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Abstract We indicate some possible tools and techniques of fuzzy sets theory which
can be of use in extensions of some more popular optimization and mathematical
programming. We conWe briefly survey main issues and developments in fuzzy
optimization to make iot possible to deal with imprecise data. We mainly concern
linear programming due to its great practical relevance.

Key words: fuzzy optimization, fuzzy linear programming, fuzzy integer program-
ming, fuzzy 0-1 programming, fuzzy dynamic programming, fuzzy multiobjective
mathematical programming.

1 Introduction

Optimization belongs to a much wider class of decision making problems whose
essence may be summarized as follows:

o there is a set of feasible options (alternatives, variants , ...),

e there is some mechanism for the representation of preferences among the op-
tions which is given, e.g., by pairwise comparisons, preference orderings, utility
functions, etc.,

e there is some choice (rationality) criterion determining which options should be
chosen (e.g. those with the highest value of a utility functions).

In optimization problems information on the preferences among options is de-
scribed by a utility (performance, objective, ...) function which maps a given set
of feasible options into the real line, hence the comparison is straightforward and
natural, i.e. the greater (or lower) the value of this function the better.

The set of feasible options in an optimization problem is often described by a
system on equations and/or inequalities, and in such a case the problem is referred
to as one of mathematical programming.

Methods and techniques of optimization, or - more specifically - those of math-
ematical programming have been successfully employed for years in various areas,
mostly in problems with relatively well-defined structures and data, the so-called
hard problems. This has allowed the formulation of optimization problems with pre-
cisely specified constraints and objective functions which are solvable by relatively
cfficient traditional analytical and computational tools and techniques.

Unfortunately, attempts to employ optimization tools for solving the so-called
soft problems in which goals and constraints are not clear-cut, a key role is played
by human value systems and judgments, there are multiple decision makers and
criteria, dynamics is involved, etc. have not been so successful.

It can be argued that one of major obstacles in the application of traditional op-
timization tools in soft problems is the predominatly subjective nature of available
information, which is due to the criticality of human factors, and its imprecise form
which is due to the use of natural language that is the only fully natural human
means of communication.
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Developments of fuzzy sets theory have given more and more evidence that this
theory may provide useful means for a more adequate, effective and efficient han-
dling of optimization problems in soft environments. It is in this sense that fuzzy sets
theory will be advocated as a promising tool for softening traditional optimization
models and techniques.

In this paper we will present a brief account of the state of the art of fuzzy op-
timization and mathematical programming. We will present major concepts, ideas
and developments, and refer the reader to more relevant literature. We should bear
in mind that the literature in this field is voluminous, and cannot be cited in full in
this short review. However, luckily enough there exist in the literature two edited
volumes devoted to fuzzy optimization, the former one [, (Kacprzyk and Orlovski
1987a)], and the recent one [, (Delgado, Kacprzyk, Verdegay and Vila 1994)]
which are sources of information on virtually all newer and more relevant devel-
opments. Other books deal with more specific areas as, e.g., [, (Fedrizzi, Kacprzyk
and Roubens 1991)] is a source on interactive approaches, and the recent book [,
(Kacprzyk 1997)] is the source on fuzzy dynamic programming.

What concerns other more extensive surveys on fuzzy optimization and fuzzy
mathematical programming, the interested reader is referred to, e.g., [, (Kacprzyk
and Orlovski 1987b)] or [, (Fedrizzi, Kacprzyk and Verdegay 1991)] or [, Delgado,
Verdegay and Vila 1994].

We will start with a discussion on some preliminaries which constitute a point
of departure for fuzzy optimization models, mainly of the [, (Bellman and Zadeh
1970)] approach. Then, we present in more detail fuzzy linear programming due to
its relevance. We sketch fuzzy nonlinear programming, including fuzzy integer, 0-1,
geometric, fractional, etc. programming. Then we outline fuzzy dynamic program-
ming. Finally, we consider some approaches to fuzzy multiobjective mathematical
programming.

