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Abstract

Metaset is a new concept of set with partial membership relation. It is di-

rected towards computer implementations and applications. The degrees

of membership for metasets are expressed as nodes of the binary tree and

they may be evaluated as real numbers too. The forcing mechanism dis-

cussed in this paper is used to assign certainty degrees to sentences involv-

ing metasets, and to define basic relations like partial membership or partial

equality.

We thoroughly investigate here the class of metasets with finite deep

ranges which are especially suitable for computer representations because of

their finite structure. It turns out, that for sentences involving such metasets

it is always possible to assign the degrees of certainty that the sentence is

either true or false or both at the same time. Moreover, such sentences do

not allow for any hesitancy degree what implies no hesitancy in member-

ship and other basic relations. This property does not hold for sentences

involving arbitrary metasets, what is illustrated by the examples.

Keywords: metaset, set theory, partial membership, certainty degree, hesi-

tancy degree, intuitionistic fuzzy sets
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1 Introduction

The notion of set is fundamental to mathematics [4, 3]. In the classical set theory

the sentence “the set x is an element of the set y” is either true or false – there are

no other possibilities. Members of a classical set belong to it completely, to the

highest possible degree, without any intermediate levels. This property imposes

some limitations on the scope of applications of the classical set theory. Using

classical sets it is difficult to express and process vague, imprecise terms like big,

warm, etc. However, there is a strong and growing demand on theories allowing

for expressing such terms, especially in industry applications. Therefore, new

concepts of sets appeared which admit partial membership relation. The most

common examples are fuzzy sets [9] and rough sets [5]. In this paper we present

another approach to the problem of partial membership: the metasets.

There are many substantial differences between this approach and the above

mentioned ones. Just like in the classical set theory, members of metasets are

other metasets. The membership degrees for metasets, as well as the degrees to

which other relations are satisfied, are expressed by means of sets of nodes of

the binary tree, and they may be evaluated as real numbers. The language of

metasets includes infinite number of partial membership and equality relations, as

well as their negations. They allow for expressing a variety of different degrees

to which a relation may hold. The technique of interpretation allows to produce

a crisp set out of a metaset in multiple different ways. Consequently, a metaset

may be perceived as a family of crisp sets with a specific dependencies between

members of the family. Metasets allow for expressing not only membership or

non-membership with different degrees, but also a hesitancy degree which is the

level of uncertainty concerning the membership or non-membership – the idea

known from the intuitionistic fuzzy sets field [1, 7]. One of the most important

characteristics of the metaset theory is its computer orientation. Large parts of

the theory are constructed so that they are easily and efficiently implementable in

computer languages. This allows for productive computer applications based on

metasets [6].

In this paper we investigate the forcing relation applied to metasets which, due

to their specific finite structure, are easily and directly representable in comput-

ers. As it turns out, such metasets have many interesting properties. One of the

most significant is the possibility of assigning a certainty degree to each sentence

involving such metasets. This is not true in general and we give appropriate exam-

ples. As a consequence, there is no hesitancy of membership for such metasets:

any two of them are in membership relation to the degree which complements the

non-membership degree. We also show how to evaluate the membership degrees
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for such metasets as real values and we conclude that the membership and non-

membership values sum up to unity. Again, this property does not hold in general,

since the sum of membership and non-membership values for arbitrary metasets

may be less than 1.

2 Preliminary Definitions and Terminology

The metaset concept is strongly based on the classical set theory. Therefore, we

start with establishing some well known terms and notation concerning sets, rela-

tions and partial orders. The key role in the definition of metaset plays the concept

of binary tree which we define first.

A natural number n ∈ N is a finite ordinal of form

n = { 0, . . . , n− 1 } = n− 1 ∪ {n− 1 } (1)

or it is the empty set ∅ corresponding to the number 0. In particular, 2 = { 0, 1 }.

For n ∈ N , let 2n = { f : n 7→ 2 } denote the set of all functions with the domain

n and the range 2 – they are binary sequences of the length n. There is only

one function ∅ 7→ 2 : it is the empty function (the empty set ∅ of ordered pairs)

denoted with the symbol 1. Thus, 20 = { ∅ } = { 1 } contains only the empty

function. Let T denote the set of all functions whose domains are finite ordinals,

valued in 2:

T =
⋃

n∈N

2n . (2)

We define the ordering ≤ in the set T to be the reverse inclusion of functions seen

as sets. Thus, for p, q ∈ T such, that p : n 7→ 2 and q : m 7→ 2, we have p ≤ q

whenever p ⊇ q, i.e., n ≥ m and p↾m = q. The root 1 is the largest element of T

in this ordering: it is included in each function and for all p ∈ T we have p ≤ 1.

The ordered triple 〈T,≤, 1〉 is the partial order called the binary tree. Usually, by

the term binary tree we will also mean the set T itself.

For the given n ∈ N , the set 2n of all the p ∈ T which are functions p : n 7→ 2
is called the n-th level of T . The level 0 contains only the root 1. For the given

p ∈ T , the symbol |p| denotes the cardinality of the set of ordered pairs p, which

is equal to the ordinal being the domain of p, and at the same time it is the level

number to which p belongs: p ∈ 2|p|.
We represent binary sequences which are elements of T using square brackets

surrounding consecutive elements of the sequence, as depicted on the Fig. 1. The

nodes [0] and [1] are direct descendants of the root 1. The nodes [00], [01], [10],
[11] form the second level, and so on. For p ∈ T , we denote by p · 0 and p · 1 the

direct descendants of p. For instance, if p = [0], then p · 0 = [00] and p · 1 = [01].
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Figure 1: The binary tree T and the ordering of nodes (conditions). Arrows point

at the larger element, i.e., the weaker condition

Nodes of the tree T are sometimes called conditions. In applications, they

are utilized to designate various circumstances affecting the degrees to which re-

lations hold; for instance, a condition might pertain to cold or hot weather. If

p ≤ q ∈ T , then we say that the condition p is stronger than the condition q, and

q is weaker than p. A stronger condition is meant to designate a stipulation which

is harder to satisfy than the one described by a weaker condition. For instance,

“very cold” and ”slightly cold” are stronger conditions than just “cold”, since they

carry more information concerning the temperature.

A set of nodes C ⊂ T is called a chain in T , whenever all its elements are

pairwise comparable: ∀p,q∈C (p ≤ q ∨ q ≤ p). A set A ⊂ T is called antichain in

T , if it consists of mutually incomparable elements:∀p,q∈A (p 6= q → ¬ (p ≤ q)∧
¬ (p ≥ q)). An example of antichain on the Fig. 1 is { [00], [01], [100] }. A max-

imal antichain is an antichain which cannot be extended by adding new elements

– it is a maximal element with respect to inclusion of antichains. Examples of

maximal antichains on the Fig. 1 are { [0], [1] } or { [00], [01], [1] } or even { 1 }.

A branch is a maximal chain in the tree T . Note that p is comparable to q only, if

there exists a branch containing p and q simultaneously. Similarly, p is incompa-

rable to q whenever no branch contains both p and q. Let R ⊂ T and p ∈ T . If

R includes as a subset an antichain A such that ∀q∈A (q ≤ p), then we say, that R

includes an antichain below p.
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3 Metasets

A metaset is a set whose elements – other metasets – have associated degrees of

membership. We formalize this idea by means of ordered pairs. Each member of

a metaset – viewed as a classical set – is encapsulated in an ordered pair. The first

element of the pair is the member and the second element is a node of the binary

tree specifying its degree of membership.

Definition 1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ T }

is called a metaset.

