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Abstract.. The purpose of this study is to develop a method for allocating pollutant
concentrations to finer spatial scales conditional on covariate information observ-
able in a fine grid. Spatial dependence is modeled with the conditional autoregres-
sive structure. The maximum likelihood approach to inference is employed, and
the optimal predictors are developed to assess missing concentrations in a fine grid.
The method is developed for a practical application of an output from the dispersion
model CALPUFF run for Warsaw agglomeration.

Key words: air pollution, conditional autoregressive model, disaggregation, spatial
correlation

1 INTRODUCTION

Atmospheric dispersion models constitute a basic tool for air quality con-
trol. Further usage of output from dispersion models include, among oth-
ers, health impact assessments. For improved risk assessments, it is often
required to develop air quality data in a resolution higher than the one
readily available from dispersion models.

Making inference on variables at points or grid cells different from
those of the data is referred to as the change of support problem. Sev-
eral approaches have been proposed to address the issue. The geostatistical
solution for realignement from point to areal data is provided by block
kriging [4, 5]. In the case that data are observed at areal units and infer-
ence is sought at a new level of spatial aggregation, areal weighting offers
a straightforward approach. Some improved approaches with better covari-
ate modeling were also proposed e.g. in [12, 13].

In the following we present an approach for areal to areal data realigne-
ment; it accounts for a tendency toward spatial clustering and is focused
on application to air quality. The approach resembles to some extent the
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method originally proposed in [2] for disaggregation of time series based
on related, higher frequency series; see also [14]. Here, a similar method-
ology is employed to disaggregate spatially correlated data. Regarding an
assumption on residual covariance, we apply the structure suitable for area
data, i.e. the conditional autoregressive (CAR) model. Although the CAR
specification is typically used in epidemiology [1], it was also successfully
applied for modelling air pollution over space [9, 11]. Compare also [8]
for another application of the CAR structure to model spatial inventory of
GHG emissions.

For inference the maximum likelihood approach is employed, and the
optimal predictors are developed to assess missing concentrations in a fine
grid. We demonstrate usefulness of the disaggregation method for an out-
put from the dispersion model CALPUFF run for Warsaw agglomeration.

2 THE MOTIVATING DATA SET

The study concerns air pollution concentrations obtained from the disper-
sion model CALPUFF v.5 (Earthtech, Inc.) [15]. CALPUFF is a regional
model for the simulation of atmospheric pollution transportation. It ac-
counts for atmospheric processes, including their variability in space and
time. The meteorological characteristic is generated by the CALMET mod-
ule which, among others, accounts for the impact of terrain shape [10].

The study concerns Warsaw agglomeration within the administrative
borders. The CALPUFF model, run for the real emission and meteorologi-
cal data from 2005, provided atmospheric concentrations for 16 kinds of air
pollutants, among others fine particulates PM10 and PM2.5, nitrogen oxides
NOx, sulphur dioxide SO2, and heavy metals. Four categories of emission
sources were considered: high and low point emission sources, as well as
area and line emission sources [6, 7].

The proposed disaggregation method is suitable for air pollution con-
centrations arising from line emission sources (transportation), and it is
less adequate in the case of point emission sources (energy and industry).
City roads (Fig. 1) are the main emission sources for NOx and PM10, unlike
for instance SO2; compare the scheme in Fig. 2 generated from the con-
sidered CALPUFF output. Therefore, the proposed disaggregation method
was tested for concentration of NOx and PM10. The results presented in
this manuscript concern NOx concentrations; the results obtained for par-
ticulate matter PM10 were very similar.

The CALPUFF output for Warsaw area is generated in the 1 km grid,
comprising 563 grid cells. Since the main goal of the present study is to
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Fig. 1. Road communication network in Warsaw agglomeration
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Fig. 2. Contribution of emission categories (AREA - area; LIN - line; LOW - low point sources;
HIGH - high point sources) in the concentration of PM10, NOx and SO2

verify the proposed disaggregation procedure, therefore we treat the model
output as a reference data set. Based on these values we calculate NOx con-
centration in the 2 km grid, assuming that the contribution of each 1 km
cell is proportional to area. Next, we apply the proposed model for disag-
gregation of 2 km grid data back into 1 km grid; the resulting values are
subsequently compared with the original concentrations. The maps of NOx

concentrations in the 1 km grid (the CALPUFF output) and in 2 km grid
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(values to be disaggregated) are presented in Fig. 3; throughout the paper
the pollutant concentrations are reported in μg/m3.
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Fig. 3. NOx concentration: original CALPUFF output in 1 km grid (left), and the values to be
disaggregated in 2 km grid (right)

The obtained results were compared with the geostatistical approach.
The conditional autoregressive model is an alternative for the geostatis-
tical approach, which refers to point data, compare e.g. [3]. Within the
geostatistical model, the spatial dependence is characterised by means of
a distance between data points, while the CAR structure is based on the
notion of neighbourhood between areas (grid cells).

