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“There are naive questions, tedious questions, ill-phrased questions, questions put after inadequate
self-criticism. But every question is a cry to understand the world. There is no such thing as a
dumb question. ”

Carl Sagen
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Abstract

Nonequilibrium phenomena are ubiquitous around us, present in both natural and
artificial systems. A better understanding of nonequilibrium physics, and ultimately dis-
covering an underlying theoretical framework, is both intriguing and essential. The last
few decades have seen a development of the field on various fronts, which has expanded
our understanding substantially. However, an underlying framework remains a mystery.

In this thesis, we approach this subject from the perspective of nonequilibrium ther-
modynamics. In particular, we search for variational principles by proposing hypotheses
and then testing these hypotheses using various models. If a hypothesis is disproved by
any test model, it is discarded, and a new hypothesis or an improved one is proposed
instead. The test models are diverse in nature and are studied using distinct methods,
including the ideal gas model, which is studied analytically, and the Ising model, which
is studied using simulations. These models are driven to nonequilibrium steady states
(NESS) by various energy supply schemes, including periodic (in time) and inhomoge-
neous (in space) supplies.

A major part of the thesis is devoted to the propositions of variational principles, or
more precisely, of certain quantities hypothesized to be minimized in NESS. Among these
propositions, three are extensively studied. The development of these quantities follows
a chronological order – each hypothesis is built on the last. We start from a quantity
T , defined as the ratio of the stored energy to the total heat flow. This quantity is then
adapted to a function of the energy and the heat flow. Finally, we come to a quantity
analogous to the Helmholtz free energy, with an additional parameter proportional to T .

In addition, using the Ising model, we study the energy storage at steady states under
different methods of energy supply. We find that energy storage is sensitive to the details
of the supply method, and energy is more effectively stored with rare and large deliveries
than frequent and small deliveries.

Lastly, we discover a simple model that exhibits continuous nonequilibrium phase
transitions and (beyond the critical point) multiple steady states. The model is an ideal
gas with an adiabatic movable wall as the internal constraint and is driven to NESS by a
homogeneous energy supply.
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• Yirui Zhang, Konrad Giżyński, Anna Maciołek, and Robert Hołyst
Storage of energy in constrained non-equilibrium systems
Entropy 22, 557 (2020) [3]

Sections 2.2.1, 2.3.1 and 2.3.2 partially overlap or are equivalent with this publica-
tion.

Some materials are in preparation for submission and can be found in arXiv:

• Yirui Zhang, Marek Litniewski, Karol Makuch, Paweł Żuk, Anna Maciołek, and
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1

Chapter 1

Introduction

Nonequilibrium physics, as indicated by the term, deals with systems and processes that
are not in equilibrium. This is a vast topic, as it can be argued that most processes (if not
all) are nonequilibrium processes [5]. Hence, nonequilibrium physics contains the study
of abundant processes across various scales.

It is well known that physics studies systems that are very large and very small. If
we separate systems according to their scales, then relativity deals with macroscopic sys-
tems like the universe; quantum mechanics deals with microscopic systems like a hy-
drogen atom [6, 7]. However, most systems are in between these scales and usually
consist of a large collection of particles. This vast range of systems contain, for example,
macroscopic systems like the human body or the climate; mesoscopic systems like ac-
tive matter [8]; biological systems and processes like molecular machines [9] and mRNA
transcriptions [10]. Such systems and phenomena are the recent focus of nonequilibrium
physics.

To study these systems and processes theoretically, statistical physics is essential, as
it bridges the gap between various scales. Experimentally, the recent advancement of
experimental techniques makes it possible to probe and control systems on mesoscopic
and microscopic scales [11, 12].

Overview of the History [13]

From the early stage to the current frontier, the development of nonequilibrium physics
can be roughly divided into three phases. The first phase is the phase of equilibrium
thermodynamics, which starts around the 18th and 19th centuries. The development of
thermodynamics during this time is driven by the invention of the steam engine and ac-
companies the first industrial revolution. Indeed, one important goal was to increase heat
engine efficiency, which eventually leads to the discovery of the Carnot cycle [14]. Later,
the central results of thermodynamics are summarised into the three laws of thermody-
namics. This phase is concluded with the development of equilibrium statistical mechan-
ics. Originated by Boltzmann and later highlighted by Gibbs [15], statistical mechanics
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2 Chapter 1. Introduction

explains the thermodynamic relations from the microscopic perspective. The central re-
sult, the statistical interpretation of a mysterious thermodynamic quantity – entropy –
was given by Boltzmann as a measure of the state space volume.

The second phase is the phase of early nonequilibrium thermodynamics, developed
during the past century [16–19]. This phase focuses on systems and processes close to
equilibrium or within the linear regime. Examples of these processes are relaxation pro-
cesses and equilibrium processes under small perturbations. Already from Boltzmann’s
H-theorem, attempts have been made to describe nonequilibrium processes [20]. Cen-
tral results in this phase include linear irreversible thermodynamics, where the entropy
production rate is given in the form of fluxes and affinities [16, 17, 21]. Moreover, phe-
nomenological arguments lead to the formulation of the fluctuation-dissipation theorem
(FDT), which is later formally derived within the linear response theory [22–24]. New
mathematical tools are incorporated in this phase, most notably from stochastic dynam-
ics: the Langevin equation, Markov processes, the Master equation, and much more [25,
26]. These tools are, of course, applicable beyond linear regimes.

The latest phase is marked by the development of stochastic thermodynamics dur-
ing the last two to three decades. Within this phase, the range of study has been ex-
tended to small open systems with large fluctuations (an external heat-bath is still well
defined), such as molecular motors, nano-devices, and chemical reactions [27, 28]. And
the processes can be arbitrarily far away from equilibrium rather than limited to the lin-
ear regime.

In the beginning, various fluctuation theorems (FT) have been proved [29–34]. These
theorems are also valid in deep nonequilibrium regimes. Independently, various at-
tempts have been made to generalise FDT into nonequilibrium steady states (NESS) [24,
35, 36]. These results are later incorporated into the framework of stochastic thermody-
namics, where a consistent derivation is provided [9, 36]. The central idea of stochastic
thermodynamics is to generalise work, heat, and entropy onto trajectory levels. And
interestingly, the entropy production is linked to a measure of time-asymmetry. The
important mathematical techniques involved in this phase are path integrals and large
deviations [37].

Just recently, within stochastic thermodynamics, the so-called uncertainty relations
have been discovered. These relations show that the fluctuations of the currents are
bounded by the entropy production rate [38–41]. Furthermore, a measure of the time-
symmetric features of the process, termed frenesy, has been proposed by Maes [9, 42].
It is argued that the full framework of nonequilibrium physics would include both the
time-symmetric quantity (frenesy) and the time-symmetry breaking quantity (entropy
production). Under this scheme, the response theory (both linear and non-linear) can be
proved systematically [36, 42]. Lastly, due to the similarity of Shannon entropy and the
Gibbs entropy from statistical mechanics, the link between information theory and statis-
tical physics has been explored. Notably, Jaynes provided an information interpretation
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Chapter 1. Introduction 3

(using inference) of the maximum entropy principle [43–45]. This idea has recently been
extended by Polettini and Esposito in [46].

Scope and Structure of This Thesis

Nonequilibrium physics is an interesting and lively research area. Yet, despite the various
advancements described above, a general framework remains a mystery. In this thesis,
we approach the subject from the perspective of nonequilibrium thermodynamics, par-
ticularly variational principles. We wish to develop a framework similar to equilibrium
thermodynamics.

As a starting point, we will focus on nonequilibrium steady states: the properties of
the system do not change (like equilibrium states), but time-symmetry is not required.
Our methodology mimics the development of thermodynamics: various hypotheses are
proposed, each with a well-defined state function; each hypothesis is then examined over
different test models. These test models are driven by various methods of energy supply,
which can be space-time dependent. It is essential to our methodology to have test mod-
els that are distinct in nature and subjected to different energy supply protocols. This is
because, like equilibrium thermodynamics, we expect nonequilibrium thermodynamic
potentials to be "general".

This thesis is structured as follows. In this chapter, we will introduce certain aspects
of nonequilibrium physics. The introduction roughly follows the three phases described
above. Along the way, we will include theoretical backgrounds needed for this thesis.
Due to the vastness of nonequilibrium physics and limited by the author’s knowledge,
the author by no means claims to be thorough. Rather, the author selectively gives infor-
mation and derivations in an effort to trace important results in each phase. We will also
take advantage of the giants of this field (historical and current) and present the work as
easily as the author possibly can. Our goal in this chapter, after all, is understanding.

From Chapter 2 onwards, our goal is to explore. In Chapter 2, we will introduce and
examine the first hypothesis. It concerns the ratio of the energy storage to the total heat
flow, and the ratio is hypothesized to be minimum in NESS. We will also study energy
storage, in particular, how it is influenced by the details of the energy supply method. The
second hypothesis is introduced and studied in Chapter 3. The central quantity is termed
the embedded energy. In Chapter 4, the movable wall model is defined and evaluated. This
model exhibits a continuous nonequilibrium phase transition and is particularly helpful
for testing nonequilibrium hypotheses. The final hypothesis is introduced and studied
in Chapter 5. The central quantity is a Helmholtz-like nonequilibrium potential. A brief
summary is given in Chapter 6.
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4 Chapter 1. Introduction

1.1 Equilibrium Thermodynamics

In this section, we review the basics of equilibrium thermodynamics. Following Callen’s
approach in [47], the subject is introduced through a set of postulates. These postulates
orginate inductively from the observations (experiments). In the case of thermodynamics,
as stated in the overview, the postulates are justified under statistical mechanics.

We shall start with a summary of the postulates. And from these postulates, thermo-
dynamic parameters are defined, and central thermodynamic relations are derived. Next,
using the Legendre transform, these relations are generalised to systems defined by dif-
ferent external constraints. Lastly, we introduce the basic assumptions and important
equations of equilibrium statistical mechanics.

1.1.1 Postulational Formulation

Fundamental Postulates

For simplicity, we restrict ourselves to consider only simple systems. These systems are
static, homogeneous, and isotropic; under no external electromagnetic field or gravita-
tional field; contain no chemical reactions. For such systems, the foundational postulates
are summarised as follows [47, 48].

Postulate I establishes the existence of equilibrium states, defined as states that can be
completely characterised by a list of extensive parameters: the internal energy U, vol-
ume V, and number of particles N. In the following, these extensive parameters will be
collected denoted as {Xa}.

Postulate II asserts the existence of entropy and the maximum entropy principle. En-
tropy S, as defined here, is a quantity that exists for all equilibrium states. Furthermore,
it is a function of the extensive parameters S = S({Xa}). This function, S = S({Xa}), is
called the fundamental relation, as it contains all the thermodynamic information of the
system. In addition, the maximum entropy principle states that the entropy of the system
free of constraints is maximized with respect to all possible constraints.

Postulate III and Postulate IV define the properties of S. First, entropy is additive. For
a system composed of subsystems i = 1, 2, · · · , each characterised by a set of parameters
{Xi

a}, the entropy of the whole system is the sum of the entropy of each subsystem

S({Xa}) = ∑
i

S({Xi
a}). (1.1)

Second, entropy is continuous and differentiable; it increases monotonically with respect
to U. This property allows us to write the fundamental relation with respect to energy,
U = U({Xa}) with X0 = S. This form is referred to as the energy representation of funda-
mental relation, and the fundamental relation (written using S) is also called the entropy
representation of fundamental relation. Third, entropy is set to zero at (∂U/∂S)V,N = 0.

https://rcin.org.pl



1.1. Equilibrium Thermodynamics 5

Since temperature is defined as T ≡ ∂U/∂S, this postulation reflects the third law of
thermodynamics, which states that the entropy is zero at absolute zero temperature.

Thermodynamic Relations

The differential form and the integral form of the fundamental relation (both energy and
entropy representation) are quite useful [48]. Starting with the entropy representation
S = S({Xa}), the differential form is given by

dS({Xa}) = ∑
a

∂S
∂Xa

dXa = ∑
a

FadXa, Fa ≡
(

∂S
∂Xa

)
{Xb}b 6=a

, (1.2)

where Fa is the entropic intensive parameter conjugate to Xa. The function Fa = Fa({Xb})
is called the equation of state. Similarly, a differential form can be written for the energy
representation

dU({Xa}) = ∑
a

∂U
∂Xa

dXa = ∑
a
PadXa, Pa ≡

(
∂U
∂Xa

)
{Xb}b 6=a

, (1.3)

where Pa is the energetic intensive parameter conjugate to Xa. The integral forms of the
fundamental relations are obtained from Euler’s homogeneous function theorem. This
theorem states that a homogeneous function of degree one satisfies f ({cXi}) = c f ({Xi})
where c is a constant. The fundamental relations are indeed such homogeneous functions
since they are extensive. Using this theorem, the Euler relations are obtained

S = ∑
a

FaXa, (1.4)

U = ∑
a
PaXa. (1.5)

Immediately, by taking the total differentials of Eqs. (1.4) and (1.5), and subtract Eqs. (1.2)
and (1.3), we obtain the Gibbs-Duhem relations

∑
a

XadFa = 0, (1.6)

∑
a

XadPa = 0. (1.7)

Another class of useful relations is the Maxwell relations. These are relations between
the mixed second order derivatives of the fundamental relations; they arise from the
symmetry of mixed derivatives

∂2S
∂XaXb

=
∂2S

∂XbXa
and

∂2U
∂XaXb

=
∂2U

∂XbXa
. (1.8)
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6 Chapter 1. Introduction

Using the intensive parameters, these relations are written as

∂Fa

∂Xb
=

∂Fb

∂Xa
and

∂Pa

∂Xb
=

∂Pb

∂Xa
. (1.9)

As an example, consider a simple system characterised by fixed U, V and N, {Xa} =
{U, V, N}. The differential forms are explicitly

dS(U, V, N) =
1
T

dU +
P
T

dV − µ

T
dN, (1.10)

dU(S, V, N) = TdS− PdV + µdN, (1.11)

where T is the temperature, P is the pressure, and µ is the chemical potential. And the
integral forms are

S =
1
T

U +
P
T

V − µ

T
N, (1.12)

U = TS− PV + µN. (1.13)

The entropic and energetic intensive parameters are

FU =
1
T

, FV =
P
T

, FN = −µ

T
,

PS = T, PV = −P, PN = µ,
(1.14)

respectively.

First Law of Thermodynamic

The first law of thermodynamics introduces two important quantities: work W and heat
Q. The first law of thermodynamic can be formulated as

d̄Win = dU + d̄Qdiss, (1.15)

that is, the work input into the system either changes the system energy or dissipates as
heat.

These two quantities are not thermodynamic parameters – they depend on specific
processes rather than thermodynamic states. This fact is also reflected in the symbol
d̄, which denotes inexact differentials. However, they can be linked to thermodynamic
parameters for certain processes. Consider a closed system under a quasi-static compres-
sion process. The work input is identified as

d̄Win = −PdV. (1.16)

Then, the dissipated heat is given by d̄Qdiss = d̄Win − dU. Since the system does not
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1.1. Equilibrium Thermodynamics 7

exchange particles with the environment, that is, dN = 0, the differential form (1.11)
becomes dU = TdS− PdV. Therefore,

d̄Qdiss = −TdS. (1.17)

1.1.2 Legendre Transform and Thermodynamic Potentials

Using the Legendre transform, the fundamental relations can be equivalently written in
several other forms [47]. These various forms are the thermodynamic potentials. Since
no information is lost during a Legendre transform, these forms are equivalent, and each
contains the full thermodynamic information of the system [49].

The definition of the Legendre transform is as follows [49]. Consider a function f (x)
that is strictly convex (or strictly concave, in which case we shall take − f (x)), the Legen-
dre transform of f (x) produces a new function g(s) where

g(s) = sx(s)− f (s) (1.18)

with
s(x) ≡ d f (x)

dx
. (1.19)

We remark that the new function is a function of the new variable s, i.e., both x and f (x)
needs to be rewritten with respect to s. Specifically, x(s) is obtained from the inverse of
Eq. (1.19), and f (s) from f (x(s)). It is easy to show that the Legendre transform of g(s) is
f (x), i.e.,

f (x) = s(x)x− g(x), x(s) ≡ dg(s)
ds

. (1.20)

As we can see, the Legendre transform and the original function has a symmetric form,

g(s) + f (x) = sx, (1.21)

where
dg(s)

ds
= x and

d f (x)
dx

= s, (1.22)

with g(s) and f (x) encoding the same amount of information.

In equilibrium thermodynamics, the fundamental relations are multivariate functions
of {Xa}. Their Legendre transforms can be performed with respect to one or several
variables. To simplify the notation, we will separate the transformed variables from the
untransformed ones by denoting the former with Greek subscripts ” −α ”; further, the
transformed function with respect to xα is denoted as f [sα] where sα ≡ ∂ f /∂xα (similar to
Eq. (1.19)). When f is the thermodynamic fundamental relations, sα becomes the entropic
or energetic intensive parameter (see Eqs. (1.2) and (1.3)). In the end, a general Legendre
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8 Chapter 1. Introduction

transform of the entropic and energetic fundamental relation is written as

S[Fα, · · · ] = ∑
α

FαXα − S(Xi, · · · ; Fα, · · · ), (1.23)

U[Pα, · · · ] = ∑
α

PαXα −U(Xi, · · · ; Pα, · · · ). (1.24)

The familiar thermodynamic potentials can be identified as the (negative) Legendre
transform of the energetic fundamental relation

F(T, V, N) ≡ −U[T] = U − TS,

H(S, P, N) ≡ −U[P] = U + PV,

G(T, P, N) ≡ −U[T, P] = U − TS + PV,

J(T, V, µ) ≡ −U[T, µ] = U − TS− µN.

(1.25)

The minus signs before the transformations are due to convention. These potentials are
the Helmholtz free energy F, the enthalpy H, the Gibbs free energy G, and the grand
canonical potential J, respectively. The Legendre transforms of the entropy representa-
tion, on the other hand, are the generalised Massieu-Planck potentials [47].

Since the (entropic) fundamental relation is accompanied with the maximum entropy
principle, each of the above potentials has a corresponding variational principle; and due
to the negative sign, these variational principles are minimum principles. Each potential
is further accompanied with a differential form, an integral form, and Maxwell relations.
Specifically, the differential forms are

dF(T, V, N) = −SdT − PdV + µdN,

dH(S, P, N) = TdS + VdP + µdN,

dG(T, p, N) = −SdT + VdP + µdN,

dJ(T, V, µ) = −SdT − PdV − Ndµ,

(1.26)

and the integral forms are
F = −PV + µN,

H = TS + µN,

G = µN,

J = −PV,

(1.27)

respectively.
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1.1. Equilibrium Thermodynamics 9

1.1.3 Equilibrium Statistical Mechanics

Equilibrium statistical mechanics is founded on two postulations, the principle of equal
probability and the Boltzmann principle [50, 51]. The principle of equal probability states
that, for an isolated system with energy within the interval E and E + δE (where δE is
the uncertainty), all quantum states (microstates) compatible with the energy interval are
equally probable. Suppose that the number of quantum states within (E, E + δE) is Ω,
then the probability of the system in (any) state i is

pi =
1
Ω

. (1.28)

This probability distribution is referred to as the microcanonical distribution. The Boltz-
mann principle, on the other hand, identifies entropy as a (logarithmic) measure of the
number of states compatible with the external constraints,

SB = kB ln Ω, (1.29)

where kB is the Boltzmann constant. This principle provides a crucial link between ther-
modynamics and statistical mechanics.

In reality, however, isolated systems are rare: almost all systems have some form of
energy or matter exchange with the environment. The probability distribution of the mi-
crostates pi of these systems can be derived from the principle of equal probability. This
probability distribution is the basis from which all relevant quantities, such as macro-
scopic and mesoscopic observables, and fluctuations, are obtained. On the other hand,
the entropy of a general system described by pi is given by Gibbs [15]

SG = −kB ∑
i

pi ln pi. (1.30)

An equivalence of the Gibbs entropy (1.30) and the Boltzmann entropy (1.29) can be seen
by taking pi = 1/Ω in Eq. (1.30).

As an example, consider a closed system in contact with a heat bath of temperature
T. It can be shown that the probability of the system in microstate i, with energy between
Ei and Ei + δEi, is given by [51]

pi =
e−βEi

Z , Z ≡∑
i

exp(−βEi), (1.31)

where β = 1/(kBT) is the inverse temperature and Z the partition function. Using the
probability distribution, the ensemble average of a macroscopic quantity O is given by

〈O〉eq = ∑
i

piOi. (1.32)
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10 Chapter 1. Introduction

In particular, the Helmholtz free energy is identified as

F ≡ −kBT lnZ . (1.33)

The thermodynamic quantities calculated using Eq. (1.32) satisfy the thermodynamic re-
lations described previously. Therefore, we say that equilibrium thermodynamics is jus-
tified by statistical mechanics.
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1.2. Non-equilibrium Thermodynamics 11

1.2 Non-equilibrium Thermodynamics

In this section, we selectively introduce some results from phase two – the early nonequi-
librium physics. We will start with nonequilibrium thermodynamics, where the expres-
sion of the entropy production rate is derived, and it’s simplified form in the linear regime
is given. Next, we review the minimum entropy production principle (MinEP). A brief
derivation of MinEP for a simple system with heat conduction is given here. Lastly, we
deal with nonequilibrium statistical mechanics. Using a simple model of Brownian mo-
tion, the Langevin equation and the Fokker-Planck equation are introduced.

1.2.1 Linear Irreversible Thermodynamics

The local equilibrium assumption is a central assumption of nonequilibrium thermodynam-
ics. As a first step towards nonequilibrium, this assumption allows us to generalise equi-
librium thermodynamic quantities into the nonequilibrium regime [5, 16, 21, 48, 52].

The local equilibrium assumption can be separated into two parts. First, it assumes
a separation of timescales. In nonequilibrium processes, the macroscopic variables are
assumed to evolve at a timescale much larger than that of microscopic interactions. Sec-
ond, it assumes a separation of spatial scales. It assumes that a macroscopic system can
be divided into smaller systems – each still large enough to be described thermodynami-
cally. As a result, the thermodynamic extensive variables {Xa} are extended to the local
(and instantaneous) densities {xa(~r, t)} with

Xa(t) =
∫

V
xa(~r, t)dr3, (1.34)

where~r is position and t is time. Since volume V has no local counterpart, it is removed
from the collection of {xa(~r, t)}.

In particular, entropy is generalised to local entropy density; the fundamental relation
is hence expressed as s(~r, t) = s({xα(~r, t)}). The differential form (1.2) now holds locally,

ds({xa(~r, t)}) =
′

∑
a

Fa(~r, t)dxa(~r, t), (1.35)

where the local intensive parameter conjugate to xa(~r, t) is given by

Fa(~r, t) ≡ ∂s(~r, t)
∂xa(~r, t)

. (1.36)

Balance Equation

Before going into the derivation of the entropy production rate, it is useful to introduce
the local balance equation. For a continuous system, the global balance equation of any
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12 Chapter 1. Introduction

(scalar) extensive thermodynamics quantity A(t) is given by [21]

dA(t)
dt

+
∮

S
~JA(~r, t)d~S =

∫
V

σA(~r, t)d~r, (1.37)

where~JA is the flux (or current) density of A; σA is the source (or sink) density from which
A(t) is created (or destroyed); V is the volume of the system with the boundary surface
S. The unit surface area d~S is positive pointing to the outside of the system. Using the
local density a(~r, t) of A(t), the local balance equation reads

∂a(~r, t)
∂t

+∇ ·~JA(~r, t) = σA(~r, t). (1.38)

For systems in steady states and for conserved quantities, ∂ta = 0. Eq. (1.38) then takes
the form of the continuity equation

∇ ·~JA(~r, t) = σA(~r, t). (1.39)

Entropy Production Rate

From the second law of thermodynamics, nonequilibrium processes are characterised by
a non-zero entropy production rate. In nonequilibrium thermodynamics, the entropy
production rate σs is given by

σs(~r, t) = ∑
a

~Fa(t,~r)~Ja(t,~r), (1.40)

where
~Fa(t,~r) = ∇Fa(~r, t) and ~Ja(t,~r) =

∂

∂t
∇a(~r, t). (1.41)

~Fa(t,~r) is termed affinity or generalised force and is conjugate to the local flux density
~Ja(t,~r). The affinities are often interpreted as the cause of the nonequilibrium processes,
whereas the local flux densities as the effect.

Since the entropy production rate is of central importance for nonequilibrium ther-
modynamics, a short derivation is given here. From the local balance equation (1.38), we
have

∂s(~r, t)
∂t

+∇ ·~Js(~r, t) = σs(~r, t). (1.42)

The source σs is termed the entropy production rate. The first term ∂s/∂t can be obtained
from Eq. (1.35):

∂

∂t
s(~r, t) =

∂

∂t
s({xa(~r, t)}) = ∂s({xa(~r, t)})

∂xa

∂xa

∂t
= ∑

a
Fa(~r, t)

∂xa

∂t
. (1.43)
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According to the definition of flux density (1.41), the entropy flux density is given by

~Js =
∂

∂t
∇s({xa(~r, t)}) = ∂

∂t ∑
a

∂s({xa})
∂xa

∇xa(~r, t)

= ∑
a

∂s({xa})
∂xa

∂

∂t
∇xa(~r, t) = ∑

a
Fa~Ja.

(1.44)

Bringing Eqs. (1.43) and (1.44) into (1.42), the entropy production rate is linked with the
thermodynamically defined fluxes and affinities,

σs = ∑
a

(
Fa(~r, t)

∂xa

∂t
+∇ · Fa~Ja

)
= ∑

a

(
Fa(~r, t)

∂xa

∂t
+∇Fa ·~Ja + Fa∇ ·~Ja

)
= ∑

a

(
∇Fa ·~Ja + Fa(∇ ·~Ja +

∂xa

∂t
)

)
.

(1.45)

Since all extensive parameters Xa are conserved quantities, there is no source or sink, i.e.,
σa = 0. Then, according to Eq. (1.38), the term∇ ·~Ja + ∂txa in Eq. (1.45) is zero. Therefore,
Eq. (1.45) becomes

σs(t,~r) = ∑
a
∇Fa ·~Ja = ∑

a

~Fa(t,~r)~Ja(t,~r), (1.46)

and we have retrieved Eq. (1.40).

