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ZASTOSOWANIE METOD 
MATEMATYCZNYCH W INFORMATYCE 





ON A NEW WAY TO GRADIENT-BASED NEURAL 
NETWORKS LEARNING ALGORITHMS 

Maciej Krawczak 
Systems Research Institute - Polish Academy of Sciences 

Warsaw School of lnformation Technology 
<Maciej.Krawczak@ibspan.waw.pl> 

W artykule przedstawiono koncepcję sprzężonych sieci neuronowych. 
Koncepcja ta oparta jest na teorii grafów skierowanych oraz grafów 
odwrotnych. W wyniku otrzymujemy wyrażenia określające algorytm uczenia 
s1ec1 neuronowych - backpropagation. Metodologia ta może być 

wykorzystana do określania innych algorytmów uczenia opartych na 
metodach gradientowych. Następnie przedstawiono model sieci uogólnionych 
algorytmu propagacji wstecznej (backpropagation). 

Słowa kluczowe: sieci neuronowe, algorytmy propagacji wstecznej, teoria 
grafów, metody gradientowe optymalizacji. 

1. Introduction 

In this paper we will recall the concept of adjoint neural networks that was 
described by Krawczak (2002, 2003) as a method for evolution the formulae of the 
backpropagation learning algorithm for multilayer neural networks. The 
methodology is based on the assumption that multilayer neural networks can be 
treated as flow graphs. The analysis leads to the proper equations of the 
backpropagation algorithm but in a much simpler manner. The graph methodology 
incorporates the reciprocal graphs in which signals flow in opposite directions. 
These kind of neural networks are called the adjoint neural networks. Construction 
of the adjoint neural networks yields directly the formulae of the considered learning 
algorithm, as well as to any gradient descent based algorithms. 

Using the methodology for modelling complex systems, called the 
Generalized Net theory, developed by Atanassov (1991), we will construct such 
a model of the adjoint neural networks. In a paper by Krawczak and Aladjov (2002) 
we developed the Generalized Net model of the backpropagation algorithm as well 
as the first approach to development of the Generalized Net model of the adjoint 
neural networks. 
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2. Transformation of a Neural Network into a Graph 

Since the pioneering work of McCulloch and Pitts (1943) a model of an 
artificial neuron is a very sim ple processing unit, Figure 5 .1, which has a number of 

inputs X;, say N, each input being weighted with an appropriate weight 
1 N (L) 

EP=- L (d j(LJp -xj(LJp)2 , i= 1,2, ... , N 
2 j (L)=l 

X 1(/- I) W 1(1-l)j(I) -- --------- ... 
; ... ..... Xi<O 

' ' W j(1)1(1+1) . 

J(net j(ll) W j(l)k(/+ I ) 

X N(l -1) 

W j(0N(l+ I) 

W N(l- l )j(I) ...... ... ---- -- --

Figure 1. An elementary model of a neuron. 

The sum of the weighted inputs and the bias (included in the inputs) forms at the 
summation point EB the proper input 

N N 

net j = Iwu x; = LYu (1) 
i=I i=l 

to the activation function f j (net j) . In the model considered an additional element 

corresponding to a junction point, which is depicted by O , is included. Figure 1 
shows an extended notation of indices, namely we indicate the position of each 

neuron in the whole network. For example the weight W;(I-J)j (IJ indicates the 

connection between the neuron i belonging to the (l -1) -st layer and the neuron j 

from the l -th layer. 
Let us rearrange the neuron' s elements in the following way: 

• remove the activation function to the outside of the neuron, 
• the removed activation functions are shifted to each of the connections 

between the considered neuron and all neurons of the next layer, becorning 
thereby the transmittances between neurons, 

• the connection between neurons are still weighted, 
• the summation point and the junction point make up a node, 

• the ne1J.ral network with the rearranged neurons becomes a flow graph. 
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The above rearrangement is pictured in Figure 2. 

net,<'·') 
J(net1U-lJ) 

W1(1- l)j(0 

J(net j(I)) 
WiUJl(l+IJ 

Y1(/- l)j(/) Xj(/)1(/+I) 

neticn 
net;u.,, 

J(net;(l-lJ) J(netj(li) 
Wj(0k(/+I) 

Xj(/)k(l+I) 

YN(l-l)j(/) 
netN<'·') 

J(netN(l-l)) J(net j(IJ) 
Wj(/)N(/+I) 

WN(/- l)j(0 

Xj(/)N(/+I) 

Figure 2. The rearranged neuron as a segment of a flow graph. 

Now, description of any separate edge takes the following form: 

Yi(I-I)j(I) = W;(I-I)j(I) X;(I-I) = w;(I-I)j(/) /;(I-I) \net;(I-I)). (2) 

The neural network with the new models of neurons becomes a flow graph. 
Comparing the neural network as a flow graph to the respective adjoint neural 
network we can notice that the architectures exactly the same (Krawczak, 2002). 

