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1. Introduction. We consider subgradient methods for the convex minimization problem
fer=min{f(z):z€ S} (1)

under the following assumptions. S is a nonempty closed convex set in R", the objective function
f:R™ = R is convex, for each z € 5 we can find the value f(z) and a subgradient gs(z) € f(z) of f
at z, and for each x € R™ we can find Psxz := argming |z — -, its projection on S in the Euclidean norm
| - |- Finally, we assume that the optimal solution set S. := Argming f of problem (1) is nonempty.

This setting covers many applications, but we are mostly interested in Lagrangian relaxation (see, e.g.,
Hiriart-Urruty and Lemaréchal 20, Chap. XII)) in the framework given below.

EXAMPLE 1.1 Consider the following primal convex optimization problem:
Y™ = max ¥o(z) st P;(2) 20, j=1n, z€Z, (2)

where the set § ¢ Z C R™ is compact and convex, and each function 1; is concave, proper and closed
(upper semicontinuous) with dom; D Z. The Lagrangian of (2) has the form vo(z) + {z, ¥(2)), where
¥ = (¢1,...,%,) and z is a multiplier. Suppose that, at each multiplier = in the dual feasible set

S :=RY, the dual function

f(x) = max{o(z) + (z,¥(z)) : 2 € Z } (3)
can be evaluated by finding a partial Lagrangian solution
z(z) € Z(x) = Argmax{ ¢o(z) + (z,¢(2)) r 2 € Z }. 4)

Thus f is finite convex and has a subgradient mapping gs(-) := ¥{(2(-)) on 8. For algorithmic purposes,
suppose that this mapping gy is locally bounded on K (e.g., [ is the restriction to 8§ of a convex function
finite on an open neighborhood of 8, or infz min’_; ¥; > —0o0, or ¢ is continuous on Z). Finally, assume
that the dual optimal set S, = Argming f is nonempty; e.g., if Slater’s condition holds (¥(%) > 0 for
some # € Z), then &, is both nonempty and bounded. For S := S, problem (1) is the standard dual of
(2). However, if we know strict upper bounds on a dual solution in the form of a point 2" such that
2P > g for some F € S,, then it may be more efficient to take S := {z: 0 < z < z“P}.
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This paper shows that in the Lagrangian relaxation setting of Example 1.1, the ballstep subgradient
method of Kiwiel et al. (27] applied to the dual problem (1) can provide a solution of the primal problem
(2) at no extra cost. In its simplest form, this method proceeds like standard subgradient methods, except
for a special choice of stepsizes. At iteration k > 1, for the current iterate z* € S and the target level
fE, < f(z*) that estimates the optimal value f. of (1), it uses the subgradient linearization of f

fie0) = Fa®) + of, - —2*) S F() with g = gy(a*) € 0f(a") ()
and its halfspace
Hy = {z: fi(z) < fit) (6)
as an outer approximation to the f -level set of f:
Li(fle) = {z: fl=) < fl} C Hy = L (A5 (M)
Then, as in the algorithm of Polyak [38], successive projections onto Hy and S give the next iterate
@+ = Ps(a® + te[ Py, a® — 2¥)) = Ps(a* — talfu(=¥) — fillof/lof), (8)

where the second equality is due to fi(z*) = f(z¥) > £k, and t, is a relazation factor satisfying
tx € T := [tmin,tmax] for some fixed 0 < Zmin < tmax < 2. (9)

The targets are chosen via a ballstep strategy that works in groups of iterations (because a single subgra-
dient iteration does not provide enough information for changing the current target). Within each group,
the target fltv is fixed, and the method attempts to minimize f over a certain ball around the best point
found so far. Two outcomes may arise. Either the objective f decreases sufficiently relative to the target,
in which case the ball is shifted to the best iterate and the target is lowered, or it is discovered that the
target is too low, in which case the ball is shrinked and the target is increased. For discovering whether
the target is unattainable, we may use the two level schemes of Kiwiel et al. {27, §§2 and 5]; both schemes
ensure that infy f(a:") = f. and provide efficiency estimates when the optimal set S, is bounded.

For comparisons with other approaches, we note that although our iteration (8) with the stepsizes

i =t fi () — AL /NGEP > 0 (10)
conforms with the standard subgradient iteration
= py(zk — ukg'f‘) with v > 0, (11)
our stepsizes do not have to obey the popular divergent series condition
oo oo
Z v = oo and Z vt < oo, (12)
k=1 k=1

or other conditions typically required for convergence of subgradient methods; see Kiwiel [25].

In this paper we augment the ballstep method with simple averaging schemes, using the convex weights

l/;.‘ = V,-/l?}‘ for j=k(l):k with l/}" Z vj, (13)
G=k()

where k(1) is the iteration number at which the current Ith group started. These convex weights lead
to aggregate versions of various quantities related to our method. F01 instance, by combining the oracle
linearizations of (5), we obtain the aggregate linearization f := Z k() Y5 % £;, which is an affine minorant
of f. We show that its gradient ¥V fk can be used for finding asymptotically objective and constraint
subgradients involved in optimality conditions for problem (1). Similarly, in Lagrangian relaxation, we
may combine the partial Lagrangian solutions z(z7) of (4) to produce the aggregate primal solution
zk = Z;;k(,) vk 2(z7). We show that these aggregate solutions * converge subsequentially to the set
of optimal solutions to the primal problem (2). Further, we provide practicable stopping criteria, which
allow the method to terminate when ¥ is an e-solution of (2) for a given ¢ > 0. To sum up, in Lagrangian
relaxation, our method finds both primal and dual solutions. Up till now, for subgradient methods similar
results have only been known for the iteration (11} with stepsizes obeying (12) and weights given by (13)
with k(l) = 1, whose convergence can be slow; see Zhurbenko [45], Shor [43, §4.4], Anstreicher and Wolsey
[1], Larsson and Liu {29], Larson et al. {32, 33], and Sherali and Choi [42}.
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Our results parallel ones given by Feltenmark and Kiwiel [12] for the proximal bundle method of
Hiriart-Urruty and Lemaréchal [20, §XV.3] and Kiwiel [21]. At first sight, this method has little in
comimon with our simple subgradient algorithm, since it aceumulates many linearizations for its QP
subproblems, and uses the QP multipliers for averaging. But in fact there are more similarities than
differences. Our key observation is that, from the convergence viewpoint, a group of iterations of the
ballstep method is similar to one iteration of the bundle method. Thus, once suitable estimates for a
group of ballstep iterations are established, the remainder of our convergence analysis is almost identical
to that of Feltenmark and Kiwiel [12]. Also the efficiency analysis of both methods is quite similar; see
Kiwiel [24] and Kiwiel et al. [27]. Up till now, the literature has only contrasted simple subgradient
methods with more advanced bundle methods, whereas our paper highlights their similarities.

Good reviews of the subgradient algorithm may be found in Bertsekas (9], Polyak {39] and Shor [43],
and more recent variants in Ben-Tal et al. {7], Kiwiel {25], Kiwiel and Lindberg [28], Nedi¢ and Bertsekas
{35), Nedi¢ et al. [36]. It is widely used, inainly due to its simplicity and good performance, especially in
Lagrangian relaxation. In many applications it solves the dual of an LP relaxation of the original problem;
then even quite approximate primal solutions delivered by our averaging schemes could be useful, e.g.,
in primal heuristics, variable fixing, etc.; see Balas and Cerna (3], Barahona and Chudak [6], Bahiense et
al. (2], and Ceria et al. [11].

Also the recent volume algorithim of Barahona and Anbil [4] performs well in practice; see Barahona
and Anbil [5] and Bahiense et al. [2]. Its averaging is similar to that of a version of our method that
employs past aggregate subgradients to avoid zigzags (cf. (45)). However, in contrast with our method,
the volume algorithm has no proof of convergence; see Bahiense et al. [2]. We hope, therefore, that
our results may stimulate research on the development of simple subgradient methods that are both
theoretically convergent and practically effective.

As a partial justification of our hope, we give preliminary numerical results for the traffic assignment
and message routing problems (see, e.g., Bertsckas [8]) on apparently the largest instances reported in
the literature. For modest solution accuracy (typical in such applications) our implementation seems to
be competitive with the methods reviewed in the recent survey of Ouorou et al. {37].

The paper is organized as follows. In §2 we review briefly the simplest ballstep method of Kiwiel et al.
[27] and its convergence properties. In §3 we show how averaging may produce affine minorants of f and
the indicator function s of S, and a useful optimality estimate. Their uses for indentifying subgradients
of f and ig involved in optimality conditions for ming f are discussed in §4. Applications to Lagrangian
relaxation are studied in §5. Extensions to the accelerations of Kiwiel et al. {27, §7] are discussed in §6.
Applications to multicommodity network flows are reported in §7.