Linear Forms

For near-equilibrium processes, the flux density can be further simplified. First, assum-
ing that the system has no memories, in other words, Markovian, then the flux density
depends only on instantaneous quantities. Further assuming that~Ja is a function of affini-
ties {~Fa}, then it can be written using the Taylor expansion around equilibrium

~Ja({~Fb(~r, t)}) = ~Jeq
a + ∑

b
Lab ~Fb +

1
2! ∑

bc
Labc ~Fb ~Fc + · · · . (1.47)

In equilibrium, there are no fluxes, and ~Jeq
a = 0. Next, since the system is not far away

from equilibrium, the affinities are assumed to be small. Then, the expansion can be
truncated at second order, leaving only the linear term

~Ja({~Fb(~r, t)}) = ∑
b

Lab ~Fb. (1.48)

The tensor components Lab are further simplified using Curie’s symmetry princi-
ple [53] and the Onsager reciprocal relations [18, 19]. Curie’s principle states that, "the
symmetries of the causes are to be found in the effects". This principle decouples flux
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14 Chapter 1. Introduction

densities and affinities of different ranks. The Onsager reciprocal relations gives

Lab = εaεbLba (1.49)

where εa = ±1 is the parity of xa. These two principles reduce the degree of freedom of
tensor L. Finally, the values of tensor components Lab are obtained from phenomenolog-
ical laws, like Fourier’s law for heat conduction and Fick’s law for particle diffusion.

As an example, let us consider a simple system under heat conduction [21]. In the
linear regime, the energy flux density is (from Eq. (1.48))

~JE = LEE ~FE = LEE∇FE = LEE∇
1
T

. (1.50)

Phenomenologically, Fourier’s law links the local energy flux linearly to the local tem-
perature gradient,

~JE = −k∇T. (1.51)

where k is the thermal conductivity and is measured experimentally. Comparing with
Eq. (1.50), the component LEE is identified with LEE = kT2

av, where Tav is the averaged
temperature used here as an approximate of the system temperature.

1.2.2 Minimum Entropy Production

Similar to equilibrium thermodynamics, various efforts have been made in search of vari-
ational principles for nonequilibrium thermodynamics. One important example is the
minimum entropy production principle (MinEP). Here, we review a short derivation of
MinEP. This derivation can be found in [5, 16, 54]. We will be using variational calculus
and the Lagrangian multipliers for this derivation. An introduction of these techniques
can be found in [55].

Consider the previous example again: a simple system is driven to nonequilibrium
states under heat conduction. To be more specific, a one-dimensional heat conducting
rod is placed at x = 0, L; both ends are heated to a fixed temperature, T(0) = TA and
T(L) = TB. The local entropy production rate is given by [54]

σs(t, x) = JEFE = L−1
EE J2

E, (1.52)

where it is written as a function of JE. The total entropy production rate is then

Ṡtot[JE] =
∫ L

0
σsdx =

∫ L

0
L−1

EE J2
Edx. (1.53)
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1.2. Non-equilibrium Thermodynamics 15

Now, we proceed to obtain the heat current function JE that minimizes the total en-
tropy production rate. The system is under the constraint

−
∫ L

0

JE

k
dx = TB − TA or

∫ L

0

JE

k
dx + (TB − TA) = 0, (1.54)

where we have used Eq. (1.51). The minimization is obtained using variational calculus,
and the constraint is added using the Lagrangian multiplier. This is equivalent to

δ

δJE

(
Ṡtot − λ

(∫ L

0

JE

k
dx + TB − TA

))
= 0,

δ

δJE

∫
V

L−1
EE J2

EdV − λ
δ

δJE

∫ L

0

JE

k
dx = 0.

(1.55)

Performing functional derivative, we obtain

∫ L

0

(
2L−1

EE JE − λ
1
k

)
dx = 0, (1.56)

which is satisfied if the solution is J∗E = λT2
av/2. To obtain λ, we substitute J∗E into

Eq. (1.54), and λ = (TA − TB)2k/(T2
avL). Finally,

J∗E =
k
L
(TA − TB), (1.57)

which coincides with the steady state heat flux. Moreover, since the entropy production
rate is always larger than zero, the extremum is a minimum.

1.2.3 Nonequilibrium Statistical Mechanics

For nonequilibrium statistical mechanics, the principle of equal probability no longer ap-
plies. The central idea of nonequilibrium statistical mechanics lies in treating the physical
processes as stochastic processes. Consequently, the mathematical framework of stochas-
tic dynamics is readily borrowed. Two important methods are the Langevin equation
approach and the Fokker-Planck equation approach [25]. Here we provide the basic idea
behind these techniques using the paradigm model – Brownian motion [56].

Brownian motion is the random movement of a colloidal particle in a solution. Con-
sider the simplest case of a one-dimensional Brownian motion. The Langevin equation
of the particle is given by [22, 25, 48, 52]

m
dv(t)

dt
= −γv(t) + FL(t), (1.58)

dx(t)
dt

= v(t), (1.59)
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16 Chapter 1. Introduction

where m is the mass of the particle, γ is the friction coefficient, and γv(t) is the friction
force at time t. The term FL(t) is the random force due to microscopic collisions, satisfying

〈FL(t)〉 = 0 and 〈FL(ti)FL(tj)〉 = 2Bm2, (1.60)

where B is a constant that measures the strength of fluctuations. The Langevin de-
scription is similar to the Newtonian equation with an additional stochastic term. The
Langevin equation is an example of the stochastic differential equation.

By integrating Eq. (1.58) and take the average, we have

〈v(t)〉 = e−tγ/m〈v(0)〉. (1.61)

Similarly, the standard deviation is obtained,

〈δv2(t)〉 = 〈(v(t)− 〈v(t)〉)2〉 = B
mγ

(1− e−2γt/m). (1.62)

At the large time limit,

lim
t→∞
〈v(t)〉 = 0 and lim

t→∞
〈δv2(t)〉 = B

mγ
. (1.63)

On the other hand, the system reaches the equilibrium state at an infinite time. And the
energy of the Brownian particle in equilibrium is given by the equipartition theorem

1
2

mv2 =
1
2

kBT. (1.64)

Combining with Eq. (1.63), we obtain

B = kBTγ. (1.65)

This relation is an example of the fluctuation-dissipation theorem, where the strength of
fluctuations B is linked with the dissipation characterised by friction γ.

In the over-damped case, the Langevin equation (1.58) becomes

γ
dx
dt

= FL. (1.66)

By solving this differential equation and taking averages, we obtain a simpler form

〈x(t)〉 = 0 and 〈δx2(t)〉 = 〈x(t)2〉 = 2B
γ2 t. (1.67)

On the other hand, the mean square movement (of one-dimension) is given by

〈δx2(t)〉 = 2Dt, (1.68)
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1.2. Non-equilibrium Thermodynamics 17

where D is the diffusion constant. Combining with Eqs. (1.67) and (1.65), we obtain
D = kBT/γ, the Einstein-Smoluchowski relation [57–59].

The Fokker-Planck approach describes the evolution of the probability distribution.
This approach assumes that the stochastic process is Markovian. And the probability
distribution of a Markov process satisfies

p(x, t + τ) =
∫ ∞

−∞
p(x, t + τ|x′, t)p(x′, t)dx′, (1.69)

where p(x, t) is the probability of finding the particle at x at time t; p(x, t|x′, t′) is the
conditional probability of measuring p(x, t) given that the particle is found at x′ at t′. For
small time differences, we would expect to find the particle close to its position at t′. In
other words, we expect x− x′ = ∆ to be small. We rewrite the integrand in Eq. (1.69), by
first rewriting x′ as x− ∆, and then using the Taylor series to approximate the integrand
around x,

p(x, t + τ|x′, t)p(x′, t) = p(x + ∆− ∆, t + τ|x− ∆, t)p(x− ∆, t)

=
∞

∑
n=0

(−1)n∆n

n!
∂n

∂xn [p(x + ∆, t + τ|x, t)p(x, t)].
(1.70)

The integral is now

p(x, t + τ) =
∞

∑
n=0

(−1)n

n!
∂n

∂xn

(∫ ∞

−∞
∆n p(x + ∆, t + τ|x, t)d∆

)
p(x, t),

=
∞

∑
n=0

(−1)n

n!
∂n

∂xn M(n)(x, t + τ, t)p(x, t),
(1.71)

where M(n)(x, t + τ, t) = 〈(x(t + τ)− x(t))n〉 is the n-th moment of x(t). The Fokker-
Planck equation originates from the truncated version of Eq. (1.71) at order 2. Explicitly,

p(x, t + τ) = p(x, t)− ∂

∂x

(
M(1)p(t, x)

)
+

1
2

∂2

∂x2

(
M(2)p(t, x)

)
, (1.72)

with
M(1) = 〈x(t + τ)− x(t)〉 and M(2) = 〈(x(t + τ)− x(t))2〉. (1.73)

For the over-damped Brownian motion, the first and second moment are given by (1.67).
Then, Eq. (1.72) becomes

p(x, t + τ) = p(x, t) + Dt
∂2

∂x2 p(t, x), (1.74)

which is equivalently
∂p(t, x)

∂t
= D

∂2

∂x2 p(t, x). (1.75)

This equation is exactly Fick’s diffusion equation.
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1.3 Stochastic Thermodynamics and Much More

The central idea of stochastic thermodynamics is to generalise heat, work, and entropy
down to the trajectory level. In this section, we illustrate this idea using the paradigm
model – Brownian motion [9, 56].

Consider again a one-dimensional Brownian motion in a heat bath of temperature T.
Suppose that, in the general case, the system is under a potential field V(x) and driven
by an external force f (x); both of them are under the influence of an external control
parameter λ(t), giving f (x, λ) and V(x, λ). The forces are collected to the term F(x, λ) =

−∂xV(x, λ) + f (x, λ). The trajectory of the particle, measured between t = 0 and t = τ, is
denoted as [x(t)]. In the simplest case, we consider a constant control parameter λ(t) =
λ, and the over-damped motion. The Langevin equation reads

dx
dt

= µF(x, λ) + µFL(t), (1.76)

where µ = 1/γ is the mobility. The first and second moment are given by

M(1) = µFt and M(2) = 2Dt. (1.77)

Therefore, the Fokker-Planck equation is

∂t p(x, t) = −∂x

(
µF(x, t)p(x, t)− D∂x p(x, t)

)
≡ −∂x j(x, t), (1.78)

where j(x, t) is the probability current density.
The first law of thermodynamics (1.15) is generalised to the stochastic level as [9]

d̄win = dU + d̄qdiss. (1.79)

Each quantity is identified as follows. First, the system energy difference is identified as
the change in potential energy

dU = dV =
∂V
∂λ

dλ +
∂V
∂x

dx. (1.80)

Second, the work input is identified from the contribution of λ to the potential, and the
external force f applied to the particle along the trajectory, i.e.,

d̄win =
∂V
∂λ

dλ + f dx. (1.81)

Hence, the dissipated heat is given by

d̄qdiss = d̄win − dU = Fdx. (1.82)

This form is consistent with the physical intuition at the macroscopic level, where the
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1.3. Stochastic Thermodynamics and Much More 19

heat is the total force over a distance. The work and heat over the trajectory [x(t)] are
given by the integration

w[x(t)] =
∫ τ

0

(
∂V
∂λ

λ̇ + f ẋ
)

dt, (1.83)

q[x(t)] =
∫ τ

0
(Fẋ)dt. (1.84)

And the first law over the whole trajectory is

w[x(t)] = ∆U + q[x(t)]. (1.85)

The generalisation of entropy starts from the definition of the system entropy on the
stochastic level,

s(t) ≡ − ln p(x(t), t), (1.86)

where the time dependent x(t) suggests that this is a trajectory specific quantity; p(x(t), t)
is the solution to the Fokker-Planck equation (1.78) restricted to x = x(t). Specifically, the
initial condition is in accordance with that of the trajectory; after obtaining p(x, t), x is
further restricted to the path specific x(t). Taking the time derivative, we have

ṡ(t) = −
(

∂t p(x, t)
p(x, t)

+
∂x p(x, t)

p(x, t)
ẋ
)

x(t)
=

(
j

Tµp
ẋ− ∂t p

p
− F

T
ẋ
)

x(t)
. (1.87)

The subscript x(t) denotes that the solution is evaluated at this trajectory. Next, the en-
tropy exchanged with the environment is identified as the heat dissipation divided by
the heat bath temperature

∆smed[x(t)] ≡
q[x(t)]

T
=
∫ τ

0

Fẋ
T

dt. (1.88)

The last term of Eq. (1.87), therefore, is identified as ṡmed(t). Finally, the entropy produc-
tion rate ṡtot(t) is obtained

ṡtot(t) = ṡ(t)− ṡmed(t) =
(

j
Tµp

ẋ− ∂t p
p

)
. (1.89)

In stochastic thermodynamics, the entropy production rate is linked with the time-
asymmetric part of a trajectory [42]. Using path integrals, the probability of the trajectory
with a fixed initial point x0, [x(t)|x0], is given by

p[x(t)|x0] = N exp[−A([x(t), λ(t)])], (1.90)

with the normalisation factor N and action A

A([x(t), λ(t)]) ≡ 1
4D

∫ τ

0
dt[(ẋ− µF)2 +

µ

2
∂xF]. (1.91)
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It turns out that the action of the inverse trajectory x̃(t) driven by the inverse protocol
λ̃(t) is linked with the action of the forward trajectory,

A([x̃(t), λ̃(t)])−A([x(t), λ(t)]) =
1
T

∫ τ

0
dtẋF = ∆smed[x(t)]. (1.92)

In other words,
p[x̃(t), λ̃(t)|x̃0]

p[x(t), λ(t)|x0]
= e−∆smed[x(t)] = e−∆q[x(t)]/T, (1.93)

the probability of the inverse trajectory (with the initial point x̃0 = x(τ)), relative to
the probability of the forward trajectory, is measured by the heat dissipation along the
forward trajectory. This equation is an example of the (detailed) fluctuation theorem.
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Chapter 2

Storage of Energy in Constrained
Systems

2.1 Introduction: Energy Storage and the First Hypothesis

Nonequilibrium systems can store energy in steady states. This energy storage originates
from the non-zero heat flow (linked to the entropy production rate) that is ever-present in
the nonequilibrium systems [28, 60]. This quantity has become important to the study of
nonequilibrium physics. However, energy storage and its interplay with heat flow have
been overlooked.

Focusing on nonequilibrium steady states (NESS), we define the energy storage as the
energy difference between the system energy in this steady state U and its equilibrium
value Ueq, ∆U ≡ U −Ueq. Additionally, as stated previously, a constant heat flow JU is
present in this steady state. This heat flow is necessary for maintaining the system out of
equilibrium. In this chapter, we will study nonequilibrium steady states via the lens of
these two quantities.

In this chapter, we will address two issues in particular. First, we study energy storage
under various methods of energy supply. These driving methods will be referred to
as protocols in the following sections. These protocols are chosen to reflect common
physical realizations. From the details of the driving protocols, we obtain the energy in
steady states U and the energy input rate Ėin, either analytically or numerically. We will
show that energy storage depends not only on the amount of energy supply, but also on
the details of the protocol.

Second, we propose a hypothesis of variational principle. This is the first hypothesis
of the thesis. We define a quantity T as the ratio of the stored energy to the heat flow,

T ≡
U −Ueq

JU
. (2.1)

This quantity has a dimension of time. Using the Lennard-Jones simulation (see Sec. 2.2.2),
it is shown that T coincides with the initial characteristic relaxation time for the system
to return to equilibrium. In other words, it coincides with the characteristic time at which
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22 Chapter 2. Storage of Energy in Constrained Systems

the system dissipates its stored energy immediately after the removal of the external en-
ergy supply. Based on this quantity, we propose the following hypothesis,

Hypothesis 2.1.1. T is minimized in nonequilibrium steady states.

To test this hypothesis, we use two approaches that are inspired by the method of ob-
taining equilibrium entropy S. As stated in Section 1.1.1, the maximum entropy principle
states that S ≥ Sconstrained, where Sconstrained is the entropy of the system under any pos-
sible constraints. To obtain equilibrium entropy, practically, one can introduce various
constraints into the system and measure {Sconstrained}. The equilibrium entropy S is then
the maximum of {Sconstrained}.

Our methodology is as follows. First, let us consider the formulation using con-
straints. This formulation will be used frequently in this thesis. We introduce various
constraints into the system and measure the energy storage ∆Ui and the outgoing heat
flow JUi for each subsystem i. The total energy storage and the total outgoing heat flow
are then

∆Utot = ∑
i

Ui −Ueq, (2.2)

Jtot = ∑
i

JUi . (2.3)

We define T for the constrained system as

T1|2 =
∆Utot

Jtot
. (2.4)

Using various test models, we compare T with T1|2. If the hypothesis were true, we
expect to find

T ≤ T1|2. (2.5)

Alternatively, let us consider a second formulation using systems with competing
steady states. For a system that exhibits multiple nonequilibrium steady states, we mea-
sure T for each steady state. If the hypothesis were true, we expect to find the stable
steady state the one with the lowest T ,

Tstable state ≤ {Tsteady states}. (2.6)

We would like to point out that these two approaches, however, should not be con-
sidered as proof. In other words, while a violation of relations (2.5) and (2.6) certainly
disproofs the hypothesis, an agreement with these relations does not verify the hypoth-
esis. Nonetheless, each example in support of the hypothesis is relevant, as it can help
with finding general arguments supporting the hypothesis. Short of proof, this may be
the best scientific method. And in time, as one gains understanding through observa-
tions, the hypothesis evolves as well.
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To summarize our methodology, for each test model, we first define explicitly the
function of the external energy supply. The stored energy and the outgoing heat flow
are thus obtained (analytically or numerically). Next, for systems that exhibit competing
steady states, we measure and compare T for all possible steady states. Otherwise, for
testing systems in general, the first formulation is used. In which case, an internal con-
straint, often an adiabatic wall or a diathermal wall, is introduced into the system. The
same quantities, energy storage and heat flow, are obtained for each subsystem. Finally,
we compare T of the constrained system with the unconstrained system and discuss the
implications.

This chapter is a collection of models used to study energy storage and test Hypoth-
esis 2.1.1. Depending on the nature of the energy delivery method, this chapter is or-
ganized as follows: in Sec. 2, we will present test models under various bulk energy
supplies; in Sec. 3, models are subjected to an external heat flow or matter flow; in Sec. 4,
the energy is delivered periodically and locally. A summary is presented in Sec. 5.

2.2 Systems under Bulk Energy Supply

In this section, we compile models that are subjected to a bulk energy supply. Here,
a bulk energy supply refers to situations when the energy is supplied via an external
energy source and is applied to every point in the system. The primary test systems are
an ideal gas and a Lennard-Jones fluid. In the ideal gas, we analyse five models. And in
the Lennard-Jones fluid, we present the results of three models. A list of the models with
their corresponding protocols is summarized in Table 2.1.

Ideal Gas LJ
Adiabatic Diathermal Adiabatic
σE = λ1 σE = λ1 σE = λ1
σE = λ2T(x) σE = λ2T(x)
σE = λ3ρ(x) σE = λ3ρ(x)
σE = λ1 with k = c

√
T

Table 2.1: List of Models. Adiabatic and Diathermal refer to the type of constraints adiabatic wall
and diathermal wall. σE is the energy source density. Without specification, the heat conductivity k
is taken to be a constant. For the ideal gas under an adiabatic wall, we also study the case where
k = c

√
T.

The author would like to point out that the results of the Lennard-Jones liquid are
reproduced from paper [1], where the simulations were performed by Dr. Litniewski.
These results are presented here to provide a more holistic view.
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2.2.1 Ideal Gas

2.2.1.1 General Analysis

Consider a closed ideal gas model of a fixed number of particles N and volume V, in a
heat bath of temperature T0. The system is driven out-of-equilibrium by a bulk energy
delivery. The energy delivery protocols are realised by the local energy source function
σE(~r), where an amount of energy σE(~r) is delivered at position ~r per unit time. We
remark that σE has the unit of energy per unit volume and unit time.

In steady states, the local energy does not change in time. Therefore, from local energy
conservation (1.39), we have

∇ ·~JE = −k∇2T(~r) = σE(~r). (2.7)

Here, we have assumed Fourier’s law for the local heat flux, as in Eq. (1.51)

~JE(~r) = −k∇T(~r), (2.8)

where k is the heat conductivity and T(~r) is the local temperature. Unless stated other-
wise, we take k as a constant. In kinetic theory, however, the heat conductivity is given
by k ∼

√
T, which we will discuss in case 4.

We further assume local equilibrium. Under this assumption, we extend the ideal
gas law and the equipartition theorem to hold locally in NESS. A discussion of the local
equilibrium assumption can be found in Sec. 1.2.1. Finally, we assume that the pressure
is constant across the system. Since for the ideal gas, the energy density is proportional
to the pressure, the energy density is constant as well. This assumption is based on an
observation from the Lennard-Jones simulations of a gas-liquid system [61]. In this paper,
the authors found that the mechanical force redistribution process is much faster than the
heat flow process. We generalise this idea to an ideal gas in NESS. In other words, we
assume the system to have a constant pressure on the timescale that we focus on – the
timescale at which we observe heat transfer.

To summarize, for an ideal gas in NESS, we assume that the ideal gas law holds locally

P = n(~r)kBT(~r), (2.9)

where P is the pressure, n(~r) is the local particle density with
∫

V d3rn(~r) = N, kB is
the Boltzmann constant which we will take to be unity. From equipartition, the energy
density of a three-dimensional monoatomic ideal gas is proportional to the pressure,

ε ≡ U
V

=
3
2

n(~r)kBT(~r) =
3
2

P. (2.10)

Both P and ε are assumed to be constant across the system.
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From Eq. (2.10), we obtain the energy density by observing that

ε
∫

V

d3r
T(~r)

=
3
2

kB

∫
V

d3rn(~r) =
3
2

kBN =
ε0

T0
V, (2.11)

where ε0 is the energy density at equilibrium, and the last equality comes from the
equipartition theorem ε0V = 3NkBT0/2. Therefore, we obtain the following relation
between the energy density and the temperature profile

ε =
3
2

NkB
1∫

V

d3r
T(~r)

=
ε0

T0

V∫
V

d3r
T(~r)

. (2.12)

And from ε, the energy storage is obtained,

∆U ≡ U −Ueq = (ε− ε0)V. (2.13)

For the models in this section, all energies are supplied through local energy sources.
The rate of energy flowing into the system is given by

Ėin =
∫

V
σE(~r)d3r. (2.14)

In NESS, this rate matches the rate of energy flowing out, Ėin = Ėout. On the other hand,
the outgoing heat flow rate JU is defined as

JU ≡
∫

S
~JE · n̂dS, (2.15)

where S is the surface through which the heat flows out, and n̂ is the unit normal vector.
Without performing work (as is the case for our systems), all energy flows out in the form
of heat. In other words, for systems without performing work, we have

Ėin = Ėout = JU . (2.16)

By introducing geometrical constraints, the system is partitioned into multiple sub-
systems, and the system reaches a new steady state. The constraints are introduced such
that, upon removal, the system returns to the original unconstrained steady state. These
constraints do not change the local relation of ~JE(~r) and T(~r). Also, for each subsystem
i, the definition of the stored energy Ui remains the same. In the following, we will de-
note the variables of subsystem i with subscription −i. In general, the subsystem energy
density will depend on the constraint. However, in all cases, we will keep the overall
number density in each subsystem constant, i.e., Ni/Vi = N/V = n0, where n0 is the
number density at equilibrium. And for each subsystem, we have

∫
Vi

d3rni(~r) = Ni.
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Thus,

εi

∫
Vi

d3r
Ti(~r)

=
3
2

kBNi =
ε0

T0
Vi. (2.17)

As a result, the expression of εi has the same form as (2.12). Explicitly,

εi =
3
2

NikB
1∫

Vi

d3r
Ti(~r)

=
ε0

T0

Vi∫
Vi

d3r
Ti(~r)

. (2.18)

The heat flow of each subsystem JUi , on the other hand, is obtained from the energy
supply (per time) in each subsystem

JUi =
∫

Vi

σE(~r)d3r. (2.19)

The total energy storage for the constrained system is given by Eq. (2.2),

∆Utot = ∑
i

εiVi − ε0V, (2.20)

and the total outgoing heat flow is given by Eq. (2.3). For every case studied in this paper,
we will compare the ratio T1|2 of the constrained system (2.4) with the ratio T (2.1).

In the following, we will show the results of five different ideal gas models where,
as shown in Table 2.1, four models are under the adiabatic constraints, and one model is
under the diathermal constraint.

2.2.1.2 Adiabatic Constraint

case 1. σE = λ1 To further simplify the model, we specify that the ideal gas is three-
dimensional, placed between two diathermal walls of area A (A → ∞), and that the
walls are fixed at x = ±L. The walls will be at temperature T0. In the simplest case,
the energy source is distributed homogeneously over the system with σE(~r) = λ1. As
internal constraints, an adiabatic wall is fixed at x1 ∈ (−L, L). This constraint separates
the system into two subsystems (denoted as 1 and 2) with volumes V1 = A(L + x1) and
V2 = A(L− x1), respectively. A scheme of the system is shown in Fig. 2.1.

Consider first T of the unconstrained system. As the coordinates y and z do not influ-
ence the temperature profile, it is sufficient to consider x−dependence. The temperature
profile T(x) is obtained by solving Eq. (2.7), which now has the form −k∂2

xT = λ1. Using
dimensionless variables λ̃1 = λ1L2/kT0, T̃(x) = T(x)/T0 and normalize x to x̃ = x/L,
we obtain

T̃(x̃) = − λ̃1

2
x̃2 + 1 +

λ̃1

2
. (2.21)
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(a)
1

0-L L x

Figure 2.1: Schemes of (a) unconstrained and (b) constrained ideal gas model under an external
energy supply. The two diathermal walls of area A (A → ∞) and temperature T0 are positioned
at x = ±L. External energy is supplied homogeneously to the bulk with a density λ1. The heat
flux density ~JE flows out of the system through boundaries. In (b), the vertical plane at x = x1
represents the internal constraint, which is an adiabatic wall.

