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Abstract

Ionic liquids and ionic liquids-solvent mixtures have attracted scientific interest and become
the research focus as solvents in the green chemistry field and in surface science and physical
chemistry due to their remarkable properties and features such as wide electrochemical and
thermal stability, low vapor pressure, and the ability to mix them in order to tune specific prop-
erties. One of the most important applications of ILs is in the development and design of energy
storage devices such as fuel cells, batteries, and supercapacitors, where ILs are usually in con-
tact or confined by porous materials. Nevertheless, thermodynamic and structural properties of
ILs/IL- mixtures near charged surfaces are not sufficiently understood. Moreover, these sys-
tems in the vicinity of their phase transformations exhibit some remarkable features, yet there
is no theory able to describe the phase behavior of confined ionic liquids correctly. These diffi-
culties in theoretical modeling are due to inhomogeneities and the interplay of entropic effects,
dispersion, and long-range interactions.

This thesis is devoted to the theoretical description of ILs-solvent mixtures close to demix-
ing. We have developed a mean-field model suitable for the IL-solvent mixtures confined by
selective electrodes to fulfill this purpose. We have taken into account electrostatic forces,
short-range dispersion interactions, and entropic effects in which we have implemented two
approximations for describing excluded volume interactions, namely Carnahan-Starling and
lattice-gas. Additionally, we have assumed selective electrodes within the parameter called
ionophilicity that accounts for the surface’s preference to ions or solvent. Thus, we have de-
rived a grand-potential functional and minimized it to obtain the Euler-Lagrange (EL) equations
for the excess density of ions and the charge density profiles. Then, we have proposed analytical
and numerical approaches to solve the EL equations and found that the comparison between the
analytical and numerical results is just valid at low voltages. Therefore, to study a wide range
of voltages, we considered numerical results for further analysis.

We consider two cases. In the first case, the ILs-solvent mixture is in contact with a single
electrode, and we demonstrate that, besides the well-known camel and bell-shaped capacitance,
there is a bird-shaped capacitance that exhibits three peaks as a function of voltage, which
emerges due to the proximity to demixing. Additionally, we find that although the camel-shaped
capacitance is a signature of dilute electrolytes, such a shape can appear at high IL densities
provided the electrode has a strong preference for solvent. Regarding the temperature effects,
we find that the capacitance increases as the system’s temperature is lowered to demixing, and
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an enhancement of the energy storage accompanies such an increase.
In the second case, we study the IL-solvent mixture confined by a slit-shaped nanopore

wider than a few ion diameters and reveal that such systems can undergo a capillary ionization
transition where the pores spontaneously ionize or de-ionize upon infinitesimal changes of tem-
perature, slit width, or voltage. We show that capillary ionization could be voltage-induced, and
interestingly, such transition is followed by a subsequent de-ionization as the voltage increases.
We find that ionization transitions produce sharp jumps in the accumulated charge and stored
energy, finding practical applications in energy storage and heat-to-energy conversion.

Finally, we perform molecular dynamics simulations where we investigate the concentra-
tion fluctuations in a simple model of electrolyte, that is, two charged Lennard-Jones spheres in
a solution of an uncharged Lennard-Jones liquid, confined between electrodes formed by par-
allel graphene layers. Using two approaches: constant potential and extensive constant charge
simulations, the effect of the proximity to the demixing transition on the electric double layers
is analyzed. In agreement with our previous theoretical findings, we find there is a consider-
able enhancement of the capacitance when approaching the demixing transition for dilute ionic
solutions. This enhancement tends to disappear when the ionic concentration is increased. We
also find that the ‘‘bird-like’’ capacitance, predicted by our theory, appears when Lennard-Jones
interactions are taken into account and may lead to phase separation.
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Chapter 1
Introduc on