In the study, the sensitivity of results with respect to a neighbourhood
structure was also assessed. The performance of the disagrregation proce-
dure was compared for the models of 4 neighbours (the so-called Rook
Method; denoted CAR4) and for the ones of 8 neighbours (the so-called
Queen Method; denoted CAR8), see Fig. 4.

3 THE DISAGGREGATION MODEL

We begin with the model specification in a fine 1 km grid. Let Yi denote
a random variable associated with a missing value of pollutant, here NOx

level, yi defined at each cell i, i = 1, ..., n of a fine grid. Assume that
random variables Yi follow a Gaussian distribution with the mean μi and
variance σ2

Y ,
Yi|μi ∼ N

(
μi, σ

2
Y

)
. (1)
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Fig. 4. Neighbourhood scheme for models CAR4 and CAR8

Given the values μi and σ2
Y , the random variables Yi are independent.

The values μ = {μi}
n
i=1 represent the true process underlying NOx

concentration, and the (missing) observations are related to this process
through a measurement error of variance σ2

Y . The model for the underlying
NOx process is formulated as a sum of regression component with avail-
able covariates, and a spatially varying random effect.

The approach to modelling μi expresses an assumption that available
covariates explain part of the spatial pattern, and the remaining part is cap-
tured through a spatial dependence, introduced as the conditionally au-
toregressive structure. The CAR scheme follows an assumption of similar
random effects in adjacent cells, and it is given through the specification of
full conditional distribution functions of μi for i = 1, . . . , n (see e.g. [1, 3,
4])

μi|μ−i ∼ N

⎛
⎜⎜⎝xT

i β + ρ

n∑
j=1
j �=i

wij

wi+

(
μj − xT

j β
)
,
τ 2

wi+

⎞
⎟⎟⎠ , (2)

where μ
−i denotes all elements in μ but μi; wij are the adjacency weights

(wij = 1 if j is a neighbour of i and 0 otherwise, also wii = 0); wi+ is
the number of neighbours of area i; xT

i β is a regression component with
explanatory covariates for area i and a respective vector of regression coef-
ficients; and τ 2 is a variance parameter. Thus, the mean of the conditional
distribution μi|μ−i consists of the regression part and the second sum-
mand, being proportional to the average values of remainders μj−xT

j β for
neighbouring sites (i.e. when wij = 1). The proportion is calibrated with
the parameter ρ, reflecting strength of spatial correlation. Furthermore, the
variance of the conditional distribution (2) is inversely proportional to the
number of neighbours wi+.
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The joint distribution of the process μ is the following (for derivation
see e.g. [3, 4])

μ ∼ Nn

(
Xβ, τ 2 (D − ρW )−1

)
, (3)

where X is a design matrix with vectors xi; D is an n×n diagonal matrix
with wi+ on the diagonal; and W is an n×n matrix with adjacency weights
wij . Equivalently, we can write (3) as

μ = Xβ + ε, ε ∼ Nn (0,N) (4)

with N = τ 2 (D − ρW )−1.
The model for the CALPUFF output data, observed in a 2 km grid, is

obtained by multiplication of the mean process μ with an N × n aggrega-
tion matrix C, where N is a number of observations in a 2km grid

Cμ = CXβ +Cε, Cε ∼ NN

(
0,CNCT

)
. (5)

The matrix C consists of 0’s and 1’s, indicating which cells have to be
aligned together. The random variable λ = Cμ is treated as the mean pro-
cess for variables Z = {Zi}

N
i=1 associated with observations z = {zi}

N
i=1

of the aggregated model

Z|λ ∼ NN

(
λ, σ2

ZIN

)
, (6)

where IN is the N × N identity matrix. Also at this level, the underlying
process λ is related to Z through a measurement error with variance σ2

Z .
The parameters β, σ2

Z , τ
2 and ρ are estimated with the maximum likeli-

hood method based on the joint unconditional distribution

Z ∼ NN

(
CXβ,M +CNCT

)
,

where M = σ2
ZIN . The analytical derivation is limited to the regression

coefficients β, and further maximisation of the profile log likelihood is
performed numerically. The standard errors of estimators are calculated
with the expected Fisher information matrix.

Regarding the missing values in a fine 1km grid, the underlying NOx

process is of our primary interest. The predictors optimal in terms of the
minimum mean squared error are given by E (μ|z). The joint distribution
of (μ,Z) is[

μ

Z

]
∼ Nn+N

([
Xβ

CXβ

]
,

[
N NCT

CN M +CNCT

])
. (7)
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The distribution (7) allows for full inference, yielding both the predictor
and its error

̂E (μ|z) =Xβ̂ + N̂C
T
(
M̂ +CN̂C

T
)
−1 [

z −CXβ̂
]

̂V ar (μ|z) = N̂ − N̂C
T
(
M̂ +CN̂C

T
)
−1

CN̂ .

