy C-

equivalence, aggregation function

1 Introduction

The problem of aggregation of diverse mathematical objects is rather well

known. We may aggregate for example fuzzy relations and consider the problem

of preservation of fuzzy relation properties during aggregation process (e.g. [16,

22, 23]) or examine fuzzy connectives [11] and preservation of their properties by

aggregations [10].

If it comes to fuzzy relations, first of all the transitivity property is of the

most interest because of the application reasons. The standard transitivity prop-

erty is too strong for many relations and this is why this property is modified in

different ways [17, 5, 19, 26] according to demands of real-life problems. Di-

verse types of transitivity properties are strictly connected with the preference
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and choice procedures. For example, they are applied to guarantee consistency

of fuzzy preferences [5]. The aggregation of information in preference modelling

and decision-making mainly concerned fuzzy preference relations with examina-

tion of particular classes of binary fuzzy relations. Fundamental properties of

aggregation functions were collected by J.C. Fodor and M. Roubens [16]. They

asked if the aggregation result has properties of the aggregated relations. Similar

question concerns the correctness of algorithms in computational mathematics.

An algorithm for determination of the values of a function F is called correct if

its result is equal to the value of a function G from the same class of functions and

from a convex neighbourhood of a function F . Thus, convex classes of operations

are useful in computational mathematics.

In this paper we consider aggregation of fuzzy equivalences as one of the

fuzzy connectives. We take into account only one type of the possible definition

of a fuzzy equivalence, namely the one which is based on the notion of fuzzy

equivalence relation which is reflexive, symmetric and transitive. We discuss three

kinds of transitivity properties and in this way we obtain three kinds of fuzzy

equivalences. We take into account transitivity property and its weaker versions

- weak and semi transitivity. The idea of a weak and semi properties appeared in

[6] and for transitivity it was developed later in [8, 9, 12, 14].

In section 2, basic notions useful in the paper are presented. In section 3,

diverse types of fuzzy equivalences are described, and in Section 4, aggregation

of fuzzy equivalences are discussed.

2 Preliminaries

Here we recall basic notions and their properties which will appear in the sequel.

We consider aggregation functions, relation of domination between operations,

fuzzy conjunctions and fuzzy equivalences.

2.1 Aggregation functions

Now we present useful information about aggregation functions.

Definition 1 (cf. [3], pp. 6-22, [18], pp. 216-218). Let n ∈ N. A function

A : [0, 1]n → [0, 1] which is increasing, i.e.

A(x1, . . . , xn) 6 A(y1, . . . , yn) for xi, yi ∈ [0, 1], xi 6 yi, i = 1, . . . , n

is called an aggregation function if

A(0, . . . , 0) = 0, A(1, . . . , 1) = 1. (1)
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Moreover, an aggregation A we call a mean if it is idempotent, i.e.

A(x, . . . , x) = x, x ∈ [0, 1]. (2)

Definition 2. Let n ∈ N. We say that function A : [0, 1]n → [0, 1]:
• has a zero element z ∈ [0, 1] (cf. [3], Definition 10) if

∀
16k6n

∀
x1,...,xk−1,xk+1,...,xn∈[0,1]

A(x1, ..., xk−1, z, xk+1, ..., xn) = z, (3)

• is without zero divisors if

∀
x1,...,xn∈[0,1]

(A(x1, ..., xn) = z ⇒ ( ∃
16k6n

xk = z)), (4)

• fulfils strong 1-boundary condition if

∀
x1,...,xn∈[0,1]

(A(x1, ..., xn) = 1 ⇔ ( ∀
16k6n

xk = 1)). (5)

Let us notice that by putting n = 2 in the above definition we get the respective

well-known conditions for binary operations. It is easy to check that the following

statements are true.

