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Abstract We indicate some possible tools and techniques of fuzzy sets theory which 
can be of use in extensions of some more popular optimization and mathematical 
programming. We con We briefly survey main issues and developments in fuzzy 
optimization to make iot possible to deal with imprecise data. We mainly concern 
linear programming due to its great practical relevance. 

Key words: fuzzy optimization, fuzzy linear programming, fuzzy integer program­
ming, fuzzy 0- 1 programming, fuzzy dynamic programming, fuzzy multiobjective 
mathematical programming. 

1 Introduction 

Optimization belongs to a much wider class of decision making problems whose 
essence may be summarized as follows: 

• there is a set of feasible options (alternatives, variants , . . . ), 
• there is some mechanism for the representation of preferences among the op­

tions which is given, e.g. , by pairwise comparisons, preference orderings, utility 
functions, etc., 

• there is some choice (rationality) criterion determining which options should be 
chosen (e.g. those with the highest value of a utility functions). 

In optimization problems information on the preferences among options is de­
scribed by a utility (performance, objective, ... ) function which maps a given set 
of feasible options into the real line, hence the comparison is straightforward and 
natural, i.e. the greater (or lower) the value of this function the better. 

The set of feasible options in an optimization problem is often described by a 
system on equations and/or inequalities, and in such a case the problem is referred 
to as one of mathematical programming. 

Methods and techniques of optimization, or - more specifically - those of math­
ematical programming have been successfully employed for years in various areas , 
mostly in problems with relatively well-defined structures and data, the so-called 
hard problems. This has allowed the formulation of optimization problems with pre­
cisely specified constraints and objective functions which are solvable by relatively 
efficient traditional analytical and computational tools and techniques. 

Unfortunately, attempts to employ optimization tools for solving the so-called 
soft problems in which goals and constraints are not clear-cut, a key role is played 
by human value systems and judgments, there are multiple decision makers and 
criteria, dynamics is involved, etc. have not been so successful. 

It can be argued that one of major obstacles in the application of traditional op­
timization tools in soft problems is the predominatly subjective nature of available 
information, which is due to the criticality of human factors , and its imprecise form 
which is due to the use of natural language that is the only fully natural human 
means of communication. 
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Developments of fuzzy sets theory have given more and more evidence that this 
theory may provide useful means for a more adequate, effective and efficient han­
dling of optimization problems in soft environments. It is in this sense that fuzzy sets 
theory will be advocated as a promising tool for softening traditional optimization 
models and techniques. 

In this paper we will present a brief account of the state of the art of fuzzy op­
timization and mathematical programming. We will present major concepts, ideas 
and developments, and refer the reader to more relevant literature. We should bear 
in mind that the literature in this field is voluminous, and cannot be cited in full in 
this short review. However, luckily enough there exist in the literature two edited 
volumes devoted to fuzzy optimization, the former one [, (Kacprzyk and Orlovski 
l 987a)], and the recent one [, (Delgado, Kacprzyk, Verdegay and Vila 1994 )] 
which are sources of information on virtually all newer and more relevant devel­
opments. Other books deal with more specific areas as, e.g., [, (Fedrizzi, Kacprzyk 
and Roubens 1991)] is a source on interactive approaches, and the recent book [, 
(Kacprzyk 1997)] is the source on fuzzy dynamic programming. 

What concerns other more extensive surveys on fuzzy optimization and fuzzy 
mathematical programming, the interested reader is referred to, e.g., [, (Kacprzyk 
and Orlovski 1987b)l or[, (Fedrizzi, Kacprzyk and Verdegay 1991)] or[, Delgado, 
Verdegay and Vila 1994]. 

We will start with a discussion on some preliminaries which constitute a point 
of departure for fuzzy optimization models, mainly of the [, (Bellman and Zadeh 
1970)] approach. Then, we present in more detail fuzzy linear programming due to 
its relevance. We sketch fuzzy nonlinear programming, including fuzzy integer, 0---1, 
geometric, fractional, etc. programming. Then we outline fuzzy dynamic program­
ming. Finally, we consider some approaches to fuzzy multiobjective mathematical 
programming. 

2 Approaches to fuzzy optimization 

In this section we will discuss some general issues related to fuzzy optimization. 
Basically, we will assume that both the feasible set of options and the evaluation 
of options will be fuzzily described. This will provide a point of departure to fuzzy 
mathematical programming, with the feasible set of options specified by a set of 
equalities and/or inequalities. 

2.1 Approaches to Juu,y optimization with an explicitly specified 
feasible set 

As we have already mentioned in Section 1, in an optimization problem the follow­
ing two elements are crucial: 
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• a set of feasible options (alternatives, variants, ... ) also termed a feasible set, and 
• an objective (performance) function employed for the comparison and ranking 

of the alternatives in order to find an optimal one(s). 

In this section we will briefly analyze these elements in a more general context 
of fuzzy optimization. As we will see in Section 3, in which we will discuss issues 
related to fuzzy mathematical programming, these elements will also occur there. 

The class of fuzzy optimization problems considered here may be stated as fol­
lows. Suppose that X = {x} is a set of options. The objective function is F : X --+ 
L(R) where L(R) is a family of fuzzy sets defined in R, the real line; i.e. F(x) is 
a fuzzy number which provides an imprecise (fuzzy) evaluation of option x E X. 
The set of feasible options is imprecisely specified by a fuzzy set C in X such that 
C(x) E [O, I] stands for the degree of feasibility, from I for fully feasible to O for 
fully infeasible, through all intermediate values. 

The optimization problem may then be generally denoted as 

(I) 

which is to be read as : find a possibly high (max) value of F over the x's "belonging" 
(E) to the (fuzzy) feasible set C. 

The above general problem formulation may be formally stated in various ways 
exemplified by one in terms of[, (Bellman and Zadeh 1970)] general approach to 
decision making under fuzziness, and one in terms of a representation of the fuzzy 
feasible set via a-cuts. 

2.2 Attainment of fuzzy goals and satisfaction of fuzzy constraints 
- Bellman and Zadeh's approach 

A general approach to decision making under fuzziness (or, as originally termed, in 
a fuzzy environment)[, (Bellman and Zadeh 1970)] is a powerful framework which 
is a point of departure for an overwhelming majority of fuzzy decision making, 
optimization, control, etc. models. lt is also a convenient apparatus for the class 
of fuzzy optimization problems (1) considered here. This approach was discussed 
in Section F5.1, and we will present here again its main elements tailored to our 
specific needs. 

In this approach we have an explicitly specified fuzzy feasible set, called afuzzy 
constraint, and an explicitly specified fuzzy set of options which attain the goal, 
called afuzzy goal. The fuzzy constraint is characterized by its membership function 
C(x) such that C(x) = I stands for a fully feasible x, C(x) = 0 stands for a fully 
infeasible x, and intermediate values denote feasibility to a degree, from 0 to 1. 
And, similarly, the fuzzy goal is characterized by its membership function G(x), 
with an analogous interpretation. 

The fuzzy goal G(x) is usually assumed to be of the following type 
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{ 
1 for f(x) 2'. f 

G(x) = g(x) for[_ < f(x) < f 
0 for f(x) :S:: [_ 

(2) 

which is to be read as: we are fully satisfied [G(x) = l] with the x's for which the 
objective (performance) function f(x) attains a value at least equal to a satisfaction 
level f, we are partially satified (to degree O < G(x) = g(x) < 1) with the x's for 
which f(x) is between the satisfaction level 7 and the lowest admissible level f, and 
we are fully dissatified [G(x) = OJ with the x's for which f(x) is below the iowest 
admissible level f. 

Notice that the above definition in terms of satisfaction levels is intuitively ap­
pealing, and has proven to be extremely useful in applications [cf. [, (Kacprzyk 
1997))]. 

The problem is now stated as to 

"satisfy the fu zzy constraint and attain the fuzzy goal" 

which, by introducing the concept of afazzy decision , D, may be written as 

D(x) = C(x) !\ G(x) = min [C(x), G(x)] (3) 

with the understanding that"/\, i.e. the minimum, which reflects the traditional def­
inition of the intersection of fuzy sets, may readily be replaced by another operation 
as, say, at-norm. 