Using Eq. (2.12), we find the energy density to be

ε =
ε0

√
λ̃1(λ̃1 + 2)

2 Arctanh(
√

λ̃1/(λ̃1 + 2))
. (2.22)

As stated above, the outgoing heat flow equals the incoming energy flow, Ėin = 2LAλ =

JU . Combining with Eq. (2.22), we find

T =
∆U
JU

=
ε− ε0

λ1
. (2.23)

In the presence of an adiabatic wall, there are additional boundary conditions at the
wall, namely ∂xTi|x1 = 0 (since there is no heat flux at the constraint). The temperature
profile of each subsystem is given by

T̃1(x̃) = − λ̃1

2
(x̃− x̃1)

2 +
λ̃1

2
(1 + x̃1)

2 + 1,

T̃2(x̃) = − λ̃1

2
(x̃− x̃1)

2 +
λ̃1

2
(1− x̃1)

2 + 1,

(2.24)

where x̃1 is the rescaled x1/L. Next, the subsystem energy densities are obtained,

ε1 =
ε0

2

√
λ̃1(1 + x̃1)2(λ̃1(1 + x1)2 + 2)

Arctanh
√

λ̃1(1 + x̃1)2/(λ̃1(1 + x̃1)2 + 2)
=

ε0

2

√
Λ+(Λ+ + 2)

Arctanh
√

Λ+/(Λ+ + 2)
,

ε2 =
ε0

2

√
λ̃1(1− x̃1)2(λ̃1(1− x̃1)2 + 2)

Arctanh
√

λ̃1(1− x̃1)2/(λ̃1(1− x̃1)2 + 2)
=

ε0

2

√
Λ−(Λ− + 2)

Arctanh
√

Λ−/(Λ− + 2)
,

(2.25)
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where Λ± = λ̃1(1 ± x̃1)
2. Additionally, the total heat flux is not changed by the con-

straint, Jtot = JU = 2LAλ. Eventually, we obtain

T1|2 =
∆Utot

Jtot
=

ε1(1 + x̃1) + ε2(1− x̃1)− 2ε0

2λ1

=
ε0

λ1

(
f1(x̃1) + f2(x̃1)− 1

)
,

(2.26)

where

f1(x̃1) =
(1 + x̃1)

√
Λ+(Λ+ + 2)

4 Arctanh
√

Λ+/(Λ+ + 2)
, (2.27)

f2(x̃1) =
(1− x̃1)

√
Λ−(Λ− + 2)

4 Arctanh
√

Λ−/(Λ− + 2)
. (2.28)

Finally, we compare T1|2 with T . This comparison reduces to the comparison between

f1(x̃1) + f2(x̃1) and f0 =

√
λ̃1(λ̃1 + 2)

2 Arctanh
√

λ̃1/(λ̃1 + 2)
. (2.29)

It is easy to verify that, for all values of λ1, f1(x̃1) and f2(x̃1) lie above their tangent line
at x̃1 = 0, i.e., f1(x̃1) ≥ f1(0) + f ′1(0)x̃1 and f2(x̃1) ≥ f2(0) + f ′2(0)x̃1. Noticing that
f1(0) = f2(0) = f0/2 and f ′1(0) = − f ′2(0), we find f1(x̃1) + f2(x̃1) ≥ f0. Hence, we have
shown T ≤ T1|2 for all values of λ1.

An example of the (normalised) temperature profiles and (normalised) energy storage
comparison is shown in Fig. 2.2. The comparison of the energy storage is equivalent to
the comparison between T , since the total heat flow is the same under constraint.
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Figure 2.2: Comparison between constrained (in red) and unconstrained system (in black) of case
1: ideal gas under a homogeneous energy supply of density λ1. (a) Comparison of temperature
profiles T(x). The vertical dashed line denotes the constraint placed at x = 0.2. T measured in
units of T0 and x in L. (b) Total energy U in steady states plotted against various positions of the
constraint x1. U is measured in units of Ueq and x1 in L. As the heat flow does not change under
constraint, this is equivalent to comparing T and T1|2.
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case 2. σE(~r) = λ2T(~r) We now consider an energy supply scheme where the local en-
ergy source is proportional to the local temperature, σE(~r) = λ2T(~r). Eq. (2.7) is now
−k∂2

xT(x) = λ2T(x), or
d2T
dx2 +

λ2

k
T(x) = 0. (2.30)

The boundary conditions are the same as case 1: T(±L) = T0. And the temperature
profile is,

T̃(x̃) =
cos

(
x̃
√

λ̃2

)
cos

(√
λ̃2

) , (2.31)

where λ̃2 = λ2L2/k is the dimensionless energy supply rate in this case. Since tempera-
ture must be positive, we require that 0 <

√
λ̃ < π/2. For larger values of λ̃, the solu-

tions are not stable. Similarly, using ∂xT|x1 = 0, the temperature profiles of subsystems
are

T̃1(x̃) =
cos

(√
λ̃2(x̃− x̃1)

)
cos

(√
Λ+

) , (2.32)

T̃2(x̃) =
cos

(√
λ̃2(x̃− x̃1)

)
cos

(√
Λ−
) , (2.33)

where Λ± = λ̃2(1± x̃1)
2.

From Eq. (2.12), the energy density is obtained,

ε = ε0

√
λ̃2

cos
(√

λ̃2

)
ln

cos
(√

λ̃2/2
)
+ sin

(√
λ̃2/2

)
cos

(√
λ̃2/2

)
− sin

(√
λ̃2/2

)


. (2.34)

And for the subsystems under a constraint at x = x1,

ε1 = ε0

√
Λ+

cos
(√

Λ+

) 1

ln

cos
(√

Λ+/2
)
+ sin

(√
Λ+/2

)
cos

(√
Λ+/2

)
− sin

(√
Λ+/2

)


, (2.35)

ε2 = ε0

√
Λ−

cos
(√

Λ−
) 1

ln

cos
(√

Λ−/2
)
+ sin

(√
Λ−/2

)
cos

(√
Λ−/2

)
− sin

(√
Λ−/2

)


. (2.36)
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Figure 2.3: Comparison between constrained (red) and unconstrained system (black) of case 2:
ideal gas under energy supply scheme σE(x) = λ2T(x). (a) Comparison between the normalised
temperature profiles T(x). The vertical dashed line is the constraint at x = 0.2. (b) Comparison
between (reduced) T plotted against constraint position x1 (in units of L).

In addition, the outgoing heat flow is obtained using Eq. (2.14),

JU =
AkT0

L
· 2
√

λ̃2 tan
(√

λ̃2

)
. (2.37)

Similarly, for each subsystem,

JU1 =
AkT0

L
·
√

λ̃2 tan
(√

Λ+

)
, (2.38)

JU2 =
AkT0

L
·
√

λ̃2 tan
(√

Λ−
)

, (2.39)

and the total heat flow is

Jtot =
AkT0

L

√
λ̃2

(
tan

(√
Λ+

)
+ tan

(√
Λ−
))

. (2.40)

Eliminating common denominators, the comparison between T and T1|2 becomes

ε̃− 1

tan
(√

λ̃2

) and
ε̃1(1 + x̃1) + ε̃2(1− x̃1)− 2
tan

(√
Λ+

)
+ tan

(√
Λ−
) , (2.41)

where ε̃ = ε/ε0 and ε̃i = εi/ε0. And equivalently, between

tan
(√

Λ+

)
+ tan

(√
Λ−
)

tan
(√

λ̃2

) and
ε̃1(1 + x̃1) + ε̃2(1− x̃1)− 2

ε̃− 1
. (2.42)

Due to the complex form of εi, analytical analysis of this relationship is difficult. Instead,
we perform numerical analysis of T and T1|2 at several λ2 within the valid range. These
results indicate that the inequality T ≤ T1|2 holds. An example of the temperature pro-
files and T of case 2, with and without constraint, is shown in Fig. 2.3.
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case 3. σE(~r) = λ3n(~r) In case 3, we consider a local energy input proportional to the
local particle number density, σE(~r) = λ3n(~r). In this case, Eq. (2.7) becomes

d2T
dx2 +

λ3

k
n(x) = 0. (2.43)

Using the dimensionless variables described previously and the dimensionless energy
supply density λ̃3 ≡ λ3L2n0/kT0, this becomes

d2T̃
dx̃2 + λ̃3ñ(x̃) = 0. (2.44)

Since the local particle density is linked to the local temperature through Eq. (2.10), this
equation is rewritten as

d2T̃
dx̃2 +

λ̃3ε̃

T̃(x̃)
= 0. (2.45)

In general, differential equations of the form T′′(x) + aT−1(x) = 0 can be solved as
follows [62]. First, upon introducing an extra variable y = dT̃/dx̃, the second order
differential equation is reduced into a first order one. This reduction is achieved by rec-
ognizing that d2T̃/dx̃2 = ydy/dT̃, and the original equation becomes

y
dy
dT̃

= − λ̃3ε̃

T̃
. (2.46)

Then, this first order differential equation (with respect to y(T̃)) can be solved as usual.
The boundary condition of Eq. (2.46), due to symmetry of the temperature profile at x̃ =

0, is y(T̃(0)) = dx̃T|x̃=0 = 0. Therefore,

y =
dT̃
dx̃

=


√

2λ̃3ε̃ ln
(
T̃(0)/T̃

)
if − 1 < x̃ ≤ 0,

−
√

2λ̃3ε̃ ln
(
T̃(0)/T̃

)
if 0 < x̃ < 1.

(2.47)

Now, the equation is a first order differential equation with respect to T(x). We would
like to point out that T̃(0)/T̃ ≥ 1, and hence that ln(T̃(0)/T̃) is always non-negative.

Next, we proceed to obtain T̃(x̃). Using separation of variables again, we have

∫ dT̃√
ln(T̃(0)/T̃)

=
∫ √

2λ̃3ε̃dx̃. (2.48)

Let z =
√

ln(T̃(0)/T̃) and rewrite the left hand side as a function of z. Notice that
T̃(z) = T̃(0) exp(−z2) and dT̃ = −T̃(0) exp(−z2)2zdz. The integral becomes

∫
e−z2

dz =

√
π

2
erf(z) =

√
λ̃3ε̃

2T̃(0)2
x̃. (2.49)
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And we obtain the temperature profile,

T̃(x) = T̃(0) exp

[
− erf−1

(√
λ̃3ε̃

2T̃(0)2
x̃

)]
. (2.50)

The above expression contains two unknown quantities, ε̃ and T(0). First, let us con-
sider ε̃. It turns out that it is not necessary to obtain ε from the integration of temperature
profile as before. Instead, integrating Eq. (2.44) over the whole volume, we obtain

dT̃
dx̃

∣∣∣∣x̃=1

x̃=−1
= 2y(1) = 2λ̃3, (2.51)

where we have used
∫

n(x̃)dx̃ = 2n0; dT̃/dx̃ is symmetric at x̃ = ±1; and y(T̃0) = y(1) =√
2λ̃3ε̃ ln(T̃(0)). To simplify notations, we define ω ≡

√
ln T̃(0). Then, ε is linked to T̃(0)

in (2.51) with

ε̃ =
λ̃3

2 ln T̃(0)
=

λ̃3

2ω2 . (2.52)

Next, consider another relation that links ε̃ and T̃(0), Eq. (2.49). Notice that at x̃ = 1,
T̃ = 1 and z = ω; and T̃(0) = exp(ω2). Then, (2.49) can be rewritten as a relation of ω:
the second term becomes

√
π erf (ω)/2; the last term becomes λ̃3 exp(−ω2)/2ω, where

we have substituted Eq. (2.52). Rearrange terms, we get

erf(ω) =
λ̃3√

π

exp(−ω2)

ω
. (2.53)

From this implicit function, ω and hence T̃(0) are obtained numerically. Consequently,
the energy density is obtained using Eq. (2.52). Moreover, using ω, the expression of the
temperature profile (2.50) is simplified to

T̃(x̃) = exp
[
ω2 − (erf−1 (erf(ω)x̃))2

]
, (2.54)

which is also obtained.
Since the total number of particles is fixed, the total heat flow is

JU =
AkT0

L
2λ̃3. (2.55)

Together with the energy density given by Eq. (2.52), we obtain

T =
ε0

n0λ3

(
λ̃3

2 ln T̃(0)
− 1
)
=

ε0

n0λ3

(
λ̃3

2ω2 − 1
)

. (2.56)
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Following the same procedure, the energy density of the subsystem satisfies

ε̃1 =
λ̃3(1 + x̃1)

2

2ω2
1

and ε̃2 =
λ̃3(1− x̃1)

2

2ω2
2

, (2.57)

with ω1 =
√

ln T̃1(x̃1) and ω2 =
√

ln T̃2(x̃1). Their values can be obtained from the
implicit functions

erf(ω1) =
λ̃3(1 + x̃1)

2
√

π

exp(−ω2
1)

ω1
, (2.58)

erf(ω2) =
λ̃3(1− x̃1)

2
√

π

exp(−ω2
2)

ω2
. (2.59)

The total outgoing heat flow remains the same Jtot = JU . Finally,

T1|2 =
ε0

λ3n0

(
(1 + x̃1)

3λ̃3

4 ln T̃1(x̃1)
+

(1− x̃1)
3λ̃3

4 ln T̃2(x̃1)
− 1
)

,

=
ε0

λ3n0

(
(1 + x̃1)

3λ̃3

4ω2
1

+
(1− x̃1)

3λ̃3

4ω2
2

− 1
)

.

(2.60)

An example of the comparison between the constrained and unconstrained system is
shown in Fig. 2.4. Due to the presence of the implicit functions, analytical analysis of the
comparison is difficult. Instead, like case 2, we directly inspect the system at several λ3

and find the inequality T ≤ T1|2 holds in these instances.
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Figure 2.4: Comparison between constrained (red) and unconstrained system (black) of case 3:
ideal gas under energy supply scheme σE(~r) = λ3n(~r). (a) Comparison of the normalised tem-
perature profiles T(x). The constraint is at x = 0.2, denoted by the vertical dashed line. (b)
Comparison between (reduced) T at various constraint positions x1 (in units of L).

case 4. k ∝
√

T from kinetic theory In previous cases, we have assumed the heat con-
ductivity to be constant, k = const. In this case, we consider the heat conductivity given
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by the kinetic theory, k ∼
√

T. From the kinetic theory, we have explicitly [52]

k =
mCV

3
√

2σ
〈v〉, (2.61)

where m is the mass of the particle, CV is the heat capacity, σ is the collision cross section
and 〈v〉 =

√
8T/πm is the averaged velocity. To simplify, we collect all constants into

c = (2/3)CV
√

m/π, and write k = c
√

T. Eq. (2.7) is now

∇ · (−k∇T) = −c
d

dx
(√

T
d

dx
T
)
= σE. (2.62)

Furthermore, by assigning k′ ≡ 2c/3, the equation is simplified to

d2

dx2

(
T3/2)+ σE

k′
= 0. (2.63)

Here, we focus on the simplest case where σE = λ1. The analysis can be applied to other
cases of σE.

As always, to obtain temperature profiles, we rewrite Eq. (2.63) in the dimensionless
form

d2

dx̃2

(
T̃3/2)+ λ̃1 = 0. (2.64)

with λ̃1 = λ1L2/(k′T3/2
0 ). The only difference between Eq. (2.64) with that of case 1 is the

power 3/2. Therefore, the temperature profile is

T̃(x̃) =

(
− λ̃1

2
x̃2 +

λ̃1

2
+ 1

)2/3

, (2.65)

and for subsystems under a constraint at x1 = x̃1L,

T̃1(x̃) =

(
− λ̃1

2
(x̃− x̃1)

2 +
λ̃

2
(1 + x̃1)

2 + 1

)2/3

, (2.66)

T̃2(x̃) =

(
− λ̃1

2
(x̃− x̃1)

2 +
λ̃1

2
(1− x̃1)

2 + 1

)2/3

. (2.67)

The energy densities are obtained with the help of the following integrals

A =
∫ 1

−1

1
T̃(x̃)

dx̃, B =
∫ x̃1

−1

1
T̃1(x̃)

dx̃, C =
∫ 1

x̃1

1
T̃2(x̃)

dx̃. (2.68)

And the energy densities of the system and subsystems are

ε̃ =
2
A

, ε̃1 =
1 + x̃1

B
and ε̃2 =

1− x̃1

C
, (2.69)
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respectively. The integrals A, B, and C are hypergeometric functions, and their values
are obtained numerically. In addition, the total outgoing heat flow is not changed by the
constraint Jtot = JU = 2LAλ1. Now, we have obtained all the quantities needed for T
and T1|2.

Values of T and T1|2 are obtained numerically. Due to the presence of hypergeometric
functions, it is difficult to compare T and T1|2 analytically. We again analyse their values
numerically at several λ1, and results show that T ≤ T1|2. Here, we present results of
two situations, λ̃1 = 0.5 and 15, in Fig. 2.5.
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Figure 2.5: Comparison between constrained (red) and unconstrained system (black) of case 4: an
ideal gas with heat conductivity k = c

√
T and local energy supply rate σE = λ1. (a) Comparison

between the normalised temperature profiles T(x). (b) Comparison between (reduced) T at λ1 =
0.5 and (c) at λ1 = 15. λ1 is measured in units of k′T3/2/L2.

2.2.1.3 Diathermal Constraint

case 5. σE = λ1 with diathermal constraint In this model, we consider again the case
of a homogeneous energy supply. The internal constraint, however, is a diathermal wall.
As a result, the subsystems are now coupled through heat exchange.

In the presence of the diathermal wall, new boundary conditions are introduced at the
constraint. These new conditions are T1(x1) = T2(x1) and dT1(x)/dx|x1 = dT2(x)/dx|x1

for a constraint at x1. In other words, the subsystem temperature profile Ti(x) is not
changed by the constraint, i.e., T1(x) = T2(x) = T(x) in their respective domains. Conse-
quently, the energy densities are

ε1 =
ε0(1 + x̃1)

√
λ̃1(λ̃1 + 2)

2 Arctanh
(√

λ̃1/(λ̃1 + 2)
)
+ 2 Arctanh

(
x̃1

√
λ̃1/(λ̃1 + 2)

) , (2.70)

ε2 =
ε0(1− x̃1)

√
λ̃1(λ̃1 + 2)

2 Arctanh
(√

λ̃1/(λ̃1 + 2)
)
− 2 Arctanh

(
x̃1

√
λ̃1/(λ̃1 + 2)

) . (2.71)

In addition, the total outgoing heat flow is not changed by the constraint, JU1 + JU2 =

JU = 2LAλ1.
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Combining the above relations, we obtain T1|2 through

T1|2 =
ε1(1 + x̃1) + ε2(1− x̃1)− 2ε0

2λ1
. (2.72)

And the expression of T has been obtained in Eq. (2.23). The comparison between T and
T1|2 reduces to the comparison of

ε and
ε1(1 + x̃1)

2
+

ε2(1− x̃1)

2
. (2.73)

Let us assume that ε ≤ (ε1(1 + x̃1) + ε2(1− x̃1))/2. Dividing both sides by ε gives,

1 ≤ (1 + x̃1)
2

2 + 2a
+

(1− x̃1)
2

2− 2a
, (2.74)

where a = Arctanh(x̃1

√
λ̃/(λ̃ + 2))/ Arctanh(

√
λ̃/(λ̃ + 2)). We note that for x̃1 ∈ (−1, 1),

a ∈ (−1, 1), and hence the common denominator is positive, (2 + 2a)(2− 2a) ≥ 0. Mul-
tiplying both sides of Eq. (2.74) by this common denominator and rearranging terms, we
obtain

0 ≤ (a− x̃1)
2, (2.75)

which is always true. Hence, we have verified for all values of λ1 that T ≤ T1|2. This
model supports Hypothesis 2.1.1.

2.2.2 Lennard-Jones Fluid

The assumptions of local equilibrium and constant pressure are central to our analysis
of the ideal gas model. But how accurate are these assumptions? To test the validity of
our analytical results of the ideal gas model, we compare our results with the simulation
results of a Lennard-Jones system. The results in this section are reproduced from [1].

In reference [1], a Lennard-Jones system under external energy supply is simulated
using molecular dynamics (MD). In MD simulations, particles evolve according to Newto-
nian equations of motion, and physical quantities are obtained through direct time av-
erages. Therefore, in this simulation method, no assumptions are made regarding local
equilibrium, constant pressure, or constant heat conductivity. Nevertheless, the authors
observe that the system stays close to local equilibrium. A violation of the local equilib-
rium assumption is expected when the system experiences an energy flow much faster
than the local energy distribution rate, such as a shock wave.

The parameters of the simulation system are as follows. The system has a fixed num-
ber of particles N = 266, 240, with a fixed volume of dimensions Lx = Ly = 35.22 and
Lz = 281.76 in the x, y and z−axis. Here, all lengths are measured in units of r0 = 0.35nm.
Periodic boundary conditions are applied in x and y directions. The boundary temper-
atures are kept at T0 = 0.8, in units of ε/kB which is set to 120K. In addition, as the
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2.2. Systems under Bulk Energy Supply 37

internal constraint, a thin wall of width ∆ = 4.4 is present in the system. This constraint
separates the system into two subsystems of length L1 and L2. The constants are chosen
such that they correspond to the experimental results of liquid argon [63]. A schematic
representation of this system is shown in Fig. 2.6.
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in energy flux JU2
  

Figure 2.6: Scheme of Lennard-Jones simulation system. The system has dimensions of Lx =
Ly = 35.22 and Lz = 281.76 denoted as 2L. Lengths are measured in units of r0 = 0.35nm. The
walls at the boundaries are of width b0 = 2.2. The internal constraint is of width ∆, separating
the system into subsystems of width L1 and L2. Energy is dissipated through the boundaries,
denoted as JU1 and JU2 . Figure reproduced from [1].

Particles interact via the shifted Lennard-Jones potential [64]

u(rij) =


4

(
1

r12
ij
− 1

r6
ij

)
− u(rc) rij ≤ rc,

0 rij > rc,

(2.76)

where rij is the distance between a pair of particles i and j, and all energies are measured
in units of ε = 120kB. This potential is truncated and shifted, such that the potential
is 0 beyond a cut off distance rc = 2.5. The particles interact with the boundary walls
repulsively, via potential

u(z) = (z− z0)
2 · θ(∓(z− z0)), (2.77)

where θ is the Heaviside function; z0 is the position of the external boundaries with z0 = 0
and 2L for the left and right boundary, respectively; the coefficient in θ is −1 for z0 = 0
and +1 for z0 = 2L. We remark that at the thickness of the constraint ∆, the particles do
not interact. Hence, the constraint is effectively adiabatic.

In total, simulations are performed for three methods of energy input, corresponding
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to case 1, 2 and 3 of the ideal gas model in Sec. 2.2.1.2. In each case, the total energy
flowing into the system is kept constant regardless of the position of the constraint, i.e.,
JU = JU1 + JU2 . Additionally, JU is kept the same for all three cases for later comparison.

Energies are added every 10 time steps (time step measured in units of (mr2
0/ε)1/2 ≈

2.16 × 10−12s) in the following manner. For case 1, where the energy input is homo-
geneous σE = λ1, the total amount of kinetic energy is separated proportional to the
subsystem volume, then distributed equally among the particles. For case 2, where the
local energy source is proportional to the local temperature σE = λ2T(~r), each particle
receives a kinetic energy that is proportional to its current kinetic energy. Finally, for case
3, where the local energy source is proportional to the local particle density σE = λ3n(~r),
each particle receives the same amount of energy.

Simulation results are shown in Fig. 2.7. The figure is taken from paper [1]: panels
(a)-(b) are in the supplementary; panels (c)-(e) are in Fig. 2 of the paper. All quanti-
ties are presented in dimensionless forms with units described previously. First of all, a
comparison between temperature profiles under different protocols, three cases from the
Lennard-Jones simulation and three cases from the ideal gas model, are shown in panel
(a). The analytical results are with fitted λi, i = 1, 2, 3, such that T(0) matches the tem-
perature at 0 from the simulation results. Qualitatively, the simulation results agree with
the analytical results. Second, the total energy storage (per particle) is shown in panel (c).
These results show that ∆U = ∆Utot(L1 = L) ≤ ∆Utot, in agreement with the hypothesis
T ≤ T1|2.

In addition, to better understand the physical meaning of T , authors in [1] also mea-
sure the energy relaxation of subsystem 1 after the shut-down of the external energy
supply. Specifically, Fig. 2.7 (b) shows that the energy storage of subsystem 1 decays
exponentially, initially; (e) shows that, except for small Li, the decay time T (of subsys-
tem 1) approximates 2∆U1/JU1 . These two results show that the initial energy decay
(of subsystem 1) follows exp(−t/T ), where T = 2∆U1/JU1 . Factor 2 appears because
the subsystem energy dissipates via only one boundary. Therefore, the authors conclude
that in the general system with energy storage ∆U and total heat flow JU , the initial decay
time is given by T = ∆U/JU . Finally, panel (d) remarks that the energy storage is not
extensive.
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Figure 2.7: Reproduced from [1]. (a) Scaled temperature profiles in steady states under three
methods of energy supply: case 1, σE = λ1 (red triangles); case 2, σE = λ2T(z) (black circles);
case 3, σE = λ3n(z) (green squares). Simulation results are shown in symbols; analytical results
of the ideal gas are shown in lines of the same colour. The coefficients λi, i = 1, 2, 3 are chosen
such that T(z) matches the simulation results at z/L = 0. (b) Initial decay of the energy storage
of subsystem 1 per particle, ∆u1, as a function of time t after shut-down of the energy flux into
the system. Time is measured in units of (mr2

0/ε)1/2 ≈ 2.16× 10−12s. (c) Total energy storage per
particle plotted against the (normalised) size of subsystem 1, L1. (d) Energy storage per particle
of subsystem 1 plotted against L1. Energy is measured in units of (L1/2L)2. (e) Characteristic
time T as a function of the size of subsystem 1.
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2.3 Systems under Flow

In the previous section, we have described models subjected to bulk energy supplies. In
this section, we will present models driven by an external energy flow. This energy flow
can come in the form of heat or matter.

We consider three models, each based on a distinct system. In the first case, we con-
sider an ideal gas driven by an external heat flow. In the second case, we consider a
Poiseuille flow – a fluid system driven by a matter flow. In the final case, we present the
simulation results of a two-dimensional Rayleigh-Bénard system, a fluid system driven
by an external heat flow and under gravitation.

The author would like to point out that, as with the results in Sec. 2.2.2, the results of
the Rayleigh-Bénard system is reproduced from [1], where the simulation is performed
by the group of Prof. Banaszak. Again, these results are presented here for a more holistic
view.

2.3.1 Heat Flow in Ideal Gas

2.3.1.1 Set-up

Consider a three-dimensional ideal gas confined between two walls. The walls are kept
at different temperatures T1 and T0 with T1 ≥ T0. This temperature gradient generates a
constant heat flow across the system. The system reaches nonequilibrium steady states
without the need for a bulk energy supply, i.e., σE(~r) = 0. Therefore, the equation for
obtaining temperature profile (2.7) is now a Laplace equation

∇2T(~r) = 0. (2.78)

The system is closed with a fixed number of particles N and volume V. The walls are
of a large areaA = H× Z with height H and width Z, and are placed at x = 0 and x = L.
The volume is hence V = A× L. A scheme of the system is shown in Fig. 2.8 (a).

As internal constraints, adiabatic walls with predefined shapes are used. At first, one
may consider choosing the horizontal surface at x = y = 0 as the constraint. Yet, since
this constraint does not alter the temperature profile, it does not change the total heat flow
JU . However, in this section, we intend to study models where JU can be altered by the
constraint. Therefore, the constraint is chosen with particular shapes that can modify JU .
Additionally, these configurations need to satisfy two criteria. First, all constraints needs
to be fixed at the line (x, y, z) = (L/2, 0, 0) + t(0, 0, 1). Thereby the resulting subsystems
are symmetric. Furthermore, they need to ensure a non-zero heat flow in each subsystem.
In other words, each subsystem is always in contact with both boundaries.