Note that in the predictor ̂E (μ|z), a naive regression forecast is corrected
with a residual on the aggregated grid distributed over respective grid cells.

4 RESULTS

Table 1 presents estimation results (parameter estimates and their standard
errors) for two conditional autoregressive models (CAR4 and CAR8), for
the geostatistical one (GEOST) and for linear regression (LM). The listed
approaches were analysed either with the trend based on three categories
of roads, or without trend (with a constant value). Within the last group,
we also considered the naive prediction (NAIVE), where equal values are
assumed for each 1 km×1 km grid cell within a respective 2 km×2 km
area.

For all the models with trend, the ratio of regression coefficients and
their respective standard errors (i.e. the t-test statistics) roughly indicate
that all the considered types of roads are statistically significant. This is
not true anymore for β0. As to be expected, insignificant coefficient β0

is reported for the models CAR4, CAR8 and GEOST, thus those with a
spatial component.

For the models CAR4 and CAR8, the differences among respective pa-
rameter values are negligible. Note, however, that when a higher number
of neighbours is accounted for (model CAR8), the parameter ρ is lower
(0.9994) and the variance related with a spatial component (τ 2) is higher.

When it comes to the geostatistical model, the exponential model of
semivariogram was applied, see for instance [4]. The parameter σ2

Z denotes
the variogram sill, the parameter φ stands for the semivariogram range, and
the nugget effect is absent in this case study.

The (negative) loglikelihood values (−L) as well as the Akaike criterion
(AIC) are reported in Table 2. The geostatistical approach provides the best
fit to the data in 2 km grid (the lowest values of −L and AIC), both in the
group of models with and without trend.

The values predicted in the 1 km grid by means of the models with
trend are shown in Fig. 5, while Fig. 8 shows those resulting from the
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Table 1. Maximum likelihood estimates for 2km grid

CAR4 CAR8 GEOST LM
Est. Std.Err. Est. Std.Err. Est. Std.Err. Est. Std.Err.

Models with trend
β0 6.754 4.383 6.652 4.500 3.361 3.16 2.217 0.557
β1 0.0019 2.59e-04 0.002 2.64e-04 0.0017 2.37e-04 0.0041 4.87e-04
β2 0.0014 2.93e-04 0.0016 3.01e-04 0.0012 2.70e-04 0.0047 5.31e-04
β3 0.0005 5.45e-05 0.0005 5.62e-05 0.0005 5.15e-05 0.0009 8.72e-05
σ2
Z 3.65e-08 0.296 0.296e-08 0.338 25.87 9.82 15.375 1.735
τ 2 18.56 2.095 51.88 5.86 - - - -
ρ 0.9995 3.29e-09 0.9994 4.88e-09 - - - -
φ - - - - 17 105 6 477 - -

Models without trend
β0 11.717 6.204 11.814 6.247 1.826 5.47 - -
σ2
Z 7.33e-07 0.590 1.59e-07 0.671 63.33 15.93 - -
τ 2 36.89 4.16 103.03 11.62 - - - -
ρ 0.9995 2.28e-09 0.9994 3.58e-09 - - - -
φ - - - - 23 215 5 404 - -

Table 2. Model comparison

−L AIC
Models with trend
CAR4 349.7 713.4
CAR8 353.9 721.9
GEOST 323.9 659.8
LM 437.3 884.6
Models without trend
CAR4 403.7 815.3
CAR8 407.8 823.6
GEOST 371.1 748.2

models without trend. The differences between the obtained values and the
original data (compare Fig. 3) can be noticed easily. In the case of the mod-
els with trend, both the approaches CAR4 and CAR8 provide quite good
predictions. Similarly it is for the geostatistical model, although high NOx

concentrations tend to be underestimated in this case. This observation is
confirmed in the scatterplot (Fig. 7). In the model GEOST without trend
this feature is even more pronounced (see Fig. 9).

The linear regression (LM) model is completely not adequate; this is
clear from the map of predicted concentrations (Fig. 5) and from the scat-
terplot (Fig. 7). Also, in Fig. 6 the map of residuals for two chosen models
with trend (CAR4 and LM) illustrates importance of the spatial aspect in
this study. On the other hand, the models without trend do not perform
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well either, proving that also information on the road network is essential
for accurate predictions.
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Fig. 5. NOx concentrations predicted in 1km grid - the models with trend

Further analysis of residuals (di = yi− y∗i , where y∗i - predicted values)
for all the models is presented in Table 3. It comprises the mean squared
error mse, the minimum and maximum values of di as well as the sample
correlation coefficient r between the predicted y∗i and observed yi values.
Within the group of models with trend, the conditionally autoregressive
model CAR4 and geostatistical one provide the best predictions: the mean
squared error mse=2.9, the correlation coefficient r=0.977, also the same
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Fig. 6. Residuals from CAR4 model with trend (left), and from linear regression LM (right)

values of min(di)=-5.95 are reported. Note, that despite a slightly worse fit
of CAR4 model to the aggregated data (compare Table 2), its predictive
performance is as good as that of GEOST model.