The fuzzy decision D(x) given by (3) specifies therefore a fuzzy set of options 
which satisfy the fuzzy constraint and attain the fuzzy goal. Normally, since even if 
the problem is fuzzy its solution to be implemented must be crisp, we wish to find a 
nonfuzzy option (or options) which best satifies the fuzzy constraint and attain the 
fuzzy goal, and this gives rise to the concept of an optimal (maximizing) decision, 
x* E X, to be determined 

D(x*) = supD(x) = sup[C(x) !\ G(x)] (4) 
x E X xEX 

One may readily notice that an analogous line of reasoning can be applied for 
multiple fuzzy constraints, C 1 (x) , ... ,cm(x), and multiple fuzzy goals, G1 (x), . .. , G" (x) , 
and we obtain then 

D(x) = C 1 (x) !\ ... !\ Cm(x) !\ G1 (x) !\ . . . !\ G" (x) (5) 

while an optimal (maximizing) decision to be found, x* E X, is given by 

D(x*) = 
= sup[C 1 (x) !\ ... !\ cm(x) !\ c1 (x) !\ . . . !\ G"(x)] (6) 

xEX 

Moreover, if the fuzzy constraint is defined in X = {x} , C(x), and the fuzzy goal 
is defined in Y = {y}, G(y), and there is a function h; X --t Y, y = h(x), then we 
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denote by G[h(x)] the fuzzy goal in X induced by the fuzzy goal G(y) in Y, then 
then fuzzy decision (3) becomes 

D(x) = C(x) I\ G [h(x)] (7) 

and we seek an optimal (maximizing) decision x* EX such that 

D(x*) = supD(x) = sup(C(x) /\ G[h(x)]) (8) 
xEX xEX 

And analogously, for multiple fuzzy constraints and multiple fuzzy goals defined 
in X and Y, respectively, we obtain the fuzzy decision 

D(x) = C 1 (x) I\ ... I\ C'"(x) I\ G 1 [h(x)] /\ . . . /\ G1 [h(x)] 

and an optimal (maximizing) decision to be found, x* E X, is given by 

D(x*) = maxD(x) = max(C 1(x) /\ ... 
xEX xEX 

... I\ C'" (x) I\ G1 [h(x)] /\ ... /\ G1 [h(x)]) 

(9) 

(JO) 

Notice that in the above general Bellman and Zadeh's model the values of the 
objective function, f(x), are nonfuzzy [cf. (2)] , and only its maximization is im­
precisely specified. In an approach proposed in [, (Orlovski 1980)] it is possible to 
extend the above general model to the case when the values of the objective function 
are fuzzy, characterized by membership functions g : X x R ----+ [0, l ] such that for 
each value of x E X the objective function may take on different real values, with 
different degrees of membership from [0, I]. 

Basically, in [, (Orlovski 1980)] the following sets are introduced: 

N = {(x, r) : (x,r) E X x R,g(x, r ) > G(x)} 

Nx = {r: r E R,(x, r) EN} 

x0 = {x: XE X,Nx =/c 0} 

the fuzzy decision is defined as 

D(x) = { C(x) I\ infrEN G(x) for x E _x0 

C(x) otherwise 

and an optimal (maximizing) decision x* E X is sought such that 

D(x*) = maxD(x) 
xEX 

(11) 

(12) 

(13) 

(14) 

(15) 
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2.3 Using the a-cuts of the fuzzy feasible set 

A common approach in the analysis of fuzzy systems is to replace fuzzy sets in­
volved by their equivalent a-cuts (a-level sets). If A is a fuzzy set in X, then its 
a-cut (a-level set) is 

Aa = {xEX :A(x) 2: a}, Va E [0, 1] (16) 

The a-cuts (a-level sets) may also be employed to obtain an equivalent of a fuzzy 
optimization problem as proposed in the classic Orlovski's approach [, (Orlovski 
1977)] which, as opposed to a satisfaction based approach sketched in the former 
sections, is more explicitly related to optimization. 

The problem considered is again as schematically shown in (1), i.e. 

(17) 

where, similarly as in (I), the maximization and inclusion should be meant in a fuzzy 
way. Notice that, for simplicity, we assume here a nonfuzzy objective function J(x) 
instead of a fuzzy one F(x) as in (1). 

First, for the fuzzy feasible set C we derive its a-cuts, Ca = { x EX : C(x) 2: a}, 
for each a E (0, 1]. Then, for each a E (0, l] such that Ca =le lil, we introduce the 
following (nonfuzzy) set 

N(a) = {x EX: J(x) = sup f(x)} (18) 
xECa 

Now, a so-called solution 1 to problem (17) is defined as the following fuzzy set 
[, (Orlovski 1977)] 

Si(x) = { supxEN(a) a for xE_Ua>oN(a) 
0 otherwise 

_ { C(x) for x E Ua>oN(a) 
- 0 otherwise 

(19) 

and the fuzzy maximal value of J(x) over the fuzzy feasible set C is defined as, for 
each r E R: 

J(r) = · sup S 1(x) = sup sup a (20) 
xEJ- 1(r) xEJ- 1(r)xEN(a) 

Next, a so-called solution 2 to problem (17) is introduced[, (Orlovski 1977)]. For 
J(x) and C(x) we first define the set of Pareto maximal elements, P, as a (nonfuzzy) 
subset P i:;; X such that x E P if and only if there exists no y EX for which 

{ 

either 
J(y) > J(x) and C(y) 2: C(x) 
or 
J(y) 2 J(x) and C(y) > C(x) 

(21) 
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Then, solution 2 is defined as a fuzzy set 

S (x) = { C(x) for x E .P 
2 0 otherwise 

(22) 

It may then be shown[, (Orlovski 1977)] that this solution yields the same fuzzy 
maximal value of f(x) over C as solution I, i.e. for each r E R: 

f (r) = sup s,(x) = sup sup a (23) 
xEJ-1(r) xEJ- 1(r)xEN(a ) 

As to more interesting properties of solution 2, one may mention here P C 
Ua>oN( a) which implies S2(x) ~ S1 (x), for each x EX, i.e. solution 2 is a sub­
set (in the sense of inclusion of two fuzzy sets) of solution I. 

Among other more relevant approaches in which f(x) and C(x) are dealt with 
separately ane may mention those by [, (Negoita and Ralescu 1977)] or[, (Yager 
1979)]. 

3 Fuzzy mathematical programming 

As already mentioned in Section I , mathematical programming is meant as a special 
optimization problem in which the feasible set is given as (a set of) equalities and/or 
inequalities. For our purposes, a general mathematical programming problem can 
be written as 

{ maxxE R" f(x) 
subject to: g;(x) ~ b;; i = I , .. . , m 

(24) 

where x = [x1 , . . . ,xnf E Rn is a vector of decision variables, f: ~ -----+ R is an 
objective function , g; : ~ -----+ Rare constraints, and b; E Rare the so-called right­
hand sides; clearly, the maximization may readily be replaced by minimization, and 
"~"by"~"-

Particularly important in practice is linear programming in which both the ob­

jective function and constraints are linear functions , i.e. (24) becomes 

{ maxx/,:of(x) = ex = LJ=I CjXj 

subject to: (Ax);= LJ=l a; j Xj ~ b; ;i = l , .. . , m 
(25) 

and a large part of our next discussions will be devoted to fuzzy linear programming. 

4 Fuzzy linear programming 

In the context of fuzzy mathematical programming, fuzzy linear programming is 
also the most relevant from a practical point of view, and almost all more relevant 
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developments in the field of fuzzy mathematical programming occured in the linear 
case. In this paper, too, emphasis will be on fuzzy linear programming. 

Looking at the general linear programming problem formulation (25), we may 
readily point out the following elements that may be fuzzified: 

• the coefficients (costs) in the objective function f(x) , i.e. c = [c, , . . . ,cm], 
• the coefficients aij in the so-called technological matrix A = [aij], i = I , .. . , m, 

j = 1 , . .. , n, and 
• the right-hand sides b = [b,, .. . ,bmf 

The above leads to the following basic types of fuzzy linear programming: 

• problems with fuzzy constraints, 
• problems with a fuzzy objective function (fuzzy goal), 
• problems with fuzzy costs c; 's, and 
• problems with fuzzy coefficients a;/s and b;'s , 

which will be briefly presented below. 

4.1 Fuzzy linear programming with fuzzy constraints 

In this case the fuzzy linear programming problem may be generally written as: 

{ 
maXxER•CX 

subject to: Ax; b; x 2'. 0 
(26) 

where"; " denotes an imprecise "less than" relation meant as that the left-hand side 
should be essentially less than or equal to the right-hand side with the understanding 
that this should be possibly well satisfied. 

Usually, " ; " is formalized by allowing the i-th constraint in (26) to be violated 
to some extent which is done by introducing a degree of satisfaction of the i-th 
constraints given as the following membership function 

{ 
I if (Ax); < b; 

i(x) = h;((Ax);] if b; ::,; (Ax); ::,; b; + t; 
0 if (Ax) > b; +t; 

(27) 

where h;( .) E (0, !) is such that the higher the violation of the i-th constraint the 
lower the value of h;. In practice, h; (.) is assumed to be a linear function , also in this 
paper. Moreover, t; is the maximum vialation of the i-th constraint. 

The first method for solving problem (26) is due to [, (Tanaka, Okuda and Asai 
1974)] who show that the solution of the original problem (26) may be replaced by: 
find an optimal pair ( a * ,x*) E (0, I] x R" such that 

a *l\ f(x*) = sup [a Amaxf(x)] 
a E[0,1] xEXa 

(28) 
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where f : Rn ---+ [O, 1] is a continuous objective functions , and Xa = { x E ~ I 
Ai= l , ... ,mi(x) 2': a}, for each a E (0, 1]. 

