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Abstract

The notion entropy based on the probability was already described by Shan-

non [7] and later by Kolmogorov [3] and by Sinai [8]. We introduce the

notion of local entropy introduced by Rahimi and Riazi [5] on Atanassov

”intuitionistic” fuzzy (IF) sets [1] and prove some of its properties.

Keywords: entropy, local fuzzy entropy.

1 Introduction

In this section some known concepts of entropy are recalled, as there are:

Shannon’s theory of entropy

Shannon [7] defined the measure of an information as follows. He has shown

based on the some report that event A really occurred. Moreover, he defined the

measure of information included in the given report about event A as the number

I = log
1

p
.

Consider a random experiment with a finite number of possible results. We

can model this experiment as a finite measurable space (Ω,S, P ), where Ω =
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{ω1, ..., ωn} is a finite set of elementary events (results of experiment) and P is a

probability defined by following equations

P ({ωi}) = pi, 0 ≤ pi ≤ 1(i = 1, ..., n),
n∑

i=1

pi = 1.

Before realization of the experiment the result is not predictable. Result of the

random event shows uncertainty, which is dependent on the probability measure of

individual results. Here, Shannon assigned a non-negative number H(E), called

entropy, to the uncertainty of an experiment, defined as follows

H(E) = H(p1, ..., pn) = −

n∑

k=1

pk log pk.

Kolomogorov-Sinai entropy theory

We shall consider classical Kolmogorov probability space (Ω,S, P ) and a mea-

surable partition

A = {A1, ..., Ak} ,

i.e. a set of subsets of the set Ω such that

Ai ∈ S(i = 1, ..., k), Ai ∩ Aj = ∅(i 6= j),

k⋃

i=1

Ai = Ω.

The entropy of the measurable partition A is the number

H(A) =

k∑

i=1

ϕ(P (Ai)),

where ϕ(x) = −x log x, if x > 0, and ϕ(0) = 0.
Dynamics of a process represents a measure preserving map T : Ω → Ω,

T−1(A) ∈ S , and P (T−1(A)) = P (A), for any A ∈ S. If A is a measurable par-

tition, then T−1(A) =
{
T−1(A1), ..., T

−1(Ak)
}

is a measurable partition, too.

Common refinement of two measurable partitions A,B defined by the formula

A ∨ B = {Ai ∩Bj ;Ai ∈ A, Bj ∈ B} .

generates a measurable partition. It can be proved that there exists

h(A, T ) :=
1

n
lim
n→∞

H(

n−1∨

i=0

T−i(A)).
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The Kolmogorov-Sinai [3], [8] entropy of a dynamical system (Ω,S, P, T ) is de-

fined by the formula

h(T ) := sup
A

{h(A, T )} .

The Kolmogorov-Sinai theorem results from the research of entropy of a classical

dynamical system. Let (Ω,S, P, T ) be a dynamical system and A, the finite mea-

surable partition, be a generator of dynamical system, i.e. A is a finite measurable

partition of a space Ω such that

σ(
∞⋃

n=1

T−1(A)) = S,

then

H(T ) = H(A, T ).

In order to prove that two dynamical systems are not isomorphic, entropy can

by used as an argument for their unisomorphism. Every dynamical system can

by assigned by its entropy so, that isomorphic systems possess the same entropy.

Thus, any pair of dynamical systems differing in their entropies cannot be iso-

morphic. Hence, the existence of unisomorphic Bernoulli schemes was identified.

Since the entropy of Bernoulli’s scheme given by the numbers p0, p1, ..., pn−1 is
n−1∑
k=0

pk log pk, it is no challenge to find two schemes with different entropies.

Maličký-Riečan fuzzy entropy

The notion of the entropy has been extended using the fuzzy partitions instead

of partitions. A fuzzy partition is a set of non-negative measurable functions

f1, ..., fk, fi : Ω → [0, 1] (i = 1, ..., k) such that

k∑

i=1

fi = 1Ω.

Evidently, any partition A = {A1, ..., Ak} can be regarded as a fuzzy partition, if

we consider the characteristic functions

k∑

i=1

χA1
= 1.

On the set of all measurable functions T we define two binary operations ⊕,⊙
based on Lukasiewicz connectives:

f ⊕ g(ω) = SL(f(ω), g(ω)) = min(f(ω) + g(ω), 1),
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and

f ⊙ g(ω) = TL(f(ω), g(ω)) = max(f(ω) + g(ω)− 1, 0).

Probability m : T → [0, 1] is defined as any mapping satisfying the following

conditions:

(i) m(1Ω) = 1,

(ii) if f ⊙ g = 0 then m(f ⊕ g) = m(f) +m(g),

(iii) if fn ր f then m(fn) ր m(f).