Our notation is fairly standard. B(z,r) := {y : Jy — «| < r} is the ball with center = and radius r.
do () == infyec | - ~y| is the distance function of a set C C R (d¢ = o0 if C = ).

2. The ballstep level algorithm. The simplest version of the ballstep subgradient method of
Kiwiel et al. {27] stated below employs the following notation. At iteration k, z%,, is the record point
with the best objective value fX_ := min;-;l f(z7) obtained so far. The iterations are split into groups

Kp={k(l):k(l+1) -1}, I>1. (14)
In group !, starting from the point z’:e(?, the method attempts to reach the frozen target level fif =
r’i(c” — &, within the ball of a certain radius R; centered at zfe(é) , where the level gap & > 0 controls the
stepsizes (10). If sufficient descent f(z*) < FED 16 occurs for some k > k(I) (i.e., at least half of the
desired objective reduction §; is achieved), the next group ! + 1 starts with the same gap §;41 1= 6 and
radius Hy4p := Ry. Otherwise, the method eventually discovers that the target is infeasible in the sense
that
k=Y 5 <min{f(z):z € Ba*Y R)n S} (15)
Our test for detecting (15) (see (17) below) was derived in Kiwiel et al. {27) via fairly complicated geometric
arguments; we only sketch the main idea because a much simpler validation of this test will be given in §3.
Suppose (15) does not hold: f(z) < f¥, for some = € B(z*", R))NS. Let ty = 1. Viewing the iteration
(8) as a subgradient step z*+1/2 := Py, z* followed by a projection step z**+! := Psz*+1/2 simple

estimates show that the sum of squares of these steps pryy := E;;k(l)(,zj“/z — 27?4 |27t ._zj+l/2|2)
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satisfies pri1 < |2*® — 2| |25t — 5)? < R}, because by (7), the sets on which projections occur have a
common point z. Thus, the inequality px11 > R implies (15). Intuitively, if (15) holds, then oscillations
in successive projections eventually produce pry1 > R7; the weaker test (17) below may detect (15)
even sooner. Then the next group ! + 1 starts with a contracted gap 8,41 := %61 and a shrinked radius
Riy1 = Ry/2#, where 8 € [0,1) is a parameter (typically 8 = 1).

We now state a detailed description of our method. Further comments on its rules are given below
and in §3; also see Kiwiel et al. [27] for additional motivations.

ALGORITHM 2.1 (ballstep level method).

SteP O (Initialization). Select an initial point #' € S, a level gap §; > 0, ballstep parameters
R >0, B €[0,1), and relaxation bounds tmin, tmax (cf. (9)). Set f2. := 0o, p1 := 0. Set the counters
k:={:= k(1) :=1 (k(I) is the iteration number of the ith change of f,’;v)

STEP 1 (Objectiue evaluation). Calculate f(z*) and gy (z*). If f(z*) < fE71, set f5_ := f(z*) and
zk = oF, else set fX = fk~! and z,ec = zk! (so that f(zk.) = mm;‘_1 f(z?).

STEP 2 (Stopping criterion). If gf := g;(z*) = 0, terminate (z* € S5.).

STEP 3 (Sufficient descent detection). If f(z*) < FEh 16y, start the next group: set k(I +1) := £,
8141 1= &, pr += 0 and increase the group counter [ by 1.

STEP 4 (Projections). Set the level ff = () _ §,. Choose the relaxation factor t; € T (cf. (9))-
Set

Y2 = gk bt (P et — 2%), = (2— tk)d,f,k (z*), Prt1/2 = pr t+ Pr, (16a)
T i= Perk VR pryyg = T =R g = peage o+ Praage (16b)

STEP 5 (Target infeasibility detection). Set the ball radius Ry := (5,/61)‘9. If
(R — 2" — 2O > BE — s, (17)

i.e., the target level is too low, then go to Step 6; otherwise, increase & by 1 and go to Step 1.
STEP 6 (Level increase). Start the next group: set k(! + 1) := k, 8141 := 161, pi := 0, replace z* by
e and gf by gs(zk,.), increase the group counter [ by 1 and go to Step 4.

Assuming the method doesn’t terminate, we now recall some results of Kiwiel et al. [27, §2-3].

REMARKS 2.1 (i) If group I + 1 starts at Step 3, then frec KD f 6, and g0+ = LEIFD (since
k(1)

flz) > f,’:(cl) 16 for j < k). Thus, by the rules Step 6, at Step 4 we have D = zro € S and

r’::(cl) = f(x" DY for all 1.

(i) At Step 4, in view of (5) and (6) with fi(z*) = f(z¥) > f£E,, we have £*+1/% = z* — g% by (10),
and dy, (z*) = [fe(z ,ev]/lgf| Hence the Fejér quantities px, pry1/2 and piyy are positive (because
P is set to zero at Steps 0, 3 and 6). The 1éle of these quantities will be explained in §3.

(iii) At Step 5, the ball radius Ry := R(6;/61)® < R is nonincreasing. Ideally, B; should be of order
ds (z "(l)) and hence shrink as the ball center zF() approaches the optimal set S.. As shown by Kiwiel et

al. {27, Rem. 3.9(i)], for convergence it suffices to choose R, so that & /R; — 0; our results will additionally
require boundedness of the sequence {R;}. This makes room for other choices of R;.

(iv) By Kiwiel et al. {27, Lem. 3.1(v)] or Lemma 3.1(iv,v) below, the Fejér test (17) discovers that the
target is infeasible in the sense of (15). Then the gap &, is halved at Step 6, the target fl’;v is increased at
Step 4 and the candidate point **! is recomputed. Note that the group counter ! increases at Step 6,
but the iteration counter k does not, so relations like f]ev = ,"e(c) — & always involve the current values
of k and ! at Step 4.

(v) Notice that if [z5+! — *B)| > 2R,, then the Fejér test (17) is passed. It follows that at Step 1 we

have the basic local boundedness property: {z"}t(lfli C B(z"(’), 2Ry).

We shall need the following convergence properties of Algorithm 2.1, which follow from the analysis of
Kiwiel et al. [27, §3] and our standing assumption that the optimal set S, of problem (1) is nonempty.

THEOREM 2.1 We have f(zF(V) | f., 6 | 0, and each cluster point of the sequence {z*V} (if any) lies
in the optimal set S. of problem (1). Moreover, the sequence {z*()} is bounded if the optimal set S. is
bounded. These results require only finiteness of the objective f and local boundedness of the subgradient
mapping gy on the feasible set S (in which case f is continuous on §).
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Figure 1: Target infeasibility /¥, < ming k) g,y f5 if d;,k(a:"(”) > Ri.

PROOF. The first assertion follows from the results of Kiwiel et al. (27, Lemma 3.6 and Theorem 3.7},
the second one from [27, Corollary 3.8], and the third one from [27, Remark 3.9(ii)}. (]

3. Dual subgradient interpretations. For theoretical purposes, it is convenient to regard our
constrained problem f, := ming f of (1) as the unconstrained problem f, = min fg with the essential
objective

fs:=f+1s, (18)
where ig is the indicator function of the feasible set S (ig(z) = 0 if x € S, oo if z ¢ 5). Clearly, the
objective fs is convex. Let Mg := 05 denote the normal cone operator of the feasible set ..

We now outline our main results. At each iteration, Step 1 delivers the linearization fi (cf. (5)) of the
objective f, whereas at Step 4, the projection z*t1 := Psz*t1/2 gives rise to a subgradient linearization of
the constraint function ¢5 at 1. At iteration k, we construct affine minorants fk and i’g of the functions
f and 45 by combining their past subgradient linearizations with suitable weights. Then the function
f_’; = fr + i’g is an affine minorant of fg := f + ig, and hence its halfspace Hj := Ef-; (fl';v) contains the
level set Ly, (ff,). Now, in terms of the minimum ball value f! := ming gk, gy f5, condition (15) reads
fE, < fl. 1t follows that £, < fLif B(z*®, R))n Hi = 0 (see Figure 1); the latter condition is shown to
be equivalent to the Fejér test (17) by fairly simple algebra. Next, when this condition holds, we get the
inclusion Vf% € 85, fs(z*®) and the bound [V f£] < &/R, as in Figure 1; since § — 0 and &;/R; — 0,
these relations ensure asymptotic optimality and suggest practical stopping criteria.