As shown in[, (Tanaka, Okuda and Asai 1974)], under some mild assumptions 
concerning the continuity of the objective function f and the uniqueness of a *, 

an optimal solution sought - (a* , x* ) - is obtained using the following iterative 
algorithm: 

Step 1: Assume k = 1 and an a1 E (0, l ]. 
Step 2: Compute A = maxxE Xak J(x). 
Step 3: Compute Ek = ak - k If I ek I> £ , then go to Step 4, otherwise go to Step 

S; £ E [O, l ] is a required precision . 
Step 4: Compute ak+ 1 = ak - rkek, where rk 2': 0 is selected so that O ~ a k+ 1 ~ 1. 

Set k := k + 1 and go to Step 2. 
Step 5: Let a * = a and find an optimal x* E Rn such that 

f(x*) = max f(x) 
xE Xa * 

(29) 

Another approach to the solution of problem (26) is due to [, (Zimmermann 
1976)]. Basically, his line of reasoning is inspired by the concept of a maximizing 
decision (8). First, by putting e i = - c i into the objective function in problem (28) , 
the maximization is replaced by the minimization. Then, problem (26) is replaced 
by its following fuzzified version 

(30) 

which should be meant as follows: ex should be "essentially smaller than or equal to" 
an aspiration level z, and the constraints ' left-hand sides, Ax, should be "essentially 
smaller than or equal to" b; 's; evidently, both should be satisfied as well as posible 
(to the highest possible extent). 

The first step is a proper form alization of ":S" which stands for "essentially 
smaller than or equal to" . We start by introducing the (m + l) x n matrix H = [hd 
which is formed by adding to the original matrix A= [au] the row vector [ej] before 
the first row of A. 

We donote now the k-th row of Hx, the product of matrix Hand vector x, by 

and define the function 

n 

(Hx)k = I, hkjXj 
j = I 

(31) 

(32) 
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where w = [w1 , . .. , Wm+1f = [z,b1 , .. . ,bmf , and the t/s are some admissible vio­
lations of the respective constraints. 

Therefore, the function (32) does model an aspiration-level-based (degree of) 
satisfaction of the fuzzy goal and fuzzy constraints because its value is equal 1 if 
they are (perfectly) satisfied, dimishes as the degree of violation increases, and is 0 
for the inadmissible violation, i.e. more than the tk 's . 

In problem (30) we wish to satisfy all the constraints, and this can be expressed 
by the following objective function, being evidently a fuzzy decision in the sense of 
(3): 

m+ I 

D(x) = I\ gk[(Hx)k] (33) 
k= I 

We wish to satisfy all the constraints to the highest possible extent [ cf. the optimal 
decision (4)) , i.e. we seek an optimal x* E K' such that 

D(X*) = sup D(x) (34) 
xER" 

It may be shown [cf. [, (Negoita and Ralescu I 977)) or[, (Zimmermann 1976)], 
though this result was known earlier] that each optimal solution, (1 * ,x* ), of the 
following linear programming problem 

{ 
max,. E(0,IJ A 

subject to: A :s; w~ - (Hx)~ ~= I , .. . ,m+ I 
x1 2'. 0 J - 1, ... ,n 

(35) 

where w~ = "f: and (Hx)~ = (~:),, k = 1, .. . ,m + 1, is also an optimal solution to 
problem (34). 

The third basic approach to the solution of problem (26) was proposed in [, 
(Verdegay 1982)). It employs the so-called representation theorem[, (Negoita and 
Ralescu 1975)] which basically says that a fuzzy set can be uniquely represented by 
all its a-cuts; this theorem can be found in any book on fuzzy sets. 

First, if the membership functions of the fuzzy constraints in problem (26) are 
strictly monotone and continuous, which is often natural, then the a-cuts of the set 
of constraints can be expressed by 

n 

Ca = {x E R" I L a;jXj :s; g- 1 (a);xk 2'. O;i = I , .. . ,m; j = I , . .. ,m} (36) 
j = I 

where the g;- 1 ( a) 's are the inverse functions of the g;(. )'s defined by (27). 
Then, if C denotes the set of fuzzy constraints in problem (26), the representation 

theorem states that 
C = L aCa 

a E(0,I] 
(37) 

A fuzzy solution (for all a E (0, 1]!) to problem (26) can be therefore obtained 
by solving the following parametric linear programming problem 
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{ maxxER" ex 
subject to: x E Ca ; for each a E (0, I] 

(38) 

or, more explicitly: 

{ maxxER" ex (39) 
subject to: (Ax); ~ g;- 1 ( a); for each a E (0, l]; i = 1, ... ,m 

And for linear fuzzy constraints, which is practically the most interesting case, 
problem (39) becomes 

{ maxx?oex 
subject to: Ax ~ b +t(I - a);for each a E (0, I] 

(40) 

where t = [t1, . . . , tmf is a vector of admissible violations of the particular con­
straints. 

Thus, if x* (a) is an optimal solution to problem (39), from it (for each a E (0, I]) 
a fuzzy optimal solution to problem (37) can be obtained. 

Finally, it is interesting to notice [cf. [, (Verdegay 1982)]] that if we denote by 
f(x) the objective function in problem (28), and by fm+1(x) the membership func­
tion of the fuzzy goal in problem (32) , then the solution of problem (26) derived 
by employing the approach proposed in[. (Tanaka, Okuda and Asai 1974)], and its 
corresponding solution of (32) derived by employing the one in [, (Zimmermann 
1976)] , can be obtained from the fuzzy solution of problem (39) , x* (a) , by solving 
the following equations, for a given a E (0, I]: 

f[ex*(a)] = a l,n+dex*(a) ] = a (41) 

Notice that while solving problem (26) by using the linear programming problem 
(39) it is necessary to define f( .) and fm+ 1 (.) a priori. Moreover, the size of problem 
(39) is as that of (26). 

Finally, notice that if the g;(.) 's in (36) are nonlinear, this nonlinearity occurs 
in the right-hand sides of the constraints in problem (39) but it does not imply the 
nonlinearity of the auxiliary parametric linear program (40) , so that problem (39) is 
also valid for nonlinear constraints. 

4.2 Fuu,y coefficients in the objective function 

In this section we will consider fuzzy mathematical programming problems in 
which the constraints are nonfuzzy and the coefficients in the objective function, ej, 

are fuzzy numbers given by the membership functions j : R" ----+ [O, 1 ], j = I , . .. ,n. 
This class of problems may be written as 

{ maxxE R;x?0 ex 
subject to: Ax ~ b 

(42) 
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where Cj, j = 1, .. . ,n, are assumed to be fuzzy. 
We will sketch three approaches to the formulation and solution of such problems 

which are due to: [, (Delgado, Verdegay and Vila 1987b)], [, (Tanaka, lchihashi and 
Asai 1984)], and [, (Rommelfanger, Hanuscheck and Wolf 1989)]. For yet another 
approach we will refer the reader to[, (Chanas and Kuchta 1994)]. 

In[, (Delgado, Verdegay and Vila 1987b)], the coefficients in the objective func­
tion of problem (42), c = [c1 , ... , Cj, ... ,cnl, are assumed to be fuzzy sets (numbers) 
such that, for c / 

{ 
0 if Cj :S: x or x :S: fj 

j(x) = ~j(x) if fj < x :S: Cj 
hj(x) if Cj < x :S: Cj 

(43) 

where [Z'j,f) is the support of the fuzzy number Cj, and !J).) and hj(,) are con­
tinuous and strictly increasing and decreasing, respectively, functions such that 
!J;j(cj) = hj(cj) = 1. 

Then, using a fuzzy objective function as defined in [, (Verdegay 1982)] and 
including the ( 1 - a )-cuts of each cost coefficient, for each a E (0, 1], we have for 
each x E R and for j = 1, ... , n 

j(x) 2: 1 - a <===> !!7'1(1 - a)::; x:::; li,;-1(1 - a) 

and ifwe denote= <Pj(.) = {h)j(-) and IJ'(.) = hj(.) , then we obtain 

<Pj(1 - a) ::; X:::; 'f'i(l - a), foreachx E R 

(44) 

(45) 

As shown in[, (Verdegay 1982)], a fuzzy solution to problem (42) can be found 
from the parametric solution of the following multiobjective linear program 

{ 
{ I 2 2" } maXxER;xe:0 C X, C X, ... C X 

subject to: Ax :S: b 
(46) 

where ck E E(l - a) , a E (0, 1], k = 1,2, ... , 2" , and E(l - a) is the set of vectors 
in Rn each of whose components is either on the upper bound, IJ'j( I - a), or on the 
lower bound, <Pj(1 - a), of the respective (1 - a)-cuts. 

On the other hand, in [, (Tanaka, lchihashi and Asai 1984)] a possibilistic ap­
proach is proposed for: even more general problem. fom;n1lations, wi!:11 fuzzy con­
straints in addition to fuzzy coefficients in the objective function as in ( 42). Their 
method is based on the two relevant facts . First, if the c j's, j = 1, ... , n, are triangu­
lar fuzzy numbers with membership function written as o(fj ,cj, Z'j), then the value 
of the objective function, z = c1x1 + c2x2 + · · · + CnXn, is also a fuzzy number with 
the membership function 

{ 
1-(l2y- (c+c)lx) for x > O > O 

(c-f)X , y 
G(y) = 1 for x = 0,y > 0 

0 forx=0,y = 0 

(47) 
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where c = [c1, c2 , ... , cnl, f = [f.1 ,fz , . . . ,fn], and the f/s and c/s are defined as in 
(43). 