During the last decades, ionic liquids (ILs) and IL–solvent mixtures have become the focus
of research in electrochemistry due to their intriguing properties, such as exceptional electro-
chemical and thermal stability, low vapor pressure, among others, which make them attractive
materials for many applications [1, 2], for instance, in electrochemical reactions, as lubricants
for micro and nanodevices [3], as extraction liquids for the purification of metals, colloids, and
biomass, etc [2]. One of the key applications is in generation and energy storage as superca-
pacitors, batteries, solar cells, and fuel cells. In conventional electrolytes, ions are described
as small and almost round particles with a uniform charge density immersed in a solvent and
interacting with each other by Coulomb forces [2]. However, in ILs there is no solvent unless
it is added or absorbed from the environment, ions are not round, and their molecular charge
densities are non-uniform. Thus, the effect of short-range interaction between ions, the shape of
the ions, and charge distribution are crucial factors for describing their properties in both bulk
and at interfaces.

Despite the progress, the studies performed so far have focused on the room–temperature ILs
and IL–solvent mixtures far from phase transitions. However, it is well–known that, for neutral
fluids, the fluid structure at a surface undergoes drastic changes as the system approaches a
phase transformation, such as wetting transition and capillary condensation [4]. In particular,
to date, there is no theory able to describe the phase behavior of confined ionic liquids correctly,
and these difficulties in theoretical modeling are due to spatial inhomogeneities and long-range
interactions.

Confinement effects are also an interesting factor to study. In general, fluids under confine-
ment are of particular scientific interest. A fundamental understanding is needed for industrial
applications in oil and gas, catalytic chemical reactions, mixture separations, lubrication, and
adhesion. The implementation and design of such processes involving fluid confined by micro
and mesopore materials are empirical and lacking a microscopic basis [5]. Specifically, ILs
under confinement exhibit remarkable properties in energy storage applications [6–9], capaci-
tive deionization [10–12], and heat-to-energy conversion [13–15]. For instance, subnanometer
pores filled with an electrolyte provide the highest achievable capacitance [16–18] and stored
energy [19] but with slow dynamics [20–23]. Using neat ILs enhances the electrical energy
stored in micro and mesopores [24]. Unfortunately, neat ILs exhibit slow dynamics, and to
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improve their conductivity, ILs are mixed with solvents such as acetonitrile or water [25–28],
allowing to speed up the charging kinetics [29]. These previous works have focused on micro
and mesopores filled with IL-solvent mixtures far from phase transitions. However, confined
fluids show an exciting physics close to state transformations. A classic example is a capillary
condensation [30, 31] which has numerous practical applications, particularly in determining a
pore-size distribution of micro and mesoporous materials [32–34].

1.0.1 Scope of the thesis

This thesis is devoted to studying ionic liquid–solvent mixtures close to phase separation
under various degrees of confinement. Firstly, we consider a mixture in contact with a single
planar electrode. Then, we study the same IL-solvent mixture confined into slit-shaped pores
substantially wider than the ion diameter. We propose a model within the mean-field theory to
analyze the electrical double layers’ temperature dependence close to demixing. The solvent is
treated as a continuum (appropriate for small solvent molecules, such as water or acetonitrile),
but ILs are described as amenable to phase separate into the ion-rich and ion-dilute phases. We
study the influence of important parameters in the system’s behavior, and special attention is
paid to the temperature effects in the capacitance and the energy stored in the electrical double
layer.

For a system composed of a single electrode, we show that the capacitance and stored energy
become sensitive functions of temperature in the vicinity of demixing. We also demonstrate the
emergence of a new, bird-shaped capacitance, having three peaks as a function of voltage. In
the case of confinement by slit-shaped mesopores, we study a capillary phase transition induced
by both confinement and voltage applied to the pore walls. We demonstrate that the pores
can become spontaneously ionized or deionized in response to small temperature changes or
potential differences applied to a pore. We show that such capillary ionization goes along with
abrupt changes in charge and energy storage, finding practical applications in electrochemical
energy storage and generation.

The thesis is organized as follows:

• Chapter 2: From the literature, we present a brief introduction and general description
of the electrical double layer (EDLs) model and explain the well-known differential ca-
pacitance shapes: camel and bell. Next, we devote a section to the definition, properties,
and applications of ionic liquids. Finally, we explain the electrical double layer in ionic
liquids, and there is a section devoted to the confinement effects in such systems.