Under the above considerations, we consider three configurations which we refer
to as vertical, linear, and cosine. In verticle, the constraint extends from left to right in a
zigzag manner. The parameter that we can adjust is the height of the wall h. In linear,
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Figure 2.8: Schemes of (a) unconstrained and (b)(c)(d) constrained ideal gas systems under an
external heat flow. Two diathermal walls are placed at x = 0 and L, kept at temperatures T1
and T0, respectively. The constraints are adiabatic walls, denoted in black. In (b), the constraint
has a height h and extends from (0, h/2) to (L/2, h/2) to (L/2,−h/2) to (L,−h/2). In (c), the
constraint has a slope b and stretches from (0,−bL/2) to (L, bL/2). In (d), the constraint is in the
shape of a cosine function of wavenumber k̂. It extends from (0, H/2+π/2k̂) to (0, H/2−π/2k̂),
corresponding to phase (0, π). The red arrows denote the heat flux.

the constraint is a flat surface with an adjustable slope b. In cosine, the shape of the
constraint is a cosine function between phase (0, π). In this way, it connects smoothly
to the boundaries. The parameter to adjust is the wavenumber k̂. These constraints are
explicitly expressed as

vertical: y =
h
2
− h · θ(x− L

2
),

linear: y = b(x− L
2
),

cosine: x =
L
2

cos
(

k̂(y− H
2
) +

π

2

)
+

L
2

,

(2.79)

wherein vertical, θ(x) is the Heaviside function; in cosine, the function is valid within the
range,

y ∈
(

H
2
− π

2k̂
,

H
2
+

π

2k̂

)
. (2.80)

Schemes of these constraints are shown in Fig. 2.8.
The energy storage and the total heat flow of the unconstraint system are straight-

forward. The temperature profile depends solely on x, T(~r) = T(x). Eq. (2.78) is now
∂2

xT(x) = 0, with boundary conditions T(0) = T1 and T(L) = T0. Solving this equation,
we have

T(x) =
T0 − T1

L
x + T1, (2.81)

i.e., the temperature profile is linear. The energy density (2.12) is hence,

ε = ε0
T̃1 − 1
ln T̃1

, (2.82)
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where T̃1 = T1/T0.
The heat flow is obtained using Eq. (2.15), where we need the expressions of the local

heat flux ~JE and the normal of the enclosing surface n̂. The normal of the left and right
boundary is n̂ = (−1, 0, 0) and (1, 0, 0) respectively. The local heat flux is given by

~JE(~r) = −k
(

∂xT(~r), ∂yT(~r), ∂zT(~r)
)

, (2.83)

where k is the heat conductivity, same as before. Since we have set T1 ≥ T0, the heat flows
from the left boundary to the right boundary. Moreover, since all incoming and outgoing
energy of the system is in the form of heat, the total heat flow JU can be calculated at
either boundary,

Ėin = Q̇in = k
∫

Z
dz
∫

Y
∂xT(~r) |x=0 dy,

Ėout = Q̇out = k
∫

Z
dz
∫

Y
∂xT(~r) |x=L dy.

(2.84)

For the unconstrained case, this gives

JU =
kAT0

L
(T̃1 − 1). (2.85)

Together with Eq. (2.82), we obtain

T =
L2

kT0

ε0

ln T̃1
. (2.86)

We now present general expressions for ∆U and JU of the constrained system. For the
constrained system, generally, the temperature profile depends on both x, y-coordinate,
T(~r) = T(x, y). To obtain this temperature profile is to solve the 2-dimensional Laplace
equation ∇2T(x, y) = 0 with the following boundary conditions,

T1(0, y) = T1, T2(0, y) = T1,

T1(L, y) = T0, T2(L, y) = T0,

T1(x,−H
2
) =

T0 − T1

L
x + T1, T2(x,

H
2
) = T2(x,−H

2
),

∂n̂T1(x, y) |y=w(x)= 0, ∂n̂T2(x, y) |y=w(x)= 0,

(2.87)

These boundary conditions are: Dirichlet boundary conditions at the left and right bound-
aries x = 0 and L, since the system is in contact with the plates; Dirichlet boundary condi-
tions at y = ±H/2, as the system is bounded adiabatically at the top and bottom plates;
Neumann boundary conditions at the constraints w(x) (expressions given by Eq. (2.79)),
since the constraints are adiabatic, where n̂ is the normal of the constraints.

The above Laplace equation is solved numerically using the finite element method (FEM).
We will explain this method in the following subsection. For now, let us assume that we
have already obtained the temperature profile T(x, y) numerically. From this, the energy
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storage is again calculated using Eq. (2.18) with numerical integration. And the total
heat flow Jtot is calculated according to Eq. (2.84). The integration can be separated into
integrals over each subsystem, explicitly written as

Jtot = JU1 + JU2 = kZ
∫ y∗0

−H/2
∂xT1(x, y) |x=0 dy + kZ

∫ H/2

y∗0
∂xT2(x, y) |x=0 dy,

= kZ
∫ y∗L

−H/2
∂xT1(x, y) |x=L dy + kZ

∫ H/2

y∗L
∂xT2(x, y) |x=L dy,

(2.88)

where y∗0 and y∗L are the crossing points between the constraint and the left and right
boundary, respectively.

2.3.1.2 Finite Element Method

The finite element method (FEM) is the most powerful method for solving differential equa-
tions and variational problems numerically. It can be applied to problems defined on
arbitrary domains, arbitrary dimensions, and complex boundary conditions. It is thus
widely used in mathematics and physics. It is also widely used in industrial applications,
ranging from automobile and aerospace industries, to pharmaceutical and biotechnolog-
ical industries [65–67].

To explain the basic idea behind FEM, let us look at an example. Consider a simple
one-dimensional time independent differential equation that one would like to solve [65],

u′′(x) = f (x). (2.89)

We intend to find the best approximation function ũ(x) in the functional space with basis
φi(x). The approximate function ũ(x) is a combination of chosen basis functions φi(x)

ũ(x) =
N

∑
i

aiφi(x). (2.90)

This gives a residual
R(x) = ũ′′(x)− f (x). (2.91)

The problem of finding the best approximation then becomes the problem of finding the
least residual.

Various methods can be employed to minimize the residual, such as the least square
method, collocation method, and the Galerkin method [65]. We briefly introduce the
Galerkin method here, as it is frequently used. In this method, using a series of test
functions wi(x) with i = 1, · · · , N, the problem of minimizing the residual is equivalently
formalised to solve a series of ∫

R(x)wi(x)dx = 0, (2.92)
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for the N unknown variables ai. In general, one can simply choose the basis functions as
the weighted functions. Then the above integration functions can be rewritten using the
inner product ( f , g) ≡

∫
f gdx,

(
ũ′′ − f , φi

)
=
(
ũ′′, φi

)
− ( f , φi) = ∑

j
aj

(
φ′′j , φi

)
− ( f , φi) = 0. (2.93)

Using integration by parts, the second order derivative can be reduced to(
φ′′j , φi

)
=
(

φ′j, φ′i

)
− [φ′jφi]

L
0 . (2.94)

Let us assume for simplicity, that the boundary conditions are such that [φ′jφi]
L
0 = 0.

Then, the weighted residual equations can be written in the matrix format,

∑
j

ajAij − bi = 0 or ~aA−~b = 0 (2.95)

with the matrix elements Aij =
(

φ′j, φ′i

)
and vector components bi = ( f , φi) that concern

only the basis functions and f .
The weighted residual method can be applied to an arbitrary region. However, using

basis functions φi that are defined on the whole region of interest may result in large
errors. FEM improves on this aspect by breaking any region into smaller regions called
finite elements. Instead of global polynomials ψi(x), finite element basis functions φi(x)
are used. These basis functions are chosen such that they are only non-zero in a few of
these elements (locally), and zero otherwise. An example of such basis functions is the
Lagrange polynomials. Within each finite element, the solution function is approximated
using the residual minimization method explained above. Finally, solutions in each finite
element are combined to obtain the global solution.

Modern implementation of FEM often automated much of the process of generating
mesh and obtaining the final approximation function through residual minimization. In
this section, we use FEM implemented in Mathematica to obtain the temperature profiles
numerically.

2.3.1.3 Results and Discussions

The temperature profiles of the constrained systems are obtained using FEM. From these
profiles, we obtain the energy storage and heat flow using Eqs. (2.18) and (2.88). Exam-
ples of the temperature profiles are shown in Fig. 2.9.

The results of temperature profiles are subjected to numerical errors. The errors may
come from two sources. The first major source of error is the conflicting boundary condi-
tions, either at the crossing points between the constraint and external boundaries or the
turning points of the constraint. To aid our explanation, in the schematic plot Fig. 2.10,
each vertex on the graphs of the six subsystems – three different configurations, each
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Figure 2.9: Contour plots of subsystem temperature profiles T(x, y) under three constraint config-
urations. (a) Results under constraint vertical. The system is of size (L, H) = (10, 60); the height of
the constraint is h = 10; the temperatures at the left and right boundaries are T1 = 10 and T0 = 2,
respectively. (b) Results under constraint linear. The system size is (L, H) = (10, 60); the slope of
the constraint is b = 1; T1 = 10 and T0 = 2. (c) Results under constraint cosine. The system size is
(L, H) = (10, 100); the wavenumber of the constraint is k̂ = 0.8; T1 = 10 and T0 = 1.

with two subsystems – is denoted with vi. The crossing points of all configurations are
denoted as v1 and v4. For configuration vertical, there are additional turning points de-
noted with v5, v6.

Consider first the subsystems under constraint linear. At v1 and v4, heat fluxes are
required, by the Dirichlet boundary conditions Ti = const, to be normal to the edge,~JE ∝
(1, 0, 0). The heat flux, however, is also required, by the Neumann boundary condition
at the constraint, to flow along the constraint ~JE ∝ (1, b, 0). This conflict results in the
numerical errors of T(x, y) around v1 and v4. Similarly, numerical errors occur around
the same regions for cosine. For vertical, since the constraint at v1 and v4 are normal to the
boundaries, the heat flux directions agree. Errors appear, however, at v6 and v5, where
the sharp turning of the constraint results in conflicting heat flux directions.

v2 v3

v4

v4

v1

v5v6v1

v3

v4

v1

v5v6

v1

v4

v2

v1

v6

v5 v4

v7v8v1

v3

v4

v5

v6

v2

Figure 2.10: Schematics of graphs of subsystems under constraint configurations linear, vertical,
and cosine. Each node is denoted with vi.

Practically, using FEM, we observe that errors at these vertices are influenced by the
angles. Errors at obtuse angles are larger than at acute angles, and are negligible for some
acute angles. An example of the normal heat flux along the linear constraint ∂n̂T(x, y) is
shown in Fig. 2.11. One possible reason for the relation between error and angle is the
size of the mesh. When the angle is small, the number of meshes in the region is small.
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Since the variation of temperature profile within each region is small, it leaves little room
for "overfitting". For obtuse angles, however, more meshes are present. Temperature
profiles closer to each edge will "adapt" to the boundary condition on that edge. This may
result in large temperature fluctuations in the region between the edges, and therefore
large errors. Another way of interpretation is that, in the situation where conflicting
boundary conditions are present, overfitting is not desirable. Obtuse angles are more
likely to "overfit", which results in larger errors.

0 2 4 6 8 10
x

0

0.5

1

1.5

2
∆

n
T

subsystem 1
subsystem 2

Figure 2.11: Numerical values of the normal heat flux along the adiabatic constraint ∇n̂T. The
model is under constraint configuration linear with slope b = 0.5. The dimension of the whole
model is L = 10, H = 100. The left and right boundary temperature are T1 = 10.0 and T0 = 1.0,
respectively.

Another source of error may come from the finite size effect. To estimate T in the
thermodynamic limit, the range of parameters needs to be restricted to regions where
this effect is negligible.

Due to the above-mentioned sources of error, it is important to obtain a valid range
of parameters (with acceptable errors) for each model, before obtaining the final results
of T . Let us consider the first kind of numerical errors (the second kind of error will
be discussed later). We notice that this source of error causes a discrepancy between JUi

calculated from the left and right boundary, JUi |x=0 and JUi |x=L. A measure of error is
defined from this discrepancy:

error1 =
JU1 |x=L − JU1 |x=0

JU1 |x=0
and error2 =

JU2 |x=L − JU2 |x=0

JU2 |x=0
. (2.96)

In this section, we examine a variety of test models. Specifically, for constraints linear
and vertical, we study models of dimensions L = 10, H = 60, 80, 100, 150, 180, 200, 400 and
600; for cosine, models of dimensions L = 10, H = 80, 100, 120. In addition, the boundary
temperatures of these models are set to T1 = 10.0 and T0 = 1.0. For each model, errori is
evaluated at different parameter values, and the valid range of the parameter is restricted
to errori ≤ 1%. Results of errori are shown in Fig. 2.12, and the corresponding valid range
of the parameters is listed in Table 2.2.

The scaled energy storage ∆Utot/V, scaled total heat flow Jtot/A, and T1|2 are eval-
uated at the scaled parameters x, where x represents h/H, b/H, and 1/k̂H for vertical,
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Figure 2.12: Error analysis of various models under three types of constraint configurations. The
errors are plotted against the parameter of the constraints: height h for constraint vertical; slope b
for linear; the inverse of wavenumber 1/k̂ for cosine. Errors are shown in percentages.

ver and lin
L, H range h range b

10, 60 [0, 40) [0, 2)
10, 80 [0, 60) [0, 3)
10, 100 [0, 80) [0, 4)
10, 150 [0, 130) [0, 5)
10, 180 [0, 160) [0, 8)
10, 200 [0, 180) [0, 10)
10, 400 [0, 380) [0, 29)
10, 600 [0, 580) [0, 48)

cos
L, H range 1/k̂

10, 80 (0, 4.6)
10, 100 (0, 4.2)
20, 120 (0, 2.4)

Table 2.2: List of valid parameter ranges of different models. Each model is specified with length
L, height H, and the valid parameter range of its internal constraint: range of height h for con-
straint configuration vertical; range of slope b for vertical; range of wavenumber (inverse) 1/k̂ for
cosine.

linear, and cosine constraint, respectively. Results under these three types of constraints
are shown in Fig. 2.13, 2.14, and 2.15, respectively. Each curve corresponds to a specific
model whose size is denoted in the legend. In each figure, the parameters vary within
the range in Table 2.2. For linear and vertical, each figure has an inset, showing results in a
broader range. In all evaluated models, results show that T1|2(x) ≥ T1|2(0). Furthermore,
T of the unconstrained system is the same as that of the constrained system under an
equal partition, i.e., T1|2(0) = T . Therefore, for all tested models T ≤ T1|2, in accordance
with Hypothesis 2.1.1.

It is worth pointing out that the results ∆Utot/V can be used to discuss the error due
to the finite size effect, the second source of error. The finite size effect can be observed
from scaled functions: regions influenced by this effect will show data separation; regions
unaffected will show data collapsing. For constraint vertical, Fig. 2.13 (a) shows that,
except the model of dimension L = 10, H = 60, data collapse well over the whole range
of h/H. And for linear, Fig. 2.14 (a) shows data collapsing over the whole range of b/H
for models of dimensions L = 10, H = 400, 600. For cosine, the models examined are
relatively small, and Fig. 2.15 (a) shows data collapsing over the range 1/k̂H < 0.01. For
models with larger H, however, we expect data collapsing over the full range of 1/k̂H,
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same as in vertical and linear. Nevertheless, this second source of error does not influence
our conclusion of T ≤ T1|2, since T1|2 is monotonic for all models within the valid range.

0 0.2 0.4 0.6 0.8 1
h/H

2.5

3

3.5

4
∆

U
to

t/V 10x60
10x80
10x100
10x150
10x180
10x200
10x400
10x600

vertical

0 0.5 1
2

3

4

5

(a)

0 0.2 0.4 0.6 0.8 1
h/H

0

0.2

0.4

0.6

0.8

1

J
to

t/A 10x60
10x80
10x100
10x150
10x180
10x200
10x400
10x600

vertical

0 0.5 1
0

0.5

1
(b)

0 0.2 0.4 0.6 0.8 1
h/H

0

500

1000

∆
U

to
t /

 J
to

t

10x60
10x80
10x100
10x150
10x180
10x200
10x400
10x600

vertical

0 0.5 1
0

1000

2000

3000

(c)

Figure 2.13: Plots of (a) total energy storage per unit volume ∆Utot/V, (b) total outgoing heat
flow per unit area Jtot/A, and (c) their ratio T1|2 = ∆Utot/Jtot against the normalised height h/H
of constraint type vertical. Each panel is evaluated for six different system sizes of heights H = 60,
80, 100, 200, 400 and 600, and a fixed-length L = 10.
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Figure 2.14: Plots of (a) total energy storage per unit volume ∆Utot/V, (b) total outgoing heat
flow per unit area Jtot/A, and (c) their ratio T1|2 = ∆Utot/Jtot against the normalised slope b/H
of constraint type linear. Each panel is evaluated for six different system sizes of heights H = 60,
80,100, 200, 400 and 600, and a fixed-length L = 10.
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Figure 2.15: Plots of (a) total energy storage per unit volume ∆Utot/V, (b) total outgoing heat
flow per unit area Jtot/A, and (c) their ratio T1|2 = ∆Utot/Jtot against the scaled inverse of
wavenumber 1/k̂H of constraint type cosine. Each panel is evaluated for three different system
sizes of heights H = 80, 100, and 120 and a fixed-length L = 10.
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2.3.2 Matter Flow in Fluid: Hagen-Poiseuille Flow

We now consider the Hagen-Poiseuille flow model. This model is an extensively studied
fluid model driven by matter flow [68]. Following the general settings, a fluid is placed
between two parallel planar walls located at y = ±h. A constant pressure gradient is
applied along the x-axis, i.e., ∂xP(x) = −P. This pressure gradient results in a constant
matter flow that drives the system to nonequilibrium steady states. In addition, the fluid
is assumed to be incompressible, the flow laminar. Both walls are kept at temperature T0

and assumed to be non-slip. As the constraint, an adiabatic slip wall is introduced into
the system. The constraint is placed at y = y1, 0 ≤ y1 ≤ 1. A scheme of the system is
shown in Fig. 2.16.

(a)
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J

J
-h

h

P(x)

A

A

T0

T0 y

0

J

J
-h

h

P

T0
A

A

Figure 2.16: Schemes of (a) unconstrained and (b) constrained Poiseuille flow. The system is
bounded by two plates of a fixed temperature T0 and area A, placed at y = ±h. A constant
pressure gradient is applied across the system. In (b), the system is divided by an adiabatic slip
wall placed at y = y1.

The properties of a Poiseuille flow between two parallel plates are well studied and
have been derived in various textbooks [68]. Next, we will recapture the derivation of
some of these quantities, which we will use to calculate the energy storage and heat flow.

We start by obtaining the velocity profile from the Navier-Stokes equation. In fluid
mechanics, the central quantity is the velocity profile. The fluid flows along the x-axis
and is y dependent, i.e., ~v = (v(y), 0, 0). The Navier-Stokes equation becomes

∂2v
∂y2 = −P

µ
, (2.97)

where µ is the viscosity. Given the non-slip conditions at the boundaries v(±h) = 0, we
find

v(y) =
P

2µ
(h2 − y2). (2.98)
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Second, with the velocity profile, we explicitly write the stress tensor and the tensor
of the rate of deformation

τ =

−P µ ∂v
∂y

µ ∂v
∂y −P

 , d =

 0
1
2

∂v
∂y

1
2

∂v
∂y 0

 . (2.99)

The dissipation density function, defined as φ ≡ ∑ij τij∂ivj, is obtained

φ = µ(∂yv)2 =
P2

µ
y2. (2.100)

This quantity governs the rate at which the mechanical energy of the flow is converted to
heat. And the outgoing heat flow JU is obtained by integrating the dissipation over the
whole system,

JU = A
∫ h

−h
φdy = V

P2h2

3µ
, (2.101)

where A is the area of the plates and V = A× 2h is the volume of the system.
Next, we assume that the heat transfer obeys Fourier’s law as usual. This links the

temperature gradient to the dissipation density function,

− k
∂2T
∂y2 = φ, (2.102)

where k is the heat conductivity like before. Together with boundary conditions T(±h) =
T0, we obtain the temperature profile,

T(y) =
P2

12µk
(h4 − y4) + T0. (2.103)

We now have all the ingredients to calculate the energy storage of the system. The
total energy of the system consists of the total kinetic energy and the total internal energy.
First, the total kinetic energy is given by

Ek =
∫

V

1
2

ρ0~v(~r)2dr3

=
ρ0A

2

∫ h

−h
v2(y)dy = V

ρ0P2h4

15µ2 ,
(2.104)

where ρ0 is the density at equilibrium. Next, the local internal energy density is given
by ε(~r) = 3n0kBT(~r)/2 with the Boltzmann constant kB and number density n0. This
expression originates from the local form of the ideal gas law (2.10), where the number
density is now a constant since the fluid is incompressible. Therefore, the total internal
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energy is given by,

Eu =
∫

V

3
2

n0kBT(~r)dr3

=
3
2
An0kB

∫ h

−h
T(y)dy = V

n0kBP2h4

10µk
+

3
2

Vn0kBT0,
(2.105)

where the number density n0 = ρ0/m, with m the mass of a single atom or molecule.
Finally, combining Eq. (2.104), (2.105), and (2.101), we obtain

T =
∆U
JU

=
Ek + Eu − Eu0

JU
= n0h2

(
m
5µ

+
3kB

10k

)
. (2.106)

Following the same procedure, we now repeat the calculation for the system un-
der constraint. The velocity vector for subsystem 1 and 2 is given by (v1(y), 0, 0) and
(v2(y), 0, 0), respectively. Since the constraint is an adiabatic slip wall, we have addi-
tional boundary conditionsdv1/dy |y=y1= 0, dv2/dy |y=y1= 0,

dT1/dy |y=y1= 0, dT2/dy |y=y1= 0.
(2.107)

Hence, the velocity profiles are obtained as

v1 =
P

2µ

(
(h− y1)

2 − (y− y1)
2), (2.108)

v2 =
P

2µ

(
(h + y1)

2 − (y− y1)
2), (2.109)

and the temperature profiles are

T1(y) =
P2

12µk
(
(h− y1)

4 − (y− y1)
4)+ T0, (2.110)

T2(y) =
P2

12µk
(
(h + y1)

4 − (y− y1)
4)+ T0. (2.111)

From these quantities, we finally obtain

T1|2 ≡
∆(U1 + U2)

JU1 + JU2

= n0
(h− y1)

5 + (h + y1)
5

(h− y1)3 + (h + y1)3

(
m
5µ

+
3kB

10k

)
. (2.112)

Comparing T (2.106) and T1|2 (2.112), the comparison reduces to

h2 and

(
(h− y1)

5 + (h + y1)
5)(

(h− y1)3 + (h + y1)3
) . (2.113)

Since the position of the constraint y1 ∈ (−h, h), the denominator is positive, (h− y1)
3 +
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(h + y1)
3 ≥ 0. If we move this denominator to the left hand side, divide both sides with

h5 and rearrange terms, we retrieve

0 and f (δ) ≡ (1 + δ)5 + (1− δ)5 − (1 + δ)3 − (1− δ)3. (2.114)

Taking derivative with respect to δ, we find f ′(δ) ≥ 0 and thus f (δ) ≥ f (0) = 0. There-
fore, we have shown that T ≤ T1|2. The result agrees with Hypothesis 2.1.1.

2.3.3 Rayleigh-Bénard Convection

Additionally, Hypothesis 2.1.1 is tested numerically in a two-dimensional Rayleigh-Bénard
system consisting of hard disks. As stated previously, the simulation results in this sec-
tion are reproduced from paper [1], performed by the group of Prof. Banaszak and not
the author.

Generally, a Rayleigh-Bénard system is a fluid system subjected to both an upward
heat flow and gravitation. The system is placed between two heat conducting plates. The
upper plate is kept at temperature T0 and the lower plate is heated to T = T∗T0, where T∗

is the dimensionless temperature and T∗ ≥ 1. At low temperature gradient, the system
reaches a conductive steady state. As the temperature gradient increases, the system
transit into a convective steady state. A scheme of the system is shown in Fig. 2.17. An
example of the typical conductive state and convective state can be found in Fig. 2.18 (b)
and (c), where the velocity fields are plotted.

T

T0

Figure 2.17: Scheme of Rayleigh-Bénard system. A fluid system is placed between two heat
conducting plates: the bottom plate at temperature T, the top plate at T0, and T ≥ T0. An energy
flow J and a gravitational field g are present in the system.

For the simulation system in [1], the transition temperature is T∗RB ≈ 15.5. It is ob-
served that, by inserting an internal constraint (adiabatic wall) into the middle of the
system in an otherwise convective state, the system can be stabilized in the conductive
state, up till a relatively high temperature gradient. In other words, an internal wall may
stabilize the conductive state above the transition to the convective state. Furthermore,
upon removing this constraint at T∗ > T∗RB, the two independent conductive states com-
bine into a single convective state. This removal does not change the total energy storage
nor the total heat flow. This is indicated in Fig. 2.18 (b) and (c), where these two systems
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are under the same temperature gradient, and the insertion of the internal wall in (b)
prevents the system from becoming convective.

This system can be used to test Hypothesis 2.1.1 using the second method described
in Sec. 2.1. Specifically, T is measured for both steady states: Tunconstrained for steady
states of the system without constraint, which is in conductive states at T∗ < T∗RB and
convective states otherwise; Tconstrained for steady states of the system with an internal
wall inserted in the middle, which is in conductive states at all measured temperatures.
Results of this comparison are shown in Fig. 2.18 (a). As we can see, results show that
Tconstrained ≥ Tunconstrained, suggesting that the convective state is more stable, which is in
accordance with observations. Hence, this result supports the hypothesis.
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Figure 2.18: (a) T = ∆U/JU as a function of the (normalised) lower plate temperature T∗ of
a two-dimensional Rayleigh-Bénard system. The vertical solid line remarks the transition point
around T∗ = T∗RB = 15.5. Open circles denote the MD results of the unconstrained system which
is in the conductive state for T∗ < T∗RB and the convective state for T∗ > T∗RB. Open squares
denote the MD results of the constrained system which is in the conductive state at all simulated
temperatures. (b) Example of the steady state velocity field in the conductive state (constrained
state). (c) Example of the steady state velocity field in the convective state, stable for T∗ > T∗RB.
Both (b) and (c) are at T∗ = 17. Reproduced from [1].
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Simulation Methods

This simulation is performed using event-driven dynamics, a method of molecular dynam-
ics (MD). In this particular dynamics, the system is updated when an event (collision)
occurs. Collisions between disks and a disk with the left and right boundary are elastic,
whereas collisions with the upper and lower plates transfer thermal energy to the sys-
tem. In the latter scenario, the velocity of the disk is discarded and reassigned randomly
according to the appropriate Maxwell distribution, and the direction is chosen randomly
between ] = (0, 180) with respect to the plate [64].

Details of the simulation parameters are as follows. The system consists of N hard
disks with diameter r0 and mass m, where N = 10, 000. The system is rectangular of
size Lx × Ly = 100× 100. All distances are measured in units of r0/

√
0.4. Under these

parameters, the system has a density of ρ∗ = 0.4. Moreover, all disks were subjected to a
gravitational field with strength g∗ = gmLyr0/(kBT) = 0.15.