3.1 Aggregate linearizations. We first derive a dual interpretation of the Fejér test (17) by iden-
tifying below affine minorants fy, i’;, f_’; of the functions f, ig, fs, respectively. As mentioned earlier, fc
is obtained by combining the subgradient linearizations f; of (5) with the convex weights V;-‘ of (13), i.e.,
the steps.izes v;j of (.10)-divided .by the cumulative stepsize 17’; = Zj;km v; so that Z;?:,c(,) 1/}c = 1. For
aggregating constraint information, we shall use the fact that at Step 4, the vector

glsc = gFFY/2 k4l (19)
is a subgradient of 15 at **! stemming from the construction of z*+! := Pgz*+1/2. Accordingly, we

shall employ the following eggregate linearizations of f, ig and fs (cf. (18)):

& &
Felyi= 37 vkf(), ()= Y0 ek =IO, FEC) = A +50), (20)
g=k(l) F=k(l)
and the corresponding aggregate halfspace Hy of f& and the aggregate level ﬁ;v given by
&
He=Lp(fl) = (e fé@ < fi } with fi, = 3 vffi,. (21)

=k(l)
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The following technical result lists their basic properties, which are commented upon below.

LEMMA 3.1 (i) At Step 4, the point z**! and the Fejér sum piyy satisfy

k
e g0 = =S (0} + 0h), (22)
i=k(l)

k 2 k
> vigh+dh| + 3 {ulhE ) - f) 4 05O o) = doen. (29)
0) j=k(1)

(ii) The aggregate linearizations satisfy fi < f, ¥ <is, f& < fs. Further, Dijflf = g _ ghtl)

1
2

2055 0) ~ ] = e = 2FOP 4 prs. (24)
(iii) We have f&(z*®) > fE . and the distance from the point z*!) to the halfspace of (21) satisfies
djy, (*0) = [FEO) - RNV TS > 0l (25)

(iv) For the minimum ball milue L= mingxw g,) fs, we have the following. If ﬁ;v > fL, then
dm(z"(l)) < Ry. Consequently, f, < flif d,—,k(z"“)) > Ry.
(v) (R~ 2"+~ 2* D)2 > RE ~ pyy (iee., the Fejér test (17) is true) iff dg, (") > R

PROOF. (i) Since z5+1/2 —z* = —vy gk by Remark 2.1(ii), and o#** —z*+1/2 = —gk by (19), swinming
gives (22). Let ALy := Ly — Lk_;. Since by (22), zF — 2*® = — Zj=k(l)(u]-gf + g%) in (23), we have

AL = —3vegh + g5 + (vegf + g5, o8 - 2*0) 4 ui[(@*D) - L) + <g§, o) — gkt
= —Huafl? + i[O + (g, 2% — 2*O) — fE) + (5, 25 — 2 - gl — 4o
=~ 2l g1 + vilfu(@®) — fE) + (g, 2" FY/2 — gFH!

= (=3t% + ) {[fe(=®) = L)/ 1051}

(g2 Rl pRr1/2 gkl l( k41/2 _ phtlyy

- 595)

= 3{te(2 — te)df, (2F) + 2P+ — 222 = L(p 4 Brraye) = 3(pear — pi),

where the first equality follows from expansion of Ly, the third one from the definition (5) of f and the
fact that zF+1/2 = o* — ukg}‘, the fourth one from the definitions (10) of ¢4 and (19) of g%, the fifth one
from the fact that dp, (zF) = [fx(z*) — f£,]/|g5], and the final two ones from (16). Consequently, (23)
can be obtained by induction, starting from Lggy—1 := prqy := 0 (cf. Steps 0, 3 and 6).

(ii) Combining the subgradient inequalities f; < f of (5) in (20) gives fr < f. Next, since gi- =
$I+1/2 _ i+l by (19) and 271! := Psx+1/2 by Step 4, using the well-known projection property

(g, @ — 27ty = (2712 = Pog*1/2 4 - Peed*V?) <0 Vze S

gives 7% < i in (20) by summmg, and hence fs = fi +1% < f +is = fs. Now, using the definitions
(13) and (20) yields ﬁ}st = Ejzk(l)(ujgf + %) = 2 — 2541 by (22), as well as, by (21),

oE[ ARy - fE ] = Z {UJ{fJ(Ik(l))—flev]+ (gl 2O — IJ+1)}

F=k(l)
These two expressions allow us to rewrite (23} in the following useful form
Ly = - 4|55V 7k + ﬂfg(zk(l)) - fE)= $pe11 >0, (26)
where py11 > 0 by Remark 2.1(ji); then (24) follows from (26), where £V f = z*(1) — gk+1,

(iii) By (26), L = —4a% + b = 1c* with a := ]D}‘Vfé], b= ok{fE0) — fE) ¢ = piﬁ > 0. Then
b= 4(a?+¢c?) > |ac], so that by the definition of Hy. in (21), dg (z*") = b/a > c implies (25).
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(iv) Consider any point = € Arg minggxm g,y fs. If fl< f.l‘;v, then z € Hy by (21), because fs(z) = f!
and f& < fg by statement (ii). Together with = € B(z*®), R,), this implies that dg, (F0) < Ry

i (v) (R — |2*+! — k(’).])2 > Rf — Pl & L.Z"H”l —zkW2 4 oy > AR)jzR ! — 2R o Zﬁf[fg(zk(‘)) -
fE] > ZRIV}"VfSI o [fE*O) — fE)/IVFE > R & dﬁk(z"(l)) > Ry, where we have used (24), the
fact that |g*+1 — 20| = 5|V fE| by statement (ii), and (25). 0

REMARKS 3.1 (i) By Lemma 3.1(v), the Fejér test (17) is equivalent to the distance test
dg, (z*0) > R (27)

The fact that the Fejér test (17) implies £f, < f! (cf. (15)) was derived in Kiwiel et al. [27, Lem. 3.1(v)}
from Fejér estimates via analytic arguments, which are quite difficult to interpret. In contrast, the distance
test (27) has a straightforward interpretation: with f£, = £, in (21), (27) means that the minimum of
the linearization f§ over the ball B(zF® Rl) and hence also that of fs (since fE underestimates fs), is
greater than ff,, ie., ff, < mingg.m g, fE< mingzxw g,y fs = : fL(cf. Fig. 1).
(ii) To cover the modifications of Kiwiel et al. [27, §6], which need not use constant levels fl]:av = fk,
for j = k(I): k, note that the proof of Lemma 3.1 holds if at Step 4, for all £, we only have
£ =6 < froy < min{ 70, £(z)}. (28)

rec

In general, since flev > mmj k(D) flev by (21) and (13), if we have mmJ —k(0) flev > f,ec — &, then (27)

yields frke(cl) — &y < fi. Tt follows that Lemma 3.1(iv,v) subsumes the corresponding result of Kiwiel et al.
[27, Lem. 3.1(v)], and hence that the level condition (28) suffices for our convergence results.
(iii) Suppose momentarily that S = R™, so that g& = 0. It is instructive to observe that our algorithm

acts like a dual coordinate ascent method for the QP subproblem

min { 4z — 2O : fi(2) = £5(*0) + (g, = 2*O) < fl, 5= k(U):k |- (29)
Indeed, the Lagrangian of (29) with multipliers v; is minimized by the point zFHL (cf. (22)) to give
the dual function value Ly of (23), and vy =,y by (10), where &y = [fi(z* flev]/lgk ? maximizes
AL, = —Elllkg/l2+llk[fk )— fE,] (see the proof of Lemma 3.1(i)). Thus our algorlthm may be regarded

as a poor man’s version of the ploxnnal level methods of Kiwiel {22] and Lemaréchal et al. {34], which
employ subproblem (29) with f, = fk, for all 5.

3.2 An optimality estimate. We now derive an optimality estimate from the aggregate lineariza-
tions fi, i % and fS defined in (20). These linearizations are described by their constant gradients, as well
as their linearization errors at the current ball center £ (cf. Fig. 1):

= f@H0) = fuat D), # = ), a= S - EHO), (30)
note that ig(z "“)) =0 and fs(z*D) = f(z*®) from z*® € S. In view of Remark 3.1(ii), from now on
we assume only that the level condition (28) holds at Step 4 for all k.

LEMMA 3.2 The linearization errors of (30) are nonnegative, with & = e"f‘ + &, and we have

Vi € 05 f(z*0), Vi € Ogis(s*0), Vs € 0, fs(z"0).