• Chapter 3: From the literature, we describe phase transitions, specifically the first-order
demixing transition in binary mixtures. The geometry-induced phase transitions are dis-
cussed, in particular, the phase transitions in charged systems. In addition, we present the
macroscopic derivation of the Kelvin equation.

• Chapter 4: We develop a generic model by combining the Poisson-Boltzmann and the
mean-field theory for the demixing transition to describe amixture of ionic liquid (IL) and
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neutral solvent in contact with two planar electrodes. For describing the excluded-volume
interaction, we consider two approximations: lattice-gas and Carnahan-Starling approx-
imations. Additionally, we obtain the bulk phase diagram (for each excluded volume
expression) and derive the Euler-Lagrange equations that result from the minimization of
the grand thermodynamic potential. Finally, we present the thermodynamic characteris-
tics to study the system’s behavior.

• Chapter 5: We present analytical and numerical approaches to solve the proposed generic
model. It is worth noting that the analytical approach is developed for the single-surface
system. Regarding the numerical solution, we implement a finite differences scheme
forwarded in time and centered in space.

• Chapter 6: Analytical and numerical results are presented for the case of a single surface
in contact with an IL-solventmixture. We show the charge density and ion density profiles
as well as the differential capacitance comparing the analytical and numerical solutions
of the model. Finally, we compute the thermodynamic characteristics of the system under
consideration using the numerical solution.

• Chapter 7: We show the capillary ionization phase transition of an IL-solvent mixture
confined by a slit-shaped mesopore. We obtain results by considering three cases: non-
polarized slit mesopore, equally charged slit mesopore and oppositely charged electrodes.
We demonstrate that capillary ionization can be induced not only by confining themixture
but also by applying voltage.

• Chapter 8: We perform Molecular Dynamics (MD) simulations to explore the bulk be-
havior and locate a phase separation. The results are compared to the Hypernetted-chain
(HNC) theory. Then, we perform MD of a mixture of IL and solvent confined by two
electrodes oppositely charged. A few simulations were run using a constant potential
method in order to confirm that, for the charges and voltages of interest, the computa-
tionally less expensive constant charge approaches are accurate enough. The simulations
were performed in LAMMPS, and Prof. Enrique Lomba, from the Institute of Physical
Chemistry Rocasolano (IQFR) in Madrid, provided the HNC codes.

The majority of the results presented in the thesis have been published in the following
papers:

1. C. Cruz, A. Ciach, E. Lomba, and S. Kondrat. ‘‘Electrical Double Layers Close to Ionic
Liquid-Solvent Demixing’’. Journal of Physical Chemistry C, vol. 123, pp. 1596-1601,
2019. DOI: 10.1021/acs.jpcc.8b09772.

2. C. Cruz, S. Kondrat, E. Lomba, and A. Ciach. ‘‘Effect of proximity to ionic liquids-
solvent demixing on electrical double layers’’. Journal of Molecular Liquids, vol. 294,
pp.111368, 2019. DOI: 10.1016/j.molliq.2019.111368.

3. C. Cruz, S. Kondrat, E. Lomba, and A. Ciach. ‘‘Capillary Ionization and Jumps of Ca-
pacitive Energy Stored in Mesopores’’. Journal of Physical Chemistry C, vol. 125, pp.
10243–10249, 2021. DOI: 10.1021/acs.jpcc.1c00624.
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4. C. Cruz, E. Lomba, and A. Ciach. ‘‘Capacitance response and concentration fluctuations
close to ionic liquid-solvent demixing’’. Submitted to Journal of Molecular Liquids,
2021.

5. C. Cruz and A. Ciach. ‘‘Phase transitions and electrochemical properties of ionic liquids
and ionic liquid - solvent mixtures’’. Submitted toMolecules, 2021.
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Chapter 2
Ionic Liquids and Electrical Double
Layers

In this chapter, a brief introduction and general description regarding
electrical double layers (EDLs) is presented. Next, in Section 2.2, we
present the definition and properties of ionic liquids (ILs) and explain
a few applications of them. Section 2.3 treats EDLs displayed by ILs.
The well-known camel and bell-shaped capacitances are presented, and
based on the packing parameter proposed by Kornyshev, we discuss
their nature. Finally, confinement effects in ILs are discussed.