Formally, this is a definition by induction on the well founded relation ∈. By

the Axiom of Foundation in the Zermelo-Fraenkel set theory (ZFC) there are no

infinite branches in the recursion as well as there are no cycles. Therefore, no

metaset is a member of itself. From the point of view of ZFC a metaset is a

particular case of a P -name (see also [4, Ch. VII, §2] for justification of such type

of definitions).

We denote metasets with small Greek letters: τ , η, σ, etc. The class of all

metasets is denoted with the letter M. The first element σ of an ordered pair 〈σ, p〉
contained in a metaset τ is called a potential element of τ , since it is a member

of τ to a degree p which usually is less than certainty. A potential element may

be simultaneously paired with multiple different conditions which taken together

comprise its membership degree in the metaset. From the point of view of the set

theory a metaset is a relation between a set of other metasets and a set of nodes of

the binary tree. Therefore, we adopt the following terms and notation concerning

relations. For the given metaset τ , the set of its potential elements:

dom(τ) = {σ : ∃p∈T 〈σ, p〉 ∈ τ } (3)

is called the domain of the metaset τ , and the set:

ran(τ) =
{
p : ∃σ∈dom(τ) 〈σ, p〉 ∈ τ

}
(4)

We use the term “degree of membership” rather informally here and throughout the whole paper. We

give it precise meaning by defining the term “certainty grade” in section 5.1.

The Axiom of Foundation in ZFC says that every non-empty set x contains an element y which is

disjoint from x:

∀x 6=∅ ∃y∈x ¬∃z (z ∈ x ∧ z ∈ y) .
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is called the range of the metaset τ . The domain of a metaset is the domain

of the relation which makes the metaset. According to this we easily see that

τ ⊂ dom(τ)× ran(τ) ⊂ dom(τ)× T .

We introduce a very important class of metasets which – due to their proper-

ties – correspond to classical crisp sets. We apply the scheme analogous to the

definition 1 of metaset, i.e., definition by induction on the ∈ relation.

Definition 2. A metaset τ̌ is called a canonical metaset, if it is the empty set, or if

it has the form:

τ̌ = { 〈σ̌, 1〉 : σ̌ is a canonical metaset } .

A canonical metaset is a metaset whose domain includes only canonical meta-

sets and whose range contains at most one element 1. For any crisp set X we

may construct a canonical metaset X̌ corresponding to it, called its canonical

counterpart, by replacing each x ∈ X with the pair 〈x, 1〉 and repeating this step

recursively on every level of the membership hierarchy in X: we replace each

member xi ∈ x with the pair 〈xi, 1〉, and so on. Similarly, for the given canonical

metaset X̌ we may construct a crisp set X by replacing each pair 〈x, 1〉 with x

on every level of the membership hierarchy. We see, that there is a one-to-one

correspondence between crisp sets and canonical metasets.

Example 1. In the classical set theory natural (finite ordinal) numbers are defined

with the formula s(n) = n ∪ {n }, where s(n) is the successor of n, except for 0
which is defined to be the empty set ∅. For instance:

0 = ∅ ,

1 = { 0 } = { ∅ } ,

2 = { 0, 1 } = { ∅, { ∅ } } ,

...

n = { 0, 1, . . . n− 1 } = n− 1 ∪ {n− 1 } .

By the term membership hierarchy in X we understand the tree of the membership relation, whose

root is X . The direct members of X form the first level of this tree, the second level is made up of

members of these direct members, and so on.
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We construct canonical metasets corresponding to the natural numbers.

0̌ = ∅ ,

1̌ =
{ 〈

0̌, 1
〉 }

,

2̌ =
{〈

0̌, 1
〉
,
〈
1̌, 1

〉}
,

...

ň =
{ 〈

0̌, 1
〉
, . . . ,

〈
( ˇn− 1), 1

〉 }
= ˇn− 1 ∪

{ 〈
ˇn− 1, 1

〉 }
.

Left hand side of each equality defines a new symbol corresponding to the canon-

ical counterpart of a natural number.

Another important class of metasets constitute metasets which are hereditarily

finite sets.

Definition 3. A set is called a hereditarily finite set when it is a finite set and all

its members are hereditarily finite sets.

This is a definition by induction, similar to the metaset definition. In other

formulation, a set is called a hereditarily finite set, when its transitive closure (of

the membership relation) is a finite set.

Metasets which are hereditarily finite sets are particularly important for com-

puter applications, where representable entities are naturally finite.

Definition 4. A metaset τ is called a hereditarily finite metaset, if its domain

and range are finite sets, and each potential element is also a hereditarily finite

metaset.

We denote the class of hereditarily finite metasets with the symbol MF. In

other words:

τ ∈ MF iff |dom(τ)| < ℵ0 ∧ |ran(τ)| < ℵ0 ∧ ∀σ∈dom(τ) σ ∈ MF . (5)

Note, that elements of T – which are finite binary sequences – are all hereditarily

finite sets. Indeed, if p ∈ T , then p ∈ 2n, for some n ∈ N , i.e., p is a function

from a finite ordinal n into 2, p : n 7→ 2. Therefore, if the range of a metaset is

finite, then this range is also hereditarily finite.

Although hereditarily finite metasets are the ones which we implement in

computers, the results presented in this paper require slightly weaker assump-

tions than the hereditary finiteness. We deal here with a broader class of metasets

with finite deep range, which we define now. One should bear in mind that all the

results obtained for such metasets and presented here apply to the class MF too.
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Definition 5. Let τ be a metaset and let domn(τ) and rann(τ) be defined as

follows:

dom0(τ) = dom(τ), ran0(τ) = ran(τ) ,

domn+1(τ) =
⋃

σ∈domn(τ)

domn(σ) , rann+1(τ) =
⋃

σ∈domn(τ)

rann(σ) .

The set

drn(τ) =
⋃

n∈N

rann(τ) .

is called the deep range of the metaset τ .

Thus, dom0(τ) is equal to the domain of τ , dom1(τ) is the union of the do-

mains of potential elements of τ , dom2(τ) is the union of the domains of potential

elements of potential elements of τ , and so on. The deep range of τ consists of all

the conditions which occur in: the range of τ , the ranges of potential elements of

τ , the ranges of potential elements of potential elements, and so on.

drn(τ) = ran(τ) ∪
⋃

µ∈dom(τ)

ran(µ) ∪
⋃

µ∈dom(τ)

⋃

ν∈dom(µ)

ran(ν) ∪ . . . (6)

We denote the class of metasets with finite deep ranges with the symbol MR.

Thus,

τ ∈ MR ↔ |drn(τ)| < ℵ0 . (7)

For a metaset with finite deep range, the property of having a finite range is main-

tained recursively on all levels of the membership hierarchy – by potential ele-

ments, their potential elements, and so on. In other words:

τ ∈ MR ↔ |ran(τ)| < ℵ0 ∧ ∀σ∈dom(τ) σ ∈ MR . (8)

Comparing the equations (5) and (8) we may conclude the following.

Proposition 1. The deep range of a hereditarily finite metaset is finite:

τ ∈ MF → τ ∈ MR .

Proof. For a hereditarily finite metaset, each element of the union (6) is finite by

the formula (5). Since the relation ∈ is well founded, then there is a finite number

of non-empty elements in the union (6). Thus, the deep range of a hereditarily

finite metaset is a finite union of finite sets.

The contrary does not have to be true. A canonical metaset may have an

infinite domain, in which case it is not a hereditarily finite one. Its range, as well

as its deep range, still contain only one element 1, so they are finite.
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4 Interpretations

An interpretation of a metaset is a crisp set extracted out of the metaset by means

of a branch in the binary tree. For the given metaset, each branch in T determines a

different interpretation. All the interpretations taken together make up a collection

of sets with specific internal dependencies, which represents the metaset by means

of its crisp views. In practical applications these particular views are treated as

various experts’ opinions on some vague term represented by the metaset.