Further,
fs() 2 FEC) = F(=*0) — & + (VE, - ~ 200, (31)
where
& = f(a*) — fEE*D) < RO - fE, <5, (32)
[Vi§] = [F5(*0) - fE,)/dg, (@"9) < &i/dg, («*O). (33)

ProoF. By Lemma 3.1(ii), f is an affine minorant of f; thus, by (30), the inequality
70) 2 Jul) = Fule®) + (Vg =40 = 22 O0) = & + (Vi = H0)
means that V fi € 6-k (z*®) with E’} > 0. Arguing similarly for &% and fg yields the first assertion and
(31). The mequahtles in (32) stem from the facts that f(z*1)) = fk(l) by Remark 2.1(i), f5(z*®) > fk,

by Lemma 3.1(iii), ff, > mmj —k() fi, by (21) and (13), and mm_7 k() fl - FEY _ 5, by condition (28)
used at iterations j = k(l): k. Then the equality in (33) follows from (25), and the inequality from the

fact that f5(z*¥) < fg(z*?) = o (by Remark 2.1(i)) and the last inequality of (32). [}
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3.3 Ballstep modifications. We now consider two more efficient modifications of Kiwiel et al. [27].
To detect that min;?:k(,) fljev < f! more quickly, Step 5 may use the additional test
(R — |*+1/% — 2*O))2 > RE — Prr1/2, (34)
replacing (17) by “(34) or (17)". In view of the results of Kiwiel et al. [27, §3], Step 4 may set 2*+! :=
zF+1/2 if condition (34) holds, so that pry1 = pry1/2 and (17) holds; then all the preceding and subsequent
+ Pr+1/
results remain valid. Further, we may replace «*+1/2 and pryt1y2 in (34) by Pp, z¥ and pg + d?,k(zk), as
if tx = 1; see Kiwiel et al. {27, Rem. 3.2(ii}}.

Similarly, our preceding and subsequent results hold for the “true” ballstep version of Kiwiel et al. {27,
Lem. 3.10}, which additionally projects the point z¥+* on the ball B(z*(®), R,) to ensure that {a:"}::('t(llg C
B(z*(), R)) (instead of {mk}t(l:(l) C B(z*®,2R)) as before). Since this only needs more complicated
notation, we refer the interested readers to Kiwiel et al. [26, Lem. 3.10].

4. Optimal objective and constraint subgradients. Our asymptotic convergence results will
deal exclusively with relations holding at Step 6, using groups and iterations in the sets
L:={l:6,+1=%61} and K :={k(l+1):leL}. (35)

The set L indexes groups ! terminating at Step 6 when the distance test (27) (=(17) by Remark 3.1(i))
holds at Step 5 for the current iteration k = k({ + 1) in the set of “interesting” iterations K. Of course,
it would be nice to have results for the remaining iterations as well, but our estimate (33) involves the
quantity &/dg, (x*®), which in general converges to 0 only for k = k(1 + 1) € K, as will be seen below.

We now begin our study of asymptotic properties of the aggregate linearizations Frs i, fg of (20).
First, we show that their errors E?, &, & (cf. (30)), as well as the gradient of f¥, vanish asymptatically for
k € K. Our further results will require local boundedness of the gradient of fk. Since this gradient Y fi
is a convex combination of the past subgradients {gf}J —k (D) (ef. (20), (13) and (5)), its local boundedness
will follow from the local boundedness of the subgradient mapping gy.

LEMMA 4.1 (i) In the notation of (30), (20) and (35), we have
E’;—oo, E’;\—oo, €k=e”f"+€§—»0 and Vfg:vfk+V'i§,_5_,0_

(ii) Suppose the sequence {x*(D}1cp has a cluster point . Let L' C L be such that AU °°,
and let K' := {k(1+1) : L € L'} (cf. (35)). Then 2 € S\ and f(z*®) | f. = f(z*). Moreover, the

sequences {Ik}kEK,‘,lEL’ and {g;f}keK,’.leL' are bounded, where K| := {k(1):k(l + 1)}.

PROOF. (i) We have 0 < E’},Eg.,?k < & by Lemma 3.2 (cf. (32)), where 8; | 0 by Theorem 2.1. Next,
we have |V f&| < &i/dg, (z*) by (33) with dg, (z*B) > R, for k € K (see below (35)), R := R(6,/6:)?
by Step 5 and 8 € [0,1) by Step 0; consequently, we obtain that & /R; — 0 and hence Vf§ 0.

(ii) Of course, 2 € S, by Theorem 2.1, but the estimate (31) combined with statement (i) and the
fact that the sequence {z*} lies in the closed set S on which f is continuous provide an independent
verification: fs(-) > fs(x°°). The final assertion follows from the inclusion {zk}t(ltll)  B(z*®,2R)) of
Remark 2.1(v), since gjr = g¢(z*) for all k and the mapping g, is locally bounded on the set S. O

In the asymptotic setting of Lemma 4.1, let £° be an arbitrary cluster point of the sequence {z*®},ep
corresponding to groups L’ and iterations K’ such that (cf. (35))

FO L g™ with L'CLi={1:841=4&), K':={k(il+1):l€ '} CK; (36)
note that z°° € S, by Theorem 2.1. We now show that the corresponding subsequence of the aggregate
subgradients V f converges to the optimal subgradient set of our problem ming f:

G = 0f(z™) N ~Ng(z™). (37)

This set does not depend on the point z°°, as long as £*° € S,: § = 0f(z) N —Ns(z) V= € S, by Burke
and Ferris [10, Lem. 2], and it is closed convex (such are the sets 8f(2*°) and Ng(z™) := dig(z™)).
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THEOREM 4.1 Suppose the sequence {20} icp has a cluster point z°°. Let L' C L be such that %) z,
z%°, and let I{' = {k(1 +1) : L € L'} (cf. (35)). Then we have the following statements.

(1) The sequence {V fx}rex is bounded and its cluster points lie in the subdifferential 9f(x*).

(ii) Buery cluster point of the sequence {V fi}rek: lies in the optimal subgradient set G of (37).

(iit) dg(Vfx) X, 0, i.e., the sequence {ka}kg(: converges to the optimal subgradient set G.

PROOF. (i) Since Vfi € co{gj;};;km by (13) and (20), the sequence {vfk}kel(' is bounded by
Lemma 4.1(ii). Next, since Vfi & 857)‘(1"(')) by Lemma 3.2, where z*} L, 2 and E’} KON by
Lemmnia 4.1(i), we see that each cluster point of the sequence {V fi} ke k- lies in f(x>), since the mapping
(z,€) — 0. f(z) is closed on S x Ry; see, e.g., Hiriart-Urruty and Lemaréchal [20, §XI.4.1}.

(i) Let I ¢ K’ be such that the sequence {V fi}rercr has a limit Vfo. By statement (i), Vi €
8f(z). Since VfE —Vfi =V e 6-; ig(z"(’)) (by (20) and Lemma 3.2) with V /% 2,0 and & -0
by Lemma 4.1(i}, we see that st ——me € Oig(x™) by the closedness of d¢is(x) as above.

(iii) This follows from statements (i}, (ii) and the contmmty of the distance functlon dg: pick K" C K’
such that dg(ka) hmkeK' dg(VfL) and ka EiSH Vfc,0 € G to get dg( ka) X, ]

COROLLARY 4.1 If the sequence {x*(V} is bounded (e.g., the optimal set S, is bounded), then the sequence
{V fi}rei is bounded (cf. (35)), its cluster points lie in the optimal subgradient set G defined by (37) (for

any point ©°° € S.), and it converges to this set G, i.e., dg(ka) 0.

ProoF. This follows from Theorem 2.1 and Theorem 4.1. m}

Concerning Corollary 4.1, note that the sequence {z*®"} is bounded if such is the feasible set S;
also having S bounded is useful for stopping criteria; see Kiwiel et al. [26, Rem. 3.8]. As observed in
Feltenmark and Kiwiel [12, §3], in some applications one wants to find the minimum ming f for an
unbounded set 5, but one can find a bounded set S that intersects the optimal set Arg ming f. Then it
is natural to solve, instead of the original problem ming f, its restricted version ming f with a bounded
feasible set § = §1 5. Both problems have the sane optimal subgradient set G if the “bounding” set §
is “large enough”, as explained in the following result of Feltenmark and Kiwiel [12, Lem. 3.7].

FacT 4.1 Suppose ming f is a restriction of the original pmblem ming f in the sense that S = 8nS for
two convez sets § and 5. Let 3, : = Argming f. Suppose S.nint§ #@. Then § # S. C S., and we
have both G = 0f(z) N —Ns(x) for every = in S, and G = 0f(z) N ~Ng(z) for every = in S,.

REMARK 4.1 Under the assumptions of Fact 4.1, Az may replace Ns in Theorem 4.1; then G := &/ (z™)N
—Ng(z°°) characterizes “optimal” subgradients for both ming f end ming f, also in Corollary 4.1. In
general, if §, # #, then it suffices to choose § “large enough” but compact to have S bounded as well.

Following Feltenmark and Kiwiel [12, §4], the results of this section can be specialized as in Kiwiel et
al. [26, §5] to the cases where we have explicit representations of f as a finite-max-type function, and of
S as the solution set of finitely many nonlinear inequalities and linear equalities. The resulting schemes
for identifying multipliers of objective pieces and constraints work under more general conditions than
those in Anstreicher and Wolsey (1] and Larsson et al. [32]; see Kiwiel et al. {26, Rem. 5.15].