2.1 The Electrical Double Layer (EDL) Model

The double-layer model is used to analyze the ion’s behavior in the vicinity of a charged
surface. Electrical double layers (EDL) result from the formation of a‘cloud’ rich in ions with
a charge of a sign opposite to the surface charge (known as counterions) and poor in ions of the
same sign (known as coions). The EDLwidth is influenced by the competition between the ion’s
thermal motion, which tends to homogenize their distribution, and the Coulomb interactions,
which attract the counterions to the surface [35, 36].

The classical theory of electrolytes was developed in the early 20th century, with the
achievements of Gouy, Chapman, Debye, Hückel, and Langmuir gathered into the so-called
Poisson-Boltzmann (PB) model [37, 38]. However, the first model for describing EDLs was
proposed by Helmholtz in 1853. In the Helmholtz model (Figure 2.1a), the surface charge is
neutralized by counterions which were assumed to be adsorbed at the electrode surface [39].
This model can be understood as a single layer of ions driven to the surface by its electric field,
which is completely screened by the ionic layer.

On the other hand, the PB model is a mean-field model that considers the ions to be mobile
in the electrolyte solution [39] and describes them as isolated point-like charges in a solvent
represented by a continuum dielectric (Figure 2.1b) [35, 37, 40]. The Gouy-Chapman theory
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(a) (b)

FIGURE 2.1 Schemes of the electric double layer structures. (a)Helmholtz Model. All the counterions
are assumed to be adsorbed at the electrode surface. This structure is similar to the conventional dielectric
capacitors with two planar electrodes separated by a distance H . (b) Poisson-Boltzmann (PB) model.
The EDL consists of two parts, the Stern layer, which is a compact layer of immobile ions that are strongly
adsorbed to the electrode surface, and the diffuse layer, where the ions are mobile.

assumes ions have no physical limitations to approach the surface. However, Stern modified
this model proposing that ions have a finite size and they are not at the surface, but at some
distance, H away from it [2]. Thus, there is a compact layer of counterions known as the
Stern layer and a diffuse layer. In the Gouy-Chapman-Stern theory (GCS), the potential drops
down linearly in the Stern layer and then exponentially through the diffuse layer [2]. Within the
linearized PB (Debye–Hückel approximation), the thickness of the EDL is given by the Debye
length

λD = (4πρbλB)−1/2, (2.1)

where ρb is the ion density, and λB is the Bjerrum length given by

λB = e2/(kBTϵr) (2.2)

where ϵr is the dielectric constant.

One significant effect which is not considered in the GCS theory is the excluded volume
interactions that take into account the physical size of ions. The excluded volume interactions
restrict the absorption of counterions and hence, influence the charge density in the EDL [41].
Even if the ion charge correlations and fluctuations are neglected, the application of the PB
model to EDLs still forms the basis of the understanding of electrolyte solutions. For instance,
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it predicts the well–known U–shaped dependence of the EDL capacitance on the applied poten-
tial [37].

2.1.1 Debye–Hückel theory

The key feature of the Debye–Hückel treatment is the linearization of the differential equa-
tion for the electrostatic potential (obtained from the Poisson’s equation of electrostatics with
the Boltzmann factor of statistical mechanics), which can be solved straightforwardly, leading
to simple expressions for the thermodynamic properties of electrolyte solutions.

