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Abs1ract: To support the development of an information flow between the elements of a 
giveil manufacturing agent (a group of people, machines, robots, guided vehicles) an 
approach is suggested that combines knowledge expressed by 1raditional production rules 
with macbine learning technique b~sed on the 1raining of a neural network. A three layer · 
neural configuration is used for illustrative purposes. It is demons1rated that the use of 
neural networks shows promise as a tool for solving management and manufacturing related 
problems. 
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1. Introduction 
A three stage approach to the development of integrated multiagent manufacturing 

systems involves functional decomposition. agent representation, and information flow 

integtation (Szczerbicki 1992a). Functional decompositions are modelled by AND/OR trees. 

Logical trees allow the analyst to generale alternative solutions in the process of formulating 

specifications for a given manufacturing process. Manufacturing agents represent specified 

functions and their development · is based on the theory of autonomous systems. In 

Szczerbic).i (199.2a, b) production rules guiding the search in the functional space and 

developme)lt of infortnation structl.lfes for agents are presented. Production rules are helpful 

in the developmeni of traditional rule-based expert systems. In this paper an approach is 

djscussed th;it allows one to develop a connectionist e,xpert·system. i.e., neural network­

basęd expert systepi (Y oon et al. _1990, Gallant 1988). 

Fot the development of information flow in autonomous systems, the knowledge domain 

includes 1Jla1)Y •bsttact concepts (Szczerbicki 1991 a). The use of the back propagation 

algoritłup to ~evelop a kno:wledie base in the area of information flow illustrates the ease 

· ~d approp6ateness of this mej.hod.for dealing with implicit knowledge and also provides a 

' $ode! f ąr extensiop. into other e~pert doi;nllUlS, 

Cońn~tiorµst~\eąrning (ne~ network-b~d) algorithms have been successfully applied 

to inaiiy low-lev;el cognitive ~sks · s~ch as speech recognition, signal processing, charactcr 

pt~ęss_ihs, ch~cter. recogiwon, av.d motąr control (Hecht-Neilsen 1988, Gorman and 

$ejpows};.i 1988; R~elhąrt and McCłella,nd 1986, Vemuri 1988, Maren et al. 1990). 
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However, the capabilities of these algori1hms have rarely been explored in working with 
high-level cognitive processes such as information processing or manufacturing, in which 

traditional expert systems techniques are dominant. though the techniques have serious 

drawbaclr.s in knowledge acquisition. 

One of the obvious differences between a traditional expert system and a neuron-based 

(connectionist) expert system is a belief in how to develop inteligent systems. The traditional 

(rule-based) approach uses a domain expert to identify the explicit heuristics used to solve 

problems, whereas a neural networlr.s approach assumes the problem-solving steps are to be 

derived without direct attention to how a human actually perlorms the task. Traditional 

expert systems try to figure out how the human mincl is working. whereas connectionist 

systems mimie the most primitive mechanisms of the brain and allow the extemal input and 
output to designate the proper intemal functioning. 

1. 1. Neurons and neural nelworks 
A neuron has a number of branched dendrites and an axon. which aie used to receive and 

pass inf ormation to other neurons (Knapp and W ang 1992). The neurons are connected with 

synapses to form a basie biocomputational network. The number of connections is so large 

that it provides the network with sophisticated capabilities such as logical derivation, 

objective perception in natural scenes. and so on. 

Neural networlr.s are loosely modelled after human networlr.s of neurons in the brain and 

nervous system. They are a class of connectionist computing systems (fhomton 1991 ). 

Neural networlr.s have long been studied in the hope of finding solutions for problems with 

unknown or complex intemal relationships. Some examples of such studies that deal with 

problems in the area of manufacturing are included in Spelt et al. (1991). Burke and 

Rangwala (1991), Malave and Ramachandran (1991). 

Adaptation. or the ability to learn. is the most · important property of neural networlr.s. A 

neural network can be trained to map a set of input patterns onto a corresponding set of 

output patterns simply by means of exposure to examples of the mapping. This trainińg is 

performed by gradually adapting the intemal weights of the network, so as to ręduce 

differences between the actual network otńputs (for a given set of inputs) and the desired 

network oulputs. Neural networks which leam mappings between sets of patterns are called . 

mapping ncural networlr.s (Chryssolouris 1990). A key property of mapping networks is 

their ability to produce reasonable outptń vectors for input paUems outside of the set of 

training examples (Nielsen 1987. Rumelhart et al. 1986). · 
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2. Neural Network for Infonnation Structure Development 
The proposed development procedw-e includes three steps. The first step is described in 

other works by the author (see the reference section) and it involves the model based 

generation of knowledge for autonomous systems. This knowledge is expressed in the form 

of IF ... AND ... IBEN production rules and is based on simulation of the model presented 

in Szczerbicki (1990, 1991b). Seventeen of such rules are included in Szczerbicki (1992a) 

for rule based representation of autonomous manufacturing agents. An au/ooomous 

maoufacluriog ageol is a group of people, machines, robots, and/or guided vehicles thai 

decides about its own informational requirements (autonomy) and that represents 

manufacturing functions (Szczerbicki 1992b). 

In the second step, the rules are used to train oeural ~twork. 

The third step involves the use of the trained neural network in the situations that are not 

covered by the rules used in the second step. 

Problem-solving tasks, such as information structw-e development for a manufacturing 

agent, may be considered pattem classification tasks. The system analyst learns mappings 

between input patterns, consisting of characteristics of agent' s extemal and interna! 

environment, and output patterns, consisting of information structw-es to apply to these 

characteristics. Thus, neural networks (neural-based expert systems) offer a promising 

solution for automating the learning process of the analyst. 

