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About the Workshop

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed
from the atmosphere is high on the political and scientific agendas. Building on the UN climate
process, the international community strives to address the long-term challenge of climate
change collectively and comprehensively, and to take concrete and timely action that proves
sustainable and robust in the future. Under the umbrella of the UN Framework Convention on
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these
inventories to develop strategies and policies for emission reductions and to track the progress
of those strategies and policies. Where formal commitments to limit emissions exist, regulatory
agencies and corporations rely on emission inventories to establish compliance records.

However, as increasing international concern and cooperation aim at policy-oriented solutions
to the climate change problem, a number of issues circulating around uncertainty have come to
the fore, which were undervalued or left unmentioned at the time of the Kyoto Protocol but
require adequate recognition under a workable and legislated successor agreement. Accounting
and verification of emissions in space and time, compliance with emission reduction
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting
of traded emission permits are to name but a few.

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National
University. The 4th Uncertainty Workshop follows up and expands on the scope of the earlier
Uncertainty Workshops — the Ist Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in
2007 in Laxenburg, Austria; and the 3 Workshop in 2010 in Lviv, Ukraine.
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Figure 1 is a classical illustration of how quickly and strongly prognostic
scenarios deviate from historical records. The figure shows historical and projected
global COz emissions resulting from fossil-fuel burning and cement production. From
a purely intuitive perspective, only the highest emission scenarios appear to be in
accordance with the historical record (until when?), but not the lower ones.

2. Motivation

From a theoretical point of view, we argue that the mathematical tools and
techniques needed to quantify the outreach of prognostic scenarios based on learning
from the past (that is, to apply RL) are available. However, the necessary
epistemological insights to apply these tools and techniques properly, including outside
their traditional context, are missing. The first statement (tools and techniques are
available) is bold; while the second (knowledge to apply tools and techniques outside
their traditional context is missing) is not new. Developing the first statement is subject
to this paper. The second statement is at the core of empirical inference science, which
is a maturing paradigm. Empirical inference science aims at complementing classical
statistics in Estimating dependencies on the basis of empirical data ... a central problem
in applied analysis [5: vii].

From a practical point of view, we argue that deriving the aforementioned
indicator exhibits most interesting windfall profits: 1) We anticipate that generating the
indicator while building a model will lead us onto new paths of constructing models
and conducting systems analysis (i.e., towards a new standard of ‘good modeling’). 2)
Our insights in RL will allow the chance of complying with—or the risk of exceeding—
agreed global warming targets to be corrected. We conjecture that the risk of exceeding
2050 global warming targets ranging between 2 to 4 °C and greater is underestimated.
We will return to these two issues at the end of our paper.

3. Terminology

We explain the difference between diagnostic and prognostic uncertainty, the two
terms at the core of our paper, in Section 5.1 below. Their definitions will provide the
basis for understanding the difference between learning in a diagnostic and prognostic
context and the other terms (e.g., ‘prediction’ and ‘forecast’) that we use.

4.  Status quo

Since their inception, climate treaty negotiations have set out to stabilize Earth’s
climate by implementing mechanisms that reduce global greenhouse gas [GHG]
emissions and lead to sustainable management of the atmosphere at a ‘safe’ steady-state
level (assumed to hold for an increase in global average temperature of below
2 °C above preindustrial levels). In recent years, international climate policy has taken
a step beyond achieving GHG concentration-related objectives by increasingly focusing
on limiting temperature rise [6]. The idea of limiting cumulative global GHG emissions
by adhering to a long-term global warming target was first discussed broadly and
publicly by policymakers at the 2009 United Nations climate change conference in
Copenhagen. It appears to be a promising and robust methodology [7-12] (cf. also Box
1). To comply with it, the emission reductions required from the fossil-fuel and land
use/land-use change sector are daunting: 50%—85% below the 1990 global annual
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assumed in the context of this proposal that the data record’s memory is contained (as
above) in its dynamics, not in its uncertainty.

Figure 2 attempts to visualize the fundamental difference between prediction and
an advanced mode of learning from the past, the latter allowing the increase in
prognostic uncertainty with time to be grasped. The mode of RL that we intend to
explore builds on representation of the available data by way of two components: i) a
Taylor (or equivalent) polynomial which captures the signal’s predominant (lower-
order) dynamics (learning phase 1); and ii) a linearly increasing ‘uncertainty (learning)
wedge’,? which comprises the signal’s higher-order dynamics and the uncertainty
underlying the signal-—or only the data record’s higher-order dynamics if the data
record is accurate and precise (learning phase 2). We expect this two-component split
into lower-order dynamics and uncertainty wedge to be systems-dependent and
unsharp, the latter resulting from uncertainty. In a nutshell, Figure 2 indicates that we
seek to balance three things: the ‘right’ order of the dynamics and both the ‘right’
extension and the ‘right’ opening of the uncertainty wedge. It is this balance that must
hold during the testing phase. The historical data held back for this phase have not been
used before, that is, during learning phases 1 and 2, which is why we refer to this part
of the data record as “historical future”.