2 Approaches to fuzzy optimization

In this section we will discuss some general issues related to fuzzy optimization.
Basically, we will assume that both the feasible set of options and the evaluation
of options will be fuzzily described. This will provide a point of departure to fuzzy
mathematical programming, with the feasible set of options specified by a set of
equalities and/or inequalities.

2.1 Approaches to fuzzy optimization with an explicitly specified
feasible set

As we have already mentioned in Section 1, in an optimization problem the follow-
ing two elements are crucial:
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e asect of feasible options (alternatives, variants, . .. ) also termed a feasible set, and
e an objective (performance) function employed for the comparison and ranking
of the alternatives in order to find an optimal one(s).

In this section we will briefly analyze these elements in a more general context
of fuzzy optimization. As we will see in Section 3, in which we will discuss issues
related to fuzzy mathematical programming, these elements will also occur there.

The class of fuzzy optimization problems considered here may be stated as fol-
lows. Suppose that X = {x} is a set of options. The objective function is F : X —»
L(R) where L(R) is a family of fuzzy sets defined in R, the real line; i.e. F(x) is
a fuzzy number which provides an imprecise (fuzzy) evaluation of option x € X.
The set of feasible options is imprecisely specified by a fuzzy set C in X such that
C(x) € [0,1] stands for the degree of feasibility, from 1 for fully feasible to 0 for
fully infeasible, through all intermediate values.

The optimization problem may then be generally denoted as

max z-F(x) (1)

which is to be read as: find a possibly high (max) value of F over the x‘s “belonging”
(€) to the (fuzzy) feasible set C.

The above general problem formulation may be formally stated in various ways
exemplified by one in terms of [, (Bellman and Zadeh 1970)] general approach to
decision making under fuzziness, and one in terms of a representation of the fuzzy
feasible set via a-cuts.

2.2 Attainment of fuzzy goals and satisfaction of fuzzy constraints
— Bellman and Zadeh’s approach

A general approach to decision making under fuzziness (or, as originally termed, in
a fuzzy environment) [, (Bellman and Zadeh 1970)] is a powerful framework which
is a point of departure for an overwhelming majority of fuzzy decision making,
optimization, control, etc. models. It is also a convenient apparatus for the class
of fuzzy optimization problems (1) considered here. This approach was discussed
in Section F5.1, and we will present here again its main elements tailored to our
specific needs.

In this approach we have an explicitly specified fuzzy feasible set, called a fuzzy
constraint, and an explicitly specified fuzzy set of options which attain the goal,
called a fuzzy goal. The fuzzy constraint is characterized by its membership function
C(x) such that C(x) = 1 stands for a fully feasible x, C(x) = 0 stands for a fully
infeasible x, and intermediate values denote feasibility to a degree, from 0 to 1.
And, similarly, the fuzzy goal is characterized by its membership function G(x),
with an analogous interpretation.

The fuzzy goal G(x) is usually assumed to be of the following type
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L forfw) 27
G(x) = q &(x) for f < f(x) < f ()
0 forf(x)<f

which is to be read as: we are fully satisfied [G(x) = 1] with the x’s for which the
objective (performance) function f(x) attains a value at least equal to a satisfaction
level f, we are partially satified (to degree 0 < G(x) = g(x) < 1) with the x’s for
which f(x) is between the satisfaction level f and the lowest admissible level £, and
we are fully dissatified [G(x) = 0] with the x’s for which f(x) is below the lowest
admissible level f.

Notice that the above definition in terms of satisfaction levels is intuitively ap-
pealing, and has proven to be extremely useful in applications [cf. [, (Kacprzyk
1997N)11.

The problem is now stated as to

“satisfy the fuzzy constraint and attain the fuzzy goal”

which, by introducing the concept of a fuzzy decision, D, may be written as
D(x) = C(x) AG(x) = min[C(x),G(x)] 3)

with the understanding that “A, i.e. the minimum, which reflects the traditional def-
inition of the intersection of fuzy sets, may readily be replaced by another operation
as, say, a f-norm.