The length of the simulation is naturally measured in the number of collisions nc. The
system equilibrate under nc = 9 × 108 collisions, and results are obtained for another
nc = 9× 108 collisions. It can also be measured using the dimensionless time, t∗ = t/t0,

where t0 =
√

mr2
0/(kBT). In the case of system size 100 × 100, this corresponds to a

duration of t∗ = 1.35× 104 for T∗ = 10, and t∗ = 1.1× 104 for T∗ = 25.
The total energy of the system is measured with,

Utot =
N

∑
i=1

mv2
i

2
+

N

∑
i=1

mgyi, (2.115)

where vi is the velocity and yi is the y-coordinate of the ith disk. The equilibrium energy
Ueq is set as the averaged system energy at T∗ = 1. All energies are represented in units
of kBT. On the other hand, the energy flow is calculated through

Jupper =
1
t

nc,upper

∑
α=1

Eα, (2.116)

Jlower =
1
t

nc,lower

∑
α=1

Eα, (2.117)

where Eα = (mv2
i,α+ − mv2

i,α−)/2 is the energy transfer under collision event α of disk
i, during which the velocity changes from vi,α+ to vi,α− . The summation runs over all
collision events with either plate, upper or lower. As discussed before, in steady states,
Jupper = −Jlower, and the lower plate is chosen to calculate the heat flow. The heat flow
results are represented in units of kBT/t0.
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2.4 Energy Storage in Periodic Steady States

In previous sections 2.2 and 2.3, we have studied various models subjected to bulk energy
supplies and through external energy flows. These systems are driven to nonequilibrium
steady states.

In this section, we compile models under external drivings that are periodic in time
and spatially inhomogeneous. We refer to these driving protocols as the local periodic
energy supply. Furthermore, the underlying system is a lattice system, or more precisely,
a two-dimensional Ising system. These models eventually reach periodic steady states.
A periodic steady state is a nonequilibrium state where the properties of the system vary
over a period, but their averaged values over this period are constant.

We perform numerical simulations using a combination of the Metropolis algorithm
[69] and the deterministic Ising algorithm [70–72]. This combination gives us the freedom to
supply energy locally, as well as define and measure temperatures locally. This method
is different from what is often used for nonequilibrium lattice simulations.

This section is organized as follows. We first give an introduction to the algorithms
we use. Next, we describe our model in Sec. 2.4.2. Details of the simulation procedure
are outlined in Sec. 2.4.3. We summarize our results in Sec. 2.4.4.

2.4.1 Introduction

2.4.1.1 Lattice Models and Nonequilibrium Simulations

Lattice models are substantial to the study of statistical physics, equilibrium and nonequi-
librium. The lattice models have been investigated both analytically and numerically.
The energy states of a lattice model are naturally discrete, making the stochastic Markov
processes easy to realise. These models are widely used as testing grounds for statistical
physics [10, 69, 73–76].

Perhaps the simplest example of a lattice model is the Ising model, which is also
the base system we use in this section. An Ising model is a set of spins arranged in a
lattice. The spins are with magnetic dipole moments of±1, where +1(−1) represents the
spins pointing up(down). Each spin interacts with its nearest neighbours with strength
J. Additional external magnetic fields B can be added to the system. The Hamiltonian of
the system is given by

H = −J ∑
〈ij〉

sisj − B ∑
i

si, (2.118)

where si is the spin value at site i, 〈··〉 represent the pairs of neighboring sites. Despite
its simplicity, the Ising model captures the essential features of phase transition. In equi-
librium statistical physics, the Ising model is the paradigm model for studying phase
transitions, critical phenomena, and universality classes.
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Another important example of the lattice model is the driven lattice gas model. It
is the paradigm model for studying nonequilibrium phenomena [10, 73, 76, 77]. Mod-
els built on the driven lattice gas model include the asymmetric simple exclusion process
(ASEP), the total asymmetric simple exclusion process (TASEP), and their variations. With
relatively simple rules, these models can already demonstrate complex nonequilibrium
phenomena, such as spontaneous symmetry breaking, nonequilibirum phase separation
and current fluctuations [40, 78–80]. External drivings can be achieved, for example, by
attaching two reservoirs that induce transport of energy or particles through the system,
or by assigning a biased transition rate in the preferable direction [10].

The author would like to point out that, in these models, it is often assumed that
the temperature is homogeneous, and the external drives are uniformly applied. In con-
trast, similar to the other models in previous sections, our models have inhomogeneous
temperature profiles, and the external drives can be locally applied.

2.4.1.2 Monte Carlo Method

The Monte Carlo (MC) method is a simulation technique that utilises statistical sam-
pling to generate results. Ever since its devise in the 1940s, it has been used to explore
a wide range of phenomena in equilibrium and nonequilibrium statistical physics. Usu-
ally, a sampling is drawn from a predetermined probability distribution, by generating a
stochastic Markov chain [69, 74, 75]. Some examples of the problems that can be solved
by the MC method are diffusion problems such as Brownian motion, phase transition
problems, e.g., for a binary mixture, a surface growth, and much more.

As discussed in Chapter 1, in equilibrium statistical mechanics, the probability dis-
tribution over the phase space is well established: for the canonical ensemble, it is the
Boltzmann distribution; for the microcanonical ensemble, the uniform distribution. A set
of states are generated using a Markov chain with properly chosen transition probabili-
ties ωmn of all possible pairs of states m to n. To ensure that at sufficiently long time the
system eventually settles in the equilibrium state with the Boltzmann distribution, the
transition probabilities are chosen in accordance with the detailed balance relation,

ωmn

ωnm
=

pn

pm
= e−β(En−Em), (2.119)

where En(Em) is the energy of state n(m).
In practice, a Markov chain is formed by a series of transition steps, each broken down

into two smaller steps, a generating step with probability g(m → n) and an acceptance
step with probability A(m→ n). Their relationships can be represented by [69]

ωmn = g(m→ n)A(m→ n). (2.120)

In each step, given that the current state of the system as m, a new state n is first chosen
with the selecting probability g(m → n). The new state can be accepted or rejected
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depending on A(m→ n). If the state is accepted, then the system moves to the new state
n; otherwise, the system stays in state m. This step repeats to generate a series of states.

For example, in the Metropolis algorithm [81], all possible states are chosen with equal
probability, i.e., g(m → n) = 1/N. Then, the acceptance probabilities A(m → n) must
satisfy [69]

A(m→ n)
A(m→ n)

= e−β(En−Em). (2.121)

In the Metropolis algorithm, the acceptance probabilities are chosen as

A(m→ n) =

e−β(En−Em) if En − Em > 0,

1 otherwise.
(2.122)

In other words, if the new state decreases in energy, then the move is always accepted;
if the new state has a higher energy, then the move is accepted with a probability of
e−β(En−Em) ∈ (0, 1). Note that in principle, one has the freedom to choose any values of
g(m→ n) and A(m→ n) between 0 and 1 (without violating relation (2.119)). However,
it is desirable to have A(m → n) as close to 1 as possible. In this case, the algorithm
moves efficiently in phase space without dwelling in the same state for a long time.

In nonequilibrium systems, the detailed balance is broken, and external currents are
present. In simulations, this can be achieved by modifying the transition rates to account
for the external driving mechanism.

As an example, we briefly describe the driven lattice gas model. A lattice gas model is
a model of gas where the particles are moving on lattice sites. The model can be simulated
using the Ising model with the restriction that the order parameter is conserved. The up
(down) spins now represent the occupied (vacant) sites. Since it is a gas model, the total
number of particles, or the order parameter of the Ising model, needs to be conserved.
Thus, instead of the spin-flip algorithm, the spins are exchanged using the Kawasaki
algorithm.

There are several ways to modify the transition rates. In the simplest case, the transi-
tion rate ωmn(ωnm) is simply assigned to be p(1− p). This is used in the one-dimensional
biased random walk, in AESP and the TAESP. Alternatively, the transition rates can be
modified to include an external driving field ~E. The particle movements are biased along
and against the field direction, but not on the orthogonal directions. In which case,

ωmn =

e−β∆E, moves orthogonal to ~E

e−β(∆E±|~E|), moves along or against ~E.
(2.123)

where ∆E denotes the energy difference En − Em, and |~E| is the strength of the field. In
this expression, the local detailed balance is preserved.
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2.4.1.3 Deterministic Ising Algorithm

In a Monte Carlo simulation, the temperature is a parameter already set in the algorithm
and is assumed homogeneous. In contrast, a molecular dynamics simulation is a deter-
ministic simulation where no random number is involved. Moreover, the temperature is
not predetermined but rather obtained as a result of the simulation.

The deterministic algorithm proposed by Creutz in 1985 is an algorithm between the
Monte Carlo algorithm and the molecular dynamics algorithm (see [70] and [71, 72]). In
this algorithm, the total energy is conserved like in a molecular dynamics simulation. A
definition of the local temperature is provided along with the algorithm, and the local
temperature can be measured. Since the algorithm is over an Ising model, the local tem-
perature is measured (instead of preset) at each lattice point. This algorithm has been
shown to behave in almost the same way as the Monte Carlo simulation of the original
Ising model [82].

In the deterministic Ising algorithm, an extra variable D(~r) is associated to each spin
s(~r) at position (lattice site)~r [70]. This variable D(~r) serves as the momentum variable
partner of s(~r). Alternatively, D(~r) can be interpreted as a local heat bath of only one
degree of freedom. Assuming that the energy exchange between s(~r) and D(~r) is fast, the
spin is in equilibrium with D(~r). Therefore, there is a relationship between the averaged
momentum energy and the local temperature T(~r), given by

〈D(~r)〉 ≡ ∑∞
0 n exp(−n/T(~r))

∑∞
0 exp(−n/T(~r))

=
1

exp(1/T(~r))− 1
, (2.124)

where 〈·〉 is the ensemble average, n = 0, 1, 2, · · · . Eq. (2.124) can be rewritten to obtain
the local temperature

T(~r) =
1

ln(1/〈D(~r)〉+ 1)
. (2.125)

A discussion of the definition of temperature in nonequilibrium systems can be found in
[83]. Here in this section, we consider only the temperature defined in the sense of the
deterministic algorithm.

The system evolves according to the deterministic dynamics, where the local energy
is preserved. The local Hamiltonian at time t is given by

H(t) = −Js(~r, t)∑
~r′

s(~r′, t) + D(~r, t), (2.126)

where~r′ represents the nearest neighbors of the lattice site~r. For~r = (x, y),~r′ ∈ {(x, y±
1), (x± 1, y)}. To update a spin s(~r, t), we first calculate the local energy difference under
the spin-flip with

∆E = 2Js(~r, t)∑
~r′

s(~r′, t). (2.127)

The update (spin-flip) is always accepted if the flip lowers the local energy ∆E ≤ 0. In
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Figure 2.19: Scheme of the check-board update method. Each time step is broken down into two
smaller steps. Starting from time t, firstly, all grey (or black) spins are updated at time t + 1/2.
Then at time step t + 1, all black (or grey) spins are updated.

the case where the update costs energy ∆E > 0, the update is also accepted, provided
that the momentum counterpart D(~r, t) can compensate the energy for this update, that
is, if D(~r, t) − ∆E ≥ 0. Then, both the spin and its momentum variable are updated,
s(~r, t + 1) = −s(~r, t), D(~r, t + 1) = D(~r, t)− ∆E. Otherwise, this update is rejected and
s(~r, t + 1) = s(~r, t), D(~r, t + 1) = D(~r, t). This update method ensures that the local
Hamiltonian is conservedH(t) = H(t + 1).

The whole lattice evolves from t to t + 1 when each spin is updated accordingly. Ad-
ditional consideration needs to be taken to ensure that the update of the whole lattice is
simultaneous. If one updates sequentially, one would encounter a situation when up-
dating a spin to time t + 1, its neighbours are in a mixture of t and t + 1. To avoid this
situation, a check-board update scheme is adopted [84]. In a check-board update, the
system is divided into two groups organized in a check-board manner. An example of
this update is shown in Fig. (2.19) where the two groups of spins are represented in grey
and black. At time t, firstly, all grey (or black) spins are updated, then all black (or grey)
spins are updated.

The deterministic Ising algorithm has been used to study heat diffusion in an Ising
system, since the temperature profile is obtained a posteriori. Previously, this algorithm
has also been used, among other purposes, to simulate the electrocaloric effect in alloys
[85] and to study dynamics of discrete systems with long-range interactions [86] or ther-
moconductivity in lattice systems without [87–91] and with an interface [92, 93], where
the lattice is typically attached to two heat baths at different temperatures.
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2.4.2 Model Description

Consider a two-dimensional closed Ising system embedded in a heat bath of temperature
T0. The system is of dimensions L× L. The system is driven to nonequilibrium states with
local periodic energy supplies σE(~r, t). The energy is dissipated through the boundary,
and the heat current is denoted by~JE(~r). A scheme of the system is shown in Fig. 2.20.

T0

Figure 2.20: Scheme of an unconstrained system. A two-dimensional closed lattice system, de-
noted in white, is surrounded by a heat bath of temperature T0. External energy σE is supplied
into the system. Energy currents are denoted as~JE.

Similar to the situation of previous models, the temperature is not homogeneous in-
side the system. Comparing to local excitation, heat dissipation is a slow process. We can
imagine an excitation that happens deep inside the system would take longer to dissipate
than an excitation close to the boundary.

Since the system does not perform work, the total heat flux can be calculated either
from the energy dissipated (per time) across the boundary, or from the total energy sup-
plied (per time) into the system (see Eq. (2.14), (2.15) and (2.16)). Unlike the ideal gas sit-
uation, an Ising model is discrete in space, and the spins are fixed at lattice sites. We can
no longer assume that the local energy density is homogeneous, and in general ε = ε(~r).
Moreover, the total heat flux JU needs to be rewritten as

JU ≡ ∑
~r∈∂Ω

~JE(~r) = ∑
~r∈Ω

σE(~r), (2.128)

where Ω is the area of the system, and ∂Ω is the boundary of the system. In this case, it
is also the boundary through which the energy is dissipated.

The external energy supply is periodic and inhomogeneous. Under such protocols,
the system reaches a periodic steady state. In experiments, such excitations can be real-
ized by shining a laser onto a material or a solution.

We define different protocols by specifying the energy supply function σE(~r, t). We
focus on a periodic supply with period τ. Periodic external drives occur in many situ-
ations in physics and biology [94–96]. The system reaches periodic steady states where
quantities averaged through a period remain constants [95, 96]. Examples of periodic
steady states driven by external magnetic fields can be found in [97].
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In these states, instead of quantity O(t), its corresponding average over one or several
periods O is evaluated. Therefore, we will be using the averages of the quantities we
previously studied. First, we define the averaged temperature profile as

T(~r, τ) ≡ 1
τ

∫ t′+τ

t′
T(~r, t)dt. (2.129)

The averaged external energy flow at~r is

σE(~r, τ) ≡ 1
τ

∫ t′+τ

t′
σE(~r, t)dt, (2.130)

and the averaged total heat flow is

JU ≡
1
τ

∫ t′+τ

t′
JUdt. (2.131)

And we define the averaged system energy as

Usys(τ) ≡
1
τ

∫ t′+τ

t′
U(t)dt, (2.132)

with the (averaged) stored energy

∆U(τ) = Usys(τ)−Ueq. (2.133)

2.4.3 Simulation Method

2.4.3.1 Update Procedure

In our simulation, we combine the Metropolis algorithm for exchanging energy with
the heat bath [69] and the deterministic Ising algorithm for energy supply and internal
energy diffusion [70]. The spins are separated into two categories, two layers of spins that
serve as the heat bath (heat bath spins) surround spins that serve as the system (system
spins). For an open system of size L × L, we use (L + 4) × (L + 4) number of spins in
the simulation. The heat bath spins are with index x, y = 0, 1, L + 2, L + 3. They are
updated using the Monte Carlo Metropolis algorithm. The rest are the system spins and
are updated with the deterministic Ising algorithm. A scheme of this spin arrangement
is shown in Fig. 2.21.

This set-up is similar to the set-up in [87], except that our system is an open system.
Additionally, the Ising lattice system under the local energy input has been studied in
[98]. However, in that paper, the focus was on the nonequilibrium phase diagram, and
the energy input was realized by dividing the system into two sectors in contact with
thermal baths with markedly different temperatures.

The full procedure of a Monte Carlo step of the system {s(~r, t)} to {s(~r, t + 1)} is as
follows. First, we update all the heat bath spins using the Metropolis dynamics. The
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x

y

0 1 L+2 L+3
0

1

L+2

L+3

Figure 2.21: Scheme of the check-board update of the lattice system. The system of interest is
inside the black lines and surrounded by two layers of spins representing the heat bath. Black
and grey dots of the system denote the two groups of spins during the check-board update. For a
system of size L× L, x and y range from 0 to L + 3.

spins are selected sequentially. After a spin is selected, for example s(~r, t),~r ∈ ∂Ω, a
random number γ ∈ (0, 1) is generated. The local energy difference under the spin-flip
is calculated using Eq. (2.127). If ∆E ≤ 0, or if γ ≤ exp(−∆E/T0), then the spin is flipped
s(~r, t + 1) = −s(~r, t). Otherwise, s(~r, t) remains the same.

Next, we update system spins using the deterministic Ising algorithm. The system
spins are divided into two groups (as shown in Fig. 2.21), organized in a check-board
manner. Each time step is composed of two half-steps where the spins in each group
are updated. Local energy is conserved under this update. Heat is transferred through
spin-spin interactions.

2.4.3.2 Energy Supply Realization

Local energy supply is realized by directly elevating the momentum energy D(~r, t) with
the driving protocol σE(~r, t),

D(~r, t + 1) = D(~r, t) + σE(~r, t). (2.134)

The explicit form of σE(~r, t) is defined as

σE(~r, t) = E0h(t)XAi(~r), (2.135)

where E0 is the amplitude, and h(t) is a periodic function h(t) = h(t + τ). The simplest
case of a periodic supply is to supply every τ time unit (Monte Carlo steps). This can be
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represented using the delta function, h(t) = δ(t, nτ), where n = 1, 2, 3, · · · . XAi(~r) is an
indicator function that has value 1 at the lattice sites where energy is supplied. In this
section, we use three types of geometry A1,2,3 (shown in Fig. 2.22). Specifically, A1 covers
the whole system, hence a homogeneous input; A2 is a square of size 10× 10 at the center
of the system; A3 is a stripe of size L× 4 in the middle of the system. These geometries
can be represented as follow

case 1 A1 = {~r|∀~r}, N1 = L2

case 2 A2 = {~r|L/2− 4 ≤ x ≤ L/2 + 5, L/2− 4 ≤ y ≤ L/2 + 5}, N2 = 100

case 3 A3 = {~r|L/2− 1 ≤ y ≤ L/2 + 2}, N3 = 4L.

(2.136)

where Ni is the number of spins (or area) in geometry Ai, i = 1, 2, 3.
Using definitions from Eqs. (2.128) and (2.131), we represent the energy input protocol

of geometry Ai as JU(Ai, E0, τ) and the averaged flux is

JU(Ni, E0, τ) =
E0

τ
Ni. (2.137)

The averaged flux through the system depends on three variables, energy amplitude, the
period, and the area of the geometry.

T0

E

JE JE

JE

JE

(a) A1

T0

(b) A2

T0

(c) A3

Figure 2.22: Schemes of the three geometries A1,2,3 used for energy supply. The region of energy
supply of each geometry is shaded in red. (a)A1 spans the whole system. (b)A2 is a square of
size 10× 10 at the center of the system. (c)A3 is a stripe of size L× 4 in the middle of the system.

2.4.3.3 Measurement

The total energy of the system is defined as

Usys(t) = −J ∑
〈~r,~r′〉

s(~r, t)s(~r′, t) + ∑
~r

D(~r, t), (2.138)

where 〈~r,~r′〉 are neighboring lattice sites. The interaction strength J is set to 1. Note that,
in simulation, the system energy includes its interaction energy with the heat bath spins.
In other words, while~r ∈ Ω, ~r′ includes spins representing the first layer of the heat bath.
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In steady states, the temperature profile is measured using Eq. (2.125). In simulation,
the ensemble average is obtained through averaging over realizations

〈D(~r, t)〉 = 1
N

N

∑
M=1

DM(~r, t), (2.139)

where DM(~r, t) is the local momentum energy at time t from realization M, and N denotes
the total number of realizations. Typically in our simulation, N ranges from 100 to 500.
For periodic steady states, we obtain the averaged local momentum energy as

D(~r, τ) ≡ 1
τ

t+τ

∑
t′=t
〈D(~r, t′)〉 = 1

Nτ

t+τ

∑
t′=t

N

∑
M=1

DM(~r, t′). (2.140)

The averaged temperature profile T(~r, τ) is obtained through

T(~r, τ) =
1

ln
(
1/D(~r, τ) + 1

) . (2.141)

Within each period, the temperature profile changes with time. An example of how
the temperature profile relaxes within a period in such periodic steady states is shown
in Fig. 2.23. Under adiabatic conditions (no energy flows outside the system) and using
geometry A3, we supply energy at time 0 with E0 = 100. We average T(~r, t) over each
column and every 200 MC simulation steps. Throughout the simulation, the temperature
is measured in units of J/kB. As we can see, this average relaxes and tends to equilibrate
within the system.

0 50 100
x

0

30

60

T
(x

)

0<t<200

200<t<400

400<t<600

600<t<800

800<t<1000

Figure 2.23: Averaged column temperature profiles under energy supply protocol
JU(A3, 100, 1000): energy supply of amplitude 100, period 1000 MC steps, and over geom-
etry A3. The whole period is divided into time intervals of 200 MC steps over which the
temperature profiles are averaged. The x-coordinate of the stripe subjected to the energy supply
lies between two vertical dashed lines. Temperatures are measured in units of J/kB and energy
in units of J.
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2.4.4 Simulation Results

2.4.4.1 Energy Storage

First, we compute the stored energy under different protocols. Upon fixing the geometry
Ai and the amount of total flux JU , we compare the stored energy ∆U under different
pairs of (E0, τ). A summary of the protocols we use in this section is shown in Table 2.3.
The protocols are controlled by three parameters in the expression of σE in (2.135): Ai as
shown in Fig. 2.22, E0, and τ. Under each geometry, the pairs of E0 and τ are chosen such
that JU stays the same, see Eq. (2.137).

Ising Model
A1(E0, τ) A2(E0, τ) A3(E0, τ)
(20, 10000) (100, 2000) (100, 2000)
(40, 20000) (200, 4000) (200, 4000)
(60, 30000) (400, 8000) (400, 8000)
(80, 40000) (500, 10000) (500, 10000)
(100, 50000) (800, 16000) (800, 16000)

(1000, 20000)

Table 2.3: List of energy supply protocols used for simulation. Each protocol is specified by:
amplitude E0, period τ, and geometry Ai as in Fig. 2.22.

Examples of contour plots of the averaged temperature profile T(~r, τ) under differ-
ent geometries are shown in Fig. 2.24. For easier demonstration, we further define an
averaged column temperature

T(x, τ) ≡∑
y

T(x, y, τ)/L. (2.142)

(a) (b) (c)

Figure 2.24: Contour plots of averaged temperature profiles T(~r, τ) under different energy supply
geometries shown in Fig. 2.22. Corresponding protocols and averaged fluxes for energy supply
are denoted under each graph. Temperature is measured in units of J/kB. The white area in the
center of (b) denotes temperature higher than the shown scale.

Results of T(x, τ) are shown in Fig. 2.25(a), 2.25(c), and 2.25(e). Each panel shows the
results of the column temperature from a single geometry. Different curves in each panel
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correspond to the protocols in the columns of Table 2.3. The stored energy ∆U for each
geometry are shown in Fig. 2.25(b), 2.25(d), and 2.25(f).
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Figure 2.25: (a)(c)(e) Column temperature profiles T(x, τ) under averaged constant energy flux
JU for different energy supply geometries. JU per spin is denoted above each panel, and the
specific values of the (E0, τ) pairs are denoted for each curve. Temperature is measured in units
of J/kB. (b)(d)( f ) Energy storage ∆U per spin under constant JU for different supply geometries.
Panels (a), (b) correspond to geometry A1; (c), (d) to A2; (e), ( f ) to A3.
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2.4. Energy Storage in Periodic Steady States 69

As we can see, different protocols of energy supply lead to different steady states,
demonstrated by different temperature profiles and different stored energy. Further, in
each geometry, we find that the energy stored from large but rare deliveries (large E0

and τ) is greater than that from small but frequent deliveries (small E0 and τ). This
holds if the characteristic time scale T = ∆U/JU of energy outflow from the system is
smaller than the period τ of the energy supply. For T comparable to τ, the stored energy
is minimal. For T larger than τ, the system does not reach periodic steady states. In
addition, comparing Fig. 2.25(b) and 2.25(f), we find that the energy storage is greater
under a larger delivery area (A1 > A3).

2.4.4.2 Systems under Constraints

Now, we test Hypothesis 2.1.1. Following the same methodology used in previous sec-
tions, an adiabatic horizontal wall is placed between row yw and yw + 1. It separates the
system into two subsystems: upper and lower. In practice, this is achieved by setting
the interaction strength between spins at row yw and yw + 1 to zero. A scheme of this
constrained system is shown in Fig. 2.26.

T0

1

JE JE

JE

JE

2

Figure 2.26: Scheme of a constrained system. The horizontal line denotes the constraint which is
an adiabatic wall. The energy flux is kept non-zero in each subsystem.

The constraint does not change the total amount of energy influx, i.e., JU = JUupper +

JU lower. We use geometry A1 and A3 (Fig. 2.22) and protocols denoted in red in Table 2.3.
The choice of the geometries ensures that when adjusting yw ∈ (2, L+ 1), each subsystem
will have a nonzero heat flux.

For geometry A1, the total heat flux is fixed at JU(A1, E0, τ) = JU(A1, 20, 10000) =

0.002× L2. To observe the temperature change across the wall, we plotted the averaged
row temperature

T(y, τ) = ∑
x

T(x, y, τ)/L (2.143)

against y. Results of T(y, τ) and the stored energy at different yw are shown in Fig. 2.27.
For geometry A3, we fix the total flux JU = 0.002× L2 and adjust four pairs of (E0, τ).

