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Chapter 5

Delay approximation by
feedback

In modelling dynamic systems for control purposes, it is often necessary
to account for pure time delays related, e.g., to transport phenomena
or distributed–parameter components. Since many control system syn-
thesis techniques refer to rational transfer functions, the transcendental
transfer function e−Ts of an element introducing a delay equal to T
must frequently be approximated by means of a rational function. This
approximation problem has a century–old history [1] but still receives
considerable attention (see, e.g., [2]–[8] and bibliographies therein).

In many practical applications the requirements of physical realiz-
ability and stability of the approximant limit the choice of the approx-
imant to proper rational functions with real coefficients and a Hurwitz
denominator. These requirements are satisfied by the Blaschke products:

B(s) =

n∏

i=1

(s− ai)

n∏

i=1

(s+ ai)

, Re[ai] > 0, (5.1)

whose poles are either real or appear in complex conjugate pairs. Funtion
(5.1) exhibits two desirable properties: (i) it is allpass, i.e., |B(ω)| =
|e−Tω| = 1, ∀ω, and (ii) arg[B(ω)] is monotonically decreasing with ω
like arg[e−Tω] = −Tω. Obviously, a criterion for selecting the poles or
zeros of (5.1) must be provided.
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The method illustrated in the following sections naturally leads to an
approximant of this form. Note that the Padé technique, which is still
the most widely adopted method for approximating the transfer function
of a delay element, does not even ensure the stability of strictly–proper
approximants [9]; on the other hand, exactly–proper Padé approximants
lead to the best aproximation around s = 0 only.

5.1 Approximation criterion

A reasonable approach to model reduction for control system synthesis
consists in referring directly to the desired closed–loop characteristics
[10], [11]. In fact, the actual feedback control system may turn out
to be unstable or fragile if the controller is designed by referring to a
reduced model of the plant that is obtained without consideration of the
closed–loop specifications [12].

Approximating a system with transfer function G(s) from an ap-
proximation of the transfer function

W (s) =
G(s)

1±G(s)
(5.2)

of the negative/positive unity–feedback system whose forward–path trans-
fer function is G(s), may be convenient for other reasons, too. For in-
stance, if the poles of G(s) cannot be separated into a set of dominant
poles and a set of remote poles, a reduction procedure based on the
retention of the dominant modes is not applicable to G(s). Instead, in
most cases a pole–retention technique can be applied to W (s) because,
often, its poles get far apart as the loop gain increases and some of them
become definitely dominant over the others.

Denoting by Ŵ (s) the approximation of W (s), the required approx-
imation of G(s) will then be obtained according to

Ĝ(s) =
Ŵ (s)

1∓ Ŵ (s)
. (5.3)

It is shown next that another case in which this approach is profitable
is the rational approximation of G(s) = e−Ts.
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Figure 5.1: Delay element in the forward path of: (a) a negative feedback
system, and (b) a positive feedback system .

5.2 Approximation procedure

The approximation of e−Ts will be illustrated separately for the case of
negative feedback (Fig. 5.1a) and the case of positive feedback (Fig.
5.1b). The first leads to approximants of even order, while the second
leads to approximants of odd order.

Even–order approximants

The step response w−1(t) of the negative feedback system of Fig. 5.1a is
represented in Fig. 5.2. For t > 0, this response is given by the difference
between the step function 1

2 δ−1(t) of amplitude 1
2 and a square wave of

period 2T and amplitude 1
2 that is equal to −1

2 in the first half–period.
Expanding this square wave into Fourier series, the step response of the
feedback system can be written as

w−1(t) =
1
2
δ−1(t)− 2

π

∞∑

i=1

1
2i− 1

sin
[
(2i− 1)

πt

T

]
. (5.4)

I 

I 
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Figure 5.2: Step response w−1(t) of the negative feedback system of Fig.
5.1a.