The fuzzy decision D(x) given by (3) specifies therefore a fuzzy set of options
which satisfy the fuzzy constraint and attain the fuzzy goal. Normally, since even if
the problem is fuzzy its solution to be implemented must be crisp, we wish to find a
nonfuzzy option (or options) which best satifies the fuzzy constraint and attain the
fuzzy goal, and this gives rise to the concept of an optimal (maximizing) decision,
x* € X, to be determined

D(x*) = sup D(x) = sup[C(x) A G(x)] 4)
xeEX xeX

One may readily notice that an analogous line of reasoning can be applied for
multiple fuzzy constraints, C'(x),...,C™(x), and multiple fuzzy goals, G' (x),...,G"(x),
and we obtain then

D(x)=C'(X)A...AC"(X) AG' (X)A...AG" () 5)
while an optimal (maximizing) decision to be found, x* € X, is given by

D(x*) =
= sup[C'(X)A...AC™"(X)AG' (X) A... AG"(x)] ©)

xeX

Moreover, if the fuzzy constraint is defined in X = {x}, C(x), and the fuzzy goal
is defined in Y = {y}, G(»), and there is a function # : X — Y, y = h(x), then we
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denote by G[h(x)] the fuzzy goal in X induced by the fuzzy goal G(y) in Y, then
then fuzzy decision (3) becomes

D(x) = C(x) A Glh(x)] )
and we seek an optimal (maximizing) decision x* € X such that

D(x*) = sup D(x) = sup(C(x) A G[h(x)]) 8)
xeX xeX
And analogously, for multiple fuzzy constraints and multiple fuzzy goals defined
in X and Y, respectively, we obtain the fuzzy decision

D(x) =C' (X) A...AC"(x) AG [A(X)] A ... A G [h(x)] ©)
and an optimal (maximizing) decision to be found, x* € X, is given by
D(x") = max D(x) = %a}((c' (X)A...
L AC"(X)AG [RX)]A... AG [h(x)]) (10)

Notice that in the above general Bellman and Zadeh’s model the values of the
objective function, f(x), are nonfuzzy [cf. (2)], and only its maximization is im-
precisely specified. In an approach proposed in [, (Orlovski 1980)] it is possible to
extend the above general model to the case when the values of the objective function
are fuzzy, characterized by membership functions g : X x R — [0, 1] such that for
each value of x € X the objective function may take on different real values, with
different degrees of membership from [0, 1].

Basically, in [, (Orlovski 1980)] the following sets are introduced:

N={(x,r):(x,r) € X xR,g(x,r) > G(x)} (11)
Ny={r:reR,(x,r) e N} (12)
X0 = {x:xe X,N, #0} (13)

the fuzzy decision is defined as

_ [ C(x) Ainfrey G(x) for x € XO
Biz)= {C(x) otherwise a4
and an optimal (maximizing) decision x* € X is sought such that
D(x*) = max D(x) (15)

x€X
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2.3 Using the o-cuts of the fuzzy feasible set

A common approach in the analysis of fuzzy systems is to replace fuzzy sets in-
volved by their equivalent c-cuts (a-level sets). If A is a fuzzy set in X, then its
a-cut (a-level set) is

Ag={xeX:A(x) > a}, Va € [0,1] (16)

The o-cuts (a-level sets) may also be employed to obtain an equivalent of a fuzzy
optimization problem as proposed in the classic Orlovski’s approach [, (Orlovski
1977)] which, as opposed to a satisfaction based approach sketched in the former
sections, is more explicitly related to optimization.

The problem considered is again as schematically shown in (1), i.e.

max zc.f(x) (17)

where, similarly as in (1), the maximization and inclusion should be meant in a fuzzy
way. Notice that, for simplicity, we assume here a nonfuzzy objective function f(x)
instead of a fuzzy one F(x) as in (1).

