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The papers presented in this Volume 1 constitute a collection of contributions, 
both of a foundational and applied type, by both well-known experts and young 
researchers in various fields of broadly perceived intelligent systems. 
It may be viewed as a result of fruitful discussions held during the Tenth 
International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets 
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Research Institute, Polish Academy of Sciences, in Warsaw, Poland, Institute 
of  Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences in 
Sofia, Bulgaria, and WIT - Warsaw School of Information Technology in 
Warsaw, Poland, and co-organized by: the Matej Bel University, Banska 
Bystrica, Slovakia, Universidad Publica de Navarra, Pamplona, Spain, 
Universidade de Tras-Os-Montes e Alto Douro, Vila Real, Portugal, and the 
University of Westminster, Harrow, UK:

Http://www.ibspan.waw.pl/ifs2011 

The consecutive International Workshops on Intuitionistic Fuzzy Sets and 
Generalized Nets (IWIFSGNs) have been meant to provide a forum for the 
presentation of new results and for scientific discussion on new 
developments in foundations and applications of intuitionistic fuzzy sets and 
generalized nets pioneered by Professor Krassimir T. Atanassov. Other topics 
related to broadly perceived representation and processing of uncertain and 
imprecise information and intelligent systems have also been included.  The 
Tenth International Workshop on Intuitionistic Fuzzy Sets and Generalized 
Nets (IWIFSGN-2011) is a continuation of this undertaking, and provides many 
new ideas and results in the areas concerned.

We hope that a collection of main contributions presented at the Workshop, 
completed with many papers by leading experts who have not been able to 
participate, will provide a source of much needed information on recent trends 
in the topics considered.
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Abstract 

The used generalized net will give us a possibility for parallel 

optimization of multilayer perceptron based on assigned training pairs 

with conjugate gradient backpropagation algorithm. For changing the 

number of the neurons in the hidden layer we use “Golden section” rul. 

Keywords: generalized nets, modelling, neural network, conjugate 

gradient backpropagation.  

1 Introduction 

In a series of papers the process of functioning and the results of the work 

of different types of neural networks are described by Generalized Nets (GNs, 

see [2], [19]). Here, we shall discuss the possibility for training of feed-forward 

Neural Networks (NN, see, e.g. [9]) by backpropagation algorithm. The GN will 

optimize the NN-structure on the based of connections of limit parameter. 

The different types of NNs can be implemented in different ways [10], 

[15], [16] and can be learned by different algorithms [7], [13], [14]. 

The proposed generalized net model introduces parallel work in the training 

of two NNs with different structures. The difference between them is in the 

number of neurons in the hidden layer, which directly reflects on the all 
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network's properties. Through increasing their number the network is learned 

with fewer numbers of epochs achieving its purpose. On the other hand, the 

great number of neurons complicates the implementation of the NN and makes 

it unusable in structures with elements’ limits [7].  

In the many-layer NNs, one layer exit become entries for the next one.  The 

equations describing this operation are: 

a
3
=f3(w3f2(w2f1(w1p+b1)+b2)+b3),                               (1) 

where: 

 a
m
 is the exit of the m-th layer of the NN for m =1, 2, 3; 

 w is a matrix of the weight coefficients of each of the entries; 

 b is neuron’s entry bias; 

 fm is the transfer function of the m-th layer. 

The neuron in the first layer receives р outside entries. 

The neurons’ exits from the last layer determine the number а of NN’s 

exits. A couple numbers is submitted (an entry value and an achieving aim – on 

network’s exit) to the algorithm, since it belongs to the training methods with 

teacher:  

<p1, t1>, <p2 , t2>, ..., <pQ , tQ>,                                   (2) 

where Q  {1,...,n}, n – numbers of learning couple, where рQ is the entry value 

(on the network entry), and tQ is the exit’s value corresponding to the aim. 

Every network’s entry is preliminary established and constant, and the exit has 

to correspond to the aim. The difference between the entry values and the aim is 

the error: e = t-a. 