The dynamics of a fuzzy system represents a mapping U : T → T such that

(i) m(U(f ⊕ g) = m(U(f)⊕ U(g)),

(ii) m(U(f)) = m(f).

If A is a finite measurable fuzzy partition, we define its entropy by the formula

H(A) = −

k∑

i=1

ϕ(m(fi)).

Common refinement of two partitions A and B = {g1, ..., gl} is defined using of

standard product of functions

A ∨ B = {fi.gj ; i = 1, ..., k, j = 1, ..., l} .

Denote
n−1∨
k=1

T−k(A) fuzzy partition generated by the sets

f1, ..., fn,U
1(f1), ...,U

1(fn), ...,U
n−1(f1), ...,U

n−1(fn).

Maličký-Riečan [4] define their entropy by the formula

H(A,U(A), ...,Un−1(A)) =

= inf
{
H(C); C ≥ A, C ≥ U−1(A), ..., C ≥ U (n−1)(A)

}

and further define a number

h(A,U) = lim
n→∞

1

n
H(A,U(A), ...,Un−1(A)).

and for any set G ⊂ T define the entropy of a fuzzy dynamical system (T ,m,U)
as the number

hG(U) = sup
A

{h(A,U),A ⊂ G}.
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The local fuzzy entropy

Several authors have also investigated the fuzzy entropy. Dumitrescu [2] intro-

duced the fuzzy entropy on the σ−algebra of fuzzy sets, Riečan-Markechová [6]

presented an abstract model of a fuzzy entropy. Rahimi-Riazi [5] investigated the

local entropy on fuzzy sets as follows.

Consider a compact metric space Ω and continuous measure preserving trans-

formation T : Ω → Ω. Denote by F ⊂ [0, 1]Ω the σ−algebra of Borel measurable

maps f:Ω → [0, 1].
For any ω ∈ Ω and f ∈ F a number is defined

xT (ω, f) := lim
n→∞

sup
1

n

n−1∑

k=0

f ◦ T k(ω).

For any partitions A = {f1, ..., fk} and B = {g1, ..., gl} and ω ∈ Ω the numbers

are defined

XT (ω,A) := −

k∑

i=1

ϕ(xT (ω), fi),

where ϕ(x) = −x log x, if x > 0, and ϕ(0) = 0 and

XT (ω,A|B) := −
∑

i,j

xT (ω, fi) log
xT (ω, fi.gj)

xT (ω, gj)
,

and finally the local fuzzy entropy of T with respect to A was defined as a number

H(T, ω,A) := lim
n→∞

sup
1

n
XT (ω,

n−1∨

i=0

T−iA).

2 IF partition

The crucial point in the definition of the local entropy is the notion of an IF par-

tition. We shall consider a classical dynamical system (Ω,S, P, T ) and the clan

T of S−measurable functions f : Ω → [0, 1]. We assume that f ◦ T ∈ T when-

ever f ∈ T . Atanassov sets are a natural generalization of fuzzy sets. IF-set (=

Atanassov set [1]) is a couple of functions

A = (µA, νA)

such that µA, νA : Ω → [0, 1] and µA + νA ≤ 1. If the mappings µA, νA are

S-measurable, then the pair (µA, νA) is called IF-event. Denote by F the set of

all IF-events.
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Consider the set

K = {(x, y);x, y ∈ R, 0 ≤ x, y ≤ 1} .

On the set K we define partial ordering as follows

(a1, b1) ≤ (a2, b2) ⇔ a1 ≤ a2, b1 ≥ b2,

here (0, 1) is the last element. Denote by O = (0, 1), A = (a1, b1), B = (a2, b2).
The sum A ⊕ B will be defined as the sum of vectors ~OA = (a1, 1 − b1) and
~OB = (a2, 1− b2) hence

~OA⊕ ~OB = (a1, b1)⊕ (a2, b2) = (a1 + a2, 1− (1− b1)− (1− b2).

The binary operation ⊕ defined on the set K × K is commutative and associative

and
n⊕

i=1

(ai, bi) = (
n∑

i=1

ai,
n∑

i=1

bi − (n− 1)).

Denote by M the set of all pairs (µA, νA) of S−measurable functions µA, νA :
Ω → [0, 1], i.e.