First, for the fuzzy feasible set C we derive its a-cuts, Cq = {x € X : C(x) > a},
for each a € (0, 1]. Then, for each a € (0,1] such that Cy # @, we introduce the
following (nonfuzzy) set

N(a) ={xeX: f(x) = sup f(x)} (18)
x€Cq
Now, a so-called solution I to problem (17) is defined as the following fuzzy set
[, (Orlovski 1977)]

_ [ SUPen(a) @ for x € UgsoN(a) _
Sik) { 0 otherwise

_J C(x) for x € UgsoN(0x) (19)
10  otherwise

and the fuzzy maximal value of f(x) over the fuzzy feasible set C is defined as, for
each r € R:
f(r)= "sup Si(x)= sup sup « (20)
x€f~1(r) x€f~1(r)xeN(a)
Next, a so-called solution 2 to problem (17) is introduced [, (Orlovski 1977)]. For
f(x) and C(x) we first define the set of Pareto maximal elements, P, as a (nonfuzzy)
subset P C X such that x € P if and only if there exists no y € X for which

either
70) > ) and C0) > C(3) o0

f(y) = f(x) and C(y) > C(x)
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Then, solution 2 is defined as a fuzzy set

_ JC(x) forxe P
$2(x) = {0 otherwise 22)

It may then be shown [, (Orlovski 1977)] that this solution yields the same fuzzy
maximal value of f(x) over C as solution 1, i.e. for each r € R:

f(r)= sup Si(x)= sup sup « (23)
xef~1(r) xef~1(r)xeN()

As to more interesting properties of solution 2, one may mention here P C
UasoN(a) which implies S>(x) < S;(x), for each x € X, i.e. solution 2 is a sub-
set (in the sense of inclusion of two fuzzy sets) of solution 1.

Among other more relevant approaches in which f(x) and C(x) are dealt with
separately ane may mention those by [, (Negoita and Ralescu 1977)] or [, (Yager
1979)1.

3 Fuzzy mathematical programming

As already mentioned in Section 1, mathematical programming is meant as a special
optimization problem in which the feasible set is given as (a set of) equalities and/or
inequalities. For our purposes, a general mathematical programming problem can
be written as

maXxyecpgn f(x)
{subject to: gi(x) <bsi=1,...,m (&4
where x = [x1,...,x,]7 € R" is a vector of decision variables, f : R" — R is an

objective function, g; : R" — R are constraints, and b; € R are the so-called right-
hand sides; clearly, the maximization may readily be replaced by minimization, and
“<7by 27,

Particularly important in practice is linear programming in which both the ob-
jective function and constraints are linear functions, i.e. (24) becomes

max,>0 f(x) = cx= Y cjx; (25)
subject to: (Ax); =X _jaijx; <bsi=1,....m

and a large part of our next discussions will be devoted to fuzzy linear programming.

4 Fuzzy linear programming

In the context of fuzzy mathematical programming, fuzzy linear programming is
also the most relevant from a practical point of view, and almost all more relevant
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developments in the field of fuzzy mathematical programming occured in the linear
case. In this paper, too, emphasis will be on fuzzy linear programming.

Looking at the general linear programming problem formulation (25), we may
readily point out the following elements that may be fuzzified:

o the coefficients (costs) in the objective function f(x), i.e. ¢ = [c1,...,Cm],
e the coefficients g;; in the so-called technological matrix A = [g;;], i =1,...,m,
j=1,...,n,and

e the right-hand sides b = [by, ..., by|"

The above leads to the following basic types of fuzzy linear programming:
problems with fuzzy constraints,

problems with a fuzzy objective function (fuzzy goal),

problems with fuzzy costs ¢;’s, and
problems with fuzzy coefficients a;;’s and b;’s,

which will be briefly presented below.

4.1 Fuzzy linear programming with fuzzy constraints

In this case the fuzzy linear programming problem may be generally written as:

maxyegn CX
{ subject to: Axgb;x >0 (26)

where “<” denotes an imprecise “less than” relation meant as that the left-hand side
should be essentially less than or equal to the right-hand side with the understanding
that this should be possibly well satisfied.