Lemma 1 ([12]). Let n ∈ N. An aggregation A : [0, 1]n → [0, 1] has a zero

element z = 0 if and only if it fulfils condition

∀
x1,...,xn∈[0,1]

(( ∃
16k6n

xk = 0) ⇒ A(x1, ..., xn) = 0). (6)

Lemma 2 ([12]). Let n ∈ N. An aggregation A : [0, 1]n → [0, 1] has a zero

element z = 0 and is without zero divisors if and only if

∀
x1,...,xn∈[0,1]

(A(x1, ..., xn) > 0 ⇔ ( ∀
16k6n

xk > 0)). (7)

A description of other families of aggregation functions can be found in [3].

Example 1 (cf. [3], pp. 44-56, [13]). A0, A1 are the least and the greatest aggre-

gation functions, where

A0(x1, . . . , xn) =

{
1, (x1, . . . , xn) = (1, . . . , 1)

0, (x1, . . . , xn) 6= (1, . . . , 1)
,

A1(x1, . . . , xn) =

{
0, (x1, . . . , xn) = (0, . . . , 0)

1, (x1, . . . , xn) 6= (0, . . . , 0)
,

x1, . . . , xn ∈ [0, 1]. Simple examples of aggregation function are given by stan-

dard means such as lattice operations min,max and
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• projections

Pk(x1, . . . , xn) = xk, for k = 1, 2, . . . , (8)

• geometric mean

G(x1, . . . , xn) = n
√
x1 · · · · · xn, (9)

• weighted means

Aw(x1, . . . , xn) =

n∑

k=1

wkxk, for wk > 0,

n∑

k=1

wk = 1, (10)

• quasi-arithmetic means

Mϕ(x1, . . . , xn) = ϕ−1(
1

n

n∑

k=1

ϕ(xk)), (11)

• quasi-linear means

F (x1, ..., xn) = ϕ−1(

n∑

k=1

wkϕ(xk)), (12)

where wk > 0, k = 1, ..., n,
n∑

k=1

wk = 1, x1, . . . , xn ∈ [0, 1] and ϕ : [0, 1] → R

is a continuous, strictly increasing function.

We may also notice that the following property is true

Theorem 1 ([12]). Let A : [0, 1]n → [0, 1] be an aggregation function, ϕ :
[0, 1] → [0, 1] be an increasing bijection. If A has a zero element z = 0 and it is

an operation without zero divisors then operation Aϕ, isomorphic to A, has the

same properties, where

Aϕ(x1, ..., xn) = ϕ−1(A(ϕ(x1), ..., ϕ(xn))), x1, ..., xn ∈ [0, 1]. (13)
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2.2 Fuzzy conjunctions

Now, the definition of a fuzzy conjunction is presented.

Definition 3 ([10]). An operation C : [0, 1]2 → [0, 1] is called a fuzzy conjunction

if it is increasing with respect to each variable and

C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.

Let us observe that fuzzy conjunctions are aggregation functions for n = 2.

Directly from the definition we obtain a useful property of a fuzzy conjunction.

Corollary 1. A fuzzy conjunction has a zero element z = 0.

Example 2. Consider the following family of fuzzy conjunctions for α ∈ [0, 1]

Cα(x, y) =






1, if x = y = 1

0, if x = 0 or y = 0

α otherwise

.

Operations C0 and C1 are the least and the greatest fuzzy conjunction, respec-

tively.

We may also distinguish subfamilies of fuzzy conjunctions.

Definition 4 ([25], [15]). A triangular seminorm (t-seminorm, semicopula) is a

fuzzy conjunction with a neutral element e = 1.

Semicopulas generalize t-norms. Namely

Definition 5 ([18], p. 4). A triangular norm (t-norm) T : [0, 1]2 → [0, 1] is an

arbitrary associative, commutative, increasing in each variable operation with a

neutral element e = 1.

Definition 6 ([18], p. 28). A strict t-norm T : [0, 1]2 → [0, 1] is a t-norm which

is continuous and strictly increasing in (0, 1]2.

