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Abstract

The goal of this paper is to consider properties of the composition of inter-

valvalued fuzzy relations which were introduced by L.A. Zadeh in 1975.

Fuzzy set theory turned out to be a useful tool to describe situations in

which the data are imprecise or vague. Interval-valued fuzzy set theory is

a generalization of fuzzy set theory which was introduced also by Zadeh in

1965. We examine some properties of interval-valued fuzzy relations in the

context of certain Atanassov’s operator, lattice operations and connections

among considered properties of interval-valued fuzzy relations.

Keywords: Fuzzy relations, interval-valued fuzzy relations, properties of

interval-valued fuzzy relations

1 Introduction

The idea of a fuzzy relation was defined in [22]. An extension of fuzzy set the-

ory is interval-valued fuzzy set theory. Any interval-valued fuzzy set is defined

by an interval-valued membership function: a mapping from the given universe

to the set of all closed subintervals of [0,1] (it means that information is incom-

plete). In this work we study preservation of properties of interval-valued fuzzy

relations by lattice operations and certain Atanassov’s operator. We also study
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properties of the composition of interval-valued fuzzy relations. Consideration

of diverse properties of the composition is interesting not only from a theoret-

ical point of view but also for the application reasons since the composition of

interval-valued fuzzy relations has proved to be useful in several fields, see for

example, [14] (performance evaluation), [20] (genetic algorithm), [13] (approxi-

mate reasoning) or in other areas (see [1, 16, 21, 6, 7, 9] ). In Section 2, we recall

elementary properties of the composition of interval-valued fuzzy relations. Next,

we consider some properties of interval-valued fuzzy relations and we study con-

nections between the considered properties, connections between these properties

and lattice operations and certain Atanassov’s operator. We consider preserva-

tion of some properties of interval-valued fuzzy relations by lattice operations and

certain Atanassov’s operator ([2, 3]). Finally, we consider some property which

guarantee the convergence of powers of an interval-valued fuzzy relation.

2 Basic definitions

First we recall the notion of the lattice operations and the order in the family of

interval-valued fuzzy relations. Let X,Y, Z be non-empty sets and LI = {[x, x] :
x, x ∈ [0, 1], x ≤ x}. We know (see [17]) that (LI ,≤) is complete, infinitely

distributive lattice, where [x, x] ≤ [y, y] ⇔ x ≤ y, x ≤ y for all x, y, x, y ∈ [0, 1].

Definition 1 (cf. [23]). An interval-valued fuzzy relation R between universes

X,Y is a mapping R : X × Y → LI such that

R(x, y) = [R(x, y), R(x, y)] ∈ LI (1)

for all pairs (x, y) ∈ (X × Y ).
The class of all interval-valued fuzzy relations between universes X,Y will be

denoted by IVFR(X,Y ) or IVFR(X) for X = Y .

Interval-valued fuzzy relations reflect the idea that membership grades are

often not precise and the intervals represent such uncertainty.

The boundary elements in IVFR(X,Y ) are 1 = [1, 1] and 0 = [0, 0].
Let S,R ∈ IVFR(X,Y ). Then for every (x, y) ∈ (X,Y ) we can define

S(x, y) ≤ R(x, y) ⇔ S(x, y) ≤ R(x, y), S(x, y) ≤ R(x, y), (2)

(S ∨R)(x, y) = [max(S(x, y), R(x, y)),max(S(x, y), R(x, y))], (3)

(S ∧R)(x, y) = [min(S(x, y), R(x, y)),min(S(x, y), R(x, y))], (4)
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where operations ∨ and ∧ are the supremum and the infimum in

IVFR(X,Y ), respectively. Similarly for arbitrary set T 6= ∅

(
∨

t∈T

Rt)(x, y) = [
∨

t∈T

Rt(x, y),
∨

t∈T

Rt(x, y)], (5)

(
∧

t∈T

Rt)(x, y) = [
∧

t∈T

Rt(x, y),
∧

t∈T

Rt(x, y)]. (6)

From ([5],[6]) we know that the pair (IV FR(X,Y ),≤) is a partially ordered set.