M = {(µA, νA);µA, νA : Ω → [0, 1]} ,

where µA, νA are S-measurable. Evidently F ⊂ M. On the set M we define a

partial ordering as follows

(µA, νA) ≤ (µB, νB) ⇔ µA ≤ µB , νA ≥ νB ,

and on the set M×M we define a partial binary operation ⊕ by the formula

n⊕

i=1

(µAi
, νAi

) = (

n∑

i=1

µAi
,

n∑

i=1

νAi
− (n− 1)).

Definition 1 An IF partition is any set

A = {A1, ..., An} = {(µA1
, νA1

), ..., (µAn
, νAn

)}

such that Ai = (µAi
, νAi

) ∈ M(i = 1, ..., n) and there holds

n⊕

i=1

(µAi
, νAi

) = (1, 0).
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Proposition 1 If A = {(µA1
, νA1

), ..., (µAn
, νAn

)} is an IF partition then A♭ =
{µA1

, ..., µAn
} and A♯ = {1− νA1

, ..., 1 − νAn
} are the fuzzy partitions.

Proof 1 If A = {(µA1
, νA1

), ..., (µAn
, νAn

)} is an IF partition then there holds:

n∑

i=1

µAi
= 1,

and
n∑

i=1

νAi
− (n− 1) = n−

n∑

i=1

νAi
− 1 = n− 1− (n − 1) = 0,

hence
n∑

i=1

(1− νAi
) = 1.

Therefore A♭ and A♯ are fuzzy partitions.

We shall consider the mapping τ : M → M defined for any A = (µA, νA) ∈
M by the formula

τ(A) = (µA ◦ T, νA ◦ T ).

Evidently for any A,B ∈ M there holds

τ(A⊕B) = (A⊕B) ◦ τ = (A ◦ τ)⊕ (B ◦ τ) = τ(A)⊕ τ(B).

Proposition 2 Let A = {(µA1
, νA1

), ..., (µAn
, νAn

)} be an IF partition then

τ(A) = {(µA1
◦ T, νA1

◦ T ), ..., (µAn
◦ T, νAn

◦ T )} is an IF partition too.

Proof 2 If A = {(µA1
, νA1

), ..., (µAn
, νAn

)} is an IF partition then there holds:
n⊕

i=1
τ(Ai) = τ(

n⊕
i=1

Ai) = τ(1, 0) = (1, 0).

3 Local IF entropy

Definition 2 For every ω ∈ Ω and any A = (µA, νA) ∈ M we define

xT (ω,A) := ( lim
n→∞

sup
1

n

n−1∑

k=0

(xT (ω, µA)), lim
n→∞

sup
1

n

n−1∑

k=0

(xT (ω, 1 − νA))),

where

xT (ω, f) = lim
n→∞

sup
1

n

n−1∑

k=1

f ◦ T k(ω).
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For any A,B ∈ M, A = (µA, νA), B = (µB , νB) we define the product

binary operation based on the product connectives by the formula

A.B := (µA.µB , 1− (1− νA).(1− νB)).

Definition 3 A common refinement of two IF partitions

A,B = {(µB1
, νB1

), ..., (µBm
, νBm

)}

is the collection

A∨ B =
{
(µAi

, νAi
).(µBj

, νBj
); i = 1, ..., k, j = 1, ...,m

}
.

An IF partition B = {(µB1
, νB1

), ..., (µBn
, νBn

)} is a refinement of an IF parti-

tion A = {(µA1
, νA1

), ..., (µAm
, νBm

)} if there exists a partition {I1, ..., Im} of

the set {1, ..., n} such that

(µAi
, νAi

) =
⊕

j∈I(i)

(µBj
, νBj

),

for any i=1,...,m.

Proposition 3 If A,B are two IF partitions, then a common refinement A ∨ B is

an IF partition too.

Proof 3 If A = (µA1
, νA1

, ..., (µAm
, νAm

)),B = (µB1
, νB1

, ..., (µBn
, νBn

)) are

two IF partitions, then following equalities holds

m⊕

i=1

n⊕

j=1

(µAi
, νAi

).(µBj
, νBj

) =

m⊕

i=1

n⊕

j=1

(µAi
µBj

, νAi
+ νBj

− νAi
νBj

) =

= (

m∑

i=1

n∑

j=1

µAi
µBj

,

m∑

i=1

n∑

j=1

(νAi
+ νBj

− νAi
νBj

)− (mn− 1)) =

= ((

m∑

i=1

µAi
)(

n∑

j=1

µBj
),

n∑

j=1

(

m∑

i=1

νAi
) +

m∑

i=1

(

n∑

j=1

νBj
)−

−(

m∑

i=1

νAi
)(

n∑

j=1

νBj
)− (mn− 1)) =

= (1,m(n − 1) +m(n− 1)− (n− 1)(m− 1)− (mn− 1)) = (1, 0),

hence A ∨ B is an IF partition.
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Remark 1 There holds clearly A ∨ B ≥ A and A ∨ B ≥ B.