Using the graph theory notation a feedforward network topology can be 
specified by considering the values of nodes, i.e. net j(l), for 

l = l,2, ... ,L, j(l) = 1,2, ... ,N(l) 

netj(l) = 

neti(O) = xi(O) , for l = O 
N(O) 

L wi(O)j(l) xi(O) , for l = l 
i(O)=l 
N(/-1) 

L W;(l-l)j(I) J(net;(I-I)), for 1 < / < L 
i(l-1)=1 

N(L) 

netj(our) = L wi(L-lj(L) J(neti(L-l)), for l = L 
i(L)=I 

(3) 

Using the formula for netj(l) we can illustrate flows of signals in a neural 

network treated as•a flow graph in Figure 3. 

Figure 3. A schematic exemplary two-layer neural network as a flow graph. 
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The generalized delta rule for updating the weights has the following form 

dE P dE P dnet i Ol 
Llwi(/-l)J(I) = -17---'---- = -17-----'-- ------'-''-'--- = 176J(l)xi(l-l) (4) 

dwi(l-l)J(l) dnetJ(l) dwi(l-\)J(l) 

for j(l) = 1, 2, ... , N (l), i(l -1) = 1, 2, ... , N (l -1), l = 1, 2, ... , L, where the factor 

delta is expressed bellow 

where 

N(L) 

Lf'(netj(L)) ój(our) , if l = L 
j(L)=I 

N(/) 

ó;(l-l) = J'(ne;(l-l)) Iwi(/-I)j(l) óJ(l) ,if 2 :s;,{ ~ L- l 
j(/)=1 

N(O) 

ói(O) = Ó;(in) = LWi(O)j(I) ój(I) ,if I= 1 

j(O)=I 

, dE df1(1{t W;(/-IJJ(I) X;(l-1)) 
f1(1)=---

dnet J(l) dnet J(LJ 

(5) 

(6) 

lt can be easily noticed that equations describing the signals net and 8 have 
the same structure, and directions of these signals are opposite. In Figure 4 we have 
presented a counterpart to the example shown in Figure 3. 

Figure 4. An exemplary two-layer neural network as an adjoint NN. 

The adjoint neural network was found by application of the same network 
architecture, reversal of the direction of signal flows, replacement of activation 
functions by their derivatives, and switching of the positions of summing points with 
junction points within each node. lt was shown that the transformation of the 
original network into the adjoint network is governed by very simple rules described 
in Krawczak (2002). 
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3. Generalized Net Modelling 

The basie difference between Generalized Nets and the ordinary Petri nets is 
the place - transition relation (Atanassov, 1991), in the theory of Generalized Nets 
the transitions are objects of a very complex nature. The places are marked by Q , 
and the transitions by T . Generalized Nets contain tokens, which are transferred from 
place to place. Every token bears some information, which is described by token's 
characteristic, and any token enters the net with an initial characteristic. After 
passing a transition the tokens' characteristics are modified. 

where: 

The transition has input and output places, as shown in Figure 5. 

Formally, every transition is described by a seven-tuple 

• L' = {z;, z;, ... , z:} is a finite, non empty set of the transition' s input places, 

• L" = {z;, z;, ... , z;} is a finite, non empty set of the transition's output places, 

• t1 is the current time of the transition's firing, 

• t2 is the cmrent duration of the transition active state, 

(7) 

• r is the transition's condition deterrnining which tokens will pass (or transfer) 
from the transition's inputs to its outputs; it has the form of an index matrix 
described in (Atanassov, 1987), 

l' I 

l' 2 

[' 
m 

[" 
I 

[" 
2 

[" 
n 

Figure 5. A Generalized Net transition. 

• M is an index matrix of the capacities of transition's arcs, 
D is an object of a form sirnilar to a Boolean expression, it may contain as 

variables the symbols that serve as labels for transition's input places, and D is an 
expression built up from variables and the Boolean connectives /\ and v , The 
following ordered four-tuple 
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is called Generalized Net if the elements are described as follows: 
• A is a set of transitions, 

• 1l A is a function yielding the priorities of the transitions, i.e. ff A : A • N , 

where N = {o, 1, 2, ... }u {00}, 

• 1l L is a function specifying the priorities of the places, i.e. ff L : L • N , where 

L = ptjA u pr2A, and pr;X is the i -th projection of the n-dimensional set, 

where n E N, n 2:: l and 1::; i::; n (obviously, L is the set of all Generalized 
Net places), 