Let us consider the electrostatic potential, u, which satisfies the Poisson equation:

d2u(z)
dz2 = −4πe

ϵr

c(z) (2.3)

where c(z) = ρ+(z) − ρ−(z) is the dimensionless charge density. The corresponding ion
densities, ρ±(z), follow the Boltzmann distribution

ρ±(z) = ρ± exp
(

eu(z)
kBT

)
(2.4)

where ρ± are the ion densities in the bulk where the potential decreases to zero and, due to
charge neutrality in the bulk, ρ+ = ρ− = ρb/2. Additionally, the overall charge neutrality must
satisfy

e
∫ ∞

0
c(z)dz = −σ (2.5)

where σ is the surface potential [42]. By inserting Eq. (2.4) into Eq. (2.3), the Poisson-
Boltzmann (PB) equation is obtained:

d2u(z)
dz2 = 2eρb

ϵ0ϵr

sinh
(

eu(z)
kBT

)
(2.6)

Eq. (2.6) is subjected to the boundary conditions: du/dz(z → ∞) = 0 and
−du/dz(z = 0) = 4πeσ/ϵr, can be solved analytically provided that the surface potential
is less than 25 mV and by approximating sinh(x) x→0≈ x [42]. Under these assumptions, the
Debye–Hückel equation for the electrostatic potential is obtained

u(z) = 4πeσ

λDϵr

exp
(

− z

λD

)
(2.7)

and, the corresponding density profiles and charge density are

ρ±(z) = ρb ± 1
λD

| σ |
2e

exp
(

− z

λD

)
(2.8)

ec(z) = − σ

λD

exp
(

z

λD

)
(2.9)

Subsequently, it was shown that the Debye–Hückel theory is exact in the limit of dilute
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solutions, and thus, it is considered as a ‘‘limiting law’’, meaning that the thermodynamic prop-
erties of all electrolyte solutions must fulfill the Debye–Hückel expressions as the concentration
decreases to zero [43].

2.2 Ionic Liquids (ILs)

Room-temperature ionic liquids (RTILs), or simply ionic liquids (ILs), are commonly de-
fined as materials composed of an organic or inorganic anion and an organic cation that melt
below 100 ◦C to 150 ◦C. In conventional electrolytes, ions are described as small and almost
round particles with a uniform charge density immersed in a solvent and interacting with each
other by Coulomb forces [2]. However, in ILs, ions are not round, and their molecular charge
densities are non-uniform. Additionally, there is no solvent unless it is added or absorbed from
the environment. Due to these complex features, ILs are liquids at room temperature, and the
effect of short-range interaction between ions, size and shape of the ions, and charge distribution
are crucial factors for describing their properties in bulk and at interfaces.

Regarding their cation segment, ILs are commonly classified into four types: (1)
alkylammonium-, (2) dialkylimidazolium-, (3) phosphonium-, and (4) N-alkylpyridinium-
based ILs. Ammonium-based ILs exhibit electrochemical cathodic stabilities, low viscosities,
and low melting points; thus, they have been used as electrolytes in electrochemical devices.
Imidazolium-based ILs have been widely studied. They are easily synthesized and have remark-
able stability under oxidative/reductive conditions. Therefore, imidazolium-based ILs are used
as a catalyst to improve the reaction yield and the chemoselectivity of several organic reactions.
However, it is important to note that the selection of this type of IL as a cosolvent for a reaction
under basic conditions should be carefully considered to avoid undesired side reactions. For
instance, in [44] the authors found that in a base-catalyzed Baylis-Hillman reaction in the pres-
ence of imidazolium-based ILs, the catalyst was deactivated due to a side reaction involving the
imidazolium-based IL [45]. Pyridinium-based ILs are highly stable, and the catalytic role of this
type of ILs is outstanding in the synthesis of some pharmaceutical agents [45]. Phosphonium-
based ILs are the most thermally stable compared to the imidazolium- and pyridinium-based
ILs. Thus, phosphonium-based ILs are suitable for reactions at higher temperatures (more than
100 ◦C). In [46], phosphonium-based ILs have been used for CO2 capture.

ILs are versatile and have a unique combination of properties, meaning that, by mixing
them and choosing the appropriate cation-anion combinations, it is possible to tune specific
properties. The selection of the cation defines the stability of the IL, whereas its functionality
is usually controlled by choosing the anion. Typically, ILs structure combines organic cations
with either organic or inorganic anions. Figure 2.2 shows some common cations and anions to
obtain ILs.