Usually, “<” is formalized by allowing the i-th constraint in (26) to be violated
to some extent which is done by introducing a degree of satisfaction of the i-th
constraints given as the following membership function

1 if (Ax)i < b;
i(x) = q hi[(Ax)] if b; < (Ax); < bi+1; @27
0 if (Ax) > b; +1;

where h;(.) € (0,1) is such that the higher the violation of the i-th constraint the
lower the value of 4;. In practice, k;(.) is assumed to be a linear function, also in this
paper. Moreover, ¢; is the maximum vialation of the i-th constraint.

The first method for solving problem (26) is due to [, (Tanaka, Okuda and Asai
1974)] who show that the solution of the original problem (26) may be replaced by:
find an optimal pair (a*,x*) € [0,1] x R" such that

o A f(x*) = sup [@Amax f(x)] (28)
agl0,1] *€Xy
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where f: R" — [0,1] is a continuous objective functions, and Xy = {x € R" |
Aiz1,..mi(x) > a}, for each a € (0, 1].

As shown in [, (Tanaka, Okuda and Asai 1974)], under some mild assumptions
concerning the continuity of the objective function f and the uniqueness of o,
an optimal solution sought — (a*,x*) — is obtained using the following iterative
algorithm:

Step I:  Assume k = 1 and an ; € (0, 1].
Step2:  Compute f = maxxex,, f(x).
Step 3:  Compute & = o — fi. If | & |> €, then go to Step 4, otherwise go to Step
5; € € [0,1] is a required precision.
Step 4: Compute 01 = Oy — ry&, where r, > 0 is selected so that 0 < o < 1.
Set k :=k+1 and go to Step 2.
Step 5: Let @® = o and find an optimal x* € R" such that
f(x*) = max f(x) (29)
XEXgx
Another approach to the solution of problem (26) is due to [, (Zimmermann
1976)]. Basically, his line of reasoning is inspired by the concept of a maximizing
decision (8). First, by putting e; = —c; into the objective function in problem (28),
the maximization is replaced by the minimization. Then, problem (26) is replaced
by its following fuzzified version

ex:):;‘-zlejxjgz
AX:Z;:]ainij,‘ fori:l,...,m (30)
x; >0 forj=1,...,n

which should be meant as follows: ex should be “essentially smaller than or equal to”
an aspiration level z, and the constraints’ left-hand sides, Ax, should be “essentially
smaller than or equal to” b;’s; evidently, both should be satisfied as well as posible
(to the highest possible extent).

The first step is a proper formalization of “<” which stands for “essentially
smaller than or equal to”. We start by introducing the (m + 1) x n matrix H = [y
which is formed by adding to the original matrix A = [a;}] the row vector [e;] before
the first row of A.

‘We donote now the k-th row of Hx, the product of matrix A and vector x, by

n

(Hx)i = Y hyjx; (31)
j=1
and define the function
1 for (Hx)k <wp
gk[(Hx)k] = 1-— (Hx)t+wk for wy < (Hx)k < wy+1; (32)

0 for (Hx)x < wi + 1
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where w = [w1,...,Wnt1]" = [2,b1,...,bm]", and the #;’s are some admissible vio-
lations of the respective constraints.

Therefore, the function (32) does model an aspiration-level-based (degree of)
satisfaction of the fuzzy goal and fuzzy constraints because its value is equal 1 if
they are (perfectly) satisfied, dimishes as the degree of violation increases, and is 0
for the inadmissible violation, i.e. more than the #;’s.

In problem (30) we wish to satisfy all the constraints, and this can be expressed
by the following objective function, being evidently a fuzzy decision in the sense of

3):

m+1

D(x) = N\ gkl(Hx)] (33)
k=1

We wish to satisfy all the constraints to the highest possible extent [cf. the optimal
decision (4)], i.e. we seek an optimal x* € R" such that
D(X*) = sup D(x) (34)
x€ER
It may be shown [cf. [, (Negoita and Ralescu 1977)] or [, (Zimmermann 1976)],

though this result was known earlier] that each optimal solution, (1*,x*), of the
following linear programming problem

max; (o1 A
subjectto: A <wj — (Hx); k=1,....m+1 (35)
x;>0 J= lyuvuyMi
where w, = V:—k" and (Hx), = (FZ‘)", k=1,...,m+ 1, is also an optimal solution to

problem (34).