Properties of crisp sets which are interpretations of the given metaset deter-

mine the properties of the metaset itself. We use the forcing mechanism (sec. 5)

for transferring relationships between sets which are interpretations onto the meta-

sets. A good example is the definition of the membership relation which relies on

membership among interpretations (sec. 5.2).

Definition 6. Let τ be a metaset and let C ⊂ T be a branch. The set

int(τ, C) = { int(σ, C) : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the metaset τ given by the branch C.

We usually use a shorter notation τC for the interpretation int(τ, C). Any

interpretation of the empty metaset is the empty set, independently of the branch:

0̌C = ∅, for each C ⊂ T . The process of producing the interpretation of a metaset

consists in two stages. In the first stage we remove all the ordered pairs whose

second elements are conditions which do not belong to the branch C. The second

stage replaces the remaining pairs – whose second elements lie on the branch C
– with interpretations of their first elements, which are other metasets. This two-

stage process is repeated recursively on all the levels of the membership hierarchy.

As the result we obtain a crisp set.

Example 2. Let p ∈ T and let τ = { 〈∅, p〉 }. If C is a branch, then

p ∈ C → τC = { ∅C } = { ∅ } ,

p 6∈ C → τC = ∅ .

Depending on the branch the metaset τ acquires different interpretations.

Clearly, a metaset may have multiple different interpretations – each branch in

the tree determines one. Usually, many of them are pairwise equal, so the number

of different interpretations is much less than the number of branches. Hereditarily

finite metasets always have a finite number of different interpretations. There are

metasets whose interpretations are all equal, even when they are not hereditarily
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finite. For instance, interpretations of canonical metasets are always branch inde-

pendent. For a canonical metaset τ̌ all its interpretations are equal to some crisp

set.

Proposition 2. Let x̌ be a canonical metaset and let x be the crisp set such, that

x̌ is the canonical counterpart of x. For any branch C ⊂ T :

x̌C = x .

Proof. Follows directly from the definitions 2 and 6 and the fact that 1 ∈ C for

each branch C.

The natural correspondence between canonical metasets and crisp sets is il-

lustrated by the following example.

Example 3. Let 0̌, 1̌, 2̌, . . . , be canonical counterparts of natural numbers as

defined in the example 1. Let C be any branch in T . Since 1 ∈ C, then

0̌C = ∅ ,

1̌C =
{ 〈

0̌, 1
〉 }

C
= { ∅ } ,

2̌C =
{ 〈

0̌, 1
〉
,
〈
1̌, 1

〉 }
C
= { 0, 1 } = { ∅, { ∅ } } .

We see that 0̌C = 0, 1̌C = 1, 2̌C = 2 and so on.

An interpretation of a metaset is influenced not only by the elements from

its range, but also elements of ranges of its potential elements (i.e.,
⋃

µ∈dom(τ)

ran(µ)), as well as the ranges of potential elements of these elements (
⋃

µ∈dom(τ)⋃
ν∈dom(µ) ran(ν)), and so on. The deep range of the metaset contains all the

conditions which determine the interpretations (see lemma 1). When it is finite,

then the metaset has particularly regular properties which we discuss in the sequel.

Let τ be a metaset with a finite range and let p ∈ T be a condition such, that

there exists no q < p in ran(τ). Such p exists, since the range is finite. For any

branch Cp containing p, the interpretation τCp is comprised of the interpretations

of potential elements from the same subset Dp ⊂ dom(τ), namely

Dp = {σ ∈ dom(τ) : ∃r∈T 〈σ, r〉 ∈ τ ∧ r ∈ Cp } (9)

= {σ ∈ dom(τ) : ∃r∈T 〈σ, r〉 ∈ τ ∧ r ≥ p } . (10)

Thus, for any Cp containing p we have τCp = {σCp : σ ∈ Dp }. The set Dp of

potential elements determining the interpretations of τ is independent of particular

branches containing p, since there are no conditions in ran(τ) below p, which
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could affect the contents of τCp . Unfortunately, for any σ ∈ Dp and any branch

Cp ∋ p, the interpretations σCp themselves may vary, since each ran(σ) may

contain different conditions below p, which affect the interpretations. There may

exist different p1, p2 < p such, that for branches C1 ∋ p1 and C2 ∋ p2 we have

σ
C
1 6= σ

C
2 . Usually this implies τ

C
1 6= τ

C
2 – like in the following example –

although this is not a rule.

Example 4. For a natural number n, let ω̄n =
{
〈p̌, p〉 : ∃k≤n p ∈ 2k

}
, where p

is a node of the k-th level of T , for any k ≤ n, and p̌ denotes the metaset which is

the canonical counterpart of the natural number, whose binary representation is

p, for p 6= 1, and p̌ = 0̌, when p = 1. For instance,

ω̄0 =
{ 〈

0̌, 1
〉 }

,

ω̄1 = ω̄0 ∪
{ 〈

0̌, [0]
〉
,
〈
1̌, [1]

〉 }
,

ω̄2 = ω̄1 ∪
{ 〈

0̌, [00]
〉
,
〈
1̌, [01]

〉
,
〈
2̌, [10]

〉
,
〈
3̌, [11]

〉 }
.

Additionally, let ω̄∞ = { 〈p̌, p〉 : p ∈ T }. Clearly, for any n ∈ N , the deep range

drn(ω̄n) is finite and contains all the nodes from the levels up to n. On the other

hand, drn(ω̄∞) is infinite and is equal to the whole set T .

Let τ = { 〈ω̄∞, [1]〉 } and σ =
{ 〈

ω̄1, [1]
〉 }

. We clearly see, that

ran(τ) = ran(σ) = { [1] } . (11)

However, drn(τ) = T , whereas drn(σ) = { 1, [0], [1] }. So, although their

ranges are equal, their deep ranges are not.

If C is any branch containing [1], then σC =
{
ω̄1
C

}
= { { 0, 1 } }. Thus, each

branch containing [1] produces identical interpretations of σ. For any branch

C, the interpretation ω̄∞

C
is a set of natural numbers of form { p̌C : p ∈ C } =

{ p : p ∈ C }, where p ∈ T is treated as natural number in binary notation, and

therefore 0 ≤ p < 2|p|, for each level number |p|. Now, let C′ be the leftmost

branch containing the condition [1], i.e., C′ = { 1, [1], [10], [100], . . . }, and let C′′

be the rightmost branch in the tree T : C′′ = { 1, [1], [11], [111], . . . }. We check

that τC′ = { { 0, 1, 2, 4, 8, . . . } }, and τC′′ = { { 0, 1, 3, 7, . . . } }, where n is the

level of T . Thus, different branches containing [1] may produce different inter-

pretations of τ , even though there are no conditions stronger than [1] in ran(τ).
However, there are many such conditions in drn(τ), which make the interpreta-

tions of ω̄∞ variable, affecting thus the interpretations of τ itself.

Recall, that |p| is the number of ordered pairs in the function p, i.e., the length of the sequence p,

which is equal to the level number of the level containing the node p.
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Based on the above example we see that interpretations of the metaset τ are

influenced only by conditions from drn(τ). The set drn(τ) entirely determines

all the interpretations of τ . If C′ and C′′ are branches which differ only outside of

drn(τ), then they give equal interpretations.

Lemma 1. Let τ be a metaset and let C′ and C′′ be branches.