Fig. 2.28 shows the row temperature profiles for each pair of (E0, τ) (panel (a) − (d))
and the stored energy in all situations (panel (e)). Similar to the results for geometry A1,
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Figure 2.27: (a) Row temperature profiles T(y, τ) and (b) total energy storage per spin under
energy supply protocol JU(A1, E0, τ) = JU(A1, 20, 10000) = 0.002× L2. T is measured in units of
J/kB. A pair of dashed line in (a) denotes the position of a constraint placed between row yw and
yw + 1. The horizontal line in (b) denotes the energy storage (per spin) without constraints.

under each protocol, the stored energy of the periodic steady state in the unconstrained
system is equal to that where the constraint separates the system into two equal parts. It
is also lower than all other partitions. These results are in accordance with Hypothesis
2.1.1.
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Figure 2.28: Row temperature profiles T(y, τ) and the total energy storage under A3 geometry.
The averaged total flux is fixed at JU(A3, E0, τ) = 0.002× L2. Panels (a)− (d) show T(y) under
different positions of the constraint yw, for four pairs of (E0, τ). The corresponding (E0, τ) pair is
denoted above the graph. Dashed lines denote the constraints between row yw and yw + 1. Panel
(e) shows the stored energy against yw for four pairs of (E0, τ). The horizontal lines correspond
to the stored energy without constraint. Temperature is measured in units of J/kB.
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2.5 Summary and Conclusion

In this chapter, we have analysed the energy storage ∆U and total heat flow JU for a
variety of systems in NESS. These models are distinct in nature and driven by diverse
protocols. Using these results, we have addressed two main questions.

The first question concerns the energy storage in NESS under different driving proto-
cols. Energy storage is an interesting and important problem. It is relevant for potential
applications, for example, in energy harvesting [99]. Understanding how the average en-
ergy storage depends on the details of JU , on the internal geometrical constraints of the
system, points to directions to increase energy storage efficiency.

This question is explored in Sec. 2.4, where we have studied periodic steady states of a
magnetic system under different protocols of local cyclic energy supply using simulation.
We have manipulated the geometry, amplitude, and period of the protocol, while keeping
the total flux constant and compared the resulting temperature profile and the energy
storage in the periodic steady states.

In particular, we have pointed out the importance of the mode of energy transfer
into the system. The energy storage depends not only on the total energy flow JU , but
also on the detailed method of energy transfer. Moreover, the system stores more energy
under large and rare energy delivery than small and frequent delivery, and more under
a large delivery area than a small delivery area. Further studies exploring this quantity
in various examples of NESSs would shed light on the generality of this hypothesis.

Second, we have proposed our first hypothesis of variational principle based on the
quantity T ≡ ∆U/JU (see Hypothesis 2.1.1). It states that T is minimized for NESS. T
has an interpretation of the characteristic time scale of energy outflow from the system
immediately after the shutdown of the energy input. This interpretation can be seen from
simulation results of the Lennard-Jones fluid in Sec. 2.2.2. We have presented method-
ologies to examine this hypothesis in Sec. 2.1. For models in general, the method is to
introduce constraints and check if T ≤ T1|2 (where the latter is the value of T under
constraint). For models where competing steady states can be achieved, we check if T is
the smallest for stable states.

We have checked this hypothesis against distinct models and under a variety of en-
ergy supply methods. In particular, we have checked using an ideal gas system under
various bulk energy supplies (Sec. 2.2.1), under the external heat flow (Sec. 2.3.1); a fluid
system driven by matter flow (Sec. 2.3.2); an Ising system under various periodic local
energy supplies (Sec. 2.4). We have supplemented our message with the Lennard-Jones
fluid (Sec. 2.2.2) and the Rayleigh-Bénard system (Sec. 2.3.3). Results of these two models
are reproduced from [1]. In the end, results in all models have confirmed Hypothesis
2.1.1.

However, we are aware of an example where this hypothesis falls short. In an ex-
ample pointed out by the referee of [1], a heat tank is connected to the system with a
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heat conducting wire. Depending on the position of the wire, the relation between T and
T1|2 may be reverted depending on the size of the heat tank. To see this, let us consider
the case of the ideal gas with a homogeneous energy supply (case 1 of Sec. 2.2.1). The
comparison of T and T1|2 becomes

U +
3
2

NtkBT(xt) and U1 + U2 +
3
2

NtkBT′(xt), (2.144)

where U, U1 and U2 are the steady state energy of the system, subsystems 1 and 2, re-
spectively; Nt is the number of particles in the tank; xt is the position where the tank is
attached. Rearranging terms, the comparison becomes

3
2

NtkB
(
T(xt)− T′(xt)

)
and U1 + U2 −U. (2.145)

When the constraint reduces the temperature of the heat tank, the relation depends heav-
ily on the size of the tank. Hence, Hypothesis 2.1.1 does not hold for all cases and must
be changed. In light of this counterexample, we seek to adapt our hypothesis in the next
chapter.
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Chapter 3

Embedded Energy in
Nonequilibrium Steady States

3.1 Embedded Energy and the Second Hypothesis

Observations

It is interesting to notice that, for most models studied in the previous chapter, the steady
state energy U can be written as a product of the equilibrium energy Ueq and a dimen-
sionless function of the heat flow JU , U = Ueq · f (JU).

This seems to be a trivial observation, especially for ideal gas under bulk energy sup-
plies. Since, in this case, U is a function of the normalised energy supply density λ and
so is the total heat flow JU , U can certainly be written as a function of JU . However, our
main concern is about the proper variables of the nonequilibrium steady states, where
the heat may come in many forms. It would be intriguing if, in general, the steady state
energy can be expressed as a function of the total energy flow.

Here, using the analytical expressions of U and JU obtained from the test models in
the previous chapter, we will rewrite U as a function of JU . Specifically, these models are
the five models of ideal gas under bulk energy supply in Sec. 2.2, ideal gas under heat
flow Sec. 2.3.1, and the Poiseuille-Hagen flow in Sec. 2.3.2.

First, let us look at the expressions of the five ideal gas models in Sec. 2.2. For all of
these models, the total heat flow is normalised with a constant AkT0/L and becomes a
dimensionless quantity

J̃U =
L
AkT0

JU . (3.1)

As stated before,A and L are the area and length of the system, k is the heat conductivity
and T0 is the heat bath temperature. (For an illustration of the model, see Fig. 2.1.) For
case 1 and case 5, J̃U = 2λ̃1, and the steady state energy can be written as (compare with
Eq. (2.22)),

U = Ueq

√
J̃U

(
J̃U + 4

)
4 Arctanh(

√
J̃U/

(
J̃U + 4

) . (3.2)
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Similarly, for case 2, the total heat flow reduces to (compare to Eq. (2.37)),

J̃U = 2
√

λ̃2 tan(
√

λ̃2). (3.3)

We define J̃U = g(λ̃2), then since J̃U is a monotonic function of λ̃2, λ̃2 can be expressed as
an implicit function of J̃U , λ̃2 = g−1( J̃U). Then, U is expressed as (compare to Eq. (2.34))

U = Ueq
2
√

g−1( J̃U)

cos
(√

g−1( J̃U)

)
ln

1 + sin
(√

g−1( J̃U)

)
1− sin

(√
g−1( J̃U)

)


. (3.4)

For case 3, the total heat flow reduces to J̃U = 2λ̃3 (compare to Eq. (2.55)). An in-
termediate quantity ω has been introduced in Eq. (2.53), and λ̃3 can be expressed as
a function of ω, λ̃3 =

√
π erf(ω)ω exp(ω2). We define this function as m(ω)/2, and

J̃U = 2λ̃3 = m(ω). Function m is again monotonic; hence ω can be expressed implicitly
as ω = m−1( J̃U). Then, from Eq. (2.52), the steady state energy can be written as,

U = Ueq
J̃U

4(m−1( J̃U))2
. (3.5)

Finally, for case 4, unfortunately, it is difficult to examine if this conversion and rewriting
are possible since it involves hypergeometric functions.

Likewise, the analysis can be applied to the ideal gas under heat flow (Sec. 2.3.1).
Using the same normalization quantity AkT0/L, the total energy flow reduces to J̃U =

T̃1 − 1 (see Eq. (2.85)). Consequently, the steady state energy is expressed as

U = Ueq
J̃U

ln
(

J̃U + 1
) . (3.6)

Lastly, for the Hagen-Poiseuille flow (Sec. 2.3.2), since the height of the model is de-
noted as 2h, the normalisation factor is AkT0/h. The steady state internal energy can be
rewritten as (compare Eq. (2.105))

U = Ueq +
1
10

JUh
AkT0

× 3
2

n0kBT0 = Ueq(1 +
1

10
· J̃U). (3.7)

To summarise, for all analytically studied models (except case 4) in Chapter 2, the
total heat flow is normalised using a factor of the formAkT0/L orAkT0/h, and the steady
state energy can be expressed in the form U = Ueq · f ( J̃U).
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3.1. Embedded Energy and the Second Hypothesis 75

Embedded Energy and Proposal of a Second Hypothesis

Can the above observations, U(Ueq, JU) = Ueq · f ( J̃U), be extended to nonequilibrium
steady states in general? In other words, are JU and Ueq, in fact, state parameters? It
seems, so far, that these two quantities can be related to the state parameters. The obser-
vations, however, are certainly not conclusive, and the question remains open. Never-
theless, we can proceed to assume that indeed Ueq and JU are the parameters of nonequi-
librium steady states. Then, following the procedure in Chapter 2, we form a hypothesis
and examine it with different models.

As reviewed in Sec. 1.1 of equilibrium thermodynamics, for an open system defined
by a fixed temperature T, volume V and number of particles N, the Helmholtz free energy
is obtained from the Legendre transform of U with respect to entropy S (see Eq. (1.25)),

F(T, V, N) = U − ∂U
∂S

S. (3.8)

And F is minimized for equilibrium states. Following this fact, we propose an analog of
the Helmholtz free energy for NESS – the Legendre transform of U with respect to JU ,

U∗ ≡ U − ∂U
∂JU
· JU . (3.9)

This quantity is termed embedded energy. The analogy between U∗ and the Helmholtz
free energy is especially interesting. Since JU/T0 coincides with the entropy production
rate, that is, the entropy flow leaving the system through the wall at temperature T0,
this suggests that U∗ is a function of the entropy production rate Ṡtot. And likewise, we
propose the second hypothesis using the embedded energy:

Hypothesis 3.1.1. U ∗ is minimized in nonequilibrium steady states.

The embedded energy may be interpreted as the amount of energy that must stay in
the system to keep the NESS. The derivative ∂U/∂JU has a dimension of time. And the
term JU · ∂U/∂JU is the amount of heat flowing into the system during this time. The
difference U∗ is then the amount of energy that does not flow out of the system at all
times, hence the name embedded energy.

The methodology for testing this hypothesis is the same as method 1 described in
Sec. 2.1. Explicitly, for each model, U and JU are firstly obtained, and U∗ is calculated.
Next, an external constraint is introduced into the system, and the energy and heat flow
of each subsystem, Ui and JUi , are obtained. The embedded energy under constraint U∗1|2
is

U∗1|2 = U1 −
∂U1

∂JU1

JU1 + U2 −
∂U2

∂JU2

JU2 . (3.10)

In this chapter, Hypothesis 3.1.1 is tested with two models. The first model is the ideal
gas under the homogeneous bulk energy supply σE = λ1, same as in case 1 of Sec. 2.2.1.
The second model is the ideal gas under an external heat flow, same as in Sec. 2.3.1.
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3.2 Ideal Gas under Bulk Energy Supply

Using the model in case 1 of Sec. 2.2.1, we test Hypothesis 3.1.1: the minimization prin-
ciple of the embedded energy in NESS. The schematic plot of this model is reproduced
here in Fig. 3.1 for quick reference. Like before, the system is a three-dimensional ideal
gas of fixed volume V and number of particles N, placed in a heat bath of temperature
T0; the system is placed between plates of areaA at x = ±L, and the volume is V = 2AL;
a homogeneous energy supply of density λ1 is applied; a constraint is placed at x1; heat
conductivity is k.

(a)
1

0-L L x

Figure 3.1: Reproduction of Fig. 2.1. Schemes of (a) unconstrained and (b) constrained ideal gas
model under a homogeneous bulk energy supply of density λ1. The two diathermal walls of area
A and temperature T0 are positioned at x = ±L. The heat flux density~JE flows out of the system
through boundaries. In (b), the vertical plane at x = x1 represents the internal constraint – an
adiabatic wall.

Using the reduced length of subsystems, l1 = 1 + x̃1 and l2 = 1− x̃1 with x̃1 = x1/L,
and the normalised energy supply density λ̃1 = λ1L2/kT0, we rewrite the previously
obtained steady state energy as follows (see Eqs. (2.22) and (2.25)),

U =
Ueq

2

√
λ̃1(λ̃1 + 2)

Arctanh(
√

λ̃1/(λ̃1 + 2))
, (3.11)

U1 =
U(1)

eq

2

√
λ̃1l2

1(λ̃1l2
1 + 2)

Arctanh
(√

λ̃1l2
1/(λ̃1l2

1 + 2)
) , (3.12)

U2 =
U(2)

eq

2

√
λ̃1l2

2(λ̃1l2
2 + 2)

Arctanh
(√

λ̃1l2
2/(λ̃1l2

2 + 2)
) . (3.13)

U(1)
eq = ε0ALl1 and U(2)

eq = ε0ALl2 are the equilibrium energy of the corresponding sub-
system, and ε0 is the equilibrium energy density. And the total heat flow of the system
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and subsystems have been obtained

JU = 2ALλ1, JU1 = ALl1λ1 and JU2 = ALl2λ1. (3.14)

To obtain the expression for U∗ (3.9), we first need to find the expression for the
derivative. For the system without constraints, both U and JU are functions of λ1. Using
the chain rule, the partial derivative with respect to JU becomes a total derivative with
respect to λ̃1. And the embedded energy is

U − ∂U
∂JU

JU = U − dU
dλ̃1

∂λ̃1

∂JU
JU = U − dU

dλ̃1
λ̃1. (3.15)

For the constrained system, both Ui and JUi are seemingly functions of li and λ̃1. Yet, since
the constraint is fixed, li is fixed; hence the energy and the heat flow are again functions
of a single variable λ̃1. Therefore, the embedded energy of subsystem i is

Ui −
∂Ui

∂JUi

JUi = Ui −
∂Ui

∂λ̃1

∂λ̃1

∂JUi

JUi = Ui −
∂Ui

∂λ̃1
λ̃1. (3.16)

Finally, substituting Eqs.(3.11), (3.12) and (3.13), we obtain U∗ for the system as

U∗ =
U

λ̃1 + 2

(
1 +

U
Ueq

)
, (3.17)

and the constrained system as

U∗1|2 = U1 −
∂U1

∂λ̃1
λ̃1 + U2 −

∂U2

∂λ̃1
λ̃1

=
U1

λ̃1l2
1 + 2

(
1 +

U1

U(1)
eq

)
+

U2

λ̃1l2
2 + 2

(
1 +

U2

U(2)
eq

)
.

(3.18)

Due to the complex form of the embedded energy, it is difficult to compare U∗ and
U∗1|2 analytically. Instead, we directly inspect their numerical values at several λ̃1. Results
show that U∗ ≤ U∗1|2, in accordance with Hypothesis 3.1.1. An example of the comparison

at λ̃1 = 10.0 is shown in Fig. 3.2.

Adding a Heat Tank

At the end of Chapter 2, a counterexample of Hypothesis 2.1.1 was proposed. In this
example, an additional adiabatic system is connected to the ideal gas model via a heat
conducting wire. This extra system serves as a heat tank and stores energy depending on
its size and the temperature it connects. T of this total system now depends on this heat
tank, and the comparison between T and T1|2 may be reversed depending on the size of
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1
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Figure 3.2: Comparison between the embedded energy U∗ of constrained (red) and unconstrained
system (black). The embedded energy is plotted against the position of the constraint x. The
energy supply is homogeneous with density λ1 = 10.0, measured in units of kT0/L2. And U∗ is
measured in units of Ueq.

the heat tank. Here, we discuss how such a heat tank influences the second hypothesis,
the minimization of U∗.

Suppose now that the ideal gas is attached with such a heat tank via a heat conducting
wire positioned at xt. The tank is of a fixed volume Vt and number of particles Nt. The
whole system now consists of both the system and the heat tank. When the whole system
settles into a steady state, there is no heat flow between the system and the heat tank. In
other words, the heat tank is in equilibrium with the temperature at xt in the system, i.e.,
Tt = T(xt). Thus, the energy of the heat tank is

UT =
3
2

kBNtTt = CVt Tt. (3.19)

The embedded energy U∗ of the whole system is now

U∗ ≡ U + UT − ∂(U + UT)

∂JU
JU . (3.20)

As stated previously, the partial derivative can be expressed with respect to λ1 using the
chain rule. The embedded energy can be separated into U∗ of the system and the heat
tank,

U∗ =
(

U − dU
dλ1

λ1

)
+

(
UT − dUT

dλ1
λ1

)
≡ U∗system + U∗tank.

(3.21)

Consider the term of the heat tank. Since only Tt is a function of λ1, U∗tank is simply
CVt(Tt− λ1∂Tt/∂λ1). From the temperature profile of the system Eq. (2.21), Tt is given by

Tt = −
λ

2k
x2

t + 2
λL2

2k
+ T0. (3.22)
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And Tt − λ∂Tt/∂λ leaves only T0. Therefore,

U∗ = U∗system + UT
eq, (3.23)

where UT
eq is the energy of the heat tank at equilibrium.

Analogously, the total embedded energy of the constrained system can be separated
into two parts

U∗1|2 =

(
U1 −

∂U1

∂λ
λ + U2 −

∂U2

∂λ
λ

)
+

(
UT′ − ∂UT′

∂λ
λ

)
,

≡ U∗1|2,system + U∗1|2,tank.

(3.24)

Similarly, U∗1|2,tank is given by CVt(T
′
t − λ∂T

′
t /∂λ) with a new temperature at xt of the

constrained system. Specifically, from Eq. (2.24), we have

T
′
t = −

λ

2k
(xt − x1)

2 +
λ

2k
(L + x1)

2 + T0 or (3.25)

T
′
t = −

λ

2k
(xt − x1)

2 +
λ

2k
(L− x1)

2 + T0, (3.26)

where the former corresponds to a xt in subsystem 1 and the latter in subsystem 2. In
either case, however, (T

′
t − λ∂T

′
t /∂λ) reduces to T0. Thus, the embedded energy of the

whole system under constraint is

U∗1|2 = U∗1|2,system + UT
eq. (3.27)

Since the embedded energy of the tank reduces to UT
eq with and without the con-

straint, the comparison between Eqs. (3.23) and (3.27) reduces to the contribution from
the system. In other words, the tank does not influence the result of Hypothesis 3.1.1: U∗

is minimised in steady states.

3.3 Ideal Gas under Heat Flow

In this section, we consider the system in Sec. 2.3.1, an ideal gas under external energy
flow from temperature gradient present at its left and right boundary. Like before, the
system is of fixed volume V and N; left and right boundary are of area A (height H and
width Z), placed at x = 0 and L; the temperature at the left(right) boundary is T1(T0).
The internal constraints are adiabatic walls with configurations vertical, linear, and cosine.
Their expressions are given in Eq. (2.79), and their parameters are height h, slope b, and
wavenumber k̂, respectively. The schematic plot of these models is reproduced in Fig. 3.3
for quick reference.

From previous results, the energy density and the heat flow of the system are obtained
analytically (see Eqs. (2.82) and (2.85)). Both U and JU are functions of T̃1 = T1/T0. The
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Figure 3.3: Reproduction of Fig. 2.8. Schemes of (a) unconstrained and (b)(c)(d) constrained
ideal gas systems under an external heat flow. Two diathermal walls are placed at x = 0 and
L, kept at temperatures T1 and T0, respectively. The constraints are adiabatic walls, denoted in
black. In (b), the constraint has a height h and extends from (0, h/2) to (L/2, h/2) to (L/2,−h/2)
to (L,−h/2). In (c), the constraint has a slope b and stretches from (0,−bL/2) to (L, bL/2). In
(d), the constraint is in the shape of a cosine function of wavenumber k̂. It extends from (0, H/2+
π/2k̂) to (0, H/2− π/2k̂), corresponding to phase (0, π). The red arrows denote the heat flux.

partial derivative, therefore, can be expressed in terms of T̃1 using the chain rule. Thus,
the expression of U∗ is

U∗ = U − ∂U
∂T̃1

∂T̃1

∂JU
JU =

U2

UeqT̃1
. (3.28)

For the constrained system, U∗ is obtained numerically using the finite element method
(FEM), explained in Sec. 2.3.1.2. First, for a fixed T̃1, the subsystem energy Ui and heat
flow JUi are obtained using the same procedure described in Sec. 2.3.1. Primarily, the sub-
system temperature profiles are obtained numerically using FEM implemented in Math-
ematica. Then, the values of Ui and JUi are obtained using numerical derivation and
integrations. Second, the temperature at the left boundary is varied around the value T̃1.
The same quantities are obtained under each new T̃1, giving Ui(T̃1) and JUi(T̃1). Conse-
quently, the partial derivative ∂Ui/∂JUi can be evaluated directly. Finally, these results
are combined to obtain

U∗1|2 = U1 −
∂U1

∂JU1

JU1 + U2 −
∂U2

∂JU2

JU2 . (3.29)

Like in Sec. 2.3.1, we evaluate the following test models: L = 10 and H = 60, 80, 100,
150, 180, 200, 400 and 600 for constraint vertical and linear; L = 10 and H = 80, 100, 120
for constraint cosine. For each model, the scaled embedded energy U∗/V is evaluated
as a function of the reduced parameter of the constraint (h/H for vertical, b/H for linear,
and 1/k̂H for cosine), at T̃1 = 10.0 (shown in Fig. 3.4). The derivations are obtained with
respect to T̃1 ∈ (9.8, 10.3).

From previous discussions (see Sec. 2.3.1), two sources of errors need to be consid-
ered. The first is numerical errors from FEM due to conflicting boundary conditions, and
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Figure 3.4: Scaled embedded energy U∗/V plotted against scaled parameters x. Specifically,
x = h/H, b/H, and 1/k̂H for configurations vertical, linear, and cosine, respectively. Each curve
corresponds to a specific model of different dimensions, denoted in the legends. For vertical and
linear, the length and height of the models are L = 10, H = 60, 80, 100, 150, 180, 200, 400, 600;
for cosine, L = 10, H = 80, 100, 120. The horizontal line in each panel corresponds to U∗ of the
unconstrained model. The insets are results evaluated over a wider range.

the second is errors from the finite size effect.
For the first source of error, the valid parameter ranges for the test models are listed

in Table 2.2. To account for the second source of error, we observe the scaled embedded
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82 Chapter 3. Embedded Energy in Nonequilibrium Steady States

energy U∗(x)/V for regions showing data collapsing, and further restrict valid parame-
ter ranges to these regions. The main panels in Fig. 3.4 show results within the parameter
range listed in Table 2.2; the insets show results over a wider range. For constraints ver-
tical and linear, we see that the larger the model, the wider the range of data collapsing.
Especially for models with H = 400 and 600, data collapse over the full range of h/H
and b/H. Within these new ranges, U∗ ≤ U∗1|2 does not always hold. Therefore, Hypoth-
esis 3.1.1 is not supported.

For constraint cosine, we see data collapsing over the region 1/k̂H ≤ 0.01, and results
show U∗ ≤ U∗1|2, in accordance with the hypothesis. However, only models of relatively
small dimensions are examined. And we expect models of larger dimensions to exhibit
data collapsing over a wider range, especially toward the tail of 1/k̂H, and therefore
contradict Hypothesis 3.1.1.

3.4 Summary and Conclusion

In this chapter, we have proposed our second hypothesis, which states that the embedded
energy U∗ is minimized at NESS (see Hypothesis 3.1.1). This hypothesis is adapted from
our previous hypothesis 2.1.1, and we have discussed our motivation for this quantity in
the first section. In short, this quantity takes the form "like" the Legendre transform of the
energy U with respect to the total heat flow JU , U∗ ≡ U− JU∂JU U. This is analogous to the
Helmholtz free energy, which is the Legendre transform of the (energetic) fundamental
relation with respect to entropy.

Hypothesis 3.1.1 is then tested using two models. The methodology, same as before,
is to introduce internal constraints into these models systematically and then compare
U∗ with U∗1|2, the embedded energy under constraint. The first model is an ideal gas
under a homogeneous bulk energy supply, same as case 1 of Sec. 2.2.1. The expressions
are obtained analytically. And direct inspections of the embedded energy under several
energy supply densities support the hypothesis. In addition, we have discussed the case
where a heat tank is attached to the model. (This model has been found to contradict
Hypothesis 2.1.1.) Analysis shows that Hypothesis 3.1.1 is supported by this model.

The second model is an ideal gas under an external heat flow, same as Sec. 2.3.1.
The results are obtained numerically using the finite element method. It turns out that
U∗ > U∗1|2 under certain constraints, contradictory to the hypothesis. Therefore, Hypoth-
esis 3.1.1 must be adapted.
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Chapter 4

Competing Steady States and Phase
Transitions

In previous chapters, one important test model is the ideal gas model under a homoge-
neous energy supply, with a fixed adiabatic wall as the internal constraint. This model is
simple and analytical. Therefore, it is used as the first testing model for both hypotheses
(see Sec. 2.2.1 and Sec. 3.2). The choice of internal constraint, a fixed and adiabatic wall,
is also due to simplicity. This choice results in subsystems that are independent.

An interesting question arises: what would happen if the subsystems are coupled
instead? This coupling, where some form of exchange happens between subsystems,
could be achieved via a variety of methods. For example, we have studied the model
with a diathermal internal constraint (case 5 in Sec. 2.2.1), where subsystems are coupled
through heat exchange.

In this chapter, we examine a new model that originated from the above question. An
adiabatic and movable wall is chosen as the internal constraint. The two subsystems are
now coupled via mechanical forces. We refer to this model as the movable wall model.

Interestingly, this model exhibits unexpected behaviours. Evaluations reveal that this
system undergoes a nonequilibrium phase transition depending on the energy supply
density λ1. Moreover, beyond the transition point λ1 = λc, the system exhibits competing
steady states.

This chapter is organised as follows. In the first section, the movable wall model
is defined and examined. We will also analyse the phase transition and the competing
steady states beyond λc. The next two sections are devoted to using this model as the
test model for various hypotheses. In Sec. 4.2, we will re-examine Hypothesis 2.1.1 and
Hypothesis 3.1.1. In Sec. 4.3, out of curiosity, we will propose the expressions of four
additional nonequilibrium potentials using the local equilibrium assumption; and we
form hypotheses for each potential. The motivation is to check the form of nonequilib-
rium potentials analogous to the equilibrium thermodynamic potentials. Together with
the paradigm model – the ideal gas with a fixed adiabatic wall – we examine these new
hypotheses. Finally, we conclude in Sec. 4.4.
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84 Chapter 4. Competing Steady States and Phase Transitions

4.1 Movable Wall Model

4.1.1 Model Description

Starting from the paradigm model (case 1 of Sec. 2.2.1), we again consider a closed ideal
gas model under a homogeneous external energy supply of density σE = λ1. A movable
wall model, in this section, refers to the case where an adiabatic movable wall is introduced
as the internal constraint. A scheme of the system is shown in Fig. 4.1. Like before, the
system has a fixed volume V and number of particles N, placed in a heat bath of temper-
ature T; the left and right boundary are of area A, placed at x = ±L; heat conductivity is
a constant k.