By transforming (5.4) term by term, the Laplace transform W−1(s) of
w−1(t) turns out to be

W−1(s) =
1
2s
− 2
T

∞∑

i=1

1
s2 + [(2i− 1)π/T ]2

. (5.5)

Therefore, the transfer function of the negative feedback system can be
expressed as

W (s) =
1
2
− 2
T

∞∑

i=1

s

s2 + [(2i− 1)π/T ]2
. (5.6)

By truncating the series in (5.6), the following approximant of even order
2k is obtained:

Ŵ2k(s) =
1
2
− 2
T

k∑

i=1

s

s2 + [(2i− 1)π/T ]2
(5.7)

or, more compactly,

Ŵ2k(s) =
1
2
− N̂2k−1(s)

D̂2k(s)
, (5.8)

where

N̂2k−1(s) =
2
T

k∑

i=1

s

k∏

j=1,j 6=i

{
s2 +

[(2j − 1)π
T

]2}
(5.9)
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and

D̂2k(s) =
k∏

i=1

{
s2 +

[(2j − 1)π
T

]2}
. (5.10)

Therefore, according to (5.3) with the minus sign, the approximant turns
out to be

Ĝ2k(s) =

1
2
− N̂2k−1(s)

D̂2k(s)

1−
[

1
2
− N̂2k−1(s)

D̂2k(s)

] =

1
2
− N̂2k−1(s)

D̂2k(s)
1
2

+
N̂2k−1(s)
D̂2k(s)

(5.11)

so that

Ĝ2k(s) =
D̂2k(s)− 2N̂2k−1(s)
D̂2k(s) + 2N̂2k−1(s)

(5.12)

whose numerator and denominator have the same even part D̂2k(s) and
opposite odd parts ±N̂2k−1(s).
On the basis of the previous derivation, the following result can be
stated.

Proposition 5.2.1 Ĝ2k(s) is a stable Blaschke product.

Proof The fraction:
N̂2k−1(s)
D̂2k(s)

(5.13)

ia an odd positive–real function, being the sum of functions of this kind
[2]. Therefore, it can assume the value −1/2, thus annihilating the
denominator of Ĝ2k(s), only for Re[s] < 0. �

Odd–order approximants

The step response w−1(t) of the positive feedback system of Fig. 5.1b is
represented in Fig. 5.3. For t > 0, this response is the sum of the ramp
1
T δ−2(t),the step 1

2δ−1(t) and a saw–tooth wave, as shown in Fig. 5.4.
Expanding the periodic component into Fourier series, the step response
can be written as

w−1(t) =
1
T
δ−2(t)− 1

2
δ−1(t) +

∞∑

i=1

1
πi

sin
[2πit
T

]
(5.14)



54 Chapter 5. Delay approximation by feedback

1

!

"

!

"

!

"

1

T 2T 3T 4T 5T t

w−1(t)

Figure 5.3: Step response w−1(t) of the positive feedback system of Fig.
5.1b.

whose Laplace transform is

W−1(s) =
1
Ts2
− 1

2s
+

2
T

∞∑

i=1

1
s2 + (2πi/T )2

. (5.15)

Therefore, the transfer function of the positive feedback system is

W (s) =
1
Ts
− 1

2
+

2
T

∞∑

i=1

s

s2 + (2πi/T )2
. (5.16)

By retaining the first k terms of the series in (5.16), the following rational
approximant of odd order 2k + 1 is obtained:

Ŵ2k+1(s) =
1
Ts
− 1

2
+

2
T

k∑

i=1

s

s2 + (2πi/T )2
. (5.17)

or, more compactly,

Ŵ2k+1(s) =
1
Ts
− 1

2
+
N̂2k−1(s)
D̂2k(s)

, (5.18)

where

N̂2k−1(s) =
2
T

k∑

i=1

s

k∏

j=1,j 6=i

{
s2 +

[2πj
T

]2}
(5.19)
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Figure 5.4: Components of the step response in Fig. 5.3: (a) ramp
1
T δ−2(t), (b) step −1

2δ−1(t), (c) saw–tooth wave 1
π

∑∞
i=1

1
i sin[(2πit)/T ].

and

D̂2k(s) =
k∏

i=1

{
s2 +

[2πj
T

]2}
. (5.20)