C′ ∩ drn(τ) = C′′ ∩ drn(τ) → τC′ = τC′′ .

Proof. By induction on the relation of being a potential element (which is well

founded). First, note that if we assume the left hand side of the implication, then

ran(τ)∩C′ = ran(τ)∩C′′. Indeed, if p ∈ ran(τ)∩C′, then since p ∈ C′∩drn(τ) =
C′′ ∩ drn(τ) we also have p ∈ C′′ what implies p ∈ ran(τ) ∩ C′′.

Directly from the definition we have τC′ = {σC′ : 〈σ, p〉 ∈ τ ∧ p ∈ C′ }. As-

suming that the thesis holds for the potential elements σ ∈ dom(τ), and taking

into account that ran(τ) ∩ C′ = ran(τ) ∩ C′′ we conclude the thesis for τ .

Whenever we assume that the given metaset τ belongs to the class MR, we

want to assure, that interpretations of potential elements of τ given by different

branches containing some strong enough p, are all pairwise equal and therefore

do not affect the interpretation of τ itself.

5 Forcing

In this section we define and investigate a relation between a condition and a

sentence. This relation, called forcing relation [2], is designed to describe the

level of confidence or certainty assigned to the sentence. The level is evaluated

by means of nodes of T . The root condition 1 specifies the absolute certainty,

whereas its descendants represent less certain degrees. The sentences are classical

set theory formulas, where free variables are substituted by metasets and bound

variables range over the class of metasets.

Given a branch C, we may substitute particular metasets in the sentence σ ∈
τ with their interpretations which are ordinary crisp sets, e.g.: σC ∈ τC . The

resulting sentence is a ZFC sentence expressing some property of the crisp sets τC
and σC , the membership relation in this case. Such sentence may be either true or

false, depending on τC and σC .

For the given metaset τ each condition p ∈ T specifies a family of interpre-

tations of τ : they are determined by all the branches C containing this particular

condition p. If for each such branch the resulting sentence – after substituting

metasets with their interpretations – has the same logical value, then we may
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think of a conditional truth or falsity of the given sentence, which is qualified by

the condition p. Therefore, we may consider p as the certainty degree for the

sentence.

Let Φ be a formula built using some of the following symbols: variables

(x1, x2, . . .), the constant symbol (∅), the relational symbols (∈,=,⊂), logical

connectives (∧,∨,¬,→), quantifiers (∀, ∃) and parentheses. If we substitute each

free variable xi (i = 1 . . . n) with some metaset νi, and restrict the range of

each quantifier to the class of metasets M, then we get as the result the sen-

tence Φ(ν1, . . . , νn) of the metaset language, which states some property of the

metasets ν1, . . . , νn. By the interpretation of this sentence, determined by the

branch C, we understand the sentence Φ(ν1
C
, . . . , νn

C
) denoted shortly with ΦC .

The sentence ΦC is the result of substituting free variables of the formula Φ with

the interpretations νi
C

of the metasets νi, and restricting the range of bound vari-

ables to the class of all sets V. In other words, we replace the metasets in the

sentence Φ with their interpretations. The only constant ∅ in Φ as well as in ΦC

denotes the empty set which is the same set in both cases: as a crisp set and as a

metaset.

Definition 7. Let x1, x2, . . . xn be all free variables of the formula Φ and let

ν1, ν2, . . . νn be metasets. We say that the condition p ∈ T forces the sentence

Φ(ν1, ν2, . . . νn), whenever for each branch C ⊂ T containing the condition p,

the sentence Φ(ν1
C
, ν2

C
, . . . νn

C
) is true. We denote the forcing relation with the

symbol 
. Thus,

p 
 Φ(ν1, . . . νn) iff for each branch C ∋ p holds Φ(ν1
C
, . . . νn

C
) .

We use the abbreviation p 1 Φ for expressing the negation ¬(p 
 Φ). It this

case, not for each branch C containing p the sentence ΦC holds, however, such

branches may exist. Furthermore, the symbol 6∈ in the formula µ 6∈ τ will stand

for ¬(µ ∈ τ), and similarly, µ 6= τ will stand for ¬(µ = τ).
The key idea of the forcing relation lies in transferring properties from crisp

sets onto metasets. Let a property described by a formula Φ(x) be satisfied by

all crisp sets of form νC , where ν is a metaset and C is a branch in T . In other

words, Φ(νC) holds for all the sets which are interpretations of the metaset ν given

by all branches C in T . Then we might think that this property also “holds” for

the metaset ν, and we formulate this fact by saying that 1 forces Φ(ν). If Φ(νC)
holds only for branches C containing some condition p, then we might think that it

“holds to the degree p” for the metaset ν; we say that p forces Φ(ν) in such case.

Since we try to transfer – or force – satisfiability of some property from crisp sets
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onto metasets, we call this mechanism forcing. The next example shows how to

transfer the property of being equal onto two specific metasets.

Example 5. Let τ =
{ 〈

0̌, p
〉 }

, σ =
{ 〈

0̌, p · 0
〉
,
〈
0̌, p · 1

〉 }
, where p ∈ T . Let C

be a branch.

p · 0 ∈ C → τC = { ∅ } ∧ σC = { ∅ } → τC = σC ,

p · 1 ∈ C → τC = { ∅ } ∧ σC = { ∅ } → τC = σC ,

p 6∈ C → τC = ∅ ∧ σC = ∅ → τC = σC .

Of course, the last case is possible only when p 6= 1, since the root of T is con-

tained in each branch. We see, that the interpretations of τ and σ are always

pairwise equal, although they are different sets depending on the chosen branch

C. Analyzing only the structure of τ and σ we may easily conclude that p 
 τ = σ.

However, since for any branch C which does not contain p the interpretations of

τ and σ are both empty, then also 1 
 τ = σ.

The following two lemmas expose the most fundamental and significant fea-

tures of the forcing relation. The first says that forcing is propagated down the

branch, i.e., if a condition p forces Φ, then stronger conditions force Φ too. How-

ever, weaker conditions do not have to force it. It should be understood that the

stronger conditions carry more detailed information above the weaker ones.

Lemma 2. Let p, q ∈ T and let Φ be a sentence. If p forces Φ and q is stronger

than p, then q forces Φ too:

p 
 Φ ∧ q ≤ p → q 
 Φ .

Proof. If q ≤ p, then each branch containing q also contains p. If C is any such

branch and p 
 Φ, then ΦC holds. Because it is true for all C ∋ q, then we have

q 
 Φ.

On the other hand, a finite maximal antichain of conditions stronger than p ∈
T propagates forcing upwards to the condition p. Recall, that a set R ⊂ T is called

an antichain when all its members are pairwise incomparable. It is a maximal

antichain in T when each q ∈ T is comparable to some element of R. It is a

maximal antichain below p when each q ≤ p is comparable to some element of R

and all the members of R are stronger than p.

This mechanism is similar to, and in fact was inspired by the method of forcing in the classical set

theory [2]. It has not much in common with the original.
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Lemma 3. Let p ∈ T , R ⊂ T and let Φ be a sentence. If R is a finite maximal

antichain below p and each q ∈ R forces Φ, then p also forces Φ.

Proof. p 
 Φ whenever for each branch C ∋ p holds ΦC . Since R is a finite max-

imal antichain whose elements are stronger than p, then each branch containing p

must also contain some element q ∈ R. Each such q forces Φ, so for any branch

C ∋ p we have ΦC .

