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Abstract

The theory of Generalized Nets is applied here to describe one of the
basic functions in genetic algorithms, namely rank-based fitness assign-
ment. This function ranks individuals represented by their associated
costs, to be “minimized”, and results in a set of corresponding individual
fitnesses. The generalized net model developed here could be considered
as a separate module, but it can also be assembled into a larger general-
ized net model to describe a whole genetic algorithm.
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1 Introduction

Genetic Algorithms (GA) are an adaptive heuristic search algorithm [5], that
simulate processes in natural systems necessary for evolution following the
principles of “survival of the fittest”, first formulated by Charles Darwin. GAs
are implemented in a computer simulation in which a population of abstract
representations (chromosomes) of candidate solutions to an optimization prob-
lem (individuals) evolves towards better solutions.
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After the definition of genetic representation and the fitness function, GAs pro-
ceed to initialize a population of solutions randomly. Once the offspring have
been produced by selection, recombination and mutation of individuals from
the old population, the offspring fitness is determined. To maintain the size of
the original population a reinsertion scheme is going to used to determine which
individuals are to appear in the new population whether less offspring are pro-
duced than the size of the original population, or not all offspring are to be used
at each generation, or if more offspring are generated than the size of the old
population. The newly obtained population is then used in the next algorithm
iteration. Commonly, GAs terminate when either a maximum number of gener-
ations has been fulfilled, or a satisfactory fitness level has been reached for the
population.

The idea of using Generalized Nets (GN) theory for the description of GA has
intuitively appeared based to a variety of successive implementations of GNs
for description of parallel processes in different areas [1-3]. The first GN model
of a GA was a description of search procedures [1, 3]. The GN model
simultaneously evaluates several fitness functions, ranks the individuals
according to their fitness and chooses the best fitness function in relation to the
specific problem domain. Another GN model relating to GA was developed to
evaluate the algorithm fitness function [12]. By performing a series of
experiments, a GN model can define the “best” fitness function for each
considered problem domain. An extension of the GN model in [12] was presen-
ted in [13]. It allows different groups of the defined GA operators to be tested
and the most appropriate combination among them to be chosen.

Another GN model was developed in [7] to describe one of the basic GA func-
tions, namely reinsertion. A few GN models have also been developed for de-
scribing basic genetic operators [6, 8-11], namely selection, crossover and mu-
tation. The GN model of a roulette wheel selection method, which is one of the
most widely used selection functions, was developed in [8], while a GN model
of a stochastic universal sampling was presented in [9]. A GN model which
allows the user to choose between different selection functions has been elabo-
rated in [6]. Different types of crossover, namely one-, two-point crossover, as
well as “cut and splice” techniques, were described in detail in [10]. The GN
model, presented in [11], describes the mutation operator of the Breeder GA.

The purpose of the present investigation is to develop a GN model to describe
the function for ranking the individuals represented by their associated costs, as
it is realized in a Genetic Algorithm Toolbox [4]. The function ranking results in
a set of corresponding individual fitnesses.

128



2 Algorithm for Ranking

The Genetic Algorithm Toolbox [4] supports both linear and non-linear ranking
methods, ranking, and includes a simple linear scaling function, scaling, for
completeness. The algorithms for both linear and non-linear ranking first sorts
the objective function values into descending order. The least fit individual is
placed in position 1 in the sorted list of objective values and the most fit
individual — position Nind, where Nind is the number of individuals in the
population. A fitness value is then assigned to each individual depending on its
position, Pos, with selection pressure SP, in the sorted population.

For linear ranking individuals are assigned fitness values according to:
FitnV(Pos) =2 — SP + 2x(SP — 1)x(POS — 1)/(Nind - 1),
and for non-linear ranking according to:

Nindx X!

Nind

> X (i)
FitnV(Pos)= 7! ,
where X is computed as the root of the polynomial:

0=(SP—1)x XVl 4 gpx x)"=24+  +SPx X+ SP.

The vector FitnV is then unsorted to reflect the order of the original input
vector, Obj V.

3 GN model fol ranking functions

The GN model standing for ranking function, as described by function rank-
ing.m [4] in Matlab, is presented in Fig. 1.

The token « enters GN in place /; with an initial characteristic “parameters of
GA”. Some of the most common considered parameters of GA are: number of
individuals (Nind), maximal number of generations (Maxgen), number of varia-
bles (Nvar), objective values of the individuals (Obj V), etc. The token S enters
GN in place /, with an initial characteristic “pool of individuals”. Tokens ¢ and
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[ are combined and appear as a token y, which splits into two new tokens y; and
7 respectively in places /3 and /4 with the following characteristics:

e 5 in place /; — “objective values of the individuals (ObjV)”;

e  pinplace /4 — “number of individuals (Nind)”.

Fig. 1 GN model of ranking function

The form of the first transition of the GN model is as follows:

I8 Iy
Zy=<{l, L}, {1}, I |true true , A, b) >

L |true  true

Tokens y and » are combined and appear in place /5 as a token o with a charac-
teristic “ObjVSub = ObjV((irun — 1)*Nind + I:irun*Nind)”, where irun is a
loop counter. The token y keeps its characteristic, namely “number of individu-
als (Nind)”, in place /.
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The form of the second transition of the GN model is as follows:

Zy, = <{ls, 14}, {Is, I},

In place /; the token o obtain a new characteristic “NaNix = isnan(ObjVSub)”
and further splits into two new tokens oy and o, respectively in places /s and /o

with the following characteristics:
e 0 in place /g — a new characteristic “Validix = find(~NaNix)”;

° o, in place /y — keeps the characteristic of the token o, namely “Na-

Nix”.