According to (5.3) with the plus sign, the approximant is

Ĝ2k+1(s) =

1
Ts
− 1

2
+
N̂2k−1(s)
D̂2k(s)

1 +
1
Ts
− 1

2
+
N̂2k−1(s)
D̂2k(s)

(5.21)

so that

Ĝ2k+1(s) =
2[D̂2k(s) + TsN̂2k−1(s)]− TsD̂2k(s)
2[D̂2k(s) + TsN̂2k−1(s)] + TsD̂2k(s)

(5.22)

which, by arguments similar to those adopted in Proposition 5.2.1, can
be proved to be a stable Blaschke product.

5.3 Comparison

The magnitude of the frequency response Ĝh(ω) of the approximants
of both even and odd order h derived in Section 5.2 is equal to 1 for
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order h Bh (rad/sec)
2 2.35
3 5
4 7.8
5 10.6

Table 5.1: Frequencies Bh above which δφh(ω) < δφP,h(ω) for T = 1.

any ω like the magnitude of e−Tω, and their phase tends to −hπ. The
same features are exhibited by the standard allpass Padé approximants
ĜP,h(s) of the same order. However, the phase deviation of the Padé
approximants:

δφP,h(ω) := arg[ĜP,h(ω)]− arg[e−Tω] (5.23)

is a monotonically increasing positive function, whereas

δφh(ω) := arg[Ĝh(ω)]− arg[e−Tω] (5.24)

is a nonmonotonic positive function that is equal to zero at ω = (2i+1)π,
i = 0, . . . , h2−1, for i even and at ω = 2iπ, i = 0, . . . , h−1

2 −1, for i odd [5].
As is expected, at the low frequencies δφP,h(ω) < δφh(ω), while at the
high frequencies δφh(ω) < δφP,h(ω). Table 5.1 shows the frequencies Bh
above which δφh(ω) < δφP,h(ω), ∀ω > Bh, for h = 2, 3, 4, 5 and T = 1.

5.4 Input–dependent approximants

The approximation procedure described in the previous sections deter-
mines first a particular form of the Laplace transform W−1(s) of the
feedback–system step response. Then, the approximant of the trans-
fer function Ŵ (s) of the feedback system is obtained by: (i) dividing
W−1(s) by the transform 1/s of the step function, thus arriving at an
expression of the original transfer function W (s) and (ii) truncating the
series appearing in this particular expression.

Using the terminology in [13] (see also Chapter 8), the rationale of
such a procedure consists in retaining the input component (that is, the
aperiodic component “resembling” the input) and truncating the system
component (that is, the component with the same poles as W (s)) of the
step response. Finally, the approximant Ĝ(s) of the transfer function of

I 
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the delay element is determined according to (5.3). Therefore, Ĝ(s) in
turn depends on the chosen input, i.e., the step function.

However, other inputs could be used. In [6], the family of canonical
inputs {u(t) = tm, t > 0,m ∈ N} is considered. To improve the approxi-
mation within a suitable frequency band, in [14] an input with a Laplace
transform equal to

U(s) =
1

1 + 2ξ
s

ωn
+
s2

ω2
n

, (5.25)

with ξ suitably small, is chosen instead. In this way, a frequency band
centred at ωn is privileged.

5.5 Concluding remarks

The step response of a unity–feedback system with a delay element in
the forward path is formed by an aperiodic component plus a zero–
mean periodic component, whereas a periodic term is not present in the
step response of the delay element. To obtain a rational approximation
of the feedback system response, it is natural to retain the aperiodic
component as well as some harmonics of its periodic component. From
the approximate response of the feedback system, it is then immediate
to derive a rational approximant of the delay element itself according to
(5.3).

As shown in Section 5.2, the approximants turn out to be stable
Blaschke products whose frequency response is significantly better than
that of the standard Padé approximants at medium and high frequencies
(Section 5.3).

The procedure has been illustrated with reference to step inputs, but
other inputs can also be adopted to improve the approximation within
specific frequency bands (Section 5.4).
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