λ1

0-L L xXW

Figure 4.1: Schematic plot of movable wall model. An ideal gas is placed between two diathermal
walls of area A, placed at x = ±L, and kept at temperature T. An adiabatic movable wall is
present in the system, denoted by the vertical plane. Energy is supplied homogeneous with a
density λ1. The heat flux density is denoted by~JE.

The movable wall model is different from case 1 in one important aspect: the con-
straint in case 1 is fixed; in the movable wall model, the constraint moves freely without
friction. Consequently, the constraint in case 1 is inserted such that the average particle
density in each subsystem is the same; whereas in the movable wall model, the ratio of
the number of particles of the subsystems, N1/N2, can be set arbitrarily. Practically, to
achieve any intended partition N1 and N2, the wall can be inserted in equilibrium where,
according to the ideal gas law

PVi = NikBT, (4.1)

with pressure P and the Boltzmann constant kB, the ratio of Ni corresponds to the ratio
of volume Vi.

Now that the two subsystems are coupled via pressure and can exchange work, the
system reaches steady states when the pressure exerted from each subsystem becomes
the same

P1(Xw) = P2(Xw), (4.2)
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where Xw is the position of the constraint. From Eq. (2.10), this condition is equivalent to
a match of subsystem energy density

ε1(Xw) = ε2(Xw). (4.3)

The explicit expression of Eq. (4.3) is obtained as follows. The expression of the sub-
system energy density is given in Eq. (2.18),

ε1 =
3
2

N1kB
1∫

V1

dr3

T1(~r)

and ε2 =
3
2

N2kB
1∫

V2

dr3

T2(~r)

. (4.4)

The temperature profiles are the same as in case 1 and given by Eq. (2.24). Then, the
energy density is

ε1 =
3
2

N1kBT
AL

√
λ̃1(λ̃1l2

1 + 2)

2 Arctanh
√

λ̃1l2
1/(λ̃1l2

1 + 2)
≡ 3

2
N1kBT

V1
f (λ̃1l2

1),

ε2 =
3
2

N2kBT
AL

√
λ̃1(λ̃1l2

2 + 2)

2 Arctanh
√

λ̃1l2
2/(λ̃1l2

2 + 2)
≡ 3

2
N2kBT

V2
f (λ̃1l2

2),

(4.5)

where li is the length of subsystem i normalised with L; with xw ≡ Xw/L as the nor-
malised position of the wall, l1 = 1 + xw and l2 = 1− xw; λ̃1 = λ1L2/kT0 is the nor-
malised energy supply density; function f is defined as

f (x) ≡

√
x(x + 2)

2 Arctanh
√

x/(x + 2)
. (4.6)

Moreover, the energy of each subsystem is simplified to

U1 =
3
2

N1kBT f (λ̃1l2
1) and U2 =

3
2

N2kBT f (λ̃1l2
2). (4.7)

The author would like to point out that Eq. (4.5) is different from the energy density of
case 1 (see Eq. (2.25)). Finally, the condition for NESS (Eqs. (4.2) and (4.3)) simplifies to

N1 f
(

λ̃1(1 + xw)
2
)

1 + xw
=

N2 f
(

λ̃1(1− xw)
2
)

1− xw
. (4.8)

4.1.2 Phase Transition

As stated previously, the movable wall model is different from case 1 in that the con-
straint is movable. This single difference results in an interesting nonequilibrium phase
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transition and competing steady states which we will discuss next. The order parameter
is the stable position of the wall Xw.

Let us start from the simplest case by choosing N1 = N2 = N/2. The steady state
condition (4.8) becomes

f
(

λ̃1(1 + xw)
2
)

1 + xw
=

f
(

λ̃1(1− xw)
2
)

1− xw
. (4.9)

Under a fixed λ1, the (normalised) steady state positions of the wall x(i)w are obtained by
solving (4.9) numerically. In the following, we will denote the ith solution of a quantity
with superscript −(i). Graphically, by plotting ε1 and ε2 as a function of xw, the solu-
tions are observed as the crossing points of these two curves. And their stabilities can be
qualitatively analysed from the graph. Let us first look at this problem graphically.

Naturally, xw = 0 is a solution. In this case, the system is separated into two identical
subsystems. Hence, P1 = P2 trivially. We denote this solution as x(1)w . This is indeed the
situation for small λ̃1, where the system has only one steady state x(1)w , and this state is
stable. An example of this phase is shown in Fig. 4.2 (a). As shown in the figure, the
curves are monotonic, and has only 1 crossing point at the center.

To see the stability of x(1)w , suppose now that the constraint is pushed away from the
center. In Fig. 4.2 (a), it is indicated by the vertical line in xw ≥ 0. In this case, one
observes that ε2 ≥ ε1, or, P2 ≥ P1, indicating that the net pressure is exerted towards
x(1)w = 0. Next, from our previous assumption of fast establishing steady states, we
assume that the movement of the constraint is a slow process. In other words, we assume
that at every point of the movement process of the wall, the system is in steady states.
This assumption allows us to continue using Eq. (4.5) and the curves in Fig. 4.2 (a). As
a result, this unbalance of pressure continues until the wall is pushed back to the center.
Therefore, in this case, x(1)w = 0 is stable.

For large λ̃1, interestingly, the system has 3 steady states: x(1)w = 0, and x(2)w = −x(3)w 6=
0 due to symmetry. Qualitatively, one can imagine the asymmetric solutions as follows.
Since N1 = N2, the larger subsystem would have a smaller averaged particle density
ni ≡ Ni/Vi, and the smaller system a larger ni, say n1 ≤ n2. On the other hand, since
the energy supply is homogeneous, that is, proportional to the volume and inverse pro-
portional to ni, the larger subsystem would have a higher overall temperature than the
smaller subsystem. According to Eq. (2.10), the energy density is the product of local
particle density and the local temperature. As a result of this energy supply scheme, a
compensation may happen under unequal volumes.

An example of this second phase is shown in Fig. 4.2 (b). As we can see from the
figure, the curves are no longer monotonic and cross at 3 points. To see the stabilities
between x(1)w and x(2)w (and equivalently x(3)w ), suppose now that the constraint is pushed
away from steady states. Two situations can occur: in one case the constraint is between
x(1)w and x(2)w , and the other beyond x(2)w . In both situations, the pressure difference will
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Figure 4.2: Subsystem energy density curves εi as a function of the normalised position of the
constraint Xw/L. Energy supplies are of density (a)λ1 = 2.0 and (b)λ1 = 10.0, measured in units
of kT/L2. Vertical dashed lines indicates the position of the constraint and the arrow suggests the
direction the wall moves. X(i)

w /L denotes the crossing points in each case.

push the constraint towards x(2)w . Due to symmetry, the same argument holds for x(3)w

when the starting point of the constraint is xw < 0. This quick analysis, as indicated in
the Fig. 4.2 (b), suggests that x(2)w and x(3)w are stable and x(1)w is unstable.

Now, let us examine the problem quantitatively. The phase diagram xw(λ̃1) (under
fixed T, V, N) is plotted in Fig. 4.3 (a). As shown in the figure, as λ̃1 increases, the system
undergoes a phase transition with respect to the stable position of the wall, and the phase
transition is continuous. The transition point is at λcL2/kT = 4.55344. A derivation of
this value is shown later. Beyond λc, the system exhibits competing steady states, and
the stable states are with Xw 6= 0.

Further, the total energy of the system Utot = U1 + U2 for all steady states are plot-
ted in Fig. 4.3(b). Interestingly, the energy of the stable steady states is higher than the
unstable steady state.

2 4 6 8 10
λ

1

-0.2

0

0.2

0.4

0.6

0.8

X
w
/L

(a)

λ
c

0 2 4 6 8 10
λ

1

1

2

3

4

5

U
to

t

X
w

(1)

X
w

(2)

(b)

λ
c

Figure 4.3: (a) Phase diagram in the parameter space {Xw, λ1}. Stable (unstable) steady states
are plotted in black (red). (b) Total Energy of the system Utot as a function of the energy supply
density λ1. Stable (unstable) steady states is denoted as X(2)

w (X(1)
w ). The vertical lines denote the

transition point λc. Xw is in units of L, λ1 in units of kT/L2 and energy in units of Ueq.
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4.1.3 Derivation of the Critical Point

As stated previously, the phase transition of the movable wall model with N1 = N2 =

N/2 occurs at λ̃c = λcL2/kT = 4.55344. This value can be derived as follows.
We start by defining a new function, the (negative) differences between the energy

densities,

G(xw) ≡ −
(

g(xw)− g(−xw)

)
, g(xw) ≡

f
(

λ̃1(1 + xw)
2
)

1 + xw
. (4.10)

The negativity in G(xw) is not necessary, but it is chosen here to simplify the explanation
in a later section. Since the function is odd with respect to xw, it is sufficient to look at
half of the axis, say xw ∈ [0, 1).

Consider the range xw ≥ 0. For this model, the phase transition occurs when the
number of solutions of Eq. (4.9) transit from 1 to 2. Equivalently, this means that the
number of times G(x) crosses with the x-axis in this range transit from 1 to 2. Since
G(0) = 0 and as x → 1, G(x) → ∞, when G′(0) > 0, G(x) is monotonic and have
only one crossing point at x = 0; when G′(0) < 0, G(x) will have two crossing points.
Therefore, the transition point is G′(0) = 0 = −2g′(0), which is explicitly,

dg
dx

∣∣∣∣
x=0

=
1

2 + λ̃1
−

λ̃2
1 Arctanh(

√
λ̃1/(λ̃1 + 2))

(λ̃1(λ̃1 + 2))3/2 = 0. (4.11)

Solving this implicit equation numerically, we find that λ̃c = λcL2/kT ≈ 4.55344.

4.2 Re-examine Hypotheses

Since the movable wall model exhibits multiple competing steady states beyond λ̃c, it can
be employed as a test for variational hypotheses. The methodology has been explained
in Sec. 2.1 and we will recount here for quick reference. Explicitly, the minimization
hypothesis of a general potential F indicates that Fstable state ≤ {Fsteady states}. For the
movable wall model, this relation becomes F (x(2)w ) = F (x(3)w ) ≤ F (x(1)w ).

We first re-examine Hypothesis 2.1.1: the minimization of T , where T is the ratio of
energy storage ∆U to the total heat flow JU . For the movable wall system, the potential
is T1|2 ≡ (U1 + U2 −Ueq)/(JU1 + JU2), where Ueq is the equilibrium energy, and JUi is the
total heat flow of subsystem i, as stated before. We will compare the expression of T1|2 at
the steady states,

T1|2(x(i)w ) =
U1(x(i)w ) + U2(x(i)w )−Ueq

JU1(x(i)w ) + JU2(x(i)w )
. (4.12)
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Since the total heat flow is constant, the comparison simplifies to a comparison between
U1(x(i)w ) + U2(x(i)w ). Further, since ε1(x(i)w ) = ε2(x(i)w ) from (4.3), the comparison becomes

εi(x(2)w ) = εi(x(3)w ) and εi(x(1)w ) (4.13)

This comparison has been demonstrated in Fig. 4.3 (b) where, contrary to the prediction
of the hypothesis, εi(x(2)w ) ≥ εi(x(1)w ) for λ̃1 ≥ λ̃c. Therefore, Hypothesis 2.1.1 is disproved
by the movable wall model.

Next, we re-examine Hypothesis 3.1.1: the minimization of the embedded energy U∗.
The expression of U∗ at steady states are given by (see Eq. (3.10))

U∗1|2(x(i)w ) = U1(x(i)w )− JU1(x(i)w ) · ∂U1

∂JU1

∣∣∣∣
x(i)w

+ U2(x(i)w )− JU2(x(i)w ) · ∂U2

∂JU2

∣∣∣∣
x(i)w

, (4.14)

where

JU1(x(i)w ) = λ1AL(1 + x(i)w ) = λ1ALl(i)1 and JU2(x(i)w ) = λ1AL(1− x(i)w ) = λ1ALl(i)2 .
(4.15)

For the movable wall model, the partial derivative with respect to JU1 becomes a partial
derivative with respect to l(i)i . Explicitly, the derivative becomes

U∗1|2 = U1 −
∂U1

∂l1
l1 + U2 −

∂U2

∂l2
l2. (4.16)

Substituting Eq. (4.7), we obtain

U∗1|2(xw) =
2U1

λ̃1(1 + xw)2 + 2

(
1 +

2U1

Ueq

)
−U1

+
2U2

λ̃1(1− xw)2 + 2

(
1 +

2U2

Ueq

)
−U2.

(4.17)

Results of U∗1|2(x(i)w ), i = 1, 2, are plotted in Fig. 4.4. As we can see, the potential of the

stable solutions is smaller than the unstable solution, U∗(x(2)w ) ≤ U∗(x(1)w ), in accordance
with the prediction from the hypothesis. Therefore, the movable wall model supports
Hypothesis 3.1.1.

4.3 Various Potentials

It is interesting to see the form of nonequilibrium thermodynamics potentials based
on the local equilibrium assumption. In this section, we propose expressions of four
nonequilibrium thermodynamic potentials (of an ideal gas system): the steady state en-
tropy S, the Helmholtz like free energy F, the Gibbs like free energy G, and the entropy
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production rate Ṡ. For each potential, we will check if the expression could be a candidate
for variational hypotheses.

The methodology is as follows. We measure these potentials over two models, the
paradigm model with the fixed constraint (termed the fixed wall model) and the movable
wall model. To differentiate between these models, we will denote the position of the
fixed constraint as x1; for the movable wall model, we use xw as before. Practically, for
the fixed wall model, F and F1|2(x1) are measured and compared for each potential F ;

for the movable wall model, F (x(i)w ), i = 1, 2, 3 are measured and compared, where x(i)w

are the solutions of Eq. (4.9). Note that we do not presuppose whether the hypothesis is
a maximization or minimization hypothesis; instead, we simply check if the predictions
from both models agree. The extremum hypothesis and the corresponding predictions
are shown in Table 4.1. The last two situations in the table suggest inconsistency, and the

Hypothesis Predictions
F is minimized F ≤ F1|2(x) & F (x(2)w ) ≤ F (x(1)w )

F is maximized F ≥ F1|2(x) & F (x(2)w ) ≥ F (x(1)w )

– – F ≥ F1|2(x) & F (x(2)w ) ≤ F (x(1)w )

– – F ≤ F1|2(x) & F (x(2)w ) ≥ F (x(1)w )

Table 4.1: Extremum hypotheses and their predictions.

form of the potential will be ruled out as a candidate for variational hypotheses.

Entropy

First, let us start with the proposition of the steady state entropy S. This expression will
be used later to derive the other potentials.
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For an ideal gas with a fixed temperature T, volume V and number of particles N, the
equilibrium entropy Seq is given by

Seq =
5
2

NkB ln
Teq

T0
− NkB ln

Peq

P0
+ S0

=
5
2

NkB ln T̃eq − NkB ln ε̃eq + S0.
(4.18)

In this section, we will use −eq to denote variables at the equilibrium state of interest and
subscript−0 of a reference equilibrium state; symbol "−̃" denotes the normalised variable
with respect to the reference equilibrium state. For example, in Eq. (4.18), T̃eq = Teq/T0

is the normalised temperature with respect to state T0, V0, N0; kB denotes the Boltzmann
condition as usual; P is the pressure, ε is the energy density, and the relation Peq/P0 =

εeq/ε0 = ε̃eq is from Eq. (2.10).
Assuming local equilibrium, we extend Eq. (4.18) to the local entropy density at NESS,

s(~r) =
5
2

n(~r)kB ln T̃(~r)− n(~r)kB ln ε̃ + s0, (4.19)

where s0 = S0/V, and T̃ = T/T0, ε̃ = ε/ε0 as before. We define the nonequilibrium
steady state entropy as

S ≡
∫

V
s(~r)dr3. (4.20)

The normalised s(~r) has a simpler form:

s̃(~r) ≡ T0s(~r)
ε0

=
5
3

ε̃ ln T̃(~r)
T̃(~r)

− 2
3

ñ(~r) ln ε̃ + s̃0, (4.21)

where s̃0 ≡ T0s0/ε0, n(~r) is the local number density, and ñ = n/n0 is the normalised
local number density as usual. This quantity can be integrated to obtain

S̃ ≡ ST0

U0
=

1
2

∫ 1

−1
s̃(x̃)dx̃

=
5
6

ε̃
∫ 1

−1
dx̃

ln T̃(~x)
T̃(~x)

− 2
3

ln ε̃ + s̃0,
(4.22)

with x̃ = x/L, same as before. And then, the steady state entropy is retrieved from
S = S̃U0/T0.

Similarly, we obtain the steady state entropy under an adiabatic internal constraint
S1|2. The normalised S̃1|2 is given by

S̃1|2 ≡
S1|2T0

U0
=

1
2

(∫ x̃1

−1
s̃1(x̃)dx̃ +

∫ 1

x̃1

s̃2(x̃)dx̃
)

, (4.23)
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where x̃1 = x1/L is the normalised position of the adiabatic constraint, same as before.
And

s̃1(~r) =
5
3

ε̃1 ln T̃1(~r)
T̃1(~r)

− 2
3

ε̃1 ln ε̃1

T̃1(~r)
+ s̃0, (4.24)

s̃2(~r) =
5
3

ε̃2 ln T̃2(~r)
T̃2(~r)

− 2
3

ε̃2 ln ε̃2

T̃2(~r)
+ s̃0. (4.25)

Therefore,

S̃1|2(x̃1) =
5
6

(
ε̃1

∫ x̃1

−1

ln T̃1(x̃)
T̃1(x̃)

dx̃ + ε̃2

∫ 1

x̃1

ln T̃2(x̃)
T̃2(x̃)

dx̃

)

− 1
3

(
(1 + x̃1) ln ε̃1 + (1− x̃1) ln ε̃2

)
+ s̃0.

(4.26)

Then, the steady state entropy of the constrained system is retrieved with S1|2 = S̃1|2U0/T0.
Eq. (4.26) is applicable for both models. The value according to each model is ob-

tained by substituting the appropriate temperature profiles and the energy density ex-
pressions. For the fixed wall model, Ti(x) is given by Eq. (2.24) and εi given by Eq. (2.25);
for the movable wall model, Ti(x) is the same, εi is given by Eq. (4.5), and x̃1 = x(i)w (λ̃1)

is obtained numerically from Eq. (4.9). In both models, the integrations are obtained
numerically.

Results of the comparison are shown in Fig. 4.5. For the fixed wall case, we find that
S ≤ S1|2(x̃1), and for the movable wall case, S(x(2)w ) ≤ S(x(1)w ). For the fixed wall model,
due to the numerical integration, we were not able to obtain an analytical comparison be-
tween S and S1|2(x̃1) and only numerical calculations at several λ̃1 are performed. Both
results are in agreement with the minimization hypothesis (see Table 4.1). Therefore, the
proposed expression of steady state entropy can be a candidate for variational hypothe-
ses.
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Figure 4.5: (a) Comparison between steady state entropy S of the fixed wall model, with (red) and
without (black) constraint. S is plotted against the position of the constraint x1. The energy supply
density is λ1 = 6.0. (b) Comparison between S at the stable (black) and unstable (red) steady state,
plotted against λ1. The stable (unstable) state is denoted with X(2)

w (X(1)
w ). The vertical line denotes

the transition point λc. S is in units of U0/T0, x1 in units of L, and λ1 in units of kT0/L2.
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Helmholtz like Free Energy

Next, we derive an expression of the steady state Helmholtz like free energy F using the
local equilibrium assumption. From equilibrium thermodynamics, Feq = Ueq − TeqSeq.
Local equilibrium suggests

F = εV −
∫

V
T(~r)s(~r)dr3. (4.27)

Once again, the normalised F̃ has a simpler form

F̃ ≡ F
U0

= ε̃− 1
2

∫ 1

−1
T̃(x̃)s̃(x̃)dx̃, (4.28)

where s̃(x̃) is given by Eq. (4.21) and

T̃(x̃)s̃(x̃) =
5
3

ε̃ ln T̃(x̃)− 2
3

ε̃ ln ε̃ + T̃(x̃)s̃0. (4.29)

Substituting the appropriate T(x) and ε (Eqs. (2.21) and (2.22)), we obtain

F̃ =
13
3

ε̃ +
2
3

ε̃ ln ε̃− 5
3
(λ̃1 + 2)− s̃0(

λ̃1

3
+ 1). (4.30)

And we retrieve F = U0F̃.
For the constrained system, the normalised F̃1|2 is given by

F̃1|2 ≡
F1 + F2

U0

=
1
2

(
ε̃1(1 + x̃1) + ε̃2(1− x̃1)

)
− 1

2

(∫ x̃1

−1
T̃1(x̃)s̃1(x̃)dx̃ +

∫ 1

x̃1

T̃2(x̃)s̃2(x̃)dx̃
)

.

(4.31)

where s̃1(x) and s̃2(x) are given by Eqs. (4.24) and (4.25), respectively. Along with Eqs. (2.24)
and (2.25), the expression of the fixed wall model is

F̃1|2(x̃1) =
13
6

(
ε̃1(1 + x̃1) + ε̃2(1− x̃1)

)
+

1
3

(
(1 + x̃1)ε̃1 ln ε̃1 + (1− x̃1)ε̃2 ln ε̃2

)
− 5

3
(λ̃1 + 2 + 3λ̃1 x̃2

1)− s̃0

(
λ̃1

3
+

λ̃1 x̃2
1

3
+ 1

)
.

(4.32)
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And if we substitute εi with Eq. (4.5) and solutions x(i)w , the corresponding expression of
the movable wall case is obtained,

F̃1|2(x(1)w ) =
13
3

ε̃
(1)
1 +

2
3

ε̃
(1)
1 ln ε̃

(1)
1 −

5
3
(λ̃1 + 2)− s̃0(

λ̃1

3
+ 1),

F̃1|2(x(2)w ) =
13
3

ε̃
(2)
1 +

2
3

ε̃
(2)
1 ln ε̃

(2)
1 −

5
3
(λ̃1 + λ̃1 x̃2

1 + 2)− s̃0(
λ̃1

3
+ λ̃1 x̃2

1 + 1).

(4.33)

Results of the comparison are shown in Fig. 4.6. Like before, only numerical inspec-
tions are performed for the fixed wall model. As we can see from the figure, F ≥ F(x̃1)

and F(x(2)w ) ≤ F(x(1)w ). According to Table 4.1, these results are contradictory to each
other. Therefore, the proposed expression of F cannot be a candidate for variational hy-
potheses.
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Figure 4.6: (a) Comparison between Helmholtz like free energy F of the fixed wall model, with
(red) and without (black) constraint. F is plotted against the constraint position x1. The energy
supply density λ1 = 6.0. (b) Comparison between F of the movable wall model, at the stable
(black) and unstable (red) steady states, plotted against λ1. The stable (unstable) state is denoted
with X(2)

w (X(1)
w ). The vertical line denotes the transition point λc. F is in units of U0, x1 in units of

L, and λ1 in units of kT0/L2.

Gibbs Like Free Energy

Our proposed expression of the steady state Gibbs like free energy G is relatively simple.
From equilibrium thermodynamics, the Gibbs free energy is given by

Geq = Ueq + PeqVeq − TeqSeq = Feq + PeqVeq, (4.34)

Following the local equilibrium assumption, G is simply

G = F + PV. (4.35)

And for the constrained system, we define

G1|2 = F1|2 + P1V1 + P2V2. (4.36)
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The normalised G̃ has a simplified form. For the unconstrained system, this is

G̃ ≡ G
U0

= F̃ +
2
3

ε̃. (4.37)

where F̃ is given by Eq. (4.28). Then, for the fixed wall model with a constraint at x̃1

G̃1|2(x̃1) ≡
G̃1|2
U0

= F̃1|2(x̃1) +
1
3

(
ε̃1(1 + x̃1) + ε̃2(1− x̃1)

)
. (4.38)

where F̃1|2(x̃1) is given by Eq. (4.32). And for the movable wall model, the expression
becomes

G̃1|2(x(i)w ) = F̃1|2(x(i)w ) +
2
3

ε̃(i), (4.39)

where F̃1|2(x(i)w ) is given by Eq. (4.33). Finally, G = G̃U0 and G1|2 = G̃1|2U0.
Comparisons for G are shown in Fig. 4.7. This figure is obtained from Fig. 4.6, ad-

justed with an additional term (P for G̃ and Pi for G̃1|2). Similar to the case of F, the
results from the two models contradict each other. Therefore, the proposed expression of
G is also ruled out to be a candidate for variational hypotheses.
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Figure 4.7: (a) Comparison between Gibbs like free energy G of the fixed wall model, with (red)
and without (black) constraint. G is plotted against the constraint position x1. The energy supply
density λ1 = 6.0. (b) Comparison between G of the movable wall model, at the stable (black)
and unstable (red) steady states, plotted against λ1. The stable (unstable) state is denoted with
X(2)

w (X(1)
w ). The vertical line denotes the transition point λc. G is in units of U0, x1 in units of L,

and λ1 in units of kT0/L2.

Entropy Production Rate

Finally, we derive an expression of the entropy production rate of the ideal gas. From
Eq. (1.40), the entropy production rate is given by the sum of the product of flux and
affinity pairs. For the two test models, the pair is the heat flux density JE = −k∂xT(x)
(from Fourier’s law (1.51)), and the local affinity due to the temperature gradient FE =
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96 Chapter 4. Competing Steady States and Phase Transitions

∂xT−1(x). Therefore, the local entropy production rate (density) is

σs = JEFE =
∂

∂x

(
1

T(x)

)(
−k

∂

∂x
T(x)

)
= k

(
∂xT(x)
T(x)

)2

. (4.40)

And the total entropy production rate is given by

Ṡtot ≡
∫

V
σsd3r. (4.41)

The total entropy production rate per unit volume has a simpler form,

σs ≡
Ṡtot

V
=

1
2L

∫ L

−L
σsdx. (4.42)

By substituting Eq. (2.21) into (4.40), we obtain

σs =
λ1

T0
(1− 1

ε̃
) = λ1(β0 − β), (4.43)

where
β ≡ 1

V

∫
V

dx
T(x)

and β0 ≡
1
T0

. (4.44)

And the total entropy production rate is Ṡtot = σsV.
Similarly, σs for the constrained systems with a constraint at x1 is given by

σs1|2(x1) =
1

2L

(∫ x1

−L
σ1

s dx +
∫ L

x1

σ2
s dx

)
, (4.45)

where σs
i is the subsystem entropy production rate. Explicitly, for the fixed wall model

σs1|2(x̃1) =
λ1

T0

(
1 + x̃1

2
(1− 1

ε̃1
) +

1− x̃1

2
(1− 1

ε̃2
)

)
= λ1

(
β0 −

1
2
(1 + x̃1)β1 −

1
2
(1− x̃1)β2

)
,

(4.46)

where

β1 =
1

L + x1

(∫ x1

−L

dx
T1(x)

)
=

1
ε̃1

and β2 =
1

L− x1

(∫ L

x1

dx
T2(x)

)
=

1
ε̃2

. (4.47)

And for the movable wall model,

σs1|2(x(i)w ) =
λ1

T0
(1− 1

ε̃(i)
)

= λ1

(
β0 − (1 + x̃(i)w )β1

(i)
)
= λ1

(
β0 − (1− x̃(i)w )β2

(i)
)

.
(4.48)

The last equal sign comes from Eq. (4.3). Finally, we retrieve Ṡ1|2
tot = σs1|2V.
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A comparison of the total entropy production rate for both models is shown in Fig. 4.8.
As we can see, Ṡtot ≤ Ṡ1|2

tot (x1) and Ṡ1|2
tot (x(2)w ) ≥ Ṡ1|2

tot (x(1)w ). According to Table 4.1, the
results suggest a contradiction. Therefore, the proposed expression of Ṡtot is ruled out as
a candidate for variational hypotheses.
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Figure 4.8: (a) Comparison between the entropy production rate Ṡtot of the fixed wall model, with
(red) and without (black) constraint. Ṡtot is plotted against the constraint position x1. The energy
supply density is λ1 = 1.0. (b) Comparison between Ṡtot of the movable wall model, at the stable
(black) and unstable (red) steady states, plotted against λ1. The stable (unstable) state is denoted
with X(2)

w (X(1)
w ). The vertical line denotes the transition point λc. Ṡtot is in unit volume, x1 in units

of L, and λ1 in units of kT0/L2.