Denote by
n−1∨
i=0

A♭ ◦ T i a fuzzy partition generated by functions

µA1
, ..., µAn

, µA1
◦ T, ..., µAn

◦ T, ..., µA1
◦ T n−1, ..., µAn

◦ T n−1

and denote by
n−1∨
i=0

A♯◦T i a fuzzy partition generated by functions 1−νA1
, ..., 1−

νAn
, (1− νA1

) ◦ T, ..., (1− νAn
) ◦T, ..., (1− νA1

) ◦T n−1, ..., (1− νAn
) ◦T n−1.

Definition 4 For any IF partition A and ω ∈ Ω we define

XT (ω,A) = (XT (ω,A
♭),XT (ω,A

♯)),

where

XT (ω,A
♭) = −

n∑

i=1

ϕ(xT (ω), µAi
),

and

XT (ω,A
♯) = −

n∑

i=1

ϕ(xT (ω), (1 − νAi
)).

Definition 5 Let A be an IF-partition,
n−1∨
i=0

A♭ ◦ T i and
n−1∨
i=0

A♯ ◦ T i are the fuzzy

partitions. We define the local IF entropy of a partition A by the formula

H(ω, T,A) := (H(ω, T,

n−1∨

i=0

A♭ ◦ T i),H(ω, T,

n−1∨

i=0

A♯ ◦ T i)),

where

H(ω, T,

n−1∨

i=0

A♭ ◦ T i) = lim
n→∞

sup
1

n
XT (ω,

n−1∨

k=1

T−kA♭),

and

H(ω, T,
n−1∨

i=0

A♯ ◦ T i) = lim
n→∞

sup
1

n
XT (ω,

n−1∨

k=1

T−kA♯).

Theorem 1 Suppose that A = (µA1
, νA1

, ..., (µAm
, νAm

)) and

B = (µB1
, νB1

, ..., (µBn
, νBn

)) are two arbitrary IF partitions. Then for any

ω ∈ Ω there holds:
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(i) if B ≥ A then H(ω, T,B) ≥ H(ω, T,A),

(ii) H(ω, T, τ(A)) = H(ω, T,A),

(iii) if k ≥ 1 then H(ω, T,A) = H(ω, T,
k∨

i=−k

τk(A)).

Proof 4 (i) If B ≥ A then
n−1∨
i=0

τkB ≥
n−1∨
i=0

τkA for all n ≥ 1. Further there exist

a partition {I1, ..., Im} of set {1, ..., n} such that

(µAj
, νAj

) =
⊕

i∈I(j)

(µBi
, νBi

) = (
∑

i∈I(j)

µBi
,
∑

i∈I(j)

νBi
− (|I(j)| − 1))

for every j=1,...,n. Therefore

µAj
=

∑

i∈I(j)

µBi

and

1− νAj
= 1−

∑

i∈I(j)

νBi
− (|I(j)| − 1) =

∑

i∈I(j)

(1− νBi
)

for every j=1,...,n.

Hence

A♭ ≤ B♭,A♯ ≤ B♯

therefore

H(ω, T,A♭) ≤ H(ω, T,B♭),H(ω, T,A♯) ≤ H(ω, T,B♯)

and finally

H(ω, T,B) ≥ H(ω, T,A).

(ii) Since

XT (ω,

n∨

k=1

T iA♭) = XT (ω,

n−1∨

k=0

T iA♭)

and

XT (ω,

n∨

k=1

T iA♯) = XT (ω,

n−1∨

k=0

T iA♯)

therefore we can easily have

H(ω, T, τ(A)) = H(ω, T,A).
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(iii) We have from definition

H(ω, T,
k∨

i=0

T−kA♭) = lim
n→∞

sup
1

n
XT (ω,

n−1∨

j=0

T−j(
k∨

i=0

T−iA) =

lim
n→∞

sup
1

n
XT (ω,

n−1∨

j=0

T−j(

k∨

i=0

T−iA) =

lim
n→∞

sup(
k + n

n
)

1

k + n
XT (ω,

n−1∨

j=0

T−j(

k∨

i=0

T−iA) = H(ω, T,A♭).

Analogously

H(ω, T,
k∨

i=0

T−kA♯) = H(ω, T,A♯),

hence

H(ω, T,A) = H(ω, T,

k∨

i=−k

τk(A)).
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participate, will provide a source of much needed information on recent trends 
in the topics considered.
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