The example 5 shows p, τ , σ such, that p 
 τ = σ. Inspecting the structure of

τ and σ we conclude that also p · 0 
 τ = σ and p · 1 
 τ = σ, what is confirmed

by the lemma 2. On the other hand, the conditions p · 0, p · 1 form the final max-

imal antichain below p. Since they both force τ = σ, then – by the lemma 3 –

their parent p must force the sentence too.

5.1 Forcing and Certainty Degrees

If we treat conditions as certainty degrees for sentences, then the stronger con-

dition specifies the degree which is less than the degree specified by the weaker

one (assuming the conditions are different). Indeed, by the above lemmas r 
 Ψ
is equivalent to the conjunction r · 0 
 Ψ ∧ r · 1 
 Ψ meaning that the certainty

degree specified by r is equal to the “sum” of certainty degrees specified by both

r · 0 and r · 1 taken together. But if it happens that r · 0 
 Ψ and r · 1 1 Ψ, then

also r 1 Ψ. In such case the r · 0 contributes only a half of the certainty degree

specified by r – another half of it could be contributed by r · 1, but is not in this

case. The root 1, being the largest element in T , specifies the highest certainty

degree. The ordering of certainty degrees is consistent with the ordering of condi-

tions in T . We stress that the term certainty degree is used informally in this paper.

We define now other precise terms for measuring the certainty of sentences.

For the given sentence Φ, we call the set T̄Φ = { p ∈ T : p 
 Φ } the certainty

set for Φ. It contains all the conditions which force the given sentence and it gives

a measure of certainty that the sentence is true. Members of this set are called

certainty factors for Φ. Each certainty factor contributes to the overall degree of

certainty that the sentence is true, which is represented by the certainty set.

By the lemma 2, if there exist a p ∈ T which forces Φ, then there exist

infinitely many other conditions which force Φ too. Among them are all those

stronger than p. Therefore, the whole certainty set is equivalent to the set of its

maximal elements. Since,

p 
 Φ → ∃q p ≤ q ∧ q ∈ max{T̄Φ} ∧ q 
 Φ , (12)

then each p ∈ T̄Φ\max{T̄Φ} is redundant. The substantial information concerning

the conditions which force Φ is contained in max{T̄Φ} exclusively. Forcing of Φ
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by any stronger conditions may be concluded by applying the lemma 2. Thus we

come to the following concept of certainty degree for sentences.

Definition 8. Let Φ be a sentence. The set of maximal elements of the certainty

set for Φ:

TΦ = max { p ∈ T : p 
 Φ }

is called the certainty grade for Φ. If the certainty set is empty, then the certainty

grade is empty too.

One may easily see that TΦ forms an antichain. When the certainty set is equal

to the whole tree T , then the certainty grade is the singleton containing only the

root: TΦ = { 1 }. We may assign numerical values to certainty grades with the

following formula.

VΦ =
∑

p∈TΦ

1

2|p|
, (13)

where |p| = n is the number of pairs in the function p : n 7→ 2, i.e., the length

of the binary sequence p, or simply the level of the tree T where p belongs. The

value VΦ is called the certainty value for Φ. One may easily see that whenever no

p forces Φ, then VΦ = 0 and if each p ∈ T forces Φ, then VΦ = 1. Therefore,

VΦ ∈ [0, 1].

5.2 Membership and Non-membership

We do not give thorough presentation of relations for metasets in this paper. For

completeness, we supply only the definitions of conditional membership and non-

membership. Other relations, like conditional equality and non-equality, are de-

fined similarly – by means of the forcing mechanism.

In fact, we define an infinite number of membership relations. Each of them

designates the membership satisfied to some degree specified by a node of the

binary tree. Moreover, any two metasets may be simultaneously in multiple mem-

bership relations qualified by different conditions.

Definition 9. We say that the metaset µ belongs to the metaset τ under the condi-

tion p ∈ T , whenever p 
 µ ∈ τ . We use the notation µ ǫp τ .

In other words, µ ǫp τ whenever for each branch C ⊂ T containing p holds

µC ∈ τC . The conditional membership reflects the idea that a metaset µ belongs

to a metaset τ whenever some conditions are fulfilled. The conditions are repre-

sented by nodes of T .
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Each p ∈ T specifies another relation ǫp. Different conditions specify mem-

bership relations which are satisfied with different certainty factors. The lemmas 2

and 3 prove that the relations are not independent. For instance, µ ǫp τ is equiva-

lent to µ ǫp · 0 τ∧µ ǫp · 1 τ , i.e., being a member under the condition p is equivalent

to being a member under conditions p · 0 and p · 1 simultaneously.

We introduce another set of relations for expressing non-membership. The

reason for this is due to the fact that p 1 µ ∈ τ is not equivalent to p 
 µ 6∈ τ .

Indeed, p 1 µ ∈ τ means, that it is not true that for each branch C containing p

holds µC ∈ τC , however such branches may exist. On the other hand, p 
 µ 6∈ τ

means that for each C ∋ p holds µC 6∈ τC . That is why we need another relation

“is not a member under the condition p”.

Definition 10. We say that the metaset µ does not belong to the metaset τ under

the condition p ∈ T , whenever p 
 µ 6∈ τ . We use the notation µ ǫ/p τ .

Thus, µ ǫ/p τ , whenever for each branch C containing p the set µC is not

a member of the set τC . Contrary to the classical case, where a set is either a

member of another or it is not at all, for two metasets it is possible that they

are simultaneously in different membership and non-membership relations. This

resembles intuitionistic fuzzy sets [1], where membership of an element in such

set is characterized by two values given by the membership function and the non-

membership function. The following example illustrates this phenomenon and we

elaborate more on this in the corollary 1.

Example 6. Let τ =
{ 〈

0̌, p
〉 }

, where p 6= 1. If C is a branch, then

p ∈ C → τC = { ∅ } ,

p 6∈ C → τC = ∅ .

Thus, p 
 0̌ ∈ τ , so 0̌ ǫp τ . If q ∈ T is incomparable to p – for instance if

p = [0] and q = [1] – then q 
 0̌ 6∈ τ , since for any branch C containing q we

have τC = ∅. Therefore, 0̌ ǫ/q τ . We see, that 0̌ is a member of τ to the degree

p and simultaneously it is not a member to the degree q, i.e., 0̌ ǫp τ ∧ 0̌ ǫ/q τ is

true. It is worth noting, that in this case also 0̌ ǫp · 0 τ ∧ 0̌ ǫp · 1 τ , as well as

0̌ ǫ/q · 0 τ ∧ 0̌ ǫ/q · 1 τ .

Of course, it is not possible that σ ǫp τ and at the same time σ ǫ/p τ , since it

is false that σC ∈ τC and σC 6∈ τC , for any branch C.
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6 Finite Decidability

The forcing relation assigns certainty grades to sentences. There exist sentences,

like 0̌ 6= 0̌, which cannot be forced by any condition, since their interpretations

are always false. Their certainty grades exist but they are empty sets. On the other

hand, there are sentences whose interpretations are always true, like ∀τ τ = τ .

Such sentences are forced by each condition, so their certainty grades are equal to

the singleton { 1 }. Finally, there exist sentences, whose interpretations are either

true or false, depending on the branch (cf. example 6). There arises a natural

question: is it possible to assign a non-empty certainty grade to each sentence

which is true in some interpretation? Formally, for the given sentence Φ, if there

exists a branch C such, that ΦC is true, then does there exist a p ∈ T such, that

p 
 Φ? And more generally: since for each branch C the interpretation ΦC of the

given sentence Φ is either true or false, then does there exist a p ∈ C such, that

either p 
 Φ or p 
 ¬Φ? Surprisingly, this is not true in general, however this is

true for the sentences involving finite deep range metasets only, what we prove in

this section.