The second assumption is that the maximization in (42) concerns now a fuzzy 
function , which may be written as maxxER;xReO, and this is meant as 

where w1, w2 E [O , l], w1 +w2 = 1, are some weights. 
Then, the solution of problem (42) is obtained by solving the following auxiliary 

linear programming problem 

{ maxxER;x2o(w1cx+w2fx) 
subject to: Ax :S b 

(48) 

The solution of problem ( 42) was also discussed by [, (Rommelfanger, Hanuscheck 
und Wolf 1989)]. Their approach is termed a stratified piecewise reduction ap­
proach, and is based in its essence on the classic approach from [, (Zimmermann 
1976)]. Though the problem is given as (42), the imprecision (fuzziness) of co­
efficients is modelled by the use of nested intervals. Each of such intervals, say 
interval k, is assigned a membership degree, or a possibility degree ak E [O, 1], 
k = 1, 2 , ... , p, where p is the number of such intervals. Then, each fuzzy coeffi­
cient c j , j = I , 2, .. . , n, in the objective function of ( 42) is defined as the fuzzy set 

k = 1,2, .. . , p 

such that, for all a1 , a2 E [O, 1], and j = 1, 2, ... , n, there holds 

a1 2 a2 ===> [f.j , cj]1 <:;; [f.j , cj]2 

(49) 

(50) 

Clearly, fuzzy coefficients given as (43) may also be equivalently formulated by 
using a-cuts as shown by (49). 

Then, the solution of problem ( 42) is obtained by solving the following auxiliary 
linear programming problem [ cf. [, (Rommelfanger, Hanuscheck and Wolf 1989)]] 

where: 

max,. E(O,I] A 
f1 [fax] 2 A 
fz[cax] 2 )., 
Ax :S b;x 2 0 

a -a 
f [ca] = f x - zmin 

1 - *a -a 
2min - zmin 

(51) 
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where, ifwe denote fl'= {x ER": Ax .:=; b,x :C:: 0} , then: 

Z~~n = fa(x~in) = max{faX Ix E fl' } 
z~'!x = ca(~ax) = max{cax Ix E 2'} 
z~in = fa(x~ax) = min{fax IX E 2'} 
z~in = ca(x~;n) = min{cax IX E 2'} 

15 

The solution of problem (42) may be then found as the intersection of solutions 
obtained by solving problem (51) for each ak E, k = 1,2, . . . , p. 

To conclude the description of this approach, notice that problem (51) may be 
rewritten as 

{ 

subject to: ~t;n.1._:_(;i]in~).. - fax ,:;:: z~in 
fz [ca x] 2: A 
(z~~ - Z~ax )A. - fa X ~ Z~ax 
Ax .:=; b;x 2: 0 

(52) 

Clearly, f 1 [fax*] = fz[cax8] = ).. *, where().. * ,x*) is an optimal solution of prob­
lem (52). 

Finally, it should be mentioned that problems ( 46), ( 48) and (52) are closely 
interrelated which will not be however elaborated upon here, and we will refer the 
interested reader to, e.g. , [, (Delgado, Verdegay and Vila 1990)). 

4.3 Fuzz,y coefficients in the technological matrix 

In this case the coefficients in problem (42) in the so-called technological matrix, A, 
and in the right-hand sides, b, are fuzzy numbers assumed, for simplicity, to be in 
the L-R form [cf.[, (Dubois and Prade 1980))) . On the other hand, the coefficients 
in the objective function , c, are nonfuzzy (i .e. real numbers). 

In this case the fuzzy linear programming problem is written- as 

{ maxxER;x:C:O ex 
subject to: E'j= 1 a;jXj .::; b; , i = l, . .. ,m 

(53) 

This class of problems was discussed in[, (Tanaka, Ichihashi and Asai 1984)); in 
fact , they also dicussed the case of fuzzy coefficients in the objective function but 
this case will not be considered here for simplicity. 

First, it should be remarked that in problem (53) the fuzziness is in the coeffi­
cients, and not in the allowable violation of the constraints. Therefore, problem (52) 
is principally different than problem (26) with a fuzzy constraint set. 
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Basically, for solving problem (53), in [, (Tanaka, Ichihashi and Asai 1984 )] the 
following auxiliary conventional linear programming problem is solved 

{ 

maxxER;x2'.0 ex 

subject to: [(l - ~ )(f!; +a;)+~ (a; -g;)]x :S 
:S (!-~)(b;+Q;)+~(b; - Q;) 

[~(a; +a;)+ (1-~ )(a; -a;)]x :S 
:S ~(b;+b;)+(l - ~)(b; - b;) 

where /3 E [O, I] is a degree of optimism to be specified a priori. 

(54) 

As a prerequisite for obtaining the auxiliary linear programming problem (53), 
the following ordering relation between the triangular fuzzy numbers is assumed 

a>pb ~ (a+a)k 2: (b+b)k & (a-g)k 2: (b-Q)k (55) 

for each k E [/3, l], where (a+ a)k and ( a - g)k are the upper and lower bounds, 
respectively, of the k-cut of a. 

Notice that in (55) no fuzziness in respect to the satisfaction of constraints is 
involved. This is accounted for in a model of fuzzy linear programming proposed 
in [, (Delgado, Verdegay and Vila 1989)] . Its point of departure is the following 
problem 

{ maxxER;x2'.0 ex 
subject to: E'J=1a;1x1Sb;;i= l , ... ,m 

(56) 

where "2'." means that some violation of "2:" may be allowed; as before, the a;/s 
and bi's are fuzzy, given as triangular fuzzy numbers. 

The above violation, for the i-th constraint, is expressed by a fuzzy number t; , a 
margin of violation tolerance. Then, the set of constraints in (56) is replaced by 

n 

[a;1x1 > b;+t;(l-a) , 
j = I 

a E [O, 1], i = 1, ... , m (57) 

where ">" is some relation between two fuzzy numbers, preserving only the ranking 
under the multiplication by a positive scalar. 

Therefore, the problem considered becomes 

{ 
maxxER;x2'.0 ex 

subject to: LJ= I aiJxi _:S_b; + t;( 1 - a) 
a E [O, I], 1 - I, . .. , m 

from which a fuzzy optimal solution of (56) can be obtained. 

(58) 



:: 
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4.4 Remarks on duality in fuzzy linear programming 

Duality is an important issue in linear programming, and it has also attracted at­
tention in fuzzy liner programming. The first approach is presumably due to [, 
(Hamacher, Leberling and Zimmermann I 978)]. They start from a (mixed) fuzzy 
linear programming problem with both fuzzy and nonfuzzy constraints. Its solution 
is obtained by solving an auxiliary (nonfuzzy) linear programming problem of type 
(35). Its dual is obtained, and then the dual variables are analyzed and interpreted. 

In another approach due to Verdegay [, (Verdegay 1984)] , which takes advantage 
of the symmetry between the fuzzy constraints and fuzzy objective, the two types of 
fuzzy linear problems are considered: 

• with a nonfuzzy objective function and fuzzy constraints, i.e. problem (26), and 
• with nonfuzzy constraints and an objective function with fuzzy coefficients, i.e. 

problem (42). 

For the former problem (26), i.e. 

{ maxxER" ex 
subject to: Ax~ b;x 2: 0 

(59) 

in which "~" is formalized by allowing the i-th constraint in (59) to be violated 
to some extent which is done by introducing the degree of satisfaction of the i-th 
constraints given as [cf. (27)] 

{ 
I if (Ax); < b; 

i(x) = h;[(Ax);] if b; :-S: (Ax); :-S: b; +t; 
0 if (Ax)>b; +t; 

(60) 

it can be shown [cf. [, (Verdegay 1984 )]] that the dual problem to (59) is 

{ minuERdu 
subject to: uA T 2: c; u 2: 0 

(61) 

which is a fuzzy linear programming problem with fuzzy cofficients d specified by 
(60). 

As shown in [, (Verdegay 1984)], both the problems (59) and (61) have, for each 
a-cut, a E (0, I ], the same fuzzy solution which can be obtained using auxiliary 
parametric problems of type (36) and ( 46), respectively. 

It can also be shown that in a similar way one can obtain dual problems for fuzzy 
linear programming problems with both fuzzy constraints and fuzzy coefficients in 
the objective functions [, (Verdegay 1984 )]. 
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5 Fuzzy nonlinear programming 

Nonlinear programming is a wide class of mathematical programming problems of 
the type (24 ), i.e. 

{ maxxER" f(x) 
subject to: g;(x) ~ b;; i = 1, . . . , m 

(62) 

in which the objective function f(x) and the constraints g;(x) , i = 1, .. . ,m, are non­
linear as opposed to being linear as in Section 4. 