Data

> Future
L Leaming (L2 T
Leaming (L1) g (L2} sting (T} Today
{ A J
I f
Historical Leaming Historical Future

Figure 2. Illustrating the different steps of RL with the help of a simple (periodic,
increasing, and periodically increasing) function.

6. Methodology—ijust one approach

Assume the following situation, namely, that we have more than one historical
data record available, each accurate and precise (which can be easily relaxed to
‘accurate and imprecise’), and that we have learned from the past (i.e., from an RL
exercise):

e that each historical data record exhibits (but not necessarily) a linear dynamics;

2 “Linear” meaning linear relative to the dynamics, which is why we also speak of linear RL (sufficient in the
context of this study).
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In a nutshell, an accurate-precise system has been merged with classical statistics,
meaning (here) that we grasp the historical future of our data record with the help of a
straight line, the slope of which is uncertain. Another point warranting attention is that
the law of error propagation is approximate and can only be applied under conditions

that guarantee the validity of partial derivatives. In particular, if Afy, =Afy (t) , these
conditions could be violated quickly with increasing t.

One can proceed similarly for C=C(t), i.e.,

C=mCtt [C]:ppmv’ [mc‘]:m

... (here not repeated). Alternatively, instead of analyzing E =E(t) and C=C(t)
individually, one can also look at the linearly interdependent case C= C(E) ,ie.,

. . _ Yy
C=mE=mcmgt=mgt ; Mg = MegMg, ; [mCE] = ppmng—C

or, to generalize further, at the linearly interdependent case T=T(C)=T (C(E)) ,ie.,

— — o
T=mC=mm E e [m ]_ C
- _ ' Tt — “TC-CEEt > TCl™ H
=MycMegMpt =myt ppmv

1 o

°C
[mTt]:7

Al

_—
- E

Figure 3. Graphical illustration of learning in the C-E space: independent versus
linearly interdependent case. In the latter case, learning does not happen in

a space which is spanned by a 2-dimensional square (AE X AC), but along

a 1-dimensional space (red curve) belonging to a curved uncertainty wedge.

The above cases can be conveniently summarized:

AE =Afpmpt = Af, E
AC = Afgmet = Af o C = ,/Ang +Af2C
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need be, simplifying assumptions (still) more important than immersing ourselves in
numerical exercises.

So far, we see two important consequences emerging:

The objective (i) to generate a metric / indicator to inform non-experts about the
limitations of the predictive outreach of a prognostic scenario; and (ii) to
demonstrate that this metric / indicator can be generated even concomitantly with
building a prognostic model is within reach. We conjecture that the latter, in
particular, will lead us, in the case of success, onto new paths of constructing
models and conducting systems analysis—that is, towards a new standard of
‘good modeling’.

RL informs us that, from an uncertainty perspective, emission sources and sinks
need to be separated—which is not done in estimating the risk of exceeding an
agreed global warming target in 2050. This very risk can be determined by using
multi-model emission scenarios like those in Figure 1 in connection with
emission-climate change models (where “climate change” is quantified by
changes in global surface temperature). The cumulative emissions of these
scenarios are used as a predictor for the expected global temperature increase in
the future (cf. Box 1). However, the crux of this exercise is that it starts—
erroneously—from net emissions. (Take Fig. 1 above, for example: removals
eventually outpace emissions and net emissions even become negative.) From an
uncertainty perspective, preferring net emissions to emissions minus removals
runs counter to the law of error propagation which informs us that a sink reduces
a source but their uncertainties still add up. This shortfall has far-reaching
consequences. The correct approach would have been to deal with cumulated
emissions and removals individually to determine their combined risk of
exceeding the agreed temperature target. RL allows exactly this to be done: RL
overcomes this shortfall and allows the effect of learning about emissions and
removals individually to be grasped.

This is why we argue that understanding and grasping RL is of fundamental and global

relevance.
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Acronyms
C concentrations
E emissions

E-C-T  emissions-concentration-temperature
ETU emissions-temperature-uncertainty
GHG greenhouse gas

lower

retrospective learning

temperature

upper

s:»—]?‘—‘
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