5. Lagrangian relaxation. For Lagrangian relaxation, in the general setting of Example 1.1, we
consider the following two choices of the dual feasible set S:

S:=58= R} or §:={z:0<z<z"} withz"P > z for some Z € S.. (38)
For the second choice, our problem ming f is a restricted version of the classical dual problem ming f in
the sense of Fact 4.1.
In this setting, our method employs the partial Lagrangian solutions and their constraint values

k.= z(z*) and g’f‘ = (%) for all k; (39)
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note that, by (3)-(5),
Fu() = o) + (9 (") (40)
Using the convex weights {u J k() of (13), we define the kth aggregate primal solution

&
= Z i, (41)

J=k()

This construction is related to the aggregate linearization fy := Z ik Y3 kf; of (20). By expressing each
linearization f; as in (40), we now derive bounds on the primal function values 10(z*) and 1(z*) that
are usefu] for both asymptotic analysis and practical stopping criteria.

LEMMA 5.1 The kth aggregate primal solution defined by (41) satisfies ¥ € Z,
Yo(2) 2 fi(0) 2 f(=*0) — & ~ (Vf5,6*D) and (3*) 2 VS,
where V fi > Vfg if S=R2, and V fi = ¥(5*) if the primal constraint function ¥ is affine.

PROOF In view of (13) and (41), we have 3* & co{2’}%_ .y C Z, $o(2*) 2 T, vEtho(27) and
) > Z "1/) (27) by convexity of Z and concavity of 1, ¥. Next, using (20) and (40), we get

Fel) =30 vEF0) = 30 v [z + (9@)] = 37 vibo(e) + (Vfi )

with Vf = 2 V;’l/)(lj). The above equality combined with the facts that f’s‘ = fu+ it by (20) and
7%(0) < is(0) = 0 by Lemma 3.1(ii) and (38), and the representation of f% in (31) imply that

3 vho(e) = 11(0) = F5(0) ~ (0) 2 JE(0) = S(2H0) — & — (V7K 2HO),
Finally, if § = R7, then the minorization i’§ < ig of Lemma 3.1(ii) gives Vi < 0, and hence that
V= Vf§ - V:'f; > Vf";‘. Combining the preceding relations yields the conclusion. O

Let Z, denote the primal solution set of problem (2). We now show in the setting of (36) that the
aggregate primal solutions {#*},ec k-, generated via (41), converge to the primal solution set Z..

THEOREM 5.1 Suppose the sequence {z*"}ier has a cluster point °°. Let L' C L be such that o) ~~
z°, and let K" := {k(l+1):1 € L'} (¢f (35)). Then we have the following statements.
(i) The sequence {#*}iek is bounded and all its cluster points lie in the set Z.
(i) £(@*0) | f = [(2%), & +(VF5,250) 25 0, and limper mint, (Vi) 2 0
(iil) Let 2 be a cluster point of the sequence {#*}rexs. Then % lies in the primal solution set Z.
and in the set Z(z™) of (4). Moreover, the optzmal primal and dual values satisfy ¥5** = f, (i.e., there
is no duality gap). Finally, we have wo(z") = Y% and limye g 15(2%) > 0 for j = Lin.

(iv) dz.(2%) X5 0, i.e., the sequence {#*}pex converges to the primal solution set Z,.

Proor. (i) By Lemma 5.1, each z* lies in the set Z, which is compact by our assumption.

(if) The first two relations follow from Lemma 4.1. By Theorem 4.1(i,ii), (38) and Remark 4.1, the
sequence {V fi}xex~ is bounded and its cluster points lie in the set G C ,/\/'5.( >); since Ng(z®®) C —R%
(see, e.g., Hiriart-Urruty and Lemaréchal [20, Ex. II1.5.2.6(b)]), the third relation follows.

(ili) By statement (i), 2> € Z. Pick K" C K’ such that z* I zeo, Using statement (ii) in Lemma
5.1 together with the closedness (upper semicontinuity) of 1o and ¥ on Z gives

Yo(2°) > Im 4o(2*) > lim ¥o(2*) 2 f(z*°) = fu, (42a)
kekr KEK

$i(2°) > Tim $;(z%) > lim #;(3*) 20, j=Ln (42b)
k€K keK"

Thus the point Z°° is primal feasible. Since 9(2°) < YJ** < f(z*°) by weak duality, (42a) yields that
ho(2%°) = PF** = f(z*) and hence *° € Z,. Then the inequalities ¥(°) > 0 and =™ > 0 (due to




= € §) give Yo(Z°°) + (2, ¥ (2)) > f(z°°), so that Z°° € Z(z*) by (3)—(4). Next, since (42a) with
Yo(E°°) = f(z™) yields o(3¥) LA ;ax | whereas the sequence {#*}xek+ is bounded by statement (i),
the final assertion may be obtained by considering convergent subsequences and using (42).

(iv) This follows from statements (i}, (iil) and the continuity of the distance funtion dz,. ]

COROLLARY 5.1 Suppose that the sequence {z*B} is bounded; e.g., the optimal dual set S. is bounded
(see Example 1.1 for a sufficient condition). Then the optimal primal and dual values satisfy Y§*** = f.,
the sequence {3*}rex is bounded and all its cluster points lie in the primal solution set Z,, dz_ (3*) X0,

FFOY | gmax o (3F) L, ymax and limg g 95 (3%) 2 0 for § = Lin.

ProoF. Consider suitable convergent subsequences of {t¥()},c1, and {#*}rex in Theorem 5.1. O

REMARKS 5.1 (i) Given an accuracy tolerance € > 0, the method may stop if
P (2) > fE* D)~ and 9;(3¥) > -6, j=1in.

Then 1o(25) > Yie* — ¢ from f(zF®) > 2 (weak duality); in other words, the point 2*¥ € Z is an
e-solution of the primal problem (2). By Lemma 5.1 and Theorem 5.1(ii), this stopping criterion will be
satisfied for some k in at least two cases: if S := R7 and |z*()| 4 oo (e.g., if the dual optimal set S, is
bounded; cf. Theorem 2.1), or if § := {z : 0 < z < z"P} for the point ="P chosen as in (38).

(ii) If ¥(£) > O for some 2 € Z, then for any points T € 8, = Arg minm f and z > 0, we have

Z < [f(=) —(8)]/¥5(8), F=1in
(since Po(2) + (Z,9%(2)) < f(&) < f(z) by (3)). Such bounds may be used for choosing " > T in (38).
(iil) Our results may mitigate common critiques of subgradient optimization (see, e.g., Sen and Sherali
[41]), which claim that such methods need heuristic stepsizes, lack effective stopping criteria and are not

dual adequate (cf. (i) above).

(iv) For the standard subgradient iteration (11)-(12), the results in Larsson et al. [33] and Sherali and
Choi [42] (where each function v; is affine and the condition }_, vZ < oo is replaced by the assumption
that = — £ € S,) correspond to replacing the set K by {1,2,...} in Corollary 5.1, and k(I) by 1 in (41).
Hence our estimates may be expected to converge faster, since information from early steps is explicitly
discarded. Further, Sherali and Choi [42] give partial results only for deflected subgradient approaches,
which are easily handled in our framework; cf. §6.

We now indicate briefly two useful extensions of the framework of Example 1.1.

REMARKS 5.2 (i) Consider the equality constrained version of the primal problem (2):

% 1= max Yo(z) st. Y(z)=Az-b=0, z€ Z, (43)

where A € R**™ b e R*. Modifying (38), we may take either S := § 1= R" or § := {z : 2'°¥ < x < 9P}
for bounding vectors that satisfy 7% < # < z"P for some dual solntion % € &,. Then Lemma 5.1 holds
with $(5) = Vf, (where Vfi = Vf% if § = R™), and Theorem 5.1 holds with y(z*) = Vi 25 0 in
statement (i) (using Nz(z°°) = {0}), and hence ¥(2°°) = 0 in statement (iii).

(ii) Instead of assuming that the set Z is compact, suppose Z is closed and the mapping z(-) of (4) is
locally bounded on the dual feasihle set S. The preceding results of this section are not affected, since
statement (i) of Theorem 5.1 follows from (39), (41) and Lemma 4.1(ii). This observation can also be
exploited in the bundle framework of Feltenmark and Kiwiel [12, §5].

6. Accelerations. As shown by Kiwiel et al. [27, §7], we may accelerate Algorithm 2.1 by replacing
the subgradient linearization f, with a more accurate model ¢ of fs; this means that Step 4 sets
Y2 = gk (P et — 2%, pei= (2 t)dd (2F) with  Lp = Lo (FE). (44)

In other words, the halfspace H}. is replaced by the (hopefully tighter) approximation Ly of the objective
level set £, (fE,). The main idea is that the model ¢, should accumulate information from the past
linearizations in order to prevent zigzags. Even fairly simple models yield faster convergence in practice.
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Yet, for aggregation, we need to know the weights of past linearizations f; in the current model, and the
necessary notation becomes quite complex. To save space, we provide below formulas for several popular
models, referring the interested readers to Kiwiel et al. [26, §6] for their justifications.