2.1. Mapping formulation, 1nining, and use of the network 
A systems analyst, while developing an information structure for a manufacturing agent, 

transforms certain characteristics of an agent into recommendations concerning the flow of 

inf ormation (Szczerbicki 1990, 1991 b ). These characteristics represent the input for the 

system and they include 5 parameters: correlation in the extemal environment (R), dynamics 

(I), interaction in the interna! environment (I), delay (D), and type of the process describing 

the extemal environment (W). Output consists of two recommendations: (i) observation ( or 

sensoring) should be present, and (ii) exchange of information should be present (the 

importance of the above parameters and the role of observation and exchange of information 

in the development of an information structure are discussed in details in Szczerbicki (1990, 

1991a)). An input portion together with an output portipn of the data represents a training 

pair. Training pairs were generated through the simulation of the forma] model of 

manufacturing agents. 

The training pairs were used to train a 5-10-2 neural network (Figw-e 1). The number of 

input nodes (5) was chosen to match the number of relevant characteristics of an agent, and 
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Figura 1.A knowledge-based 5-10--2 neurol network 
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the number of output nodes (2) was chosen to match the number of infonnation flow 
recommendations. the number of hidden layer nodes is not constrained in a definite way. If 
ił is too small, the back propagation alg~ will not converge upon a set of network 
weights and thresholds. If it is too large it will take unnecessąrily long time to converge. 

Since the domain production rules were known in advance, it was possible to determine an 
approximate !ower bound on the number of hidden units needed using the guidelines set 
forth by Mirchandani and Cao (!989). The target values for each output node were 
normalized in such a way that the maximum target for each node received a value of 0.75 

and the minimum target for each node received a value of 0.25. This was do.neto bring the 
target values within the output range of the sigmoid output function. The 1raining values for 
each input node were identically normalized. Prior to training, . the network weights were 
initialized to values from the interval [-1,lJ and thresholds to values from the interval [-
0.25,0.25). The learning rate and momentum term of 0.9 were used in the network. These 
values were chosen on the basis of suggestions in the neural network literature (RUńlelhart 
and McClelland 1986, Vemuri 1988). The network was trained with a 1taining tolęrance of 
5%. Ten training pairs were used that were developed according to produi:tion rules 
presented in Szczerbicki (1992a. 1991b, 1990). The network was consi~ered trained if, for 
all training pairs and output nodes, l(desired output - actual output)/(de_sired output)I <. 
tolerance. 
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The back propagation ( called also error back propagation) procedure (Nielsen 1987) was 
used for training purposes. The output error was determined by peńorming the forward 
computations in the network and comparing the resuhs with the desired outpu1. The sigmoid 
output function was assumed. The computed output error was propagated back through the 
network, and the weights associated with the links were changed in order to reduce the local 
error fraction. The momentum term was included to decrease the tendency for oscillation 
during the training process. 

After training, additional characteristics of an agent were generated for use of the network. 
Testing the network's 1rained peńormance was done by the comparison of the network's 
recommendations concerning the flow of inf ormation with the rules that served as the basis 
for generating the additional characteristics. Five sets of characteristics were submitted to the 
network. In response, the network suggested five information flow recommendations 
(information s1ructures). As an example, Table 1 presents three sets of characteristics 
submiUed and the obtained recommendations after the 1rained network has been used. For 
the first input set (No. 1 in Table 1) the network recommends decenlralized information 
s1ructure. For the second, full information s1ructure is recommended. In the third case, the 
network recommends routine actions without observation and exchange of information. In . 
each case the recommendations agreed with the production rules from which the agent's 
characteristics were delivered. 

3. Conclusion 
Preliminary resuhs of a procedure of the development of information s1ructure for 

autonomous manufacturing agents employing neural network in conjunction with traditional 
production rules have been presented. Although the training sets were limited by the number 
of production rules generated so far, the procedure itself has qeen successfully applied and 
demonstrated. The approach pręsented shows the potential for use in real-world problems 
that are not intuitively straightforward. The neural network approach uses a single 
methodology for generating useful inferences, rather than using explicit generalization rules. 
Because the network only generates inferences as needed for a problem, there is no need to 
generale and store all possible inferences ahead of time. Further research is needed to 
provide a basis for the selection of a particular neural net~ork for use in the procedure. Also, 
the effectiveness of the procedure for large problems, in which many information s1ructure 
parameters have to be determined, remains to be investigated. 

The usefułness of an.y tradilional expert system depends on the completeness of the expert 
knowledge it contains. Knowledge acquisition has been identified as a major bottle-neck to 
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Table 1. The u.se of the trained network 

Input characteristics Output recommendations 

No Value Description Observation Exchange 
( sensoring) 

R=0.95 strong relationship between 
variables describing extemal 
environment 

T=O extemal environment is static Yes No 

I=0.01 there is no interaction in 
intemal environment 

D=O inf ormation is not delayed 

W=O proces;; is independent 

R=0.2 weak relationship between variables 
describing extemal environment 

2 T=O extemal environment is static Yes Yes 

I=0.90 there is interaction in intemal 
environment 

D=O information is not delayed 

W=O process is independent 

R=O there is no relationship between 
variables describing extemal 
environment 

3 T=l extemal environment is dynamie No No 

I=l there is interaction in intemal 
environment 

D=l inf ormation is delayed 

W=O process is independent 
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the implementation of expert system technology in many areas of engineering (Hayes-Roth et 

al. 1983, Siddall 1990, Mirzai 1990). Another limitation is that traditional expert system are 

unable to handle situations even slightly different from known prototype conóitions. On the 

other hand, however, one can see a good opportunity of blending of traditional expert 

systems with neural networks. Arguments that either expert systems or neural networks 

should replace one another should be ignored. The potentia! is great for both fields, which 

can be pursued simultaneously to achieve the goal of intelligent behaviour. 
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