The “back propagation” algorithm [9] uses least-squarter error: 
22 e)at(F̂                                                  (3) 

In training the NN, the algorithm recalculates the network’s parameters (W 

and b) so to achieve least-mean square error. 

The “back propagation” algorithm for the i-th neuron, for k+1-th iteration 

uses equations: 

m
i

m
i

m
i

w

F̂
)k(w)k(w




1 ;                                       (4) 

m
i

m
i

m
i

b

F̂
)k(b)k(b




1 ,                                      (5) 

where:  

  - learning rate for neural network; 

 
m
iw

F̂




- relation between the changes of mean square error and changes of 

the weights; 
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 
m
ib

F̂




- relation between the changes of mean square error and changes of the 

biases. 

 

Figure 1: Multilayer Perceptron 

In steepest descent algorithm, the learning rate is held constant throughout 

the training. The performance of the algorithm is very sensitive to the proper 

adjustment of the learning rate. If the learning rate is set too high, the algorithm 

may oscillate and become unstable. If the learning rate is too low, the algorithm 

will take too long to converge. It is not practical to determine the optimal setting 

for the learning rate before training, and, in fact, the optimal learning rate 

changes during the training process, as the algorithm moves across the 

performance surface [1],  [5], [12], [17], [18]. 

The conjugate gradient is a numerical optimization algorithm [20], [21]. 

The other known methods are very different: steepest descent algorithm is a 

simplest algorithm, but is very slow in convergence; Newton method is much 

faster, but requires that the Hesian matrix and its inverse be calculated.  

The conjugate gradient algorithm is something of compromise. It doesn’t 

require the calculation of second derivatives and has the quadratic convergence 

property. This algorithm called conjugate gradient backpropagation (CGBP). 

The CGBP algorithm are: 

1. Select the firs search direction p0 to be negative of the gradient: 

00 gp                                                   (6) 

where  

kxxk )x(Fg


                                         (7) 

and )x(F is a quadratic  function. 

2. Take a step selecting the learning rate k to minimizing the function 

along the search direction: 

kkkk pxx 1                                              (8) 

P1 

… 

 

a
2
 

P2 

Pn 

… 

Hidden Layer 
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for the iteration number k+1. 

3. Select the next search direction  

1 kkkk pgp                                                  (9) 

where  

11

1










k
T
k

k
T
k

k
pg

gg
,                                            (10) 

or 

11 


k

T
k

k
T
k

k
gg

gg
,                                              (11) 

or 

11

1










k
T
k

k
T
k

k
gg

gg
,                                            (12) 

 

4. If the algorithm has no converged, continue with step 2. 

The network is trained when  

maxEe 2 ,                                        (13) 

where maxE  is the maximum mean square error. 

For this case study, a subject has been used as an example but there would 

be no essential algorithmic difference if the evaluation is related to a program 

form or a degree of education. 

2 The golden sections algorithm 

The question for the changes the number of neurons in hidden layer we propos 

to use the golden section algorithm. 

Let the natural number N and the real number C be given. They correspond 

to the maximum number of the hidden neurons and the lower boundary of the 

desired minimal error. 

Let real monotonous function f determine the error f(k) of the NN with k 

hidden neurons. 

Let function c : R × R → R be defined for every x, y  R by: 

 





















C  y) min(x,  if    1;

y C  xif   ;
2

1

C  y) max(x; if    0;

)y,x(c                                        (14) 
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Let  ...610
2

15



  be the Golden number. 

Initially, let we put: L = 1; M = [2
:N] + 1, where [x] is the integer part of 

the real number x≥0. 

 

 

 

 

 

The algorithm is the following: 

1. If L≥M go to 5. 

2. Calculate c(f(L), f(M)). If 















5 go  to0

4 go  to
2

1

3 go  to1

)y,x(c                                           (15) 

 

3. L = M + 1; M = M + [2
.(N-M)] + 1 go to 1. 

4. M = L + [2
.(N-M)] + 1; L = L + 1 go to 1. 

5. End: final value of the algorithm is L. 

3 GN-model 

All definitions related to the concept “GN” are taken from [1]. The network, 

describing the work of the neural network learned by “Backpropagation” 

algorithm [5], is shown on Fig.2. 