For the model choices specified below, ¢y, is an affine minorant of fg such that Br(z*) > ff,. Therefore,

if its gradient g% := V¢x is nonzero, then (44) implies that we have d¢, (x*) = [¢i(z*) — fie,)/195] and

Ft/2 = gk _ ukg¢ for the stepsxze U = (e (%) — fE,)/|ghI?, which 1eplaces v in (10) and (13) hence

the cumulative stepsize 7§ = E j=k() U5 is updated by setting ok = l/f + b if & > k(1), u! = Dy
otherwise. When gz =0, we have dg, (z¥) = co, and we may set 2*+1/2 ;= z* and u, =D =1,

Qur implementation tested in §7.5 generates ¢ by combining the current linearization fi with a past

linearization @gx_; of f; to account for constraints, they are turned into linearizations fk and (bk 1 0of fs
by using the subgradient reduction technique of I{iwiel [23, §7]. Specifically, we use the following formulas

dr = (1— o) fi + oude_y  with o €0,1),

Je() = fe(@®) + (55, = 2%), den ()= F5 NP + (g5 - 2h),

where §F 1= g'fc + PNS(Ik)(—g’;) and §$_1 = "‘ Ty Prs(zy(— g¢! ~1) are reduced subgradients, for
g;[l = Vqﬂf , updating

#=(l—a)fi +end!, =11
The choices of the weight oy above, given by Kiwiel et al. {27, Ex. 7.4(v) and Rem. 7.6}, include:

(i) the ordinary subgradient strategy (OSS}): ay := 0;
(i) the conjugate subgradient strategy (CSS):

(8,55 if (55,551 < 0 and de_y (=) > fE
—_ o whk— o - = v
ok =g (k) | 4 ¢

0 otherwise;

(ili) the average direction strategy (ADS):

1] tgs ;
g 1= 9 L #0 and g 1(z®) >k,
o 1= g% + 18571
0 otherwise;

(iv) the aggregate subgradient strategy (ASS): . is such that the projection of the point z*F on the
flev—level set of ¢, coincides with its projection on the flev—level set of max{fk, qﬁk 1} if the latter
set is nonempty, otherwise a is such that the former set is empty; see Kiwiel [23, Rem. 4.1].

For OSS and ASS, if the Fe_]er tests (34) and (17) are false and max{ fr(z*+!), gk (x k1) > O 351,
then Step 4 is repeated with £* and qﬁf replaced by 25! and qﬁ’f‘. Such repeated projections are justified
by Kiwiel et al. [27, Rem. 7.11] (but not for CSS and ADS). They provide an inexact implementation of
the “best” single projection of 2* on the set ﬁmax(f,.,&’;"}(-ﬁtv) N S, which may be too expensive.

For primal aggregation (cf. (41)), we use the following updates (where 2° := 2§ := z'):

2 = (i /UF)zk + (1= be/D)2* 1 with 25 = (1 — on)z* + 2™ (45)
Here one point should be noted. If we set agy =0 when a group starts, these constructions produce
(fier 25) € co{(fy, #7)}5 Tk and (qﬁf, zd,) € co{(f;,29)} _k( Otherwise 1 replaces k(() in these inclusions.
However, we may aIlow akay # 0 in at least two cases lg‘lrst suppose the subgradient mapping gy is
bounded on the set § (e.g., ¥ is continuous in Example 1.1); then the sequence {Vfx} is bounded, as
required for Theorem 4.1(i). Second, suppose the optimal set S, is bounded. Then, by Theorem 2.1 and
Remark 2.1(v), the sequences {z*} and {g}‘} are bounded, so that again the sequence {V fx} is bounded.



7. Application to multicommodity network flows. In this section we discuss an application of
our method to the traffic assignment and message routing problems, which are important instances of
nonlinear multicommodity network flow problems; see, e.g., Bertsekas {8, Chap. 8] for a textbook intro-
duction, Quorou et al. [37] for a recent survey, Fukushima {13, 14] for the pioneering dual developments,
and Goffin et al. [17], Goffin et al. [18], Larsson et al. {30], and Larsson et al. {33] for recent comparable
approaches. In particular, in §7.4 we relax the standard assumption of strictly convex arc costs, because
our real-life instances include linear costs. Incidentally, our theoretical developments also lay ground for
the application of the proximal bundle method in Feltenmark and Kiwiel {12, §5] to such problems.

7.1 The nonlinear multicommodity flow problem. Let (A/,.4) be a directed graph with N
nodes and n arcs. Let E € R¥*" be its node-arc incideuce matrix. There are m commodities to be
routed through the network. For each commodity 7 there is a required flow r; > 0 from its source node

o0; to its sink node d;. Let s; be the supply N-vector of commodity i, having components s, = 7y,
8ig, = —714, su = 0if I # 0;,d;. Our convez separable multicommodity flow problem is stated as follows:
"
min Jo(z0) =Y _ Pos(z0) (462)
j=1
m
st P;(2) 1= zo5 — Z z;=0, j=1Iln, (46b)
i=1
z2:=(20,21,...,2m) €L =20 X Zy X -+ X Zpm, (46¢)
Zo:=R", Zi:={z:FEz=5,0<z<%z} i=1Llm, (46d)

where z; is the flow vector of commodity i € {l:m}, zo = Y .., z; is the total flow vector, and % is
a fixed positive vector of flow bounds for each i. We assume that each arc cost function t; is closed
proper strictly convex and increasing on its effective domain that equals [0, x;) or {0, &;] for a constant
K5, and either 0 < &; < 00 or K; = 0o and limy_, ;Zgj(c) = 00, where 12)1{31- denotes the right derivative of
1/30]-. (Here and in what follows, we assume basic familiarity with convex univariate functions; see, e.g.,
Bertsekas {8, §9.1], Rockafellar {40, pp. 227-230].) Finally, we suppose that

Zo € [0,K1) X - - x [0,k,) for some % € Z with 1(2) =0. (47)

7.2 Dual approach. In the framework of Remarks 5.2, letting o(z) := —zzo(zg) and §:= R, we
may view problem (46) as an instance of the primal problem (43). Then, for each multiplier z, the dual
function value of (3) and the partial Lagrangian solution of (4) can be written as f(z) = Y .-, f*(z) and

2(z) = (20(x), .., 2m(x)), where fO(z) =37, f)zy),

£(5) = maxe{ w5t = oy (8) } = g (ws), =1, (482)
207 () = argming{ Poj(t) — 75t} = Vi (;) = Vi (z;), j=1im, (48b)
and
fix) == max{ —(w,2): Ez; = 5,0< 2, < %}, i=Llm, (49a)
zi(z) € Argmin{ (z,2) : Ez; = 8,0 < 2, < % } = —0f%(x), i=1m. (49b)

Concerning (48), note that, since each cost function J)gj is strictly convex, its conjugate function 1]35]-
is continuously differentiable; hence the mapping zo(-) is locally bounded. In turn, the mappings z(-)
produced by (49b) are bounded by 0 < z() < z;. Consequently, the mappings z(-) and gg(-) 1= ¥(z(-))
are locally bounded (as stipulated in Example 1.1 and Remark 5.2(ii}).

As for practical aspects, in typical applications the conjugate functions J)Sj are available in closed form,
and the computations involved in (48) are easy. In contrast, (49b) involves solving, for each 7, a shortest
path problem with some negative arc lengths if x # 0, and side constraints imposed by z;. Suppose
momentarily that z > 0. Then this problem becomes much easier to solve. Further, consider the case
where the required flow r; and the flow bound Zz; satisty r; < 2; for all 5. Then, ignoring Z; in (49b), we
may find z;(z) by solving a shortest path problem with nonnegative arc lengths and no side constraints
(since this solution satisfies z;;(x) < r; for all 5); this problem is easy; see, e.g., Gallo and Pallotino [15].
In particular, this means that we can handle problems where the flow bounds %; are omitted in (46d)
and (49b) (as happens in many applications), since the algorithm will proceed as if we had flow bounds
satisfying Z;; > r; for all ¢ and j (i.e., we may pick such bounds for theoretical purposes only).
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To sum up, the work in solving subproblems (49b) would reduce significantly if we took § = R} as
the dual feasible set for our method; a better choice due to Fukushima [13] is validated below.