Example 3. In the table below there are some examples of conjunctions. Among

them we recall the well-known triangular norms: minimum, product, Łukasiewicz,

drastic, which are denoted in the traditional way TM , TP , TL, TD, respectively,

where
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C2(x, y) =

{
y, if x = 1

0, if x < 1
TM (x, y) = min(x, y)

C3(x, y) =

{
x, if y = 1

0, if y < 1
TP (x, y) = xy

C4(x, y) =

{
0, if x+ y 6 1

y, if x+ y > 1
TL(x, y) = max(x+ y − 1, 0)

C5(x, y) =

{
0, if x+ y 6 1

x, if x+ y > 1
TD(x, y) =






x, if y = 1

y, if x = 1

0 otherwise

Functions TP , TM , TL and TD have the zero element z = 0. Functions TP

and TM are operations without zero divisors, TL and TD have zero divisors.

Lemma 3 ([16], p. 11). Any strict t-norm is an operation isomorphic (in the

meaning of formula (13)) to product t-norm TP .

2.3 Domination

Domination is one of the interesting dependence between operations.

Definition 7 (cf. Saminger et al. [23], Definition 2.5; cf. [24], p. 209). Let

m, n ∈ N. An operation F : Pm → P dominates an operation G : Pn → P

(shortly F ≫ G), if for any matrix [ai,k] = A ∈ Pm×n they fulfil the inequality

F (G(a1,1, . . . , a1,n), . . . , G(am,1, . . . , am,n)) >

> G(F (a1,1, . . . , am,1), . . . , F (a1,n, . . . , am,n)). (14)

Let us consider an example of dominating operations.

Example 4. Let n ∈ N. Each two projections from

Pk(x1, ..., xn) = xk, k ∈ {1, ..., n}, x1, ..., xn ∈ [0, 1] (15)

dominate each other.

In this paper we consider domination between n-ary aggregation A and binary

fuzzy conjunction C . In this case the domination A ≫ C means fulfilling the

condition

A(C(a1,1, a1,2), . . . , C(an,1, an,2)) > C(A(a1,1, . . . , an,1), A(a1,2, . . . , an,2)).
(16)
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We may also characterize aggregations A which dominate C for some given

conjunction C . We recall here characterization theorem of all aggregation func-

tions which dominate TD.

Theorem 2 (cf. [23], Proposition 5.2). Let A : [0, 1]n → [0, 1] be aggre-

gation function. Then A ≫ TD if and only if there exists a non-empty sub-

set I = {k1, ..., km} ⊂ {1, ..., n}, k1 < ... < km, and an increasing map-

ping B : [0, 1]m → [0, 1] satisfying the following conditions: B(0, ..., 0) = 0
and B(u1, ..., um) = 1 ⇔ u1 = ... = um = 1, such that A(x1, ..., xn) =
B(xk1 , ..., xkm).

Observe that function B in Theorem 2 is an aggregation function and con-

cerning triangular norms T we have T (x1, x2) = 1 if and only if x1 = x2 = 1
and thus I = {1, 2}, so B = T and T ≫ TD ([23], p. 32). Moreover, we deduce

that the following holds true.

Example 5. Quasi-arithmetic means A dominate TD and t-seminorms A domi-

nate TD. This is due to the fact that for both types of the aggregation functions

fulfil strong 1-boundary condition (5).

We put also characterization of aggregations A which dominate C = min.

Theorem 3 (cf. [23], Proposition 5.1). An aggregation function A dominates

minimum if and only if

A(x1, ..., xn) = min(f1(x1), ..., fn(xn)), x1, ..., xn ∈ [0, 1], (17)

where fk : [0, 1] → [0, 1] are increasing, k = 1, ..., n.

Example 6. Here are examples of functions which fulfil (17):

if fk(x) = x, k = 1, ..., n, then A = min,

if for some k ∈ {1, ..., n}, fk(x) = x, fi(x) = 1 for i 6= k, then A = Pk,

if fk(x) = max(1 − vk, x), vk ∈ [0, 1], k = 1, ..., n, max
16k6n

vk = 1, then A is

weighted minimum

A(x1, ..., xn) = min
16k6n

max(1−vk, xk), v = (v1, ..., vn) ∈ [0, 1]n, max
16k6n

vk = 1.