• c is a function providing the capacities of the places, i.e. c : L • N , 
• f is a function that calculates the truth values of the predicates of the 

transition's conditions (for the Generalized Net described here !et the function f 

have the value false or true, i.e. a value from the set {o, 1} ), 

• 8 1 is a function specifying the next time-moment when a given transition Z 

can be activated, i.e. <91 (t) = t', where pr3Z = t, t' E lT, T + 1• J and t :-S: t'; the 

value of this function is calculated at the moment when the transition terminates 
its functioning, 

• 8 2 is a function yielding the duration of the active state of a given transition Z , 

i.e. <92 (t) = t' , where pr4Z = t E lT, T + t • J and t' 2:: O ; the value of this function 

is calculated at the moment when the transition starts its functioning, 
• K is the set of the Generalized Net's tokens, 
• 1l K is a function specifying the priorities of the tokens, i.e. ff K : K • N , 

• <9K is a function producing the time-moment when a given token can enter the 

net, i.e. 8K (a)= t, where aE K and t E lT, T + 1* j, 
• T is the time-moment when the Generalized Net starts functioning; this moment 

is determined with respect to a fixed (global) time-scale, 

• t0 is an elementary time-step, related to the fixed (global) time-scale, 

• t • is the duration of the Generalized Net functioning, 
• X is the set of all initial characteristics the tokens can receive on entering the 

net, 
• </J is a characteristic function that assigns new characteristics to every token 

when it makes the transfer from an input to an output place of a given transition, 
• b is a function specifying the maximum number of characteristics a gi ven token 

can receive, i.e. b: K • N ; for example, if b(a) = 1 for some token a, then 

this token will enter the net with some initial characteristic and subsequently it 
will keep only its current characteristic; when b(a) = 00 the token a will keep 
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all its characteristics; when b(a) = k < oo the token a will keep its last k 
characteristics (the characteristics older than the last k will be forgotten); in the 

generał case every token a has b(a) + 1 characteristcs on leaving the net. 

A given Generalized Net may Jack some of the above components. In these 
cases, any missing component will be omitted. The Generalized Nets of this kind 
form a special class of Generalized Nets called reduced Generalized Nets. 

4. Modelling of the Adjoint Neural Networks 

In this part we will determine the Generalized Net model of the ad joint neural 
network for the backpropagation algorithm, partially following Krawczak, Aladjov 
(2002). 

The Generalized Net model of the adjoint neural networks contains four 
transitions , see Figure 6. Each transition of the model represents a separate stage of 
the ad joint neural network functioning. These stages are as follows: 

• construction of the ad joint neural network 
• initialisation of connection weights 
• propagation of signals 
• back propagation of the error. 

Here we will constrain our consideration to some elements of the reduced 
Generalized Net form, in order to show how this methodology can be used to 
construct the model. 

In the considered multilayer neural network each neuron is represented by 
a single neuron of a -type, and the token has the following initial characteristic 

y(a1 )= (NNI,l,I,f1 ,x1 ,imW,d) , forl=0,l, ... ,L (9) 

where NNI - the neural network identifier, 
l - th~ layer number, 
I - the number of the token (neuron), 
f 1 - an activation function of the I -th neuron, 

x1 - the current value of neuron output, 

im W - the index matrix of the weights, which contains the connection, 
having the following form 

in out 
1 W1,1 wl ,I 

imW = 2 W2,1 W1,2 

N WN,l wl ,N 
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where 

N - the number of all neurons in the considered neural network, 

Wm,n - the weight connecting the m -th neuron with the n -th neuron, 

d - description, which can be defined as follows 

"in" 

"out" 

"int" 

"iso" 

if (''v'iE (1,2, ... ,N)) (imW; 1 =0) & (:3iE (1,2, ... ,N) (im W,,; :;t:0)) 
if ('ii E (1, 2, ... ,N)) (im W,,; = 0) & (:3i E (1, 2, ... ,N) (im W;,1 :;t O)) 
if (:3iE (1,2, ... ,N)) (im W,,; :;t:0) & (:3iE (1,2, ... ,N) (imW;,1 :;t:0)) 
if (ViE (1,2, ... ,N)) (im W,,; =0) & (ViE (1,2, ... ,N) (imW;,1 =0)) 

(10) 

where "in", "out", "int", "iso" denote the input, output, interna! and 
isolated neurons, respectively. In Figure 6 the considered places are denoted 

by X;,i=l, ... ,8, mj,j=l, ... ,7, nk,k=l, ... ,7. 

Z4 

x6 

Z3 

Z2 X4 X1 
Z1 

X1 X2 X3 Xs Xs 

o 
ml m2 m3 ms 

m4 m6 

Figure 6. The Generalized Net model of the adjoint neural network. 
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It is worth noticing that the characteristic (9) includes all information 
required to estimate the whole neural network, namely the connectivity and 
characteristics. 