THEOREM 7.1 Under the assumptions of §7.1, we have the following statements.
(i) Problem (46) has a solution, and it is equivalent to the following inequality constrained problem:

P = min do(z0) st P(2) 20, z€ 2. (50)

(ii) The set S, := Arg ming- [ of Lagrange multipliers of problem (50) is nonempty and bounded, and

it is contained in the set Sy := Argmin f of Lagrange multipliers of problem (46).
(iii) For the restricted dual feasible set S and the lower bounding vector z'°% defined by

Si={z:x>°%} with z;-""’ = 17;,'3]-(0) >0 for j=1:n, (51)

the dual optimal set S, := Argming f is nonempty and lLes in the bounded set S, of statement (ii).
(iv) The primal solution set of problem (46) (and of the equivalent problem (50)) has the form

Z,={23} x Zf with Z/ :={(21,4..,zm)€Zlx~--XZm:ZS=Z’iIZi}, (52)

where z§ is the unique optimal tofal flow.
(v) If each arc cost function ig; is finite and differentiable on the segment (0,00), then the dual
function f is strictly convez on the set S of (51), and hence the dual optimal set S, is a singleton.

PROOF. (i) Both problems have solutions: their feasible sets are closed, whereas their objective 1/‘;0
is closed, has a finite value at the point # of (47), and satisfies yo(zp) — 00 if {20 — co. The equivalence
follows from the following observation: if a point z is feasible in (50) and 1/10(20) < 00, but 1;(z ) >0 for
some j, then, since the function 1/)0] in (46) is increasing on its effective domain, we can reduce ¢0(20) by
decreasing zg; to z9; = 27;1 z;;, thus obtaining a better feasible point with 1;(z) = 0.

(ii) Since (47) is equivalent to Slater’s condition for (50) (v(z) > 0 for some z € Z with zp € dom o),

the first assertion follows from Rockafellar’s (40, Cors. 28.2.1, 28.4.1 and 29.1.5]; in particular, 111i11|Rn /=

—Jin, Since pin is also the optimal value of (46) by statement (i), and thus —in < ming. f by weak
duality, we have —1/1""“ = ming-~ f = ming: f (no duality gap), and the second assertion follows.

(iii) Since each 1J)gj is nondecreasing on its domain, we have x}P‘" > 0, whereas for 0 < z; < :c;"“’
f_;?(mj) is constant in (48b), and each f*(x) is nonincreasing in (49a), so that f(z) is nonicreasing. Hence
mingy f = ming f, and it follows from the definitions that S, is the projection of 5, onto S.

(iv) This follows from the strict convexity of the objective o and the structure of the feasible set.

(v) Fix j € {l:n}. Since 17;0] is stnctly convex, \71/30_, is mcreasing on (0,00). Then, by (48b),
Vfz;) = \711)0](:5]) is increasing for z; > ’/)oj (0) (since V%J T;) = (V4bo;)"Hz;)), and thus Fxs) is
strictly convex for z; > 1/)0]( ). In effect, f° and f are strictly convex on S. O

7.3 Algorithmic constructions and convergence. We now consider the application of our
method in the setting of §7.2, using the mappings z(-) and gs(-) := ¥(z(-)) defined via (48)-(49) at
points in the feasible set S given by (51). Recall that these mappings are locally bounded. The local
boundedness of g suffices for Theorem 2.1 and the convergence results of §4, with the optimal dual set
S, being bounded by Theorem 7.1(iii}. On the other hand, the local boundedness of the mapping z(-) is
crucial for extending the results of §5 as follows.

Here we view the inequality constrained problem (50) as an instance of the general problem (2) with the
“Hipped” objective 1g(z) := —wo(zo) so that their optimal values satisfy 1/)‘“”‘ = —¢"®*. By Theorem
7.1(i), these two problems and our original problem (46) have a common solution set Z,, and 1/)""“ is the
optimal value of (46). Now, in view of the local boundedness of z(-) and Remark 5.2(ii), the results of
§5 would hold if we replaced S by R} (cf. (38)); fortunately, this replacement is not needed. Namely,
Theorem 5.1 is true: in the proof of statement (ii), we have G C —Ns(z>) and Ng(z™) C —R} by (51),
which also gives 2°° > 0 in the proof of statement (iii). We conclude that all the results §5 still hold. In
particular, the conclusions of Corollary 5.1 hold, since the optimal dual set S, is bounded.




It follows that for any tolerance ¢ > 0, the stopping criterion of Remark 5.1(i) will be met for some k.
We now derive an alternative stopping criterion that is more efficient in practice. Basically, it involves
turning the aggregate solution £* into another primal-feasible point #* € Z such that (3%) = 0.

To this end, we first note that Remark 2.1(i) and Corollary 5.1 yield f(z%,) { 95> = —1,713““. Next,
we observe that although the aggregate 7* need not be feasible in the primal problem (46), it lies in the
set Z by Lemma 5.1. Hence we may use its conunodity components 7¥, i = 1:m, to produce the aggregate

total flow

="k (53)
i=1
and the primal feasible aggregate
g (238, 25y e 2 with ¢(3F) =0, (54)
Note that . y
0 < Po(£5) — P8 < do(28) + fl=ho), {85)

since dl"““ is the optimal value of problern (46), and —gpin = PP < f(zk.) as shown above Therefore,
the method may stop when 9o (¥5) + f(zk,) < e for a given tolerance € > 0, in which case #* is a feasible
e-solution of problem (46). Amoug other things, the following result implies that this stopping criterion
will be met for some k if the effective domain of each cost function 1:[10]- has the form {0, x;).

PROPOSITION 7.1 (i) 1//'"“ = —gmin = £, Jo(z5) L Jein and 1,(1(2”") 0.

(i) 25 — 25 =9(2%) K0, 2% - 25 = |25 — | —40 dz. (%) 25 0 and dg (z%) S 0.
(iii) 25 £ 23, 28 X 23, and dyr((25,... ,35)) X, 0, where 23 is the unique optimal total flow, and

the set Z{ of optimal commodity flows is given by (52).
(iv) If the optimal flow satisfies 25 € IT;_,[0, k;), then Po(25) X, Pin and Po(25) + f(zk.e) 0.

ProoF. (i) The optimal dual set S, is bounded and ¥o(z) := —tfp(z0), so the first two relations
follow from Corollary 5.1, which also yields that all cluster points of the bounded sequence {Zk}kek lie

in Z,; since Z, is the solution set of our equality constrained problem (46), it follows that 1(z*) 0.
(ii) We have (z*) = z¥ — 2¥ and |2F — 2%| = |2k — 25| by (46b) and (54); therefore, the first two

relations follow from statement (i). Next, since dgz. (%) )} by Corollary 5.1, the fourth relation is a
consequence of the second one and the fact that the distance function dz, is Lipschitz continuous.

(iii) Recalling the form (52) of the primal solution set Z,, use the final two relations of statement (ii).

(iv) By statement (iii), 2§ X, z5 with 2§ > 0 by (53), (41), (39) and (49b). Since each function fy; in

(46a) is continuous on [0, x;), we have 12;0( 5) X, Pin | whereas flzE ) | —12;{)“‘" as shown above. O

7.4 Extension to linear costs. We now present an extension to the case where some of the cost
functions are linear. Thus, retaining the remaining assumptions of §L7.1, suppose that for a fixed integer
0 <17 < n and each index j such that # < j < n, the cost function g; is /inear on its effective domain:

v 9 (0) ift >0,
(1) = 7

#o;(t) { 00 otherwise,
with 4§;(0) > 0. Then, by (48) and (51), f(z;) = 0 and zg;(z) = 0 if z; < zl¥, f(z;) = oo and z05(z)
is undefined if z; > z!¥, but for z; = !, ff(z;) = 0 and z0;(z) could be arbitrary in R,.. Exploiting
this freedom, we may restrict attention to the following subset of the dual feasible set S of (51):

S::{z:szx;"wfoerﬁ, zjzx;"wforj>ﬁ}, (56)

letting

205(z) = z(z) if e, > (57)

&Mi

Thls gives [gp(z)]; = ;(z(x)) = 0if z € S’ j> ﬁ Hence, assuming that we choose an initial point
z! € 8, by induction on (8) we shall always have z* € § and [gf], = ;(2%) = 0 for 5 > #. In view of
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(46b), this implies that 1;(2¥) = 0 by (41) and %, £k, = zf, by (53) for j > #. In other words, for arcs with
linear costs, the multipliers are fixed at their optimal values, and the aggregate flows are primal feasible.
Clearly, the mappings z(-) and gs(-) := (z(-)) are locally bounded on the set S (such are z;(-) fori > 1
and zg;(-) for 7 < # as before, since § C S, and then, by (57), also 295(-) for j > #i).