The below constructed GN-model is reduced one. It does not have temporal 

components, the priorities of the transitions, places and tokens are equal, the 

place and arc capacities are equal to infinity. 

 

Initially the following tokens enter in the generalized net: 

- in place SSTR  - -token with characteristic  


0x “number of neurons in the first layer, number of neurons in the output 

layer”; 

- in place Sе – -token with characteristic 


0x  “maximum error in neural network learning Emax”; 

- in place SPt - -token with characteristic  

min                               0.5 0.61                       max 

✓ 
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
0x  “{p1, t1}, {p2 , t2}, ..., {pQ , tQ}”; 

- in place SF  - one -token with characteristic 

 


0x  “f

1
,f

2
,f

3
”.  

 
 

Figure 2: Generalized net model for Parallel Optimization of Multilayer Perceptron with 

Conjugate gradient Backpropagation Algorithm 

 

The token splits into two tokens that enters respectively in places FS   and 

FS  ; in place SWb -  -token having characteristics 
0x  “w, b”; in place Scon - -

token with a characteristics 
0x  “maximum number of the neurons in the 

hiden layer in the neural network - Cmax”. 

Generalized net is presented by a set of transitions: 

А= {Z1, Z2, 3Z  , 3Z  , Z4}, 

where transitions describe the following processes: 

  Z1 – Forming initial conditions and structure of the neural networks; 

  Z2 – Calculating ai
 
using (1); 

 3Z   – Calculating the backward of the first neural network; 

 3Z   – Calculating the backward of the secound neural network; 

  Z4 – Checking for the end of all process. 

Z1 
SSTR 

Se 

S42 

S11   

SF   

SWb  

Z2 

Prav  S21 

S12   

S41 

SPt  

Z4 

obraten 

S43 

S22 

3Z   

‘obrate

n 

31S   
3Z   

obr

ate

n 

FS   

SАWb 
S44 

32S   

AS3
  

31S   

32S   

AS3
  

S13   

Scon 

 

33S  

33S   
FS   

0--
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Transitions of GN-model have the following form. Everywhere: 

 p - vector of the inputs of the neural network, 

 a - vector of outputs of neural network,  

 ai - output values of the i neural network, i = 1, 2,  

 ei – square error of the i neural network, i = 1, 2, 

 Emax – maximum error in the learning of the neural network, 

 t – learn target; 

 wik – weight coefficients of the i neural networks  i = 1, 2 for the k iteration; 

 b ik – bias coefficients of the i neural networks  i = 1, 2 for the k iteration. 

 

Z1 =<{SSTR, Se, SPt, Scon, S43,  S13}, {S11, S12, S13}, R1, (((Se, SPt, Scon),S13),  

( SSTR, S43))>, 

 

,

12,1313

43

131211
1

TrueWTrueS

FalseFalseTrueS

TrueFalseFalseS

TrueFalseFalseS

TrueFalseFalseS

TrueFalseFalseS

SSS
R

con

Pt

e

STR


 

 

and W13,12= “it is not posible to devide current interval to the subintervals”. 

The token that enters in place S11 on the first activation of the transition Z1 

obtain characteristic  

  ",,,;1," 00020010

'  xxxprxxprx  . 

Next it obtains the characteristic  

  ",,,;," 0002maxmin01

'  xxxprllxprxcu  , 

where [lmin; lmax] is the current characteristics of the token that enters in 

place S13 from place S43. 

The token that enters place S12 obtains the characteristic [lmin; lmax].  