(18)

We know that minimum dominates any function which is increasing with re-

spect to each variable ([23], p. 16). As a result we get

Theorem 4. Minimum dominates any fuzzy conjunction.
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3 Fuzzy equivalences

In the literature one can meet various definitions of a fuzzy equivalence. A trivial

case used in many contributions, for example those concerning generalized logical

laws, is an equality, that is the function E : [0, 1]2 → [0, 1] given by the formula

(relation of identity)

E(x, y) =

{
1, gdy x = y

0, gdy x 6= y
. (19)

Usually it is expected that such notion of a fuzzy equivalence is a general-

ization of the equivalence of classical propositional calculus, that is the function

E : [0, 1]2 → [0, 1] that fulfils conditions E(0, 1) = E(1, 0) = 0, E(0, 0) =
E(1, 1) = 1. We will apply the approach in which definition of a fuzzy equiv-

alence follows from the notion of a fuzzy equivalence relation, namely relation

which is reflexive, symmetric and transitive.

Definition 8 (cf. [20], p. 33). Let C be a fuzzy conjunction. A fuzzy C-

equivalence is a function E : [0, 1]2 → [0, 1] fulfilling the following conditions

E(0, 1) = 0 (boundary property), (20)

E(x, x) = 1, x ∈ [0, 1] (reflexivity), (21)

E(x, y) = E(y, x), x, y ∈ [0, 1] (symmetry), (22)

C(E(x, y), E(y, z)) 6 E(x, z) x, y, z ∈ [0, 1] (transitivity). (23)

Example 7. The function (19) is a fuzzy C-equivalence for any fuzzy conjunction

C .

In the cited monograph [20] property (20) is omitted. However, in this case

the constant function E(x, y) = 1, x, y ∈ [0, 1] fulfils the definition of a fuzzy

equivalence although it is not a generalization of crisp equivalence. This is why

we add this assumption to the definition.

We may weaken conditions given in the previous definition by replacing tran-

sitivity property with the appropriate weaker transitivity conditions introduced for

fuzzy relations [6, 8, 9, 12]. Moreover, for example in [2], [19] weak transitivity is

considered in the context of fuzzy preference relations. For a fuzzy equivalence as

a connective we will apply conjunction C instead of an arbitrary binary operation

in the unit interval [0, 1]. In the literature, triangular norms are often considered

instead of this operation. Here applying conjunctions we use a generalization of

triangular norms.
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Definition 9. Let C be a fuzzy conjunction. A fuzzy weak C-equivalence is a

function E : [0, 1]2 → [0, 1] fulfilling conditions (20)-(22) and

∀
x,y,z∈X

C(E(x, y), E(y, z)) > 0 ⇒ E(x, z) > 0. (24)

A fuzzy semi C-equivalence is a function E : [0, 1]2 → [0, 1] fulfilling conditions

(20)-(22) and

∀
x,y,z∈X

C(E(x, y), E(y, z)) = 1 ⇒ E(x, z) = 1. (25)

Directly from definitions of a fuzzy C-equivalence, weak and semi C-equiva-

lence we see that

Lemma 4. Let C be a fuzzy conjunction. If E : [0, 1]2 → [0, 1] is a fuzzy C-

equivalence, then it is both weak C-equivalence, semi C-equivalence.

Lemma 5. Let C1, C2 be fuzzy conjunctions, C1 6 C2. If E is a fuzzy C2-

equivalence (weak C2–equivalence, semi C2-equivalence), then it is also C1–

equivalence (weak C1-equivalence, semi C1-equivalence).

Proof. It is enough to consider the result from [8] (Lemma 3) for fuzzy relations

and arbitrary binary operation in the interval [0, 1].

The following example shows that a weak and semi C-equivalence are not

equivalent to C-equivalence.

Example 8. Let us consider a function

E(x, y) =

{
1, gdy x = y
min(x,y)
max(x,y) , gdy x 6= y

(26)

and conjunction C = min. Obviously E fulfils conditions (20) - (22). We shall

show that it does not fulfil (23).