Moreover, the family (IV FR(X,Y ),∨,∧) is a lattice. The lattice IV FR(X,Y )
is complete. This fact follows from the notion of the supremum

∨
and the infimum∧

and from the fact that the values of fuzzy relations are from the interval [0, 1]
which, with the operations maximum and minimum, forms a complete lattice. As

a result (IVFR(X,Y ),∨,∧) is a complete, infinitely distributive lattice. For our

further considerations we need the following properties

Definition 2 (cf. [12, 4]). Let ∗ : [0, 1]2 → [0, 1]. Operation ∗ is infinitely

distributive (sup-distributive, inf-distributive), if

∨

t∈T

(xt ∗ y) = (
∨

t∈T

xt) ∗ y,
∨

t∈T

(y ∗ xt) = y ∗ (
∨

t∈T

xt)

and

∧

t∈T

(xt ∗ y) = (
∧

t∈T

xt) ∗ y,
∧

t∈T

(y ∗ xt) = y ∗ (
∧

t∈T

xt).

3 Properties of Interval-Valued Fuzzy Relations

In [19] we considered preservation of local reflexivity and local irreflexivity of R

by some operations and certain operator. Now, we consider another properties,

i.e. local connectedness and local asymmetry which have some connections with

local reflexivity and local irreflexivity.

Definition 3 (cf. [10]). Let S,Q ∈ IV FR(X). An interval-valued fuzzy relation

R ∈ IV FR(X), R(x, y) = [R(x, y), R(x, y)] is:

• locally asymmetric, if for S = R ∧R−1

∀x, y ∈ X

(

S(x, y) =
∧

z∈X

S(x, z) or S(x, y) =
∧

z∈X

S(z, y)

)

, (7)
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• locally connected, if for Q = R ∨R−1

∀x, y ∈ X

(

Q(x, y) =
∨

z∈X

Q(x, z) or Q(x, y) =
∨

z∈X

Q(z, y)

)

, (8)

where R−1(x, y) = R(y, x) = [R(y, x), R(y, x)].

In our future considerations we will use some very interesting relation of

equivalence between interval-valued fuzzy relations.

Definition 4 (cf. [10]). Interval-valued fuzzy relations R,S ∈ IV FR(X) are

equivalent (R ∼ S), if

∀x, y, u, v ∈ X R(x, y) ≤ R(u, v) ⇔ S(x, y) ≤ S(u, v), (9)

∀x, y, u, v ∈ X R(x, y) ≤ R(u, v) ⇔ S(x, y) ≤ S(u, v). (10)

Corollary 1. If Interval-valued fuzzy relations R,S ∈ IV FR(X) are equivalent

R ∼ S, then

R = R−1 ⇔ S = S−1, R > R−1 ⇔ S > S−1, R||R−1 ⇔ S||S−1.

Lemma 1 (cf. [10]). Let R,S ∈ IFV R(X). If R ∼ S, then for every non-empty

subset P of X × X and each (x, y), (u, v) ∈ P the following conditions are

fulfilled:

R(x, y) =
∧

(u,v)∈P

R(u, v) ⇔ S(x, y) =
∧

(u,v)∈P

S(u, v) (11)

(R(x, y) =
∨

(u,v)∈P

R(u, v) ⇔ S(x, y) =
∨

(u,v)∈P

S(u, v)). (12)

Lemma 2. Let R,S ∈ IV FR(X). If R ∼ S, then

(R ∨ S) ∧ (R−1 ∨ S−1) = (R ∧R−1) ∨ (S ∧ S−1). (13)

Proof. Let R ∼ S. We consider following cases:

1. R(x, y) ≤ R(y, x).
From assumption we have S(x, y) ≤ S(y, x). So

(R ∨ S) ≤ (R−1 ∨ S−1), and (R ∨ S) ∧ (R−1 ∨ S−1) = R ∨ S.

Moreover

(R ∧R−1) ≤ (S ∧ S−1), so (R ∧R−1) ∨ (S ∧ S−1) = R ∨ S. Thus
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(R ∨ S) ∧ (R−1 ∨ S−1) = (R ∧R−1) ∨ (S ∧ S−1).
Similarly we proof the second condition:

2. R(x, y) > R(y, x).
3. R(x, y)||R(y, x).
If R(x, y) ≤ S(x, y), then R−1(x, y) ≤ S−1(x, y) and

(R ∧R−1) ≤ (S ∧ S−1), so

(R∧R−1)∨ (S∧S−1) = S∧S−1 and (R∨S)∧ (R−1∨S−1) = S∧S−1. Thus

(R ∨ S) ∧ (R−1 ∨ S−1) = (R ∧R−1) ∨ (S ∧ S−1).
By similar way we obtain this condition for R(x, y) > S(x, y). Moreover, if

R(x, y)||S(x, y), then by the Corollary 1 we observe that R−1||S−1 and R ∧
R−1 ∼ S ∧ S−1. Thus by the Lemma 1 we have the same values in

(R∨S)∧ (R−1∨S−1) and (R∧R−1)∨ (S∧S−1). What finishes the proof.