Since that nonlinearity can enter problem (62) in defferent forms, this gives rise 
to a wide array of nonlinear programming problems exemplified by: quadratic pro­
gramming, integer programming, 0---1 (Boolean) programming, geometric program­
ming, etc. For details we refer the reader to any book on mathematical programming, 
operations research, etc. available from any major scientific publisher. 

For most of the above mentioned nonlinear programming problems their fuzzi­
fications have been proposed. For clarity and lack of space we will briefly present 
here fuzzy integer and 0---1 programming only, and give a brief overview of other 
types. We will show the corresponding fuzzy mathematical programming problems, 
and indicate their solutions. We will not discuss basic properties of fuzzy nonlinear 
programs - cf. [, (Diamond and Kloeden 1994)] for some details in this respect. 

5.1 Fuzzy integer programming 

Variables which take on integer values are of utmost importance in many problems 
in which they stand for countable entities as, e.g. , numbers of people, parcels, cars, 
etc. Clearly, such problems abound in practice. 

The same is true for variables which take on two values only, either 1 or 0. They 
may represent, for 1, say, the performance of a job on a machine, the inclusion of a 
container in a freight, etc. And the opposite for 0. 

The first successful attempt at formulating and solving fuzzy integer program­
ming problems is presumably due to Fabian and Stoica[, (Fabian and Stoica 1984)]. 
They start with the conventional integer programming problem which may be writ-
ten as 

{ 

maxxER f(x ) · 
subject to: g(x) ~ 0 

x = [xi , ... ,xnl, x; 2'. 0 
x; - integers, i = I , .. . , n 

(63) 

where f(x) and g(x) are real-valued functions. 
Problem (63) is then fuzzified as follows: 

:: 

. ... 
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{ 

imixxERf(x) 
subject to: g(x) ~O 

x = [xi , ... ,xn l, x; 2: 0 

x; - - integers , 1 = l , ... ,n 

(64) 

which should be read that a "possibly maximal" (max) solution x* is sought which 
satisfies the constraints~'possibly high" degree(~ ), and whose components x;'s 

are "almost integer" (integers). 
Basically, the "almost integer" numbers are represented by very "narrow" (with 

very small left and right spreads) triangular fuzzy numbers, and the fuzziness in the 
concept of a maximal solution and constraint satisfaction is represented similarly 
as in Section 4.1. An equivalent nonlinear mixed integer program is derived and a 
solution procedure is given. 

The model proposed in [, (Fabian and Stoica 1984)] has found applications in 
production scheduling. 

A solution technique for solving fuzzy integer programming models with multi­
ple criteria was proposed in [, (lgnizio and Daniels 1983)]. 

Another approach to integer fuzzy linear programming is due to [, (Herrera and 
Verdegay 1991 )]. They have developed fuzzy integer programming models with 
fuzzy coefficients in the objective function and fuzzy coefficients in the technologi­
cal matrix which are counterparts of those presented in the previous section. A good 
source of information on these topics is also [, (Herrera 1994 )] . 

All the models mentioned above cover the cases of both a pure and mixed integer 
fuzzy linear programming, i.e with all integer variables and both integer and real 
variables, rspectively. 

5.2 Fuu.y 0-1 programming 

Variables which take on two values only, either I or 0, are very convenient in many 
situations. For instance, they may represent, in the case of 1, the performance of a 
job on a machine, the inclusion of a container in a freight, etc. And the opposite in 
the case of 0. 

In spite of utmost importance of -0- 1 mathematical programming problems, at­
tempts at their fuzzification are quite rare, and have not attracted much attention. 
The most prominent early works in this area are [, (Zimmermann and Pollatschek 
1979)] and [, (Zimmermann and Pollatschek 1984)]. For a newer analysis of ap­
proaches and solution techniques, we refer the reader to [, (Herrera and Verdegay 
1991)]. 

The work[, (Zimmermann and Pollatschek 1984)] concerns the basic Zimmer­
mann's fuzzy linear programming model[, (Zimmermann 1976)] [cf. (30)] . 

The 0- 1 fuzzy linear programming problem is formulated as 
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(65) 

which should be meant similarly as (30). 
Then, following the line of reasoning analogous to (31)-(35), an equivalent non­

fuzzy 0- 1 linear programming problem is obtained and a branch-and-bound proce­
dure for its solution is proposed. 

Another approach to integer fuzzy 0-1 programming is due to Herrera and Verde­
gay [, (Herrera and Verdegay 1991)]. They have developed fuzzy 0-1 programming 
models with fuzzy coefficients in the objective function and fuzzy coefficients in 
the technological matrix which are counterparts of the fuzzy linear programming 
problems presented in Section 4. 

All the models mentioned above cover the cases of both a pure and mixed 0- 1 
fuzzy linear programming. 

Among most relevant later works on fuzzy 0-1 programming one should mention 
[Castro, Herrera and Verdegay 1992, (Castro, Herrera and Verdegay 1992)]. A good 
source of information on these topics is also[, (Herrera 1994)]. 

5.3 Remarks on other types of fuzzy nonlinear programming 

In addition to fuzzy integer and 0- 1 programming problems described above, which 
are presumably the most relevant from the practical point of view, some other types 
on nonlinear fuzzy programming problems have been proposed in the literature. 

Geometric programming, whose essence is that the objective functions and con­
straints are generalized polynomials, has found applications in many practical prob­
lems exemplified by engineering design, process planning, marketing management, 
etc. Its fuzzification has been proposed by [. (Cao 1987)], and then by [. (Verma 
1990)]. We also refer the reader to[, (Sotirov and Mincoff 1994)] for more infor­
mation, list of other contributions and some extensions. 

Linear fractional programming is characterized by the objective function which 
is the fraction with both the numerator and denominator being linear functions. It 
has found many applications in diverse areas exemplified by production planning, 
financial and corporate planning etc. when the objective function may be, say, the 
ratio "inventory/sales" or "output/employee", with both the terms given as linear 
functions of some decision variables. To an interesting case of multiple objective 
fractional programming we refer the interested reader to, e.g., [, (Sakawa and Yano 
1994)]. 

For some other types of nonlinear programming problems, mainly of a combi­
natorial type, we refer the reader to the articles in the two edited volumes on fuzzy 
optimization [, (Kacprzyk and Orlovski l 987a)] and [, (Delgado, Kacprzyk, Verde­
gay and Vila 1994)]. 
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6 Fuzzy dynamic programming 

Dynamic programming, introduced in the mid-l 950's by Bellman (cf. [, (Bellman 
I 957)], is a powerful solution technique for multistage optimization (control) prob­
lems which may be roughly characterized for our purposes as the ones in which 
there is some dynamics in the sense of time-varying goals, constraints, dynamic 
system under control, etc. 

A fuzzification of dynamic programming appeared in the late 1960s in, e.g., [, 
(Bellman and Zadeh 1970)] works on fuzzy dynamic programming, and was then 
further developed - for an extensive exposition we refer the reader to Kacprzyk's 
books((, Kacprzyk 1983], [, Kacprzyk 1997]). 

The basic problem formulation may be stated as follows : 

• the system under control (deterministic for now) is governed by its state transition 
equation 

x1+1 = f(x, ,u,) , t = 0, 1, ... (66) 

where x, ,xi+1 EX are states at control stage t and t + l, and u, EU is control at 
t, t = 0, l , . .. , N - 1; N is the termination time, 

• at each control stage t, t = 0, l , ... ,N- l, afuzzy constraint on u,, C'(u,), and a 
fuzzy goal on xt+ 1, c<+ 1 (x,+ 1 ), are imposed, 

• the performance of the control process is evaluated by [cf. [, (Bellman and Zadeh 
1970)]] fuzzy decision [cf. (3)] 

D(uo, .. . ,uN- 1 lxo) = 
= c0(uo) /\ c1 (x1) /\ ... /\CN- l (uN- 1) /\ GN(xN) = 

N - 1 

= I\ [C'(u,) /\ G1+1(x,+i)J 
t=O 

• we seek an optimal sequence of controls u0, ... , uN- I such that [ cf. (4 )] 

D(uo, · ·· ,uN- 1 lxo)= 
max D(uo , .. . , LIN- I I xo) = 

uo,••·,uN- 1 

N- 1 
= max /\ [C'(u,)/\G1+1(x,+1)] 

ll0 , ···1UN- I t= O 

(67) 

(68) 

Problem (68) leads to various classes, with a convenient classification with re­
spect to[, (Kacprzyk 1997)]: 

• type of the termination time: (a) fixed and specified in advance, (b) implicitly 
given (by entering a termination set of states), (c) fuzzy, and (d) infinite; 

• type of the system under control: (a) deterministic, (b) stochastic, and (c) fuzzy. 

In this short review we will mainly outline the case of a fixed and specified ter­
mination time, and the cases of a deterministic , stochastic and fuzzy systems under 
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control , with emphasis on the deterministic one. For other cases and details we will 
refer the interested reader to [, (Kacprzyk 1997)]. 

The case of a fixed and specified termination time is basic and will be discusses 
in more detail. We start with the deterministic system under control given by its state 
transition equation (66). The problem considered is (68). 