Within the group of models without trend, the models CAR4 and CAR8
provide the best predictions. Therefore, in the lack of covariate information
the proposed procedure based on the conditional autoregressive scheme
outperforms the GEOST model. Interestingly, due to high spatial correla-
tion of the pollutant concentration, the NAIVE approach delivers far better
predictions than the linear regression (LM); compare Table 3 and respec-
tive graphs in Fig. 7 and Fig. 9.

Table 3. Analysis of residuals (di = yi − y∗

i )

mse min(di) max(di) r
Models with trend
CAR4 2.97 -5.95 5.78 0.977
CAR8 3.09 -6.00 5.77 0.976
GEOST 2.93 -5.95 6.69 0.977
LM 29.75 -18.72 18.92 0.769
Models without trend
CAR4 3.84 -6.52 8.30 0.970
CAR8 3.85 -6.49 8.39 0.970
GEOST 4.57 -7.01 9.57 0.964
NAIVE 5.26 -7.19 8.29 0.959
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Fig. 7. Scatterplots of predicted (y∗

i ) versus observed (yi) values - the models with trend

5 DISCUSSION AND CONCLUDING REMARKS

The major objective of this study was to present a method for allocating
pollutant concentrations to finer spatial scales conditional on covariate in-
formation observable in a fine grid. Spatial dependence was modeled with
the conditional autoregressive structure, which was introduced as a random
effect. The maximum likelihood approach to inference was employed pro-
viding parameter estimates, and their standard errors were also obtained.
Furthermore, we developed the optimal predictors to assess missing con-
centrations in a fine grid, along with the estimates of prediction error.

The proposed scheme was verified on the output from pollution disper-
sion model CALPUFF, namely NOx concentrations for Warsaw agglomer-
ation. Detailed information on the city road network served as covariates,
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Fig. 8. NOx concentrations predicted in the fine grid - the models without trend

since transportation is the main source of NOx pollution. A fourfold disag-
gregation from 2 km regular grid into 1 km grid was tested.

With available information on the city road network, the model based
on the conditionally autoregressive structure provided equally good predic-
tions as the one based on the geostatistics. In this case the sample correla-
tion coefficient was equal r=0.977. It is also worth noting that for the high
range values, the model based on the CAR scheme provided more accurate
predictions, while the geostatistical one tends to underestime these values.
Correct predictions of high range NOx and PM10 concentrations are es-
pecially important, since the thresholds of these pollutants (40 μg/m3) are
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Fig. 9. Scatterplots of predicted (y∗

i ) versus observed (yi) values - the models without trend

exceeded in some parts of Warsaw agglomeration. When no information
on roads was available, better results were obtained for CAR models; es-
pecially the mean squared error was lower.

The impact of the neighbourhood structure was negligible, although
both in the models with and without trend slightly better results were ob-
tained for the model CAR4 than for CAR8. Apparently, high spatial corre-
lation is already exploited enough with four closest neighbours; additional
neighbours under CAR8 model increase variability and do not add much
to explanatory power. Also, the proposed model provided much better pre-
dictions than the naive approach, which assumed equal pollutant concen-
trations in the whole 2 km cells.
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PRZESTRZENNA DEZAGREGACJA DANYCH
O EMISJACH ZANIECZYSZCZEŃ ATMOSFERYCZNYCH

- ZASTOSOWANIE MODELU WARUNKOWO
AUTOREGRESYJNEGO

Streszczenie. W pracy zaproponowano model przestrzennej dezagregacji
danych do drobnej siatki w oparciu o dane zagregowane z wykorzystaniem
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dodatkowych informacji dostȩpnych w drobnej siatce. Do modelowania
przestrzennej zależności obserwacji wykorzystano model warunkowo au-
toregresyjny ze wzglȩdu na fakt, iż wartości w wȩźle siatki sa̧ utożsamiane
ze średnim stȩżeniem emisji w całym oczku siatki; zależność przestrzenna̧
uwzglȩdniono jako efekt losowy. Do oceny wartości zmiennej losowej
zwia̧zanej z brakuja̧ca̧ obserwacja̧ w drobnej siatce wyznaczono predyk-
tory oraz oszacowania ich błȩdów. Zaproponowany model zweryfikowano
na danych pochodza̧cych z modelu CALPUFF o stȩżeniu zanieczyszczeń
powietrza (NOx, PM10) dla obszaru aglomeracji warszawskiej w 2005 roku.