 

Z2 = <{ 31S  , 31S  , S11, SF, SWb, S, SАWb}, {S21, FS , S22, FS  , }, R2, 

 ( (SF, S11),   (SAWb, SWb), ( 31S  , 31S  )) >, 
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,

12

11

31

31

2221
2

FalseFalseTrueFalseTrueS

FalseFalseTrueFalseTrueS

FalseFalseTrueFalseTrueS

FalseFalseTrueFalseTrueS

FalseTrueTrueTrueTrueS

FalseFalseTrueFalseTrueS

TrueFalseTrueFalseFalseS

TrueFalseFalseFalseTrueS

SSSSS
R

AWb

Wb

F

AWbFF










 

 

The tokens that enter places S21 and S22 obtain the characteristics respect-

ively:    

  ",,,,,,," 02min011000

'''  xprlxpraxxxxx cucu   

and  

  ",,,,,,," 02max012000

'''  xprlxpraxxxxx cucu 


. 

 

3Z   = <{S21, FS  , АS3
 }, { 31S  , 32S  , 33S  , АS3

 }, 3R ,  (S21, FS  , АS3
 ) >, 

,

33,332,331,33

21

3333231
3

TrueWWWS

TrueFalseFalseFalseS

TrueFalseFalseFalseS

SSSS
R

AAAА

F

А








 

and 

31,3AW  = “e1> Emax”; 

32,3AW  = “e1< Emax”; 

33,3AW  = “e1> Emax and  n1>m ”; 

where: 

n1 – current number of the first neural network learning iteration,   

m – maximum number of the neural network learning iteration. 

The token that enters place 31S   obtains the characteristic “first neural 

network: w(k+1), b(k+1)”. The 1  and 2  tokens that enter place 32S   and 

33S  obtain the characteristic  

"" min00
21 lxx 
 

. 

 

3Z   = <{ S22, FS  , 3AS   }, { 31S  , 32S  , 33S  , 3AS  }, 3R  , (S22, FS  , 3AS   ) >, 
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,

33,332,331,33

3

22

3333231
3

TrueWWWS

TrueFalseFalseFalseS

TrueFalseFalseFalseS

SSSS
R

AAAA

F

A








. 

and  

31,3AW  = “e2> Emax”, 

32,3AW  = “e2< Emax”, 

33,3AW  = “e2> Emax and  n2>m ”, 

where: 

n2 – current number of the second neural network learning iteration,   

m – maximum number of the neural network learning iteration. 

The token that enters place 31S   obtains the characteristic “second neural 

network: w(k+1), b(k+1)”. The 1   and 2   tokens that enter place 32S   and 

33S  obtain respectively  "" max00
21 lxx 

  
. 

 

Z4 = <{ 32S  , 33S  , 32S  , 33S  , S44}, {S41, S42, S43, S44}, R4, 

(S44 ( 32S  , 33S  , 32S  , 33S  ))>, 

,

43,4442,4441,4444

33

32

33

32

44434241
4

TrueWWWS

TrueFalseFalseFalseS

TrueFalseFalseFalseS

TrueFalseFalseFalseS

TrueFalseFalseFalseS

SSSS
R










 

and 

41.44W = “e1< Emax” & ”e2< Emax”; 

42.44W = “e1> Emax and  n1>m“  & “e2> Emax and  n2>m”;  

43.44W = “( e1< Emax and (e2> Emax and  n2>m)) or (e2< Emax and (e1> Emax and  

n1>m))“. 

 

The token that enters place S41 obtains the characteristic “Both NN satisfied 

conditions – for the solution is used the network who wave smaller numbers of 

the neurons”.  
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The token that enters place S42 obtain the characteristic “There is no 

solution (both NN not satisfied conditions)”. 

The token that enters place S44 obtains the characteristic “The solution is in 

interval [lmin; lmax] – the interval is changed using the the golden sections 

algorithm”. 

4 Conclusion 

The proposed GN-model introduces the parallel work in the training of two NNs 

with different structures. The difference between the nets is in the number of 

neurons in the hidden layer and that affects directly the properties of the whole 

network. 

On the other hand, the great number of neurons complicates the implem-

entation of the NN. The constructed GN-model allows simulation and 

optimization of the architecture of the NNs using Conjugate Gradient 

Backpropagation algorithm. 
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