The above observations suffice for proving the first two parts of Proposition 7.1 as before. The re-
maining two parts are modified as follows. In part (iii), since now the representation (52) of the primal

solution set Z, is replaced by Z. = {(2§;,...,243)} % Z, fora suitably chosen set Z., we have
-k K vk K . u ~k ~k =k -k Jid
2y — 254 £y — 26_.,- for j <, dZ_((ZO,ﬁ+l"“lZOn7zlY' i) — 0.

As for the proof of part (iv), we have ip(2%) i Y&** by Corollary 5.1 as before; in other words,
Yo(35) X5 gmin. Now, since 2k, = 2k for j > i1 (see below (57)), we have, by (46a),
Po(2) = o(25) + D _ 1o (25;) — Yo (3],
jsn
where 1}0‘7(2{,‘] o (26;) X 1501(25]), since 0 < igj,igj X 75, € [0, KJ ) and the functions vy, are

continuous on [0, k;) for j < #. Therefore, wo(zo) X P@in yields 1,7;0(20) - w""“ as desired.

7.5 Numerical results. Our method was programmed in Fortran 77 and run on a notebook PC
(Pentium 4M 2 GHz, 768 MB RAM). We used the parameters 8 = 5, 81 = 46 and Ry := R(6:/50)"
with do = R|§'| for consistency with Kiwiel et al. [27, §8], t, = 1, the third projection of §3.3 and the
aggregate subgradient strategy of §6, updating the total flows (cf. (45), (53))

m
2= (0 /05)2E o+ (1 — 0 /58)2E™Y with 25, 0= Z zEi=(—ar)) 2f +oudhyl,
i=1 i=1
where 2§ 1= %3, := }I%, z!. We also computed record flows 2k as follows Lettlng gLl = #!, every
tenth 1terat10n or when the loop counter [ mcreased at Steps 3 or 6, we set £5 1= 5" if o (55) < 1;0(5:‘“,0),

2k = #£_! otherwise (we did not update ¥5_ at every iteration to save tlme). In view of the optimality

estimate (55), we employed the following stopping criterion
Po(Fee0) + F(Trec) < €optll + [Ho(Heco)l]s (58)
which ensured a relative objective accuracy of eqpe; we used eopy = 10772 for i = 4,5, 6.

We first give results for the CNET collection of Ouorou et al. [37], which describes message routing
problems in a real-life telecommunication network with 106 nodes and 904 arcs. The instances have
m = 4452, 6678,8904 or 11130 commodities, and five load factors (1, 1.5, 2, 2.5, 3) that scale up the
standard required flows ;. The costs are Kleinrock’s average delays

t/(k; —1) ift€e[0,ry),
1/)0 (t) = { x otherwise.
The starting point had components z; 1= (1 — p)~2 for all j, with p, := Z estimating the maximum

traffic intensity max; zaJ /k; as in Goffin {16] (this intensity sometimes exceeded 2). Qur results are given
in Table 1, where Delay := wo( Zfec,0) is the best primal value obtained until the final iteration k, times
are given in seconds, and the optimal delays (communicated to us by A. Quorou) are rounded to six
digits. The accuracy attained was usually higher than that guaranteed by our stopping criterion QSS)
eg., for eop. = 1073, we had [fo(¥ 2k eo) — Pin) /min < 1074 for the unit load instances, where Pin
is the optimal delay. Since each instance had 106 common sources, most work per iteration went into
solving 106 shortest path subproblems via subroutine L2QUE of Gallo and Pallotino [15]. Our machine
is about thirteen times faster than the one employed in Ouorou et al. (37). Hence Table 1 suggests that
our method is highly competitive with all the methods tested in Ouorou et al. [37, Tables 2 and 3}, at
least for modest accuracy requirements that are typical for such applications.

We next give results for five real-life traffic assignment problems described in Table 2. These problems
have nonlinear BPR delays

t+ Bt ift >0,
Pos (1) = {aJ Fh itz

otherwise,




Table 1: Results for the CNET instances, with R = 10.
opt = 1072 €opt = 10725 €opt = 1073 Optimal
m  Load Delay k  Time Delay k  Time Delay k  Time Delay
4452 1.0 | 12.6131 110 .421 | 12.5881 180 .601 | 12.5856 590 1.59 12.5847
1.5 | 19.1949 150 431 | 19.1831 350 .932 | 19.1815 600 1.52 19.1799
2.0 | 25.9955 210 581 | 25,0824 267 721 | 25.9784 500 1.29 25.9755
2.5 | 33.0326 200 .550 | 33.0017 330 .881 | 32.9838 1350 3.35 32.9809
3.0 | 40.2486 230 .631 | 40.2173 480 1.25 | 40.2125 1421 3.34 40.2072
6678 1.0 | 19.6691 170 591 19.6512 370 1.10 | 19.6494 720 1.94 19.6481
1.5 | 30.2016 240 671 | 30.1821 630 1.63 | 30.1806 900 2.30 30.1776
2.0 | 41.2893 160 471 | 41.2149 430 1.14 | 41.2106 1030 2.52 41.2066
2.5 | 52,0117 220 601 | 52.7989 350 .932 | 52.7842 950 2.31 52,7790
3.0 | 64.9875 540 1.39 | 64.9573 900 2,23 | 64.9513 1851 4.42 64.9460
8904 1.0 | 26.4872 230 .741 | 26.4872 238 .T61 | 26.4746 1050 2.71 26.4730
1.5 | 41.0286 190 .541 | 40.9820 427 1.13 | 40.9772 900 2.26 40.9742
2.0 | 56.4689 390 1.07 | 56.4301 630 1.67 | 56.4260 2032 4.96 56.4233
2.5 | 73.0758 350 961 | 72.9578 526 1.39 | 72.9454 944 2.37 72.9392
3.0 { 90.7997 418 1.11 { 90.7069 580 1.51 | 90.6720 860 2.17 90.6620
11130 1.0 | 33.5348 190 671 | 33.4978 440 1.33 | 33.4955 860 2.38 33.4931
1.5 | 524137 200 .591 | 52.2819 710 1.92 | 52.2709 1217 3.17 52.2677
2.0 | 72.6804 480 1.31 ) 72.6634 780 2.06 | 72.6462 1500 3.82 72.6434
2.5 | 95.0557 325 921 | 94.9118 710 1.88 | 94.8916 1490 3.79 94.8838
3.0 | 119.406 1250 3.23 | 119.321 1580 4.04 | 119.320 1830 4.65 119.306

Table 2: Traffic assignment problems and their best known primal values

Problem Nodes Arcs  OD pairs  Sources Linear costs Best delay
Barcelona 930 2522 7922 97 565  1.26846e+6
Linkoping 335 882 12372 118 0 4.05602e+8
Winnipeg 1040 2836 4344 135 1176  8.85327e+5
Chicago 2552 7850 137417 445 0 4.03799e+6
Skane 7722 18344 712466 1057 2262  7.63642e+47

with parameters a; > 0, 8; > 0, 9; > 1, as well as linear costs

v . ajt if t 2 0>
Poj (t) = { oo  otherwise,

with ce; > 0; coluwn 6 of Table 2 gives their numbers. The first three medium-sized problems were used in
Larsson et al. [31]. The Chicago problem of Tatineni et al. [44] is much bigger than the largest (random)
problems considered in Goffin et al. {18] and Quorou et al. [37]. The Skéne problem (not reported so
far) is really huge. We used the starting points =! = 21°* and the ball parameters R = 100, except that
we took R = 10 for the Linkdping problem. Our results are reported in Table 3. We add that again
for the tolerance €qpy = 1072 in the stopping criterion (58), the final accuracy was quite high: 1.3e-4 for
Barcelona, 2.8e-4 for Linkoping, 4.6e-4 for Winnipeg, 3.5e-4 for Chicago, 9.2e-5 for Skane.

Acknowledgments. We thank the reviewers and editors for comments that improved the presenta-

tion of the paper. We also thank D. Boyce for the Chicago data, H. Edwards for the Skéne data, and A.
Ouorou and J.-P. Vial for the CNET data.

Table 3: Results for the traffic assignment problems

opr = 1072 €opt = 10725 €opt = 1073

Problem Delay k  Time Delay k  Time Delay k  Time
Barcelona | 1.27322e+6 120 3.00 | 1.26937e+6 310 7.58 | 1.26862e+6 790 19.2
Linképing [ 4.06050e+8 120 110 | 4.05774e+8 150 1.35 | 4.05716e+8 720 6.27
Winnipeg | 8.89731e+5 56 1.67 | 8.86426e+5 116 3.31 | 8.85735e+5 220 6.18
Chicago 4.06493e+6 80 19.8 | 4.04446e+6 130 32.3 | 4.0394le+6 350 87.1
Skéne 7.64631e+7 20 37.9 | 7.63957e+7 44 82.6 | 7.63712e+7 80 150
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