Now we examine connection between local connectedness (local asymmetry)

with lattice operations.

Theorem 1. Let R,S ∈ IV FR(X). If R,S are locally asymmetric and R ∼ S,

then

R ∨ S and R ∧ S

are also locally asymmetric.

Proof. Let x, y ∈ X . We assume, that R ∼ S and R,S are locally asymmetric.

We examine locally asymmetry of R ∨ S, i.e. we want:

(R ∨ S) ∧ (R ∨ S)−1(x, y) =
∧

z∈X(R ∨ S) ∧ (R−1 ∨ S−1)(x, z).
From above lemma we have:

(R ∨ S) ∧ (R ∨ S)−1 = (R ∧R−1) ∨ (S ∧ S−1).

By the Definition 3, from local asymmetry of R and S, Corollary 1 and (11) for

P ⊂ X ×X , (x, z) ∈ P we obtain:

((R ∧R−1) ∨ (S ∧ S−1))(x, y) =
∧

z∈X

(R ∧R−1)(x, z) ∨
∧

z∈X

(S ∧ S−1)(x, z).

Moreover, from infinite distributivity in (IV FR,∨,∧) by R ∼ S we have

∧

z∈X

(R∧R−1)(x, z)∨
∧

z∈X

(S∧S−1)(x, z) =
∧

z∈X

((R∧R−1)∨(S∧S−1))(x, z) =

∧

z∈X

(R ∨ S) ∧ (R−1 ∨ S−1)(x, z).
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Similarly, we prove

((R ∧R−1) ∨ (S ∧ S−1))(x, y) =
∧

z∈X(R ∨ S) ∧ (R−1 ∨ S−1)(z, y).
So R ∨ S has local asymmetry property.

Now we examine R∧S. Thus by (the Definition 3) local asymmetry R,S and by

(11) for P ⊂ X ×X , (x, z) ∈ P we obtain:

((R ∧ S) ∧ (R−1 ∧ S−1))(x, y) = (R ∧R−1)(x, y) ∧ (S ∧ S−1)(x, y) =

∧

z∈X

((R ∧R−1)(x, z) ∧ (S ∧ S−1))(x, z) =

∧

z∈X

((R ∧ S) ∧ (R−1 ∧ S−1))(x, z).

thus we have

((R ∧ S) ∧ (R−1 ∧ S−1))(x, y) =
∧

z∈X

((R ∧ S) ∧ (R−1 ∧ S−1))(x, z).

Similarly we have

((R ∧ S) ∧ (R−1 ∧ S−1))(x, y) =
∧

z∈X

((R ∧R−1)(x, y) ∧ (S ∧ S−1))(z, y).

Thus R ∧ S has local asymmetry property.

Similarly to the Lemma 2 we have

Lemma 3. Let R,S ∈ IV FR(X). If R ∼ S, then

(R ∧ S) ∨ (R−1 ∧ S−1) = (R ∨R−1) ∧ (S ∨ S−1). (14)

Moreover by analogy to the last theorem we can prove following

Theorem 2. Let R,S ∈ IV FR(X,Y ). If R,S are locally connected and R ∼ S,

then

R ∨ S and R ∧ S

are also locally connected.