Let Φ(x1, . . . , xn) be a formula with all free variables shown, let C be some

class of metasets and let µ1, . . . , µn ∈ C be metasets. If we substitute each free

variable xi in the formula Φ with the corresponding metaset µi ∈ C and restrict

the range of each quantifier to the class M of metasets, then we call the resulting

sentence Φ(µ1, . . . , µn) a C-sentence. We focus here mainly on MR-sentences

which involve exclusively metasets with finite deep ranges. A MR-sentence

Φ(µ1, . . . , µn) is a sentence of the metaset language expressing some property

of the metasets µ1, . . . , µn.

The first important fact that we prove says, that if a MR-sentence is true in

some interpretation, then it must be forced by some condition. As a consequence,

it is true in an infinite number of interpretations determined by other branches

containing the condition. The condition itself becomes a certainty factor for the

sentence and the certainty value for the sentence is greater than 0. This property is

not satisfied for metasets in general: there are sentences involving metasets with

infinite deep ranges, which are not forced by any condition, although they are true

in particular interpretations (see example 7).

We split the theorem into two parts: the first focuses on atomic sentences and

the second generalizes the result to arbitrary sentences. By atomic formula we

understand a formula which contains neither logical connectives nor quantifiers:

it consists of two terms and one relational symbol, so it is built of at most 2

variables, the constant ∅, the relations ∈, =, ⊂ and their negations 6∈, 6=, 6⊂. If

Φ(x, y) is an atomic formula and τ , η are metasets, then Φ(τ, η) is an atomic
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sentence.

Lemma 4. Let Φ(τ, η) be an atomic sentence, where τ, σ ∈ MR. If there exist

a branch C such, that Φ(τC , ηC) is true, then there exists q ∈ C such, that q 


Φ(τ, η).

Proof. Let τ , η be metasets in the atomic sentence Φ(τ, η). Let R ⊂ T be the

union of deep ranges of τ and η: R = drn(τ) ∪ drn(η), and let R̄ be the set of all

the conditions weaker than those from R.

R̄ = { s ∈ T : ∃q∈R q ≤ s } .

If τ = ∅ = η, then drn(τ) = drn(η) = ∅ and R = R̄ = ∅. Clearly, R ⊂ R̄.

Let C be a branch such, that Φ(τC , ηC) is true. We find the q ∈ C such, that

q 
 Φ(τ, η). Initially, if R 6= ∅, then let q′ be the least element (the strongest

condition) of the set R̄, which lies on the branch C. If R = ∅, then let q′ = 1.

Note, that C ∩ R̄ 6= ∅ for R 6= ∅, since the intersection contains at least 1.

q′ =

{
min

(
C ∩ R̄

)
iff R 6= ∅ ,

1 iff R = ∅ .

For instance, if R = { [0], [011] }, then R̄ = { 1, [0], [01], [011] }, min(R) =
min(R̄) = [011], and for the sample branches C1, C2 we have:

C1 = { 1, [0], [01], [010], . . . } → q′ = min(C1 ∩ R̄) < min(C1 ∩R) , (14)

C2 = { 1, [0], [01], [011], . . . } → q′ = min(C2 ∩ R̄) = min(C2 ∩R) , (15)

since min(C1 ∩ R̄) = [01] and min(C1 ∩R) = [0] and min(C2 ∩ R̄) = [011].
If q′ is also a minimal element in R – i.e., no condition in R is strictly stronger

than q′, like in (15) – or if q′ = 1, then q = q′ and we are done, since none of

descendants of q′ affect interpretations of τ and η. Consequently (cf. lemma 1),

all the branches containing q′ give the same interpretations for τ and η, and the

same logical value for Φ(τC , ηC), which is true. Therefore, q′ 
 Φ(τ, η).
However, it is possible that there exists s < q′ = min(C ∩ R̄) such, that s ∈ R

and s 6∈ C, like in (14). In such case we take as q one of the direct descendants of

q′ – the one which lies on C. Therefore, the q is defined as follows:

q =






q′ iff ∀s<q′ s 6∈ R ,

q′ · 0 iff ∃s<q′ s ∈ R ∧ q′ · 0 ∈ C ,

q′ · 1 iff ∃s<q′ s ∈ R ∧ q′ · 1 ∈ C .
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Of course, it is not possible that q′ · 0 ∈ C and q′ · 1 ∈ C at the same time. There-

fore, if the first case does not hold, then the remaining two are mutually exclusive.

Why does q 
 Φ(τ, η)? Take arbitrary branches C′ and C′′ containing q.

Clearly R ∩ C′ = R ∩ C′′, so C′ ∩ drn(τ) = C′′ ∩ drn(τ) and by the lemma 1

we have τC′ = τC′′ . Similarly for η. As we see, the branches containing q give

identical interpretations of the metasets that are subject to the relation stated by

Φ. This implies that this relation is preserved in all such interpretations (by the

assumption it holds for C). Therefore, q 
 Φ(τ, η).

Thus, if τ, η ∈ MR and for some branch C the atomic sentence Φ(τC , ηC) is

true, then for some p ∈ C holds p 
 Φ(τ, η). If C′ is any other branch containing

p, then Φ(τC′ , ηC′) is also true. The condition p is a certainty factor for Φ(τ, η)
and the certainty value for this sentence is equal at least 1

2|p|
. This property may

be generalized to arbitrary, non-atomic MR-sentences.

Theorem 1. Let Φ(x1, . . . , xn) be a formula with all free variables shown and let

τ1, . . . , τn ∈ MR. If for some branch C the sentence Φ(τ1
C
, . . . , τn

C
) is true, then

there exists a condition p ∈ C such, that p 
 Φ(τ1, . . . , τn).

Proof. Similarly to the proof of the lemma 4, let R be the union of deep ranges

of the metasets τ1, . . . , τn: R =
⋃n

i=1 drn(τ
i). Let C be the branch such, that

Φ(τ1
C
, . . . , τn

C
) is true, and let p ∈ C be any condition which has no descendants

belonging to R: ¬∃q∈R q ≤ p (when R = ∅, then take p = 1). Such p exists, since

R is finite and it may be constructed similarly as in the proof of the lemma 4.

Why does p 
 Φ(τ1, . . . , τn) hold? It does, since all the branches containing

p give equal interpretations of the metasets τ1, . . . , τn. Indeed, let p ∈ C′, C′′. We

have:

τ1
C
′ = τ1

C
′′ ∧ . . . ∧ τn

C
′ = τn

C
′′ ,

and therefore also

Φ(τ1
C
′ , . . . , τn

C
′) ↔ Φ(τ1

C
′′ , . . . , τn

C
′′) .

The theorem 1 says, that any MR-sentence true in some interpretation is

forced by some condition. The following example justifies that the assumption

on finiteness of deep ranges in the above theorems is necessary. It also shows that

this property is not valid in general. We construct metasets σ 6∈ MR and τ ∈ MR

such, that σC ∈ τC for some branch C, but at the same time, for any p ∈ C holds

p 1 σ ∈ τ .
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Example 7. Recall that ω = { 0, 1, . . . } is the set of finite ordinals and ω̌ ={ 〈
0̌, 1

〉
,
〈
1̌, 1

〉
, . . .