For x = 0.2, y = 0.4, z = 0.8 one has

C(E(x, y), E(y, z)) =min

(
min(x, y)

max(x, y)
,
min(y, z)

max(y, z)

)

=

= min

(
0.2

0.4
,
0.4

0.8

)

= 0.5.

Moreover, E(x, z) = min(x,z)
max(x,z) = 0.2

0.8 = 0.25. Thus, C(E(x, y), E(y, z)) >

E(x, z) and the function (26) is not min-equivalence.
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Now, let us observe that from the assumption min(E(x, y), E(y, z)) > 0 it

follows that both E(x, y) > 0 and E(y, z) > 0. This holds if x = y = z or

x, y, z > 0. In both cases we have E(x, y) > 0. This is why the function (26) is

a weak min-equivalence.

Let us consider a condition min(E(x, y), E(y, z)) = 1. From this it follows

that both E(x, y) = 1 and E(y, z) = 1 and it means that x = y and y = z.

Thus, x = z and E(x, z) = 1. This means that the function (26) is a semi min-

equivalence.

There is no correspondence between properties (24) and (25) what is shown

in the next examples.

Example 9. Let us consider an arbitrary fuzzy conjunction C and the function

E(x, y) =






1, if x = y

0.5, if x 6= y, (x, y) ∈ (0, 1)2

0, otherwise

. (27)

Directly by the formula of E it follows that it fulfils conditions (20) - (22). Let us

consider weak C-transitivity condition in its contrapositive form:

∀
x,y,z∈X

E(x, z) = 0 ⇒ C(E(x, y), E(y, z)) = 0.

By the definition of the function E it follows that E(x, z) = 0 if:

1) x = 0 and z > 0 or

2) x > 0 and z = 0 or

3) x = 1 and z < 1 or

4) x < 1 and z = 1
For an arbitrary y ∈ [0, 1] let us consider the value V := C(E(x, y), E(y, z)).
1) If y > 0, then E(x, y) = E(0, y) = 0 and because of the zero element of C

(cf. 1) V = 0. If y = 0, then for z > 0 we have E(y, z) = E(0, z) = 0 and

V = 0.

2) If y > 0, then E(y, z) = E(y, 0) = 0, so V = 0. If y = 0, then for x > 0 we

have E(x, y) = E(x, 0) = 0 and V = 0.

3) If y < 1, then E(x, y) = E(1, y) = 0, so V = 0. If y = 1, then for z < 1 we

have E(y, z) = E(1, z) = 0 and V = 0.

2) If y < 1, then E(y, z) = E(y, 1) = 0, so V = 0. If y = 1, then for x < 1 we

have E(x, y) = E(x, 1) = 0 and V = 0.

This is why the function (27) is weakly C-transitive for any fuzzy conjunction C .
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However, this function may not be semi C-transitive for some fuzzy conjunction

C . Let us consider a fuzzy conjunction

C(x, y) =

{
min(x, y), if y 6 1− x

1, otherwise
.

For the values x = y = 0.6, z = 0.8 we have C(E(x, y), E(y, z)) = C(E(0.6,
0.6), E(0.6, 0.8)) = (1, 0.5) = 1, but E(x, z) = E(0.6, 0.8) = 0.5. This is why

the function (27) is not semi C-transitive for the given fuzzy conjunction C .

Example 10. Now, let us assume that C = min and

E(x, y) =






1, if x = y

0, if {x, y} = {0, 1}

0.5, otherwise

. (28)

Directly by the formula of E it follows that it fulfils conditions (20) - (22). Let

us consider weak C-transitivity. For x = 0, y = 0.5, z = 1 we have C(E(x, y),
E(y, z)) = C(E(0, 0.5), E(0.5, 1)) = C(0.5, 0.5) = 0.5 > 0, but C(x, z) =
C(0, 1) = 0. Thus, the function (28) is not weak C-transitive. Now, let us observe

that for the given operations C and E we have

C(E(x, y), E(y, z)) = 1 ⇔ E(x, y) = 1 ∧ E(y, z) = 1 ⇔

⇔ x = y ∧ y = z ⇒ x = z ⇒ E(x, z) = 1.