The two basic solution techniques are: 

• dynamic programming, and 
• branch-and-bound, 

and the former will be discussed here. For the latter, and for the two newer ap­
proaches based on a neural network and genetic algorithm we refer the reader to [, 
(Kacprzyk 1997)]. 

In problem (68) we can readily notice that the two last right-hand side terms 

depend only on uN- 1 and not on other controls. 

Thus, maxu0, .. ·,"N- • can be split into max UO ,···•"N-2 and max"N- •. And similarly, 
one can split maxu0, ... ,uN_2 can be split into maxu0, ... ,uN_3 and max"N- 2 , etc. 

This leeds to the set of recurrence equations yielding an optimal control policy 
a;: X ----+ U, u1 = a;(x1) : 

. XN_- i = m_a xuN- .i .. _ UN- i XN- i+ 1 {GN- i( ) [cN- i( )/\GN- i+I( )] 
XN- ,+ I - f(xN_,,uN- ,) ,1 - 0, I , ... ,N 

(69) 

The stochastic system under control is assumed to be a Markov chain whose 
dynamics (state transitions) is governed by a conditional probability function 

p(xt+I [ x1,u1), t = 0, I , ... (70) 

which specifies the probability of attaining Xi+ J EX= {s1, ... ,sn} from x1 E X, 
under u, E U = { c 1, ... , Cm}, 

At each t = 0, I , ... , N - I, u1 E U is subjected to a fuzy constraint C' ( u1 ), and on 
XN EX, a fuzzy goal GN(xN) is imposed. 

The two different problem formulations are used: 

• Bellman and Zadeh 's formul.ition [, (Bellman and Zadeh 1970)]: find u0, ... , u;._ 1 

maximizing the probability of attainment of the fuzzy goal subject to the fuzzy 
constraints, i.e. 

D(u0, .. . ,u;._1 [xo)= max [G°(uo )/\ ... 
uo ,••·,uN- 1 

(71) 

• Kacprzyk and Staniewski 's formulation[, (Kacprzyk and Staniewski 1980)]: find 
u0, ... , u;._ 1 maximizing the expected value of the fuzzy decision, i.e. 

:.. 



Title Suppressed Due to Excessive Length 23 

D(uo , · · · ,uN- 1 I xo) = 
max ED(uo , .. . ,UN- 1 lxo) = 

uo,- -·,uN- 1 

max E[cl(uo) A . .. 
uo, --- ,uN- I 

(72) 

and in both we evidently seek an optimal control policies a; : X ------, U, such that 
u; = a; (x1 ) , t = 0 , 1, ... , N - I. 

The probability of a fuzzy event in both the problem formulations (71) and (72) 
is meant in Zadeh 's sense[, (Zadeh 1968)], i.e. as a real number in [0, I] . 

Kacprzyk and Staniewski 's formulation is much more difficult to solve, and 
somehow specific. In this paper we will employ the classic Bellman and Zadeh 's 
formulation given as (7 I) which leads to dynamic programming recurrence equa­
tions. 

First, the GN is regarded as a fuzzy event in X, and the conditional probability of 
this event given XN- 1 and UN- I is expressed by 

EGN(xN) = EGN(xN I XN- 1,uN- il = 

= I, p(xN I XN- 1 ,uN_ i) • GN(xN) 
XNE X 

(73) 

It may readily be noticed that the structure of problem (71) make the use of dy­
namic programming possible. Namely, EGN(xN) = EGN[f(xN- 1,uN- 1 )], i.e. is a 
function of XN- 1 and uN- 1. Therefore, the two right-most terms in the right-hand 
side of (71) depend on uN- 1 and not on the other controls. The second right-most 
terms depend on uN- 2, etc. The maximization over uo, . . . ,uN- 1 in (71) can be there­
fore split into the consecutive maximizations with respect to the particular u, 's, 
t = N - I , N - 2 , . .. , 0. This leads to the following set of dynamic programming 
recurrence equations: 

where oN- i(xN-;) may be viewed as a fuzzy goal att = N - i induced by oN- i+ I (xN- i+ l ). 

The successive maximizing values of UN- i , uN-i • i = I , 2, .. . , N, give the optimal 
control policies aN- i such that uN- i = aN_i(xN_;), i = 1, . .. ,N. 

The fuzzy system is governed by a fuzzy state transition equation 

X,+1 = F(X1 ,U1 ) , t = 0, I , ... (75) 

where X, and X1+ 1 are fuzzy states at t and t + 1, U, is a fuzzy control at t , t = 
0 , I , . . . ,N - 1. 
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The C (U,) is a fuzzy constraint on U,, and Gt+ 1( Xt+ 1) is a fuzzy goal on X1+ 1; 

G1+ 1 and C mean that the original Gt+ 1 and C' are modified to account for the 

fuzziness of the state and control (e.g. , GN (XN ) = 1 - d(XN , GN); d(., .) is some 
distance measure). 

We seek an optimal sequence of fuzzy controls U0, .. . , UN_ 1 such that 

D(Uo ,- -- ,UN- 1 [Xo) = 
N - 1 

= max /\ [C (U,) I\ G+1 (X1+1 )] 
Uo , ... ,UN- 1 t= O 

(76) 

and traditionally this problem is solved by dynamic programming [, (Baldwin and 
Pilsworth 1982)] and branch-and-bound[, (Kacprzyk 1979)]. 

In dynamic programming, after some "trickery" the set of recurrence equations 
of the type (68) is obtained. To make it practically solvable, a simple "natural" ap­
proach is used([, Baldwin and Pilsworth 1982], [, Kacprzyk and Staniewski 1982]) 
in which some prespecified reference fuzzy states and controls, V, E %' i;;; %', and 
X1+ 1 E tt" i;;; tt" , are used, and we express all U, _ 1 'sand X, 's by their closest refer­
ence counterparts. 

An optimal control policy is represented by 

t = 1, .. . ,N - I, sk E tt", C1 E %', equated with a fuzzy relation R; in X x U , and 
for a current X, (not necessarily reference) U,* is determined by the compositional 
rule of inference U1* = X, o R;. 

One can also use the earlier, simpler and more efficent branch-and-bound ap­
proach [, (Kacprzyk I 979)] . 

For lack of space we cannot discuss the other problem classes, i.e. those with 
an implicitly specified, fuzzy and infinite termination time. For most of them a dy­
namic programming problem can be formulated. For details we refer the reader to 
Kacprzyk's book [, (Kacprzyk 1997)]. 

7 Fuzzy multiobjective mathematical programming 

In general, one can readily notice that in virtually all fuzzy mathematical pro­
gramming models presented in the previous sections the objective functions (goals) 
and constraints have been treated alike. Therefore, from a certain point of view, 
those models could have been considered multiobjective mathematical program­
ming models. 

In this section we will briefly present models which are more specific to multi­
objective fuzzy mathematical programming. Since there is a multitude of works in 
the literature on this topic, and our space is limited, we will state a general problem 
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formulation , and then give a brief summary of main directions, approaches and so­
lution techniques. We will follow in principle ([, Lai and Hwang 1992] and [, Lai 
and Hwang 1994]), and will outline the main problem classes. 

The basic problem considered is of the type (30), i.e. for k objective functions 
and m constraints: 

{ 
. . maxxER[£!(~1 .. ~ , ---Jk(Ck,X)] 

subJectto. g1 (a1 ,x) ?_0, J - 1, . .. ,m 
x = [x1 , ... ,xnJ;xi ~ O,i = 1, .. . ,n 

(77) 

where max and ~ are meant that all the objective functions should be maximized, 
and this maximization is meant similarly as in (30), i.e. to attain possibly high a 
value, and the constraints should be satisfied as well as possible. The c;, i = I , ... , k, 
and a j, j = I , ... , m, are parameters which may be fuzzy or not. 

As we may remember [cf. (35)], assuming piecewise linear membership func­
tions, the solution of problem (77) may be obtained by solving an auxiliary problem 
([, Zimmermann 1976], [, Zimmermann 1978]). Basically, first we calculate for each 
fuzzy objective and constraint (called for simplicity an objective, and denoted as the 
fuzzy objective), for i = I , ... , k + m: 

• the individual best solution 

J;* = maxj;(ck ,x) 
xER 

(78) 

• individual worst solution 
£ = minf;(c;,x) 

xER 
(79) 

• and assume the linear membership function of the i-th objective as 

{ 
I for f;(c; ,x) > J; 

i( F.) = J; (c; ,x)- f;- for F.- < F.(c · x) < F" 
Jl t; - t: Jj _ Jill -Ji 

0 for f;(c; ,x) < J;-
(80) 

Then, an optimal solution to problem (77) can be obtained by solving the fol­
lowing augmented maximin problem ([, Lai and Hwang 1992], [, Lai and Hwang 
1994]) 

{ 
max,. E(0,IJ A+ 8 r,}=1 wki(J;) 

subjectto: i(f;)?.:l;i = l , ... ,k+m 
xE R = [x1 , ... ,xn];x; ?. 0, i = l , ... ,n;A E (0, 1] 

(81) 

where 8 E [0, 1] is a sufficiently small number, and w; E [0, l], w1 + · · -wk = I are 
relative weights (importances) of the objective functions. 