}
is its canonical counterpart. Let τ = { 〈ω̌, 1〉 } and let

σ = { 〈ň, pn〉 : n ∈ ω }, where ň is the canonical counterpart of n, and p0 = 1,

p1 = [1], . . . , i.e., pn contains exactly n occurrences of 1; it is a constant function

pn : n 7→ { 1 }. Let C1 = { pn : n ∈ ω } be the rightmost branch in T , comprised

of 1s exclusively: C1 = [111 . . .]. It is clear that σC1 = ω. Of course, τC1 = {ω },

so σC1 ∈ τC1 . However, for no pn ∈ C1 it is true that pn 
 σ ∈ τ . Indeed, if

C is any branch containing pn · 0, then σC = { 0, . . . , n } but τC = {ω } still, so

σC 6∈ τC . Therefore, pn 1 σ ∈ τ .

If p ∈ T is arbitrary condition and Cp is any branch containing p, different

than the rightmost branch C1, then Cp must also contain some pn. For instance,

if C0 = [0....] is any branch containing [0], then p0 = 1 ∈ C0. Since τCp = {ω }
and σCp = { 0, . . . , n }, for the largest n such, that pn ∈ Cp, then no p ∈ T forces

σ ∈ τ . Consequently, for all p ∈ T we have p 1 σ ∈ τ . Furthermore, for any

p 6∈ C1, since for any branch Cp containing p holds σCp 6= ω, then p 
 σ 6∈ τ .

Thus, we have shown, that even though σ belongs to τ in some interpretation,

then this fact is not forced by any condition. Moreover, there exists q ∈ T such,

that q 
 σ 6∈ τ . The reason for this strange behavior is that the deep range of σ

is infinite.

For the given sentence Φ and for any branch C, either ΦC or ¬ΦC is true. Thus,

if Φ is a MR-sentence, then for any branch C we may find a condition p ∈ C
which decides Φ: either p 
 Φ or p 
 ¬Φ. Consequently, for any p in T there

exists a q ≤ p which decides Φ, i.e., q forces either the sentence or its negation.

Recall (example 6), that there may exist different branches C′ and C′′ such, that

ΦC
′ and ¬ΦC

′′ hold simultaneously. Therefore, there may exist p 6= q such, that

p 
 Φ and q 
 ¬Φ. The following corollary summarizes this property. It says

that each MR-sentence is decided by some condition: either the sentence and/or

its negation is forced. It may seem strange, that sentences and their negations may

be forced simultaneously, by different conditions.

Corollary 1. Let Φ(x1, . . . , xn) be a formula with free variables x1, . . . , xn and

let τ1, . . . , τn ∈ MR. Exactly one of the following holds

1 
 Φ(τ1, . . . , τn) ,

1 
 ¬Φ(τ1, . . . , τn) ,

∃ p, q ∈ T :
(
p 
 Φ(τ1, . . . , τn) ∧ q 
 ¬Φ(τ1, . . . , τn)

)
.

Proof. If 1 1 Φ, then there exists a branch C′ such, that ¬ΦC
′ . By the theorem 1

there exists q such, that q 
 ¬Φ. If 1 
 ¬Φ, then by lemma 2 it implies q 


159



¬Φ. Otherwise, if 1 1 ¬Φ, then there exists a branch C′′ such, that ΦC
′′ holds.

Applying the theorem again we obtain p ∈ C′′ such, that p 
 Φ. Note, that p is

incomparable to q (by lemma 2).

If a sentence involves metasets whose deep ranges are not finite, then it is

possible, that neither the sentence nor its negation is forced by any condition. The

following example demonstrates metasets σ, τ such, that both p 1 σ ∈ τ and

p 1 σ 6∈ τ , for all p ∈ T . Of course, each interpretation of the sentence is either

true or false.

Example 8. Let σ =
{
〈ň, p〉 : p ∈ T ∧ n = Σi∈dom(p) p(i)

}
, τ = { 〈ω̌, 1〉 }.

Recall, that conditions are functions p : m 7→ 2 with domains in ω. Each or-

dered pair in σ is comprised of an arbitrary condition p ∈ T and the canonical

counterpart ň of n ∈ ω, which is the number of occurrences of 1 in the binary

representation of p: n = Σi∈dom(p) p(i). In other words

σ = { 〈ň, pn〉 : n ∈ ω and pn has exactly n occurrences of 1 } .

For instance: p0 may be [0], [00], etc., p1 may be of form [100], [01], [0010].
If C is a branch containing a finite number of 1 and infinite number of 0, i.e.,

Σi∈ωC(i) = n < ∞, then σC = { 0, . . . , n }, so σC 6∈ τC = {ω }. If, on the

other hand, C contains infinite number of 1, then σC = ω, since for any n ∈ ω

there exists at least one condition pn ∈ C such, that n = Σi∈dom(pn) pn(i) and

〈ň, pn〉 ∈ σ. In such case we have σC ∈ τC . Thus, for an arbitrary p ∈ T holds

p 1 σ ∈ τ as well as p 1 σ 6∈ τ , since for C containing infinitely may 1 the

membership holds in interpretations, whereas for the remaining ones – it does not

hold.

Let Φ denote the sentence σ ∈ τ . The example shows that although for each

branch C either ΦC or ¬ΦC holds, the certainty sets for both Φ and ¬Φ are empty.

Therefore also certainty values VΦ and V¬Φ are equal 0. The difference 1− (VΦ+
V¬Φ) is the measure of uncertainty of the sentence Φ. Since it is equal to 1 in this

case, then we say that Φ is totally uncertain – we cannot say anything about truth

or falsity of Φ. The example 8 may be modified so, that both certainty values VΦ,

V¬Φ, as well as the uncertainty value 1 − (VΦ + V¬Φ) are positive [7]. This idea

is the basis for representing intuitionistic fuzzy sets [1] by metasets.

We now show that for any MR-sentence Φ the certainty grade for Φ comple-

ments the certainty grade for ¬Φ, i.e., their union forms a maximal antichain in

T . Consequently, the sum of certainty values for Φ and ¬Φ is equal to 1. It means

that MR-sentences admit no hesitancy degree.
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Let Φ(x1, . . . , xn) be a formula with all free variables shown and let τ1, . . . ,

τn ∈ MR. Let drn(Φ) denote the union of deep ranges of these metasets:

drn(Φ) = drn(τ1) ∪ . . . ∪ drn(τn) . (16)

Let lΦ be the greatest level number of conditions in drn(Φ) (it is well defined

since drn(Φ) is finite):

lΦ = max { |p| : p ∈ drn(Φ) } . (17)

We call lΦ the deciding level for the MR-sentence Φ. It has the following prop-

erty.

Lemma 5. If Φ is a MR-sentence and lΦ is the deciding level for Φ, then the

following holds

p ∈ 2lΦ → p 
 Φ ∨ p 
 ¬Φ .

Proof. Let τ1, . . . , τn ∈ MR be all metasets occurring in Φ (not bound by quan-

tifiers). Take arbitrary p ∈ 2lΦ and let us assume that p 1 Φ. By the defi-

nition there exists a branch C ∋ p such, that ¬ΦC is true. Let C′ be another

branch containing p. There are no elements of the set drn(Φ), which are less

than p. Therefore, C ∩ drn(Φ) = C′ ∩ drn(Φ) and for each i = 1, . . . , n also

C ∩ drn(τ i) = C′ ∩ drn(τ i). By the lemma 1 we conclude τ i
C
= τ i

C
′ for each τ i.

Obviously,

¬Φ(τ1
C
, . . . , τn

C
) ∧

i=n∧

i=1

τ i
C
= τ i

C
′ . (18)

implies ¬Φ(τ1
C
′ , . . . , τn

C
′). Since for each branch C′ ∋ p holds ¬Φ(τ1

C
′ , . . . , τn

C
′),

then p 
 ¬Φ.