4.4 Summary and Conclusion

In this chapter, we have introduced and analysed the movable wall model: an ideal gas
driven by a homogeneous bulk energy supply, inserted with a movable adiabatic wall.
For the simplest case where the subsystems have an equal number of particles, this model
exhibits a second order nonequilibrium phase transition; beyond the transition point λc,
the system exhibits three competing steady states. To our knowledge, this is the sim-
plest model that exhibits nonequilibrium phase transitions and competing steady states.
Moreover, the system can be solved analytically. Therefore, this model can be used as a
paradigm model of nonequilibrium phase transitions.

Using the competing steady states, we re-examine Hypotheses 2.1.1 and Hypothe-
sis 3.1.1 in Sec. 4.2. The model supports the latter, but not the former. In Sec. 4.3, we have
also derived various nonequilibrium thermodynamic potentials using the local equilib-
rium assumption. These potentials are the steady state entropy S, the Helmholtz like free
energy F, the Gibbs like free energy G, and the entropy production rate Ṡtot. We have
also checked if these expressions can be used as candidates for variational principles. To
see this, we have measured these potentials in both the fixed wall model and the mov-
able wall model, and then checked for consistency. The consistency test ruled out the last
three expressions, leaving only S.
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98 Chapter 4. Competing Steady States and Phase Transitions

The movable wall model can be extended to more general conditions, for example,
N1 6= N2 and λ1 6= λ2. These additional degrees of freedom introduce variations to the
model. Further studies are needed to examine the existence and condition of phase tran-
sition, the corresponding transition points, the number of competing states, and much
more.
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Chapter 5

Nonequilibrium Steady State
Potential: The Final Hypothesis

In this chapter, we propose a nonequilibrium state function B and the hypothesis that B is
minimized for nonequilibrium steady states (NESS). At the time of preparing this thesis,
this is our latest hypothesis. This potential B is analogous to the equilibrium Helmholtz
free energy. We will give the definition of this potential and its justification in Sec. 5.1.
In Sec. 5.2, we will analyse the potential B of an ideal gas under homogeneous energy
supply and of the movable wall model. We will show that this potential correctly predicts
the stable steady states for the movable wall model.

5.1 Potential B and the Last Hypothesis

Consider a typical nonequilibrium system, a closed system with a fixed number of par-
ticles N and volume V, placed in a heat bath of temperature T, and driven to nonequi-
librium steady states with an external control parameter λ. For such an open system, we
propose a nonequilibrium state function B that is minimized in NESS.

The development of this nonequilibrium state function is based on a series of pos-
tulates. First, we postulate the existence of a state function B, such that it is minimized
for nonequilibrium steady states. Moreover, the relevant variables are postulated to be
the thermodynamic variables T, V, N, same as in equilibrium thermodynamics, and the
control parameter λ to account for nonequilibrium. To state formally,

Postulate 5.1.1. There exists a nonequilibrium state function B of thermodynamic vari-
ables T, V, N and the control parameter λ, B(T, V, N, λ), such that it is minimized for
nonequilibrium steady states.

The author would like to remark that, in the limiting case where the control parameter is
0, this potential must reduce to the equilibrium Helmholtz free energy,

lim
λ→0

B(T, V, N, λ) = Feq(T, V, N). (5.1)
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This correspondence is a necessary and important requirement of any proposition of a
nonequilibrium potential of a closed system. This requirement follows from the criteria
that any new hypothesis must agree with previously established theories. In this case,
from equilibrium thermodynamics, it is established that for a closed system of a fixed
T, V, N, Feq(T, V, N) is minimized. Therefore, Eq. (5.1) is a necessary condition.

Second, we postulate the differential form of the potential in analogous to the equi-
librium free energy, formally stated as,

Postulate 5.1.2. The state function B(T, V, N, λ) satisfies

dB(T, V, N, λ) = −SdT − PdV + µdN − Xdλ (5.2)

where P, S, µ, and X are state functions conjugate to V, T, N, and λ, respectively.

In other words, this postulate also contains, implicitly, the definitions of steady state
pressure P, entropy S, and chemical potential µ,

−P(T, V, N, λ) ≡ ∂B
∂V

, (5.3)

−S(T, V, N, λ) ≡ ∂B
∂T

, (5.4)

µ(T, V, N, λ) ≡ ∂B
∂N

. (5.5)

The new variable X is purely due to nonequilibrium and has no equilibrium counterpart.
From the postulate, this variable satisfies the relation

− X(T, V, N, λ) =
∂B
∂λ

. (5.6)

Note that the first three terms of Eq. (5.2) are analogous to the differential form of the
equilibrium free energy dFeq(T, V, N) = −SeqdT − PeqdV + µeqdN.

Finally, we propose the form of X. Previously in Chapters 2 and 3, we have exten-
sively studied energy storage and the total heat flow, and defined T . We have also de-
rived the form of steady state energy and the total heat flow, and defined U∗. These
quantities show minimization for certain models. Inspired by these results, we propose
the form of X as follows,

Postulate 5.1.3. The form of X is given by

X(T, V, N, λ) ∝
U −Ueq

λ
. (5.7)

In this case, X is linked to the previous hypotheses: the energy storage still plays a key
role, and the external control parameter λ is related to the total heat flow. The coeffi-
cient is obtained through an argument of consistency which will be described in the next
section.
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5.2 Applications in Ideal Gas

In this section, using the ideal gas model, we derive the expressions of the potential
B(T, V, N, λ) and X(T, V, N, λ) from the above postulates. Then, from these expressions,
we perform consistency checks using the Maxwell relations of B. Finally, we demonstrate
the use of B in the movable wall model. We will show that the minimization of B correctly
predicts the stable steady states.

5.2.1 Expressions

Consider an ideal gas model placed under a homogeneous bulk energy supply of density
λ. Like before, the model is of a fixed V and N; the area of the left and right boundary is
A, and the length is 2L; it is placed in a heat bath of T; it has a heat conductivity of k. A
schematic plot of the system can be found in Fig. 2.1.

For this model, since the energy is supplied through the whole volume, the external
control parameter λ in B is identified as the energy supply density, and it coincides with
the total heat flow per volume, λ = JU/V. The steady state energy of the system is
U = εV, where ε is the energy density, given by Eq. (2.22). We rewrite the expression of
U as follows,

U = Ueq f (λ · L2

kT
) =

3
2

NkBT f (λ · L2

kT
), (5.8)

and f is given by Eq. (4.6). The author would like to remark that, here, the variable of
f is separated to λ and L2/kT. This separation is chosen to reflect that λ is the external
control parameter; and the coefficient L2/kT are independent parameters that are either
of the intrinsic properties of the system (k, L), or of the environment that is not changed
(T).

From Eq. (5.6) of Postulate 5.1.2, B can be obtained by

B(T, V, N, λ) = B(T, V, N, 0)−
∫ λ

0
Xdλ′. (5.9)

As stated in Eq. (5.1), we have B(T, V, N, 0) = Feq(T, V, N). Therefore,

B(T, V, N, λ) = Feq(T, V, N)−
∫ λ

0
Xdλ′. (5.10)

Alternatively, the above expression can be obtained from the Maxwell relations of B. In
analogous to the Maxwell relations of the equilibrium thermodynamics, there are in total
six Maxwell relations of B(T, V, N, λ) from four variables T, V, N, and λ. We use the
Maxwell relation involving T and λ,

∂2B
∂T∂λ

=
∂2B

∂λ∂T
⇔ ∂S

∂λ
=

∂X
∂T

. (5.11)
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The second part of the relation comes from Eqs. (5.4) and (5.6). Hence, B is given by

B(T, V, N, λ) = −
∫ T

Tre f

SdT′ + B(Tre f , V, N, λ),

= −
∫ T

Tre f

dT′
(∫ λ

0

∂X
∂T′

dλ′ + Seq(T′, V, N)

)
+ B(Tre f , V, N, λ).

(5.12)

Exchange the order of integration, and the above expression becomes

B(T, V, N, λ)− B(Tre f , V, N, λ) =Feq(T, V, N)− Feq(Tre f , V, N)

−
∫ λ

0

(
X(T, V, N, λ′)− X(Tre f , V, N, λ′)

)
dλ′.

(5.13)

And therefore, Eq. (5.10) is retrieved.
The form of B in Eq. (5.10) can be interpreted as follows. Any state (T, V, N, λ) can be

viewed as the combination of two independent processes. The first step is to move from
an arbitrary reference state in equilibrium, perhaps (Tre f , Vre f , Nre f ), to the equilibrium
state (T, V, N) through a quasi-static process. This first step accounts for the component
Feq(T, V, N) in Eq. (5.10). The second step is to move from the equilibrium (T, V, N), or
(T, V, N, 0), to (T, V, N, λ) through a slow nonequilibrium process. The process is such
that, at any time, the system is assumed to be in a nonequilibrium steady state, and each
small change in λ results in an increment in the potential of −Xdλ. This second step
accounts for the second component in Eq. (5.10).

The expression of pressure is known from Eq. (2.10): P = 2U/3V. On the other hand,
the Maxwell relation involving P and X provides a link between them,

∂2B
∂V∂λ

=
∂2B

∂λ∂V
⇔ ∂P

∂λ
=

∂X
∂V

. (5.14)

Using this relation, P can be expressed as

P(T, V, N, λ) =
∫ λ

0

∂X
∂V

dλ′ + Peq(T, V, N) (5.15)

By demanding that Eq. (5.15) is equivalent to 2U/3V, we identify the coefficient of X of
this model as 1/3

X =
1
3

(
U −Ueq

λ

)
. (5.16)
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With the explicit expression of X, the expression of the steady state entropy S can be
obtained from Eq. (5.11),

S(T, V, N, λ) =
∫ λ

0

∂X
∂T

dλ′ + Seq(T, V, N),

=
NkB

2

∫ λ

0

f (λ′
L2

kT
)− 1

λ′
dλ′ − NkB

2

(
f (λ′

L2

kT
)− 1

)
+ Seq(T, V, N).

(5.17)

And from the Maxwell relation involving µ and X,

∂2B
∂N∂λ

=
∂2B

∂λ∂N
⇔ −∂µ

∂λ
=

∂X
∂N

, (5.18)

we obtain the last state function

µ(T, V, N, λ) = −
∫ λ

0

∂X
∂N

dλ′ + µeq(T, V, N),

=
kBT

2

∫ λ

0

f (λ′
L2

kT
)− 1

λ′
dλ′ + µeq(T, V, N).

(5.19)

With expressions (5.10), (5.15), (5.16), (5.17), and (5.19), we perform consistency checks.
First, it is easy to show that these expressions are in accordance with their definitions from
Postulate 5.1.2. Second, we use the rest of the Maxwell relations

∂2B
∂T∂V

=
∂2B

∂V∂T
⇔ ∂S

∂V
=

∂P
∂T

, (5.20)

∂2B
∂T∂N

=
∂2B

∂N∂T
⇔ − ∂S

∂N
=

∂µ

∂T
, (5.21)

∂2B
∂V∂N

=
∂2B

∂N∂V
⇔ − ∂P

∂N
=

∂µ

∂V
. (5.22)

to check the validity of these mixed derivatives. And indeed,

∂S
∂V

=
∂P
∂T

=
NkB f

V
− NkB

V
λL2

kT
d f
dy

, (5.23)

− ∂S
∂N

=
∂µ

∂T
= − kB

2

∫ λ

0

f − 1
λ′

dλ′ +
kB

2
( f − 1) +

∂µeq

∂T
, (5.24)

− ∂P
∂N

=
∂µ

∂V
= − kBT

V
f , (5.25)

where y = λL2/kT, and we have used the equilibrium Maxwell relation ∂NSeq = −∂Tµeq.
This analysis shows that the expressions of the state functions are consistent with the
Maxwell relations. Third, note that as λ → 0, f → 1. It is then obvious to check that,
as λ → 0, the correct equilibrium values of these five expressions are retrieved. These
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checks further support the postulates and the expressions.
From Eqs. (5.8), (5.10), (5.16), and (5.17), we also obtain the integral form of B

B = U − TS− 4Xλ. (5.26)

This form, again, turns out to be analogous to the Helmholtz free energy where Feq =

Ueq − TSeq. The additional term is the conjugate pair due to nonequilibrium −Xλ with a
coefficient 4.

5.2.2 Movable Wall Model and Minima of B

Here, we demonstrate the use of the state function B, given by Eq. (5.10), with the full
expression of X, given by Eq. (5.16), in the movable wall model.

For the movable wall model with an internal constraint at Xw, the potential B is given
by

B(T, V, N1, N2, Xw, λ) = Feq(T, V, N1, N2, Xw)−
∫ λ

0
X(T, V, N, λ, Xw)dλ′, (5.27)

where
X(T, V, N1, N2, Xw, λ) =

1
3

U1 + U2 −Ueq

λ
. (5.28)

The subsystem energy is given by Eq. (4.7) and is now written as

U1 = U1,eq f (λ · L2
1

kT
) =

3
2

N1kBT f (λ · L2
1

kT
),

U2 = U2,eq f (λ · L2
2

kT
) =

3
2

N2kBT f (λ · L2
2

kT
),

(5.29)

where Ueq and Ui,eq are the system and subsystem energy in equilibrium, Li is the length
of the subsystem with L1 = L + Xw and L2 = L− Xw.

The extrema of B are obtained from

∂B
∂Xw

∣∣∣∣
X∗w

= 0. (5.30)

which is separated into two parts. First, the Helmholtz free energy is given by

Feq(T, V, N1, N2, Xw) =
3
2

NkBT − T
(
S1,eq + S2,eq

)
(5.31)

From equilibrium thermodynamics, we know that ∂Feq/∂V = −Peq = −2Ueq/3V. Hence,
the first part of the partial derivative is

∂

∂Xw
Feq(T, V, N1, N2, Xw) = −

(
N1kBT
L + Xw

− N2kBT
L− Xw

)
. (5.32)

https://rcin.org.pl



5.2. Applications in Ideal Gas 105

Second, the partial derivative containing X is given by

∫ λ

0

∂X
∂Xw

dλ′ =
N1kBT

2

∫ λ

0

∂ f (Λ+)

∂Xw

dλ′

λ′
+

N2kBT
2

∫ λ

0

∂ f (Λ−)
∂Xw

dλ′

λ′
. (5.33)

where Λ+ = λL2
1/kT and Λ− = λL2

2/kT. Using the chain rule and exchange of variables,
the partial derivative is now

∂ f
∂Xw

dλ

λ
=

d f
dΛ±

∂Λ±
∂Xw

dΛ±
λL2

i /kT
=

2
Li

d f . (5.34)

Eq. (5.33) then becomes

∫ λ

0

∂X
∂Xw

dλ′ =

(
N1kBT f (Λ+)

L + Xw
− N2kBT f (Λ−)

L− Xw

)
−
(

N1kBT
L + Xw

− N2kBT
L− Xw

)
,

= A(P1 − P2)−
(

N1kBT
L + Xw

− N2kBT
L− Xw

)
.

(5.35)

The first two terms have been identified as P1 and P2, since from Eq. (5.29),

P1 =
N1kBT

V1
f (λ

(L + Xw)2

kT
), (5.36)

P2 =
N2kBT

V2
f (λ

(L− Xw)2

kT
). (5.37)

Together with Eq. (5.32), the extrema of B is equivalent to the condition of matching
pressure

∂B
∂Xw

∣∣∣∣
X∗w

= 0⇔ −A(P1 − P2) = 0, (5.38)

This relation is indeed the same as the steady state condition (4.8). Therefore, we have
shown that the extrema correctly predicts the steady states in the movable wall model.

Next, we check the properties of the extrema for a movable wall model with N1 =

N2 = N/2. Equivalently, it is to check the positivity of the second order derivative
∂2B/∂X2

w at extrema X(i)
w , i = 1, 2, 3, given by the solutions X∗w of Eq. (5.38). In particular,

X(i)
w is a local maximum if (∂2B/∂X2

w)(X(i)
w ) < 0, and a local minimum if (∂2B/∂X2

w)(X(i)
w ) >

0.
The second order derivative of B is explicitly

∂2B
∂X2

w

∣∣∣∣
X(i)

w

⇔ − ∂

∂xw

(
f (λ̃(1 + xw)

2)

1 + xw
− f (λ̃(1− xw)

2)

1− xw

) ∣∣∣∣
x(i)w

⇔ G′(xw)

∣∣∣∣
x(i)w

,

(5.39)
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where we have used G(xw) defined in Eq. (4.10). The properties of G(x) has been dis-
cussed in Sec. 4.1.3. In particular, it has been shown that beyond the transition point,
G′(0) < 0. This suggests that X(1)

w = 0 corresponds to a local maximum. Furthermore,
since G(1) > G(0), the derivative at the crossing point X(2)

w > 0 must be positive, and
G′(x(2)w ) > 0. This suggests that solution 2 is a local minimum. Finally, since G(x) is an
odd function, G′(−xw) = G′(xw) and the crossing point X(3)

w < 0 is also a local minimum.
In other words, the minimum points of B are at X(2)

w and X(3)
w 6= 0, which correspond to

stable steady states; B at X(1)
w = 0 corresponds to the unstable steady state. This con-

clusion is in accordance with the analysis in Sec. 4.1.2. Hence, the minimization of B
correctly predicts the stable steady states of the movable wall model.

5.3 Summary and Conclusion

In this chapter, we have proposed our last hypothesis: the minimization of potential B,
an analogous of the Helmholtz free energy. Our description mimics the description of
equilibrium thermodynamics (see Sec. 1.1.1): the complete set of nonequilibrium ther-
modynamic variables and the differential form of B are proposed.

Using the ideal gas model, we have derived the explicit form of B and its integral
form. From this expression, the steady state functions – pressure P, entropy S, and chem-
ical potential µ – are obtained. We have performed consistency checks using the Maxwell
relations. And in the equilibrium limit, all expressions correctly reduce to their equilib-
rium value. Further, using the movable wall model, we have shown that the minimiza-
tion hypothesis correctly predicts the stable steady states.

This description potentially opens up a new direction for nonequilibrium thermody-
namics. Remember that in equilibrium thermodynamics (as described in Sec. 1.1), all
thermodynamic information can be obtained from the thermodynamic potentials. The
discovery of the correct form of the nonequilibrium thermodynamics potential may al-
low us to have a full description of the nonequilibrium steady state.
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Chapter 6

Conclusion and Perspectives

In this thesis, we went on a journey of searching for a possible potential that exhibits ex-
tremum in nonequilibrium steady states (NESS). Just as in equilibrium thermodynamics,
where a thermodynamic potential contains all thermodynamic information of the system
and accompanies a variational principle, we look for a nonequilibrium thermodynamic
potential that would provide the same properties for NESS. This is a less common ap-
proach to nonequilibrium physics. An introduction to the history and some important
results of nonequilibrium physics is given in Chapter 1 for a general picture of the field.
To achieve our purpose, we have proposed mainly three hypotheses, or more precisely,
forms of three potentials hypothesized to be minimized in steady states. And these hy-
potheses are examined in a variety of models. This forms the main message of this thesis.

The examination methodology is discussed in Sec. 2.1. Particularly, for a general sys-
tem, we measure the potential of the constrained system and compare it with its uncon-
strained value; for systems with competing steady states, we measure the potential of
all steady states and compare. Most of our hypotheses are of the form of minimization
hypotheses, where it predicts that the potential of the constrained system is greater than
that of the unconstrained system; the potential of the stable steady state would be the
smallest among all steady states. And for a maximization hypothesis, the predictions
will be reversed.

In Chapter 2, we have studied our first hypothesis where a quantity T , defined as
the ratio of energy storage (with respect to the equilibrium energy) to the total heat flow,
is minimized in NESS (Hypothesis 2.1.1). This quantity has the physical interpretation,
from the Lennard-Jones fluid simulation (Sec. 2.2.2), of the (initial) characteristic time
of energy dissipation. The hypothesis is driven by the intuition that the system would
"prefer" to return to equilibrium, and hence the "time" is hypothesized to be minimum.

This hypothesis is examined most extensively. According to the energy supply method,
the test models were grouped into three. First, under the external bulk energy supply
scheme, we have analysed the ideal gas under five different supply functions in Sec. 2.2.1.
Then, molecular dynamics (MD) simulation results of the Lennard-Jones fluid are re-
counted in Sec. 2.2.2. Second, under the external energy flow, an ideal gas driven by
a temperature gradient has been studied numerically using the finite element method
in Sec. 2.3.1; a Hagen-Poiseuille flow was studied analytically in Sec. 2.3.2; to complete
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the section, the MD simulation results of a Rayleigh-Bénard system was presented in
Sec. 2.3.3. Third, in Sec. 2.4, we have considered a variety of periodic inhomogeneous
energy supply schemes, and the base model is an Ising model. The results are obtained
using a combination of the deterministic Ising algorithm and the Monte Carlo method.
Eventually, all results are in accordance with the predictions of Hypothesis 2.1.1.

However, at the end of the chapter, a counterexample – an ideal gas attached with
a heat tank – is studied. We have shown that the resulting potential of the constrained
system, depending on the size of the tank, may be smaller than the unconstrained one –
a contradiction to the hypothesis. This model motivated us to change our hypothesis.

In Chapter 3, an adaptation of Hypothesis 2.1.1 is presented, where the central po-
tential is a quantity called the embedded energy U∗ (Hypothesis 3.1.1). U∗ is defined
as the Legendre transform of the steady state energy with respect to the heat flow. The
motivation of this form is the Helmholtz free energy, where it is the Legendre transform
of the energetic fundamental relation with respect to entropy. This hypothesis was first
tested with the ideal gas under a homogeneous energy supply and the case where a heat
tank is attached (which had disproved Hypothesis 2.1.1). Results are in accordance with
the hypothesis. However, the study of the second model – an ideal gas under an external
heat flow – does not support this hypothesis. Therefore, Hypothesis 3.1.1 was discarded.

Finally, in Chapter 5, we have hypothesized the minimization of a Helmholtz-like
potential B in NESS, for a closed system of a fixed volume and number of particles and
placed in a heat bath. The form of B is introduced through a series of postulates (5.1.1,
5.1.2, and 5.1.3). The motivation is the correspondence principle. According to which,
in the equilibrium limit, B should have the same form as the Helmholtz free energy.
Therefore, the differential form of B is postulated to resemble the differential form of
the Helmholtz free energy, with an additional term X to account for the contribution
from nonequilibrium; this additional term is proportional to T . The thermodynamic pa-
rameters are postulated to be temperature, volume, number of particles, and the control
parameter (conjugate with X).

Using the ideal gas model under a homogeneous energy supply, we derive the ex-
pression of B. And just like equilibrium thermodynamic, we have obtained the state
functions from B. We have performed consistency checks of these expressions: they sat-
isfy the Maxwell relations; in the equilibrium limit, their forms correctly reduce to their
equilibrium counterparts. Then, this hypothesis is tested using the movable wall model
– a model exhibiting multiple steady states. We found that the hypothesis correctly pre-
dicts the stable steady states. The explanation of the movable wall model is recounted
later.

This hypothesis may open up new directions for studying nonequilibrium thermo-
dynamics. It is an example of generalising equilibrium thermodynamic potentials and
techniques to nonequilibrium steady states. It would be interesting for future studies
to examine the validity of B for other closed systems and generalise it to systems under
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other types of external constraints using the Legendre transform.

Along with the study of energy storage and the total heat flow in Hypothesis 2.1.1,
we have also studied how the former is influenced by the latter. Using the Ising model
in Sec. 2.4, we have compared energy storage under a fixed amount of energy supply
(and therefore, the same amount of total heat flow in NESS) but delivered using different
methods. We found that energy storage in steady states depends not only on the total en-
ergy delivered, but also on the details of the supply method. Specifically, energy storage
is influenced by the ratio of the amplitude and time-period of the supply, and the area of
delivery.

Particularly, we have found that the system stores more energy under rare and large
energy delivery than small and frequent delivery; more energy storage when the delivery
area is large than small. The shape of the lattice may also influence the final energy
storage, and it would be interesting in future studies to analyse energy storage of different
shapes of delivery area and over different lattice types.

The problem of energy storage efficiency has important real-world applications. A
better understanding of energy storage under the influence of delivery methods is essen-
tial to this problem.

The last important message of this thesis is the discovery of the movable wall model.
In Chapter 4, we have described a simple model – an ideal gas under a homogeneous
energy supply, with an adiabatic movable wall as the internal constraint – that exhibits
nonequilibrium phase transition. The order parameter is the (stable) steady state position
of the wall. Beyond the critical energy supply density, the system exhibits multiple steady
states. The system is more stable when the subsystems are not symmetric (the wall is not
in the center) and stores more energy in the stable steady state.

This model has a simple setting and is analytical. Models that exhibit nonequilibrium
phase transition, which can be calculated analytically, are extremely rare. Therefore, this
model has the potential to be a paradigm model for nonequilibrium physics.

For us, this model has been instrumental. All hypotheses have been tested using this
model (Sec. 4.2 and Sec. 5.2.2). Furthermore, we have generalised the expressions of vari-
ous thermodynamic potentials to NESS (and the entropy production rate) using the local
equilibrium assumption in Sec. 4.3. All of these expressions have been tested using the
movable wall model.

At the time of preparing this thesis, potential B in Chapter 5 was our latest hypothesis.
This thesis will end here, but our search for nonequilibrium variational principles and the
study of nonequilibrium physics will continue. So will the author’s interest in this field
and its intriguing phenomena around us. The author hopes to continue this adventure
and bring back new information in the future.
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