One can also set his or her goal Jf , i = I, ... , k + m, for the i-th fuzzy objective, 
and its corresponding tolerance t;, such that Jf ::; J; and J;* - t; ?. J;- , and then [, 
(Lai and Hwang 1992)] the augmented maximin problem, which is a counterpart of 
(81), is 
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{ sub jec< 00 

max,. E(0,l] A + 8 It1 wki(J;) 
i(f;) = 1- J/1if;(c;,x) 2'. A;i = I, ... ,k+m 

x E R = [x1, ... ,'xn];x; 2'. 0,i = 1, . .. ,n ; A E (0, 1] 

(82) 

Very often it is expedient to define a parametric fuzzy multiobjective mathemati­
cal programming problem because one may then perform some post-optimal analy­
ses. Such a problem is given as 

{ 
ffiaxxER[/1 (c1 ,x) , ... ,Jk(ck ,x)] 

subject to: gj(aj,j ?_bj+0;J_=_ l,.·· i':'._ 
x E R - [xi, ... ,xn],x, 2'. 0 , z - I , .. . ,n 

where c; and b j may be fuzzy or not, and 0 E [0, 1] is a variable parameter. 

(83) 

Then, we can follow the line of reasoning applied for prblem (77), i.e. (78)-(80), 
and abtain an augmented maximin problem which is equivalent to (81) and (82). 

For more details on the above and some more specific problem classes we refer 
the reader to[, (Lai and Hwang 1994)]. 

Among a multitude of other approaches for solving various versions of multiob­
jective fuzzy optimization problems, one may also the following works. In [, (Zim­
mermann 1978)] an inherent incommensurability and conflicting nature of problem 
(77), which may be due to different characters of objective functions and an inabil­
ity of their simultaneous maximization, is modeled by introducing some satisfaction 
levels on the objective functions and tolerances on the violation of constraints as in 
(32). Therefore, an equivalent to problem (35) is obtained which can be solved. 

A fuzzy efficient solution was first defined in [, (Werners 1987)]. In ([, Han­
nan 1981a], [, Hannan 198lb]) the multiobjective fuzzy mathematical programming 
problem is solved by assuming fuzzy goals of a piecewise linear form. For a similar 
approach, see also[, (Ignizio 1982)]. This approach was later extended by numerous 
authors by including interaction with the decision maker (cf. [, (Tapia and Murtagh 
1991)]. 

Sakawa and his collaborators were among the most active in developing various 
issues related to multiobjective fuzzy optimization as, e.g., concepts of Pareto opti­
mality, compromise solutions, sequential proxy techniques, etc. These works are too 
numerous to cite, and the best source of information is Sakawa's book [, (Sakawa 
1993)]. 

Among other approaches, in [, (Leung 1987)] a hierarchy of fuzzy objectives is 
employed, in [, (Chanas 1989)] a parametric model was proposed, etc. 

For more information of different aspects of multiobjective fuzzy mathemati­
cal programming we refer the interested reader to the literature cited, the books [, 
(Lai and Hwang 1992)] and[, (Sakawa 1993)], and - maybe even better due to a 
more diversified coverage - to the edited volumes: [, (Delgado, Kacprzyk, Verdegay 
and Vila 1994)], [, (Fedrizzi, Kacprzyk and Roubens 1991)], and[, (Kacprzyk and 
Orlovski I 987)]. 
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8 Concluding remarks 

In this short review we have briefly presented foundations of fuzzy optimization and 
fuzzy mathematical programming. Emphasis was on linear fuzzy mathematical pro­
gramming as the most promising for practical applications and most widely used. 
We have also presented some more important aspects of nonlinear fuzzy mathe­
matical programming (in particular integer and 0-1 programming), fuzzy dynamic 
programming, and multiobjective fuzzy mathematical programming . 

References 

[] Baldwin J F and Pilsworth B 1982 Dynamic programming for fuzzy systems with fuzzy envi­
ronment Joumal ~f Mathematical Analysis and Applications 85 1- 23. 

[] Bellman RE 1957 Dynamic Programming, Princeton, NJ: Princeton University Press 
[] Bellman R E and Zadeh L A 1970 Decision-making in a fuzzy environment Management 

Science 17(8) 141 - 164 
[] Buckley J J 1983 Fuzzy programming and the Pareto optimal set Fuzzy Sets and Systems I 0 

57-67 
[] Buckley J J 1988 Possibility and necessity in optimization Fuzzy Sets and Systems 25 1- 13 
[I Cao B-Y 1987 Solution and theory of question for a kind of fuzzy positive geometric pro­

gramming Proceedings of Second !FSA Congress (Tokyo, Japan) pp 205- 8 
[] Carlsson C and Korhonen P 1986 A parametric approach to fuzzy linear programming Fuzzy 

Sets and Systems 20 17-30 
[Castro, Herrera and Verdegay 1992] Castro J L, Herrera F and Verdegay J L 1992 Solving linear 

Boolean programming problems with imprecise costs Proc. of IEEE lntemational Co1;ference 
on Fuzzy Systems (San Diego, CA, USA) pp I 025- 32 

[] Chan as S 1983 Parametric programming in fuzzy linear programming Fuzzy Sets and Systems 
11 243- 51 

[] Chanas S 1987 Fuzzy optimization in networks Optimization Models Using Fuzzy Sets and 
Possibility Theory ed. J. Kacprzyk and S.A. Orlovski (Dordrecht: D. Reidel) pp 303- 327 

[] Chanas S 1989 Fuzzy programming in multiobjective linear programming - a parametric ap­
proach Fu zzy Sets and Systems 29 303- 13 

[] Chanas S, Kolodziejczyk W and Machaj A 1984 A fuzzy approach to the transportation prob­
lem Fuzzy Sets and Systems 13 211-22 

[] Chanas S and Kuchta D 1994 Linear programming with fuzzy coefficients in the objective 
function Fuzzy Optimization: Recent Advances ed M Delgado, J Kacprzyk, J-L Verdegay and 
M A Vila, Heidelberg: Physica-Verlag, pp 148- 57 

[] Delgado M, Kacprzyk J, Verdegay J-L and Vila MA 1994 Fuzzy Optimization: Recent Ad­
vances Heidelberg: Physica-Verlag 

[] Delgado M, Verdegay J-L and Vila M A 1987a Fuzzy transportation problems: a general 
analysis Optimization Models Using Fuzzy Sets and Possibility Theory ed. J. Kacprzyk and 
S.A. Orlovski (Dordrecht: D. Reidel) pp 342- 58 

[] Delgado M, Verdegay J-L and Vila MA 1987 Imprecise costs in mathematical programming 
problems Control and Cybemetics 16 I 13- 21 

[] Delgado M., Verdegay J-L and Vila MA 1989 A general model for fuzzy linear programming 
Fuzzy Sets and Systems 29 21 - 9 

[] Delgado M , Verdegay J-L and Vila M A 1990 Relating different approaches to solve linear 
programming problems with imprecise costs Fuzzy Sets and Systems 37, 33-42 



28 Janusz Kacprzyk and Krzysztof Kiwiel 

[] Delgado M, Verdegay J-L and Vila MA 1994 Fuzzy linear programming: from classical meth­
ods to new applications Fuzz.y Optimization: Recent Advances ed M Delgado, J Kacprzyk, J-L 
Verdegay and M A Vila, Heidelberg: Physica-Verlag, pp 111 -34 

[I Diamond P and Kloeden P I 994Robust Kuhn- Tucker conditions and optimization under im­
precision Fuzz.y Optimization: Recent Advances ed M Delgado, J Kacprzyk, J-L Verdegay and 
MA Vila, Heidelberg: Physica-Verlag, pp 61-6 

[] Dubois D and Prade H 1980 Fuzzy Sets and Systems. theory and Applications (New York: 
Academic Press) 

[] Dyson R G 1980 Maxmin programming, fuzzy linear programming and multicriteria decision 
making Journal of Operational Research Society 31 262- 7 

[] Fabian C and Stoica M 1984 Fuzzy integer programming Fuzz.y Sets and Decision Analysis 
ed. HJ Zimmermann, LA Zadeh and B R Gaines, Amsterdam: North-Holland, pp 123- 31 

[] Fedrizzi M, Kacprzyk J and Reubens M, eds. 1991 Interactive Fuzz.y Optimization Berlin: 
Springer-Verlag 

[] Fedrizzi M, Kacprzyk J and Verdegay J-L 1991 A survey of fuzzy optimization and mathemat­
ical programming Interactive Fuzz.y Optimization ed. M Fedrizzi, J Kacprzyk and M Reubens, 
Berlin: Springer-Verlag, pp I 5-28 

[] Hamacher H, Leberling H and Zimmermann H-J 1978 Sensitivity analysis in fuzzy linear 
programming Fuzz.y Sets and Systems I 269- 81 

[] Hannan E L 1981 a Linear programming with multiple fuzzy goals Fuzz.y Sets and Systems 6 
235-48 

[] Hannan E L 1981 b On fuzzy goal programming Decision Sciences 12 522- 31 
[] Herrera F 1994 Models and methods in fuzzy discrete programming Fuzzy Optimization: Re­

cent Advances ed M Delgado, J Kacprzyk, J-L Verdegay and M A Vila, Heidelberg: Physica­
Verlag, pp 255- 71 

[] Herrera F and Verdegay J-L 1991 Approaching fuzzy integer linear programming problems 
Interactive Fuzzy Optimization ed M Fedrizzi, J Kacprzyk and M Reubens, Berlin: Springer­
Verlag, pp 78-91 

[] Herrera F and Verdegay J L 1993 Three models of fuzzy integer linear programming European 
Journal ~{Operational Research??? 