Thus, the function (28) is semi C-transitive.

The following theorems indicate examples of fuzzy C-equivalences.

Theorem 5. The function

E(x, y) =

{
1, if x = y

min(x, y), otherwise

is a fuzzy C-equivalence if and only if C 6 min.

Proof. Obviously, conditions (20) - (22) are fulfilled. Let us examine the property

of C-transitivity (23). (⇒) Let x, z ∈ [0, 1]. If x 6= z then for y = 1 one has

C(x, z) = C(E(x, 1), E(1, z)) 6 E(x, z) = min(x, z).
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On the other hand if x = z then for x = 1 one has C(x, x) = C(1, 1) = 1 6 1 =
x, and for x 6= 1 there exists t > x and then C(x, x) 6 C(x, t) 6 min(x, t) = x.

(⇐) Let C 6 min, x, y, z ∈ [0, 1]. If x 6= y and y 6= z then

C(E(x, y), E(y, z)) = C(min(x, y),min(y, z)) 6

6 min(min(x, y), z) 6 min(x, z) 6 E(x, z).

For x = y one obtains

C(E(x, y), E(y, z)) = C(1,min(y, z)) 6 min(y, z) = min(x, z) 6 E(x, z).

Similarly, for y = z one has

C(E(x, y), E(y, z)) = C(min(x, y), 1) 6 min(x, y) = min(x, z) 6 E(x, z).

4 Aggregation of fuzzy C-equivalences

Fundamental properties of aggregation for fuzzy relations were gathered by J.C.

Fodor and M. Roubens [16]. We may aggregate diverse objects: fuzzy relations,

fuzzy connectives etc. Here we consider aggregation of fuzzy equivalences de-

fined in the previous section.

Definition 10 (cf. [16], p. 14). Let n ∈ N and A be an arbitrary aggregation

function. For given fuzzy equivalences E1, . . . , En, we consider an aggregation

connective

E(x, y) = A(E1(x, y), . . . , En(x, y)), x, y ∈ [0, 1]. (29)

We say that an aggregation function A preserves a property of the given

fuzzy equivalences if the operation E from (29) has such a property for arbitrary

E1, . . . , En fulfilling this property. A class of fuzzy equivqlences is closed under

an aggregation A if the result of the aggregation belongs to this class for arbitrary

fuzzy equivalences from the class.

For example, any projection (8) preserves fuzzy C-equivalence (weak fuzzy

C-equivalence, semi fuzzy C-equivalence) because in the formula (29) with A =
Pk we get E = Ek for k ∈ {1, . . . , n}. From condition (1) we get

Lemma 6 (cf. [10]). Any aggregation function preserves binary truth tables of

aggregated equivalences.
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Lemma 7 (cf. [10]). Any aggregation function preserves symmetry of aggregated

equivalences.

Lemma 8. Any aggregation function preserves the property (21) of the aggregated

operations.

Proof. Let E1, E2 be operations fulfilling the conditions E1(x, x) = 1,E2(x, x)
= 1 for x ∈ [0, 1]. According to (29), for any aggregation A one has

E(x, x) = A(E1(x, x), E2(x, x)) = A(1, 1) = 1, for x ∈ [0, 1].

From Lemmas 6-8 it follows that any aggregation function preserves boundary

property, symmetry and reflexivity of a fuzzy equivalence. Thus, for aggregation

of fuzzy equivalences it is enough to consider only transitivity conditions. We will

do it in the sequel.

4.1 Fuzzy C-equivalences

In this part a result from the paper [9] (Theorem 10) written in other terminology

is used.

Theorem 6. Let C be a fuzzy conjunction. An aggregation function A : [0, 1]n →
[0, 1] preserves condition (23) of the aggregated fuzzy equivalences E1, ..., En if

and only if A dominates C (A ≫ C).