We observe that without adequate assumption in the above theorems lattice

operations may not preserve local asymmetry and local connectedness.
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Example 1. Let cardX = 3, R,S ∈ IV FR(X), R = [R,R] S = [S, S], where

R =




[0.2, 0.4] [0.6, 0.7] [1, 1]
([0.7, 0.8]) [0.6, 0.7] [0.8, 0.9]
([0.8, 0.9]) [0.9, 1] [0.8, 0.9]



 ,

S =




[0.3, 0.6] [0.6, 0.8] [0.7, 0.8]
([0, 4, 0.7]) [0, 4, 0.7] [0.9, 0.9]
([1, 1]) [0.7, 0.8] [0.7, 0.8]



 ,

R ∧R−1 =




[0.2, 0.4] [0.6, 0.7] [0.8, 0.9]
([0.6, 0.7]) [0.6, 0.7] [0.8, 0.9]
([0.8, 0.9]) [0.8, 0.9] [0.8, 0.9]



 ,

S ∧ S−1




[0.3, 0.6] [0, 4, 0.7] [0.7, 0.8]
([0, 4, 0.7]) [0, 4, 0.7] [0.7, 0.8]
([0.7, 0.8]) [0.7, 0.8] [0.7, 0.8]



 .

By the Definition 3 relations R,S are locally asymmetric. Moreover, these rela-

tions are not equivalent, because maxR = r1,3 and maxS = s3,1. If we consider

R ∨ S we observe

R ∨ S =




[0.3, 0.6] [0.6, 0.8] [1, 1]
([0.7, 0.8]) [0.6, 0.7] [0.9, 0.9]
([1, 1]) [0.9, 1] [0.8, 0.9]





and

T = (R ∨ S) ∧ (R ∨ S)−1 =




[0.3, 0.6] [0.6, 0.8] [1, 1]
([0.6, 0.8]) [0.6, 0.7] [0.9, 0.9]
([1, 1]) [0.9, 0.9] [0.8, 0.9]



 .

So R ∨ S is not locally asymmetric, because t1,3 is not minimal in row 1 and col-

umn 3. But R ∧ S is locally asymmetric, i.e.

R ∧ S =




[0.2, 0.4] [0.6, 0.7] [0.7, 0.8]
([0.4, 0.7]) [0.4, 0.7] [0.8, 0.9]
([0.8, 0.9]) [0.7, 0.8] [0.7, 0.8]



 ,

(R ∧ S) ∧ (R ∧ S)−1 =




[0.2, 0.4] [0.4, 0.7] [0.7, 0.8]
([0.4, 0.7]) [0.4, 0.7] [0.7, 0.8]
([0.7, 0.8]) [0.7, 0.8] [0.7, 0.8]



 .
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Example 2. Let cardX = 3, T, U ∈ IV FR(X), T = [T , T ] U = [U,U ], where

T =




[0.1, 0.2] [0, 0] [0.1, 0.2]
([0.1, 0.2]) [0.3, 0.4] [0.3, 0.4]
([0.1, 0.2]) [0.2, 0.3] [0.5, 0.5]



 ,

U =




[0.1, 0.2] [0.1, 0.2] [0.1, 0.2]
([0, 0]) [0.3, 0.4] [0.3, 0.4]

([0.1, 0.2]) [0.2, 0.3] [0.5, 0.5]



 ,

T ∨ T−1 =




[0.1, 0.2] [0.1, 0.2] [0.1, 0.2]
([0.1, 0.2]) [0.3, 0.4] [0.3, 0.4]
([0.1, 0.2]) [0.3, 0.4] [0.5, 0.5]



 ,

U ∨ U−1




[0.1, 0.2] [0.1, 0.2] [0.1, 0.2]
([0.1, 0.2]) [0.3, 0.4] [0.3, 0.4]
([0.1, 0.2]) [0.3, 0.4] [0.5, 0.5]



 ,

By the Definition 3 relations T, U are locally connected. Moreover, these relations

are not equivalent, because minT =1,2 and minU = u2,1. If we consider T ∧ U

we observe

T ∧ U =




[0.1, 0.2] [0, 0] [0.1, 0.2]
([0, 0]) [0.3, 0.4] [0.3, 0.4]

([0.1, 0.2]) [0.2, 0.3] [0.5, 0.5]





and

V = (T ∧ U) ∨ (T ∧ U)−1 =




[0.1, 0.2] [0, 0] [0.1, 0.2]
([0, 0]) [0.3, 0.4] [0.3, 0.4]

([0.1, 0.2]) [0.3, 0.4] [0.5, 0.5]



 .

So T ∧U is not locally connected, because v1,2 is not maximal in row 1 or column

2.

Now, we will prove that all equivalent interval-valued fuzzy relations have the

same local properties.

Theorem 3. Let R,S ∈ IV FR(X,Y ). If R ∼ S, then

• R is locally asymmetric if and only if S is locally asymmetric.