The third basic approach to the solution of problem (26) was proposed in [,
(Verdegay 1982)]. It employs the so-called representation theorem [, (Negoita and
Ralescu 1975)] which basically says that a fuzzy set can be uniquely represented by
all its a-cuts; this theorem can be found in any book on fuzzy sets.

First, if the membership functions of the fuzzy constraints in problem (26) are
strictly monotone and continuous, which is often natural, then the a-cuts of the set
of constraints can be expressed by

n
Co={x€R"| Za,-,-xjgg_](a);kaO;i: I....myj=1,...,m} (36)
j=1

where the g,-’I (a)’s are the inverse functions of the g;(.)’s defined by (27).
Then, if C denotes the set of fuzzy constraints in problem (26), the representation
theorem states that
C= Y acCq 37)
aec(0,1]
A fuzzy solution (for all & € (0,1]!) to problem (26) can be therefore obtained
by solving the following parametric linear programming problem
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maxycgn CX 38)
subject to: x € Cq;for each o € (0,1]
or, more explicitly:

maXyecpgn CX (39)
subject to: (Ax); < gi_](a);for eacha e (0,1);i=1,...,m

And for linear fuzzy constraints, which is practically the most interesting case,
problem (39) becomes

Maxy>( CX 40)
subject to: Ax < b+1(1 — a);for each o € (0, 1]
where t = [t1,...,t,]" is a vector of admissible violations of the particular con-
straints.

Thus, if x*() is an optimal solution to problem (39), from it (for each & € (0, 1])
a fuzzy optimal solution to problem (37) can be obtained.

Finally, it is interesting to notice [cf. [, (Verdegay 1982)]] that if we denote by
f(x) the objective function in problem (28), and by f;,41(x) the membership func-
tion of the fuzzy goal in problem (32), then the solution of problem (26) derived
by employing the approach proposed in [, (Tanaka, Okuda and Asai 1974)], and its
corresponding solution of (32) derived by employing the one in [, (Zimmermann
1976)], can be obtained from the fuzzy solution of problem (39), x*(), by solving
the following equations, for a given a € (0, 1]:

flex(@)] = fmirfex’(@)] = @ 1

Notice that while solving problem (26) by using the linear programming problem
(39) it is necessary to define f(.) and f;,41(.) a priori. Moreover, the size of problem
(39) is as that of (26).

Finally, notice that if the g;(.)’s in (36) are nonlinear, this nonlinearity occurs
in the right-hand sides of the constraints in problem (39) but it does not imply the
nonlinearity of the auxiliary parametric linear program (40), so that problem (39) is
also valid for nonlinear constraints.

4.2 Fuzzy coefficients in the objective function

In this section we will consider fuzzy mathematical programming problems in
which the constraints are nonfuzzy and the coefficients in the objective function, c;,
are fuzzy numbers given by the membership functions j: R" — [0,1], j=1,...,n.
This class of problems may be written as

maxyepr;x>0€XxX
{ subject to: Ax<b “42)
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where cj, j=1,...,n, are assumed to be fuzzy.

We will sketch three approaches to the formulation and solution of such problems
which are due to: [, (Delgado, Verdegay and Vila 1987b)], [, (Tanaka, Ichihashi and
Asai 1984)], and [, (Rommelfanger, Hanuscheck and Wolf 1989)]. For yet another
approach we will refer the reader to [, (Chanas and Kuchta 1994)].

In [, (Delgado, Verdegay and Vila 1987b)], the coefficients in the objective func-
tion of problem (42), ¢ = [cy,...,c},...,c,), are assumed to be fuzzy sets (numbers)
such that, for c;:

0 iijSxorxggj
Jj(x) = gj(x) ifc;<x<c; (43)
hj(x) iij < xSEj

where [¢,¢;] is the support of the fuzzy number c;, and k;(.) and hj(.) are con-
tinuous and strictly increasing and decreasing, respectively, functions such that
hj(c;) =hj(c;)=1.