By Theorem 6 and Lemma 5 we get

Corollary 2. Let C1, C2 be fuzzy conjunctions, C1 6 C2. If aggregation function

A dominates C2 and we have fuzzy C2-equivalences E1, ..., En, then A(E1, ...,

En) is a fuzzy C1-equivalence.

From Theorem 6 and Lemmas 6, 7, 8 one obtains

Theorem 7. The family of all fuzzy C-equivalences is closed under aggregation

operations A that dominate C (A ≫ C).

By Theorem 4 we get

Theorem 8. Minimum preserves fuzzy C-equivalence for any fuzzy conjunction

C .
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In virtue of the results for preservation of transitivity for fuzzy relations ([21],

Proposition 1, [23], Example 5.2 and [7], Corollary 6) we obtain respectively the

following conclusions.

Corollary 3. Weighted means preserve fuzzy TL-equivalence.

Corollary 4. Geometric mean preserves fuzzy TP -equivalence.

Corollary 5. Aggregation A described by the formula

A(x1, ..., xn) =
p

n

n∑

k=1

tk + (1− p) min
16k6n

tk, p ∈ [0, 1], (30)

preserves fuzzy TL-equivalence.

Now we want to pay attention to preservation of weak C-equivalence and semi

C-equivalence by aggregations. The results which will be presented for weak C-

equivalences and semi C-equivalences were firstly obtained for fuzzy relations

[12]. Here we give suitable versions for fuzzy equivalences (connectives).

4.2 Fuzzy weak C-equivalences

Let us notice that there are aggregations which preserve weak C-equivalence for

any fuzzy conjunction C .

Theorem 9. Let C be a fuzzy conjunction. Minimum preserves weak C-equiva-

lence.

Proof. We my apply here a result from [8] (Theorem 12) where this preservation

was shown for fuzzy relations where instead of conjunctions, increasing opera-

tions were considered.

Theorem 10. If aggregation function A : [0, 1]n → [0, 1] has a zero element

z = 0 and both A and a fuzzy conjunction C are operations without zero divisors

then A preserves weak C-equivalence.

Proof. Let E1, ..., En be weak C-equivalences. If C(E(x, y), E(y, z)) > 0, then

because C as a conjunction has a zero element z = 0 and by Lemma 2 we get

E(x, y) > 0 and E(y, z) > 0. As a result from (29) we get

A(E1(x, y), ..., En(x, y)) > 0, A(E1(y, z), ..., En(y, z)) > 0.

By Lemma 2 and assumptions about function A we have

E1(x, y) > 0, ..., En(x, y) > 0, E1(y, z) > 0, ..., En(y, z) > 0.
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Again, in virtue of Lemma 2 and by assumptions about A and C we see that

C(Ek(x, y), Ek(y, z)) > 0, k = 1, ..., n. Since Ek for k = 1, ..., n are weak C-

equivalences we get Ek(x, z) > 0, k = 1, ..., n and A(E1(x, z), ..., En(x, z)) >
0, so E(x, z) > 0 which proves that E is a weak C-equivalence.

Example 11. Theorem 10 gives only a sufficient condition for preservation of

weak C-equivalence. The weighted mean preserves weak TL-equivalence (see

Theorem 13 from [8] for fuzzy relations) but the weighted mean does not have a

zero element z = 0.

By Theorems 1 and 10 we get

Corollary 6. Let A : [0, 1]n → [0, 1] be an aggregation function and ϕ : [0, 1] →
[0, 1] be an increasing bijection. If A preserves weak C-equivalence, then Aϕ

also preserves this property (cf. (13)).

By Example 3, Theorem 10, Theorem 1 and Lemma 3 we get

Theorem 11. Functions TP , TM and any strict t-norm preserve weak C-equiva-

lence for C = min.

4.3 Fuzzy semi C-equivalences

Now we will turn to the problem of preservation of semi C-equivalence. Firstly,

let us notice that there exists an aggregation which preserves semi C-equivalence

for any conjunction C .

Theorem 12. Let C be a fuzzy conjunction. Minimum preserves semi C-equiva-

lence.