• R is locally connected if and only if S is locally connected.

Proof. Let R ∼ S. If R is locally asymmetric and T = R ∧R−1, Q = S ∧ S−1,

then for x, y ∈ X one has

T (x, y) =
∧

z∈X

R(x, z) or T (x, y) =
∧

z∈X

R(z, x),
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This implies by (11):

T (x, y) =
∧

z∈X

R(x, z) ⇔ Q(x, y) =
∧

z∈X

S(x, z)

or

T (x, y) =
∧

z∈X

R(z, x) ⇔ Q(x, y) =
∧

z∈X

S(z, x).

Thus

Q(x, y) =
∧

z∈X

S(x, z) or Q(x, y) =
∧

z∈X

S(z, x).

So R and S are simultaneously locally asymmetric. Similarly we can prove the

case of the local connectedness property.

So in Theorem 1, 2 we may omit assumption about locally asymmetry and

locally connectivity of S.

Definition 5 (cf. [10]). An interval-valued fuzzy relation

R(x, y) = [R(x, y), R(x, y)] ∈ IV FR(X) is:

• locally reflexive, if

∀x ∈ X

(

R(x, x) =
∨

z∈X

R(x, z) and R(x, x) =
∨

z∈X

R(z, x)

)

,

• locally irreflexive, if

∀x ∈ X

(

R(x, x) =
∧

z∈X

R(x, z) and R(x, x) =
∧

z∈X

R(z, x)

)

.

We observe the following connection between local asymmetry, local con-

nectedness, local reflexivity and local irreflexivity.

Theorem 4. Let R ∈ IV FR(X).
• If R is locally asymmetric, then it is locally irreflexive.

• If R is locally connected, then it is locally reflexive.

Proof. If R ∈ IV FR(X) has locally asymmetric property, then B = R ∧ R−1,

and we have (11)

R(x, x) = B(x, x) =
∧

y∈X

B(x, y) =
∧

y∈X

(R(x, y) ∧R(y, x)) =
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∧

y∈X

R(x, y) ∧
∧

y∈X

R(y, x),

so

R(x, x) ≤
∧

y∈X

R(x, y) ≤ R(x, x) and R(x, x) ≤
∧

y∈X

R(y, x) ≤ R(x, x).

Thus R has local irreflexivity property, which proves the first condition. The

second condition can be justified in a similar way.

We examine connections of the above properties with some Atanassov’s op-

erator

Definition 6 (cf. [3], Definition 1.63). Let R ∈ IV FR(X,Y ), α, β ∈ [0, 1], α+
β ≤ 1.

We define the operator Fα,β : IV FR → IV FR such that

Fα,β(R) = [R+ α(R−R), R− β(R−R)].

In [19] we proved that operator Fα,β preserve local irreflexivity and reflexiv-

ity properties, but for local asymmetry and connectedness we must add adequate

condition. Before the next discussion we observe

Lemma 4. Let p, q ∈ [0, 1], p+ q = 1. If R ∼ R, then for all x, y ∈ X

(pR+ qR) ∧ (pR−1 + qR
−1

) =

(p(R ∧R−1) + q(R ∧R
−1

).

Proof. By distributivity +, · over ∧ (∨) (see [8]) we have

(p(R ∧R−1) + q(R ∧R
−1

) =

(pR+ qR) ∧ (pR+ qR
−1

) ∧ (pR−1 + qR) ∧ (pR−1 + qR
−1

).

• If R ≤ R−1 (from R ∼ R also R ≤ R
−1

), then

(pR+ qR
−1

) ∧ (pR−1 + qR) ≥ (pR+ qR),

• If R ≥ R−1 (from R ∼ R also R ≥ R
−1

), then

(pR+ qR
−1

) ∧ (pR−1 + qR) ≥ (pR−1 + qR
−1

). So

(p(R ∧R−1) + q(R ∧R
−1

) =

(pR+ qR) ∧ (pR+ qR
−1

) ∧ (pR−1 + qR) ∧ (pR−1 + qR
−1

).
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Theorem 5. Let R ∈ IV FR(X). If R is locally connected (locally asymmetric)

and R ∼ R, then Fα,β(R) is also locally connected (locally asymmetric).