Then, using a fuzzy objective function as defined in [, (Verdegay 1982)] and
including the (1 — a)-cuts of each cost coefficient, for each a € (0, 1], we have for
eachx e Rand for j=1,...,n

J@ 21—k (1-a)<x<h; (1-a) @4)

and if we denote = ®;(.) = (h);(.) and ¥(.) = k;(.), then we obtain

Pi(l —a) <x<Y¥i(1-a), for eachx € R (45)

As shown in [, (Verdegay 1982)], a fuzzy solution to problem (42) can be found
from the parametric solution of the following multiobjective linear program

2

{ maxxGR;xZO{Clxa X, .. -Cznx} (46)

subject to: Ax<b

where cf € E(1 —a), a € (0,1], k= 1,2,...,2", and E(1 — e) is the set of vectors
in R" each of whose components is either on the upper bound, ¥;(1 — &), or on the
lower bound, @;(1 — o), of the respective (1 — o)-cuts.

On the other hand, in [, (Tanaka, Ichihashi and Asai 1984)] a possibilistic ap-
proach is proposed for even more general problem formulations, with fuzzy con-
straints in addition to fuzzy coefficients in the objective function as in (42). Their
method is based on the two relevant facts. First, if the ¢;’s, j=1,...,n, are triangu-
lar fuzzy numbers with membership function written as 6(c;,c;,¢;), then the value
of the objective function, z = c1x| + c2x2 + - - - + Cp Xy, is also a fuzzy number with
the membership function

1%;;2)11) forx>0,y>0
Gy)=41 forx=0,y>0 “47)
0 forx=0,y=0
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where € = [1,C2,...,Cy, ¢ = [c],62; -+, C,), and the ¢;’s and T;’s are defined as in
(43).

The second assumption is that the maximization in (42) concerns now a fuzzy
function, which may be written as max e g;xge0, and this is meant as

max (wjTx+ wacx)
XER x>0

where wi,wy € [0,1], wi +wy = 1, are some weights.
Then, the solution of problem (42) is obtained by solving the following auxiliary
linear programming problem

maxxeR;xZO(WIEx + WZQX) (48)
subject to: Ax <b

The solution of problem (42) was also discussed by [, (Rommelfanger, Hanuscheck
und Wolf 1989)]. Their approach is termed a stratified piecewise reduction ap-
proach, and is based in its essence on the classic approach from [, (Zimmermann
1976)]. Though the problem is given as (42), the imprecision (fuzziness) of co-
efficients is modelled by the use of nested intervals. Each of such intervals, say
interval k, is assigned a membership degree, or a possibility degree o € [0, 1],
k=1,2,...,p, where p is the number of such intervals. Then, each fuzzy coeffi-
cientcj, j=1,2,...,n, in the objective function of (42) is defined as the fuzzy set

lepiEi
e

k=1,2,....p (49)

such that, for all aj, 0 € [0, 1], and j=1,2,...,n, there holds
o > = [c;,¢)]' C[c;,E (50)

Clearly, fuzzy coefficients given as (43) may also be equivalently formulated by
using a-cuts as shown by (49).

Then, the solution of problem (42) is obtained by solving the following auxiliary
linear programming problem [cf. [, (Rommelfanger, Hanuscheck and Wolf 1989)]]

max e (,1) A

subject to: fj[c%x] > A 1)
fole%] > A
Ax<b;x>0

where:

o if7%, <c*x<z%, then
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o ifz7%, <T¥% <z, then

where, if we denote 2° = {x € R" : Ax < b,x > 0}, then:

7% = c%*(xt. ) =max{c%x|xe€ &}

‘min ‘min
7% =T%(x} ) = max{c%x|x e Z}
.Z"rlrzlin = Ea(x:nax) = min{gax | X € g}
= o () = min{cex | x € 2}

The solution of problem (42) may be then found as the intersection of solutions
obtained by solving problem (51) for each o €,k =1,2,...,p.
To conclude the description of this approach, notice that problem (51) may be

rewritten as
max;e(o,1 A
subject to: (zniy, —Zmin) 4 — <X <7,
e >4 2
(3% =72 )A —x < 7%
Ax<b;x>0

Clearly, fi[c%x*] = £[c*x®] = 1*, where (1*,x*) is an optimal solution of prob-
lem (52).