Proof. Let E1, . . . , En be semi C-equivalences, E = min(E1, . . . , En), and

x, y, z ∈ [0, 1]. If C(E(x, y), E(y, z)) = 1, then by monotonicity of C

1 = C( min
16k6n

Ek(x, y), min
16k6n

Ek(y, z)) 6 C(Ei(x, y), Ei(y, z)), i = 1, ..., n,

so C(Ei(x, y), Ei(y, z)) = 1 and since E1, . . . , En are semi C-equivalences we

get Ei(x, z) = 1, for i = 1, ..., n. Therefore

E(x, z) = min(E1(x, z), . . . , En(x, z)) = 1

and E is a semi C-equivalence.
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Theorem 13. If an aggregation A : [0, 1]n → [0, 1] and a fuzzy conjunction

C : [0, 1]2 → [0, 1] fulfil strong 1-boundary condition (5), then A preserves semi

C-equivalence.

Proof. Let x, y, z ∈ [0, 1], E1, ..., En be semi C-equivalences and both A and

C have strong 1-boundary property. If C(E(x, y), E(y, z)) = 1, then we get

E(x, y) = 1, E(y, z) = 1, so A(E1(x, y), ..., En(x, y)) = 1 and A(E1(y, z), ...,
En(y, z)) = 1. In virtue of (5), we obtain E1(x, y) = 1, ..., En(x, y) =
1, E1(y, z) = 1, ..., En(y, z) = 1. By condition (5) for conjunction C we

have C(Ek(x, y), Ek(y, z)) = 1, k = 1, ..., n and since Ek, k = 1, ..., n are

semi C-equivalences we obtain Ek(x, z) = 1, k = 1, ..., n. Using (5) we have

A(E1(x, z), ..., En(x, z)) = E(x, z) = 1, so E is a semi C-equivalence.

Example 12. Theorem 13 gives only a sufficient condition for a preservation of

semi C-equivalence. We see that the minimum preserves semi C-equivalence for

C = C1 (the greatest conjunction), where

C1(x, y) =

{
0, if x = 0 or y = 0

1 otherwise
.

Let x, y, z ∈ [0, 1], E1, ..., En be fuzzy semi C-equivalences and C(E(x, y),
E(y, z)) = 1. Thus we have E(x, y) > 0 and E(y, z) > 0. So A(E1(x, y),
..., En(x, y)) > 0 and A(E1(y, z), ..., En(y, z)) > 0, where A(x1, . . . , xn) =
min

16k6n
xk. As a result Ek(x, y) > 0 for k = 1, ..., n and Ek(y, z) > 0 for

k = 1, ..., n, thus C(Ek(x, y), Ek(y, z)) = 1 for k = 1, ..., n. By assumption

E1, ..., En are fuzzy semi C-equivalences, so Ek(x, z) = 1 for k = 1, ..., n. Fi-

nally, E(x, z) = A(E1(x, z), ..., En(x, z)) = min(1, ..., 1) = 1. This proves that

E is semi C-equivalence for the given aggregation A and conjunction C . How-

ever, C = C1 does not fulfil condition (5).

Example 13. Triangular norms, t-seminorms and the weighted arithmetic means

have strong 1-boundary property.

Theorem 14. The weighted arithmetic mean preserves semi C-equivalence for

any t-seminorm (t-norm) C .

Analogously to the way presented in Theorem 1 we may prove

Theorem 15. Let ϕ : [0, 1] → [0, 1] be an increasing bijection. If an aggregation

function A : [0, 1]n → [0, 1] fulfils (5), then Aϕ also fulfils (5).

By Example 13, Lemma 3 and Theorem 15 we get
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Example 14. The quasi-linear means have the strong 1-boundary property.

Theorem 16. Let C be a t-seminorm (t-norm). The quasi-linear means preserve

semi C-equivalence.

5 Conclusions

Admissible aggregations preserving properties of aggregated connectives such as

fuzzy equivalences were presented. There were considered three types of such

connectives. In our further work we would like to discuss other equivalence no-

tions (e.g. [16], p. 33) and preservation of their properties by aggregations.
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