Tokens o and o; are combined and appear in place /j, as a token ¢ with a cha-

racteristic

“lans, ix] = sort(—ObjVSub(Validix))”. In places /; to /4 the tokens appear with
the following characteristics:

| I
true true
true true

, A, 1) >

) o1 in place /;; — keeps its characteristic “Validix”;
) 03 in place /}; — keeps its characteristic “NaNix”;

° oin place /;; — keeps its characteristic “ObjVSub”;
e  pinplace /;4 — keeps its characteristic “Nind”.

Thus, the form of the third transition of the GN model is as follows:

Zy=<{ls, lg, I3, lo}, {17, Lo, l11, 12y I3, Lia}, 73, AUUs, Ls, s, 1o)>

by ho I o hs h
3= I true Wsi  false false true  false
Is false  false  false false false true
Ig false  true true  false false false
Il false  false  false true  false false

where W5 1 is “there is a token in place /s”.

The form of the fourth transition of the GN model is as follows:

131



| A

Z4 = <{l7}, {18, lg}, ’ /\(17) >

l; | true  true

Tokens gand o; are then combined in a token 7 in place /5 with a characteristic
“Validix(ix)”, while the tokens o3, oand p keep their characteristics respective-
ly in places /4, /17 and /5, namely o in place /¢ — “NaNix”, o in place /7 —
“ObjVSub” and y, in place /i3 — “Nind”.

Thus, the form of the fifth transition of the GN model is as follows:
Zs= <{lo, i1, L2, Lz, L}, s, Lies g, Lis s 75, Ao, Dy Loy D3, 114)>

115 116 ll7 118

rs= Iy true  false false false

I true  false false false
L false  true false false
lis  |false  false true false
ha |false  false false true

Tokens 7 and o3 are then combined in a token 7 in place /;9 with a characteri-
stic

“ix = [find(NaNix); Validix(ix)]”, while the tokens o and y are still keeping
their characteristics respectively in places /o and /,;, namely o in place /5y —
“ObjVSub” and y, in place /r; — “Nind”.

Thus, the form of the sixth transition of the GN model is as follows:
Zs= <{ls, lis, [7, Lig}, {19, Lo, 11}, 76, A(Lis, 16, 17, 18)>

119 120 121

re = s true false  false
L true false  false
L7 false true  false

lis false  false true

132



The token 7 keeps its characteristic “ix” in place /5,. Tokens 7 and o are com-
bined in a token w in place /3 with a characteristic “Sorted = ObjVSub(ix)”,
while the token j is still keeping its characteristic “Nind” in place .

The form of the seventh transition of the GN model is as follows:

122 123 124

Z7 = <{lo, ho, In}, o, b3, bay,  ho|true  true  false , A(lyo, by, 11)>

Ly |false true false

b |false false true

The token 7 is still keeping its characteristic “ix” in place /,s. Tokens & and p»
are combined in a token A in place l with a characteristic ‘5 =
[find(Sorted(1:Nind - 1) ~= Sorted(2:Nind)); Nind]”, while the token », obtains
a new characteristic “FitnVSub = zeros(Nind, 1)” in place /7.

The form of the eighth transition of the GN model is as follows:

125 126 127

Zy = <{ln, b3, ba}, {bs, be, I}, Ly |true  false false | A(ly, b, 1a)>

Iy |false  true false

by |false  true true

A new token y enters GN in place /3 with a characteristic “RFun”. According
to [4] RFun is an optional parameter:

If RFun is a scalar in [1, 2] linear ranking is assumed and the scalar
indicates the selective pressure.
If RFun is a 2 element vector:
- RFun(1l): SP - scalar indicating the selective pressure
- RFun(2): RM - ranking method

RM = 0: linear ranking

RM = 1: non-linear ranking.
If RFun is a vector with length(Rfun) > 2 it contains the fitness to
be assigned to each rank. It should have the same length as ObjV.
If RFun is omitted or NaN, linear ranking and a selective pressure
of 2 are assumed.
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The token 77 obtains a new characteristic “[ans, uix] = sort(ix)” in place /. To-
kens A, » and y are combined in a token 6 in place /5, with a characteristic
“FitnVSub(izj) = sum(RFun(izj)) * ones(j-i+ 1, D/(j-i+ ).

The form of the ninth transition of the GN model is as follows:

I I3
Zy = <{bys, b, Iy, L}, {ho, Lo}, Ls |true  false | A(lys, s, lr7, hg)>

he |false  true

by |false  true

hg |false  true

Tokens 77 and 6 are combined in a token w in place /;; with a characteristic
“FitmVSub = FitnVSub(uix)”. The form of the tenth transition of the GN model
1s as follows:

Zyo = <{ho, o}, {31}, b | true , A(ls, I0)>

After the ranking in place /;;, the token w could pass to place /5, with a charac-
teristic “end of ranking function” or in place /;; with a characteristic “FitnV =
[FitnV; FitnVSub]”. The form of the eleventh transition of the GN model is as
follows:

| ks
Wiiza Waizs , Als) >,

Zi = <{ls1}, {0 L), l31

where W31’32 18 “end ofmnkingfunction” and W31’33 = W31’32.

4 Analysis and conclusions

The theory of Generalized Nets has been here applied to describe one of the
basic functions in genetic algorithms, namely ranking function. Such a GN mo-
del could be considered as a separate module, but can also be assembled into a
single GN model for description of a whole genetic algorithm.
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