Finally, it should be mentioned that problems (46), (48) and (52) are closely
interrelated which will not be however elaborated upon here, and we will refer the
interested reader to, e.g., [, (Delgado, Verdegay and Vila 1990)].

4.3 Fuzzy coefficients in the technological matrix

In this case the coefficients in problem (42) in the so-called technological matrix, A,
and in the right-hand sides, b, are fuzzy numbers assumed, for simplicity, to be in
the L-R form [cf. [, (Dubois and Prade 1980)]]. On the other hand, the coefficients
in the objective function, c, are nonfuzzy (i.e. real numbers).

In this case the fuzzy linear programming problem is written as

MaXyeR;x>0 CX (53)
subject to: ):j;leaijxjgbi, i=1,....m

This class of problems was discussed in [, (Tanaka, Ichihashi and Asai 1984)]; in
fact, they also dicussed the case of fuzzy coefficients in the objective function but
this case will not be considered here for simplicity.

First, it should be remarked that in problem (53) the fuzziness is in the coeffi-
cients, and not in the allowable violation of the constraints. Therefore, problem (52)
is principally different than problem (26) with a fuzzy constraint set.
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Basically, for solving problem (53), in [, (Tanaka, Ichihashi and Asai 1984)] the
following auxiliary conventional linear programming problem is solved

MaXxeR;x>0 CX
subject to: [(1— g)(g,- +a;)+ ’%(a.- —a)lx<
<(1-8)(bi+b)+5(bi-b) (54)

B@+a)+(1-L)@—a)x<
<B@i+B)+(1-B)Bi-b)

where f € [0, 1] is a degree of optimism to be specified a priori.
As a prerequisite for obtaining the auxiliary linear programming problem (53),
the following ordering relation between the triangular fuzzy numbers is assumed

a>gh<= (a+a)y > (b+b) & (a—ak>(b—b) (55)

for each k € [B,1], where (a+a); and (a — a); are the upper and lower bounds,

respectively, of the k-cut of a.
Notice that in (55) no fuzziness in respect to the satisfaction of constraints is

involved. This is accounted for in a model of fuzzy linear programming proposed
in [, (Delgado, Verdegay and Vila 1989)]. Its point of departure is the following
problem

maxxER;XZ(ch (56)
subject to: Z'}:l a;jxj<bii=1,....m

where 2 means that some violation of “>" may be allowed; as before, the a;;’s
and b;’s are fuzzy, given as triangular fuzzy numbers.

The above violation, for the i-th constraint, is expressed by a fuzzy number #;, a
margin of violation tolerance. Then, the set of constraints in (56) is replaced by

n
Y aijx; > bi+4(1-a), aclol],i=1,....m 57
j=1
where “>" is some relation between two fuzzy numbers, preserving only the ranking
under the multiplication by a positive scalar.
Therefore, the problem considered becomes

maXxyeRr;x>0CX
subjectto: Yi_jaijx; < bi+4(1 —a) (58)
ael0,1],i=1,...,m

from which a fuzzy optimal solution of (56) can be obtained.
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4.4 Remarks on duality in fuzzy linear programming

Duality is an important issue in linear programming, and it has also attracted at-
tention in fuzzy liner programming. The first approach is presumably due to [,
(Hamacher, Leberling and Zimmermann 1978)]. They start from a (mixed) fuzzy
linear programming problem with both fuzzy and nonfuzzy constraints. Its solution
is obtained by solving an auxiliary (nonfuzzy) linear programming problem of type
(35). Its dual is obtained, and then the dual variables are analyzed and i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>