The process of the ad joint neural network construction is based on changes of 
the neurons features, that is - the neurons must be able to propagate the signals in the 
forward direction as well as to propagate the error in the back direction, and to 
possess all the information required for the connection weights evaluation. These 
changes of the new neuron features are represented by generation of the new 

characteristics of the tokens in the place X 2 , which are as follows 

(11) 

where the new components of the characteristics have the following meaning 

(12) 

where net1 is related to Equation 3, and 

~ --~ UJ -
onet1 

(13) 

which is related to Equation 5, 

imW1 has the same components as imW but the weights of inputs are 

replaced by the weights of outputs and vice versa, that is 

tn out 

1 W1,1 w,,, 
imW1 = 2 w, ,2 W2,1 

N Wl ,N WN,I 

d1 describes the connectivity of the neurons within the adjoint neural 

network, and can be obtained from d in the following way r„ if d ="out" 
"out" if d ="in" 

(14) di = "int" if d ="int" 
"iso" if d="iso". 
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Prom the Generalized Net point of view, the process of the adjoint neural 
network model can be represented by the following transition Z1 

true ) . (15) 

The next transition Z2 describes the first stage of the training process, 

namely the initialisation of weights 

X3 mz 

Z2 = ( { X 2 , mi} , { X\, m2 }, Xz true false ). (16) 

ml false true 

In the place m, a token associated with the performance index enters the 

Generalized Net with the following initial characteristic 

y(/J) = (NNl, E, Emax > 

where NNl - the neural network identifier, 
E - the performance index of the neural network learning, 
Emax - the threshold value of the performance index, which must be 

reached. 

In the place m2 this token does not change this characteristic. 

(17) 

The transition Z3 associated with the pattern recognition process has the 

form 

Z3 = ( {X3, X4, X7, m2,m6,n1 },{X 4, X5,m3,m4,n2 }, (18) 

Xs x6 ~ m4 n2 

X3 VI false false false false 

X4 false V2 false false false 

X7 V1 false false false false > 
mz false false V3 -,V3 false 

m4 false false V3 -,V3 false 

m6 Jalse false Vi -,V3 false 

n1 false false false false V3 
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where 

\li = "the neuron has assigned the input signal", 

V2 = "the neuron has assigned the output signal", 

V3 = "all neurons of the network have assigned the output signals". 

The tokens y P , p = 1,2 ... , P , where p is the number of the training 

pattern enter the place n1 with the initial characteristic 

y(yp)= (X p(O), Dp, p) (19) 

where XP (O) - is the inputs vector of the neural network, and D P - is the vector of 

desired network outputs. 

The tokens of a -type enter the place X 4 for the purpose of calculation of 

the neuron outputs, and next the tokens are transferred to the place X 5 , where the 

tokens a form the output layer (for d ="out"), and obtain the new characteristics 
in the following form 

related to the nominał values of connection weights and the pattern p . The factor 

81 can be viewed as representing the inputs for the adjoint neural network. 

In the place m3 the token fJ obtains the new characteristic 

y(/J) = (NNI, E', Erro.x > (21) 

The next transition Z 4 is responsible for the error propagation via the adjoint 

neural network, and the weights correction process, and has the form 

Z4 = ( {x°s, x"6, m3,n2,m1 },{x'6,-x"1, x's,ms,m6,m1,n3}) (22) 

x6 X1 Xs ms m6 ~ ~ 

Xs V4 false false false false false false 

r4 = x6 false Vs -,Vs false false false false 

~ false false false -,Vs Vs &-,V6 v6 false 

~ false false false -,Vs Vs &-,V6 v6 false 

ni false false false false false false true 
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where 

V4 = "the adjoint neuron has assigned the input signal", 

V5 = "the new pattern for learning must be applied", 

V6 = "there exist adjoint neurons with unassigned outputs" . 

In the place X 6 the new values of the parameters S, are assigned to the 

adjoint neuron outputs, and the weights can be corrected, in details according to the 
following rule 

Llw;(H)J(i) = 1J '51(,) X;(H) . 

Other details of the transitions, places and tokens are very similar to those 
considered in the previous sections and we will not repeat them. 

5. Conclusions 

The process of the backpropagation learning algorithm of the multilayer 
neural networks can be simplified by introducing the adjoint neurons. Such neurons 
enrich the ordinary neuron capabilities with some mechanism for error 
backpropagation and self-modification of the connection weight changes. It seems 
that the new structure of the neurons (the neuron combined with the ad joint neuron) 
gives the possibilities for hardware implementation of the neural network including 
the mechanism of the backpropagation learning algorithm or other learning 
algorithms based on gradient descent. 
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