Proof. By the Lemma 4 we obtain:

[((1−α)R+αR)∧((1−α)R−1+αR
−1

), ((1−β)R+βR)∧((1−β)R
−1

+βR−1)]

= [((1− α)(R ∧R−1) + α(R) ∧R
−1

), ((1− β)(R ∧R
−1

) + β(R ∧R−1)]

By the Definition 3 we have:

= [((1− α)
∧

z∈X

(R ∧R−1)(x, z) + α
∧

z∈X

(R) ∧R
−1

)(x, z),

((1− β)
∧

z∈X

(R ∧R
−1

)(x, z) + β
∧

z∈X

(R) ∧R−1)(x, z)]

¿From distributivity + with respect infimum and the Definition 6 we have:

[((1− α)
∧

z∈X

(R ∧R−1)(x, z) + α
∧

z∈X

(R) ∧R
−1

)(x, z),

((1− β)
∧

z∈X

(R ∧R
−1

)(x, z) + β
∧

z∈X

(R) ∧R−1)(x, z)] =

[
∧

z∈X

(((1− α)(R ∧R−1)(x, z) + α(R) ∧R
−1

)(x, z)),

∧

z∈X

(((1− β)(R ∧R
−1

)(x, z) + β(R) ∧R−1)(x, z))] =

∧

z∈X

Fα,β(R ∧R−1)(x, z).

Similarly we prove (Fα,β(R)∧Fα,β(R
−1))(x, y) =

∧
z∈X Fα,β(R∧R−1)(x, z).

So the operator Fα,β preserves local asymmetry. The case of the local connected-

ness property may be proved analogously.

4 Powers of Interval-Valued Fuzzy Relations

Let us recall the notion of the composition in IV FR.
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Definition 7 (cf. [5],[12]). Let S ∈ IVFR(X,Y ), R ∈ IVFR(Y, Z). By the

sup−min composition of the relations S and R we call the relation S ◦ R ∈
IVFR(X × Z),

(S ◦R)(x, z) = [(S ◦R)(x, z), (S ◦R)(x, z)],

where

(S ◦R)(x, z) =
∨

y∈Y

(S(x, y)∧R(y, z)), (S ◦R)(x, z) =
∨

y∈Y

(S(x, y)∧R(y, z))

for x ∈ X, z ∈ Z.

Lemma 5 ([18]). The sup−min composition in IVFR(X) is isotonic, associative

and have neutral element.

Directly by isotonicity we have

Lemma 6. Let S ∈ IVFR(X,Y ), R ∈ IVFR(Y, Z).

(S ◦R)(x, z) ≤ (S ◦R)(x, z)

for x ∈ X, z ∈ Z.

Thus by the Lemma 5 we obtain that

Corollary 2. (IV FR(X), ◦) is a semigroup.

In a semigroup (IVFR(X), ◦) we can consider the powers of its elements and

analogously to [15] we define

Definition 8 ([5]). By a powers of relation R ∈ IV FR(X) we mean

R1 = R, Rn+1 = Rn ◦R, n ∈ N.

The sequence (Rn) is called stable, if

∃k∈NR
k+1 = Rk.

Example 3. Let T be the relation from Example 2. We calculate powers of this

relation and we have

T 2 =




[0.1, 0.2] [0.1, 0.2] [0.1, 0.2]
([0.1, 0.2]) [0.2, 0.4] [0.3, 0.4]
([0.1, 0.2]) [0.2, 0.3] [0.5, 0.5]



 = T 3.

So the sequence (Tn) of the locally connected relation is stable.
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Moreover, by Theorem 4 the locally connected relation is also locally reflex-

ive, so in a finite set we call this property by dominating diagonal. Because

Rn = [Rn, R
n
] and by convergence of lower and upper fuzzy relations (matri-

ces) (see [11]) we obtain stability of an interval-valued fuzzy relation R.

Corollary 3. Let R ∈ IV FR(X), X = m, m ∈ N. If R is locally connected,

then (Rn) is stable.

5 Conclusion

In this paper we considered properties of interval-valued fuzzy relations in the

context of preservation of these properties by some operations, including lattice

operations, the composition and some Atanassov’s operator. We observed very

interesting connections between these properties and dependence between these

properties and the convergence of powers of relations having these properties.

In our further considerations we want to examine other properties, more general

composition of interval-valued fuzzy relations and which properties guarantee that

the sequence (Rn) oscillate, i.e.

∃d∈NR
k+d = Rk.
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