Note, that by lemma 2, levels below the deciding level have the same property

too. For each p ∈ T such, that |p| ≥ lΦ, either p 
 Φ or p 
 ¬Φ. Nonetheless,

there still may exist conditions with |p| < lΦ, which do not force anything. For

instance, if p · 0 
 Φ and p · 1 
 ¬Φ, then p 1 Φ and p 1 ¬Φ. Such conditions

occur in upper levels of T , near the root.

Each level is a maximal antichain in T . Levels below the deciding level con-

tain the whole information concerning truth or falsity of interpretations of the

given sentence; each condition on such level either forces the sentence or its

Recall that each p ∈ T is a function valued in 2 ∈ ω and |p| is its cardinality – the number of ordered

pairs. In other words it is the length of the sequence p. The set of all p of equal length l is the l-th

level in T denoted with 2l.
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negation. The notion of maximal antichain generalizes level with respect to this

property. A maximal antichain of conditions below the deciding level also carries

all the information about the sentence and it consists of pairwise incomparable

elements, however it may contain conditions from different levels. Maximal an-

tichains which decide a sentence may contain elements from levels above the

deciding level too. The least such antichain is given by the following theorem.

Theorem 2. If Φ is a MR-sentence, then the union TΦ ∪ T¬Φ of certainty grades

for Φ and ¬Φ is a finite maximal antichain in T .

Proof. The union forms an antichain, since both TΦ and T¬Φ are antichains and

they contain pairwise incomparable elements. Indeed, if p′ ∈ TΦ and p′′ ∈ T¬Φ,

then p′ 
 Φ and p′′ 
 ¬Φ, so if p′ ≤ p′′, then by the lemma 2, p′ 
 ¬Φ, what

implies p′ 
 Φ ∧ ¬Φ, a contradiction. Similarly, when p′ ≥ p′′.

The union is finite, since both TΦ and T¬Φ are finite. By the lemma 5, for any

MR-sentence, all elements of its certainty grade lie on levels of T , which are not

greater than the deciding level, so there is a finite number of them.

We show that it is maximal in T , what means that each element in T is compa-

rable to some element of the antichain. Assume contrary and let p be any condition

which is incomparable to all elements of TΦ ∪ T¬Φ. If |p| ≥ lΦ, i.e., p belongs

to a level which is greater than or equal than the deciding level for Φ, then either

p 
 Φ or p 
 ¬Φ. By the definition 8 it must be stronger than some element of

TΦ ∪ T¬Φ – a contradiction. If |p| < lΦ, then let q ∈ 2lΦ be any descendant of

p. Clearly, q is incomparable to each element of the union too. However, by the

lemma 5, q forces either Φ or ¬Φ, so as previously, it must be stronger than some

element of TΦ∪T¬Φ. Again, a it contradicts the assumption that p is incomparable

to elements of the union.

We use sets of nodes of the binary tree instead of numbers to express degrees

of certainty, since they are more general – sets carry more information than just

numbers. In the language of sets of nodes, the maximal antichains play role sim-

ilar to the certainty value of 1: they represent the highest degree of information

available. At the same time they contain no redundant elements. We now give

precise formulation of this observation. Recall, that by the equation (13), the

certainty value for the sentence Φ is equal to the sum
∑

p∈TΦ
1

2|p|
.

Proposition 3. If A ⊂ T is a maximal antichain in T , then Σp∈A
1

2|p|
= 1.

Proof. Each p 6= 1 is a binary sequence which represents a natural number

#p = Σi∈dom(p) p(i) · 2
i. Therefore, each p 6= 1 corresponds to an interval
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p̄ = [#p

2|p|
, #p+1

2|p|
) ⊂ [0, 1] and 1 corresponds to I = [0, 1). The length of each in-

terval is 1
2|p|

. For incomparable p and q, the corresponding intervals are disjoint:

p̄ ∩ q̄ = ∅. Indeed, if p̄ ∩ q̄ 6= ∅, then there must exist some r ∈ T such, that

r̄ ⊂ p̄ ∩ q̄. Since r̄ ⊂ p̄, then r ≤ p, and similarly r ≤ q. This implies p ≤ q or

q ≤ p, so they are comparable.

We now show, that the measure of
⋃

p∈A p̄ is equal 1. Clearly, it cannot be

grater than 1, so if it is less, then let u ⊂ I \
⋃

p∈A p̄ be an open interval. There

must exist s ∈ T such, that s̄ ⊂ u. If s is comparable to some p ∈ A, then

s̄ ∩ p̄ 6= ∅, so s̄ ∩
⋃

p∈A p̄ is non-empty, what contradicts s̄ ⊂ u. Thus, assuming

that the measure of
⋃

p∈A p̄ is less than 1 we found s incomparable to all elements

of A, what contradicts its maximality.

To finish the proof, note that the measure of each p̄ is 1
2|p|

, the measure of⋃
p∈A p̄ is 1 and they are all pairwise disjoint.

Using the proposition 3 we may reformulate the theorem 2 in terms of cer-

tainty values.

Corollary 2. If Φ is a MR-sentence, then VΦ + V¬Φ = 1.

We may easily calculate certainty values for MR-sentences applying the the

lemma 5. Let

TΦ =
{
p ∈ 2lΦ : p 
 Φ

}
and FΦ =

{
p ∈ 2lΦ : p 
 ¬Φ

}
. (19)

By the lemma we have TΦ ∪ FΦ = 2lΦ – these sets fill the whole deciding level.

Since there are 2lΦ elements on the lΦ-th level, then

VΦ =
|TΦ|

2lΦ
and V¬Φ =

|FΦ|

2lΦ
. (20)

We apply here lemmas 2, 3 and take into account that for any p ∈ T holds 1
2|p|

=
1

2|p · 0| +
1

2|p · 1| .

Corollary 3. If Φ is a MR-sentence, then TΦ ∪ T¬Φ intersects all branches in T .

Each maximal finite antichain in T intersects all the branches. This is not true

in general, for infinite maximal antichains. For instance A = {[0], [10], [110], . . .}
is an infinite maximal antichain, since each node in T is comparable to some

element of A, and it is comprised of pairwise incomparable elements. However,

it does not intersect the rightmost branch C1 = { 1, [1], [11], [111], . . . }. The

example 7 demonstrates Φ – which is not a MR-sentence – such, that ΦC1
is true,

although no condition in T forces Φ. Moreover, for each p ∈ A holds p 
 ¬Φ.

Therefore, VΦ = 0 and V¬Φ = 1!
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7 Summary

We have introduced the concept of metaset – set with partial membership rela-

tion. We have defined fundamental techniques of interpretation and forcing and

we have showh how to evaluate certainty degrees for sentences of the metaset lan-

guage. In this paper we have focused on specific properties of metasets with finite

deep ranges.

It turns out that several important results may be obtained for sentences in-

volving only metasets from the class MR. One of the most significant is that

for such sentences the certainty values of the sentence and its negation sum up

to unity, what is not true in general. Therefore, there is no hesitancy of mem-

bership for such metasets. The membership and non-membership degrees, when

expressed as numbers (certainty values) sum up to 1, and when expressed as sets

of conditions (certainty grades) sum up to a finite maximal antichain in T .

The class of metasets with finite deep ranges is especially important due to

the fact, that metasets implementable in computers are hereditarily finite and thus

they have finite deep ranges too. Therefore, the presented results are significant for

computer applications of metasets [6]. Usually, when trying to implement some

mathematical theory in computers we encounter a variety of limitations caused by

the finiteness of machine world. This is not the case for the computer-oriented the-

ory of metasets. When restricting the domain of discourse to the class of computer

representable metasets we obtain additional, important results.
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