[] Herrera F, Verdegay J-L and Zimmermann H-J 1993 Boolean programming problems with 
fuzzy constraints Fuzz.y Sets and Systems 55 285- 93 

[] lgnizio JP 1982 On the (re)discovery of fuzzy goal programming Decision Sciences 13 33-6 
[] lgnizio J P and Daniels S C 1983 Fuzzy multicriteria integer programming via fuzzy general­

ized networks Fuzzy Sets and Systems JO 261 - 70 
[] Kacprzyk J 1979 A branch-and-bound algorithm for the multistage control of a fuzzy system 

in a fuzzy environment Kybernetes 8 139-47. 
[] Kacprzyk J 1983 Multistage Decision Making under Fuzz.iness, Koln: Verlag TOY Rhein land 
[] Kacprzyk J 1984 ed Special Issue on Fuzzy sets and Possibility Theory in Optimization Mod­

els Control and Cybernetics 4(3) 
[] Kacprzyk J 1997 Multistage Fuzz.y Control, Chichester, UK: Wiley 
[] Kacprzyk J and Orlovski A A 1987 Optimization Models Using Fuzzy Sets and Possibility 

Theory, Dordrecht: D. Reidel 
[] Kacprzyk J and Orlovski A A 1987 Fuzzy optimization and mathematical programming: a 

brief introduction and survey Optimization Models Using Fuzz.y Sets and Possibility Theory 
ed. J. Kacprzyk and S.A. Orlovski, Dordrecht: D. Reidel, pp 50- 72 

[] Kacprzyk J and Staniewski P 1980 A new approach to the control of a stochastic system in a 
fuzzy environment Archiwum Automatyki i Telemechaniki XXV, 433-43. 

[] Kacprzyk J and Staniewski P 1982 Long-term inventory policy-making through fuzzy 
decision-making models Fuzz.y Sets and Systems 8 117- 32. 

[] Kacprzyk J and Yager RR 1984a "Softer" optimization and control models via fuzzy linguistic 
quantifiers Information Sciences 24 157- 78 

[] Kacprzyk J and Yager R R 1984b linguistic quantifiers and belief qualification in fuzzy multi­
criteria and multistage decision making Control and Cybernetics 4 155-74 



Title Suppressed Due to Excessive Length 29 

[] Lai Y-J and Hwang C-L 1992 Fuzzy Mathematical Programming: Methods and Applications, 
Heidelberg: Springer- Verlag 

l] Lai Y-J and Hwang C-L 1994 Interactive fuzzy multiple objective decision making Fuu.y 
Optimization: Recent Advances ed M Delgado, J Kacprzyk, J-L Verdegay and M A Vila, 
Heidelberg: Physica-Verlag, pp 179- 98 

[] Leung Y 1987 Hierarchical programming with fuzzy objectives and constraints Optimization 
Models Using Fuu.y Sets and Possibility Theory ed. J. Kacprzyk and S.A. Orlovski, Dordrecht: 
D. Reidel , pp 245- 57 

[] Llena J 1985 On fuzzy linear programming European Journal o.f Operational Research 22 
21 - 23 

[J Luhandjula M K 1982 Compensatory operators in fuzzy linear programming with multiple 
objectives Fuu.y Sets and Systems 8 245- 52 

lJ Luhandjula M K 1983 Linear programming under randomness and fuzziness Fuu.y Sets and 
Systems 10 57--03 

[] Luhandjula M K 1984 Fuzzy approaches for multiple objective linear fractional optimization 
Fuzzy Sets and Systems 13 11 - 23 

[] Luhandjula M K 1986 Satisfying solutions for a possibilistic linear program lnfonnation Sci­
ences 40 247--05 

lJ Luhandjula M K 1987a Multiple objective programming problems with possibilistic coeffi­
cients Fuu.y Sets and Systems 21 135-46 

[] Luhandjula M K 1987b Linear programming with a possibilistic objective function European 
Journal o_{Operational Research 31 110-7 

[] Luhandjula M K 1989 Fuzzy optimization: an appraisal Fuzzy Sets and Systems 30 257-82 
[] Negoita C V and Ralescu D 1975 Applications of Fuzzy Sets to Systems Analysis, Basel: 

Birkhaauser 
[] Negoita C V and Ralescu D 1977 On fuzzy optimization Kybemetes 6 193- 5 
I.I Orlovski S A 1971 On programming with fuzzy constraint sets Kybernetes 6 197- 20 I 
[] Orlovski S A 1978 Decision making with a fuzzy preference relation Fuu.y Sets and Systems 

I 155--07 
[] Orlovski S A 1980 On formalization of a general fuzzy mathematical programming problem 

Fuzzy Sets and Systems 3 311-21 
[] Orlovski S A 1984 Multiobjective programming problems with fuzzy parameters Control and 

Cybernetics 4 175- 84 
[] Rommelfanger H R,Hanuscheck R and Wolf J 1989 Linear programming with fuzzy objec­

tives Fuzzy Sets and Systems 29 31-48 
[J Sakawa M 1993 Fuu.y Sets and Interactive Multiobjective Optimization, New York: Plenum 
[] Sakawa M and Yano H 1994 Pareto optimality for multiobjective linear fractional program­

ming problems with fuzzy decision variables and fuzzy parameters Fuu.y Optimization: Re­
cent Advances ed M Delgado, J Kacprzyk, J-L Verdegay and M A Vila, Heidelberg: Physica­
Verlag, pp 304-20 

[] Slowinski R 1986 A multicriteria fuzzy linear programming model for water supply system 
development planning Fuu.y Sets and Systems 19 217- 37 

[] Sotirov G and Mincoff N 1994 Multiobjective possibilistic geometric programming: meth­
ods and applications Fuu.y Optimization: Recent Advances ed M Delgado, J Kacprzyk, J-L 
Verdegay and MA Vila, Heidelberg: Physica-Verlag, pp 285- 303 

[] Tanaka H and Asai K 1984a Fuzzy linear programming problems with fuzzy numbers Fuzzy 
Sets and Systems 13 1- 10 

[] Tanaka Hand Asai K 1984b Fuzzy solution in fuzzy linear programming problem IEEE trans­
actions on Systems, Man and Cybernetics SMC-14, 285- 8 

[] Tanaka H, Ichihashi H and Asai K 1984 A formulation of fuzzy linera programming problems 
based on comparison of fuzzy numbers Control and Cybernetics 4 185- 94 

[] Tanaka H, Okuda T and Asai K 1974 On fuzzy mathematical programming Journal (}{Cyber­
netics 3-4 37-46 

[] Tapia C G and Murtagh B A 1991 Interactive fuzzy programming with preference criteria in 
multiobjective decision making Computers and Operations Research 18, 307- 16 



30 Janusz Kacprzyk and Krzysztof Kiwiel 

[] Trappey J F C, Liu C R and Chang T C 1988 Fuzzy nonlinear programming: theory and 
applications in manufacturing International Journal of Production Research 26 975- 85 

[] Verdegay J-L 1982 Fuzzy mathematical programming Fuu.y lnfonnation and Decision Pro­
cesses ed. M M Gupta and E Sanchez, Amsterdam: North-Holland pp 231 - 7 

[] Verdegay J-L 1984 A dual approach to solve the fuzzy linear programming problem Fuu.y 
Sets and Systems 14 131-41 

[] Verma R K 1990 Fuzzy geometric programming with several objective functions Fuu.y Sets 
and Systems 35 115- 20 

[] Werners B 1987 Interactive multiple objective programming subject to flexible constraints 
European Journal of Operational Research 3 I 342- 9 

[] Yager R R 1979 Mathematical programming with fuzzy constraints and a preference on the 
objective Kybernetes 9 109- 14 

[] Zadeh L A 1968 ??Prob of fuzy event 
[] Zimmermann H-J 1976 Description and optimization of fuzzy systems International Journal 

o.f Fuu.y Systems 2 209- 15 
[] Zimmermann H-J 1978 Fuzzy programming and linear programming with several objective 

functions Fuu.y Sets and Systems I 45- 55 
[] Zimmermann H-J and Pollatschek M A 1979 A unified approach to three problems in .fuzzy 

0- 1 linear programs Working Paper, RWTH Aachen, Germany 
[] Zimmermann H-J and Pollatschek MA 1984 Fuzzy 0- 1 linear programs Fuu.y Sets and Deci­

sion Analysis ed. H J Zimmermann, LA Zadeh and B R Gaines, Amsterdam: North-Holland, 
pp 133-45 