In a general view, most ILs remain in the liquid state up to temperatures in the range 200 ◦C to
300 ◦C (at atmospheric pressure), in contrast to water or common organic solvents that evaporate
at lower temperatures [48]. Additionally, ILs have low volatility as a result of the strong ion–
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Cations Anions

FIGURE 2.2 Typical cations and anions in ionic liquids. Typical basis of the cations are ammonium, im-
idazolium, sulfonium, piperidinium, and pyridinium ions. Halides, tetrafluoroborate, nitrate, sulfonate,
carboxylate, phosphate, amino acid, among others, serve as a base of the anions for the preparation of
ILs. The picture was modified from Ref. [47]

ion interactions [49]. Although, ILs are stable at high-operation temperatures in energy storage
devices [50, 51], in some cases, undesired electrochemical reactions involving ILs could be
activated [52]. Furthermore, it is important to note that, for temperatures higher than 200 ◦C to
300 ◦C, ILs undergo thermal decomposition that may generate flammable and toxic gases [53,
54].

Another remarkable property of ILs is high viscosity. Conventional solvents exhibit viscosi-
ties within the range of 0.2 cP to 100 cP (at room-temperature), while the viscosity of ILs varies
between 20 cP to 40.000 cP [55]. Despite the high ionic concentration (that could be understood
as charge carriers), due to the high viscosity and low ion mobility, ILs have low conductivity at
room-temperature [56], compared to the conventional aqueous electrolytes used in electrochem-
istry applications 1 [57]. For this reason, depending on the application (usually in generation
and energy storage), ILs are mixed with a solvent, which facilitates the ionic diffusion.

Most of the ILs are electrochemically stable at charged interfaces. In applications such as
batteries, supercapacitors, electrocatalysis, and electrodeposition, the ILs must remain as stable
as possible in the potential range. The electrochemical window (EW), defined as the voltage
range in which a substance is neither oxidized nor reduced, is a measure of such stability and
is one of the most important characteristics to be identified for solvents and electrolytes. The
large EW of some ILs allows achieving high electrode charge densities that are inaccessible for
conventional electrolytes.

1Neat ILs have conductivity in the range of 0.1 mS/cm to 18 mS/cm, while the conductivity of conventional
aqueous electrolytes varies around 200 mS/cm to 800 mS/cm.
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2.2.1 Some applica ons of ILs

The interest in potential applications of ILs has grown during the last decades since they are
promissory materials due to their unique combination of physical properties [58]. ILs can be
found as lubricants, extraction liquids for purification of metals [59, 60], and biomass conver-
sion [61, 62], green solvents for homogeneous and heterogeneous catalysis [1, 55, 63], media
for electrochemical reactions and electrocatalysis [57, 64–66], antistatic agents in polymer sci-
ence [52], carbon dioxide capture and separation [50], among others.

Specifically in energy storage, ILs are ideal electrolytes in dye sensitized solar cells, thermo–
electrochemical cells, metal–air batteries, and supercapacitors due to their high ionic concen-
trations and stability [50]. Figure 2.3 shows the Ragone plot of a few types of energy storage
devices. ILs are especially attractive in electrochemical double-layer capacitors (EDLCs) 2

which are microporous solids with an excellent electrochemical performance principally due to
reversible ion adsorption in the porous electrodes [68]. The effects of confinement in ILs are
discussed in Section 2.3.2.
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FIGURE 2.3 Ragone plot of a few types of energy storage
devices. Specific power against specific energy is presented
for some energy storage devices. Fuel cells exhibit the high-
est specific energy but at the same time the lowest specific
power, while the EDLCs occupy a middle region between
power and energy. The picture was modified from Ref. [58].

In the Ragone plot, the power
against the stored energy in the de-
vices is presented. The specific en-
ergy is related to the ability of fast
charging/discharging with minimal
losses. In this sense, it is desired for
the device to have high energy den-
sity without sacrificing power den-
sity. EDLCs have higher specific
power and, in this sense, seem bet-
ter than batteries; however, batteries
have a higher specific energy. As a
consequence, there is a growing in-
terest focused on expanding the re-
gion occupied by EDLCs towards the
upper-right corner of the plot. This
is desirable since EDLCs can sus-
tain several charging-discharging cy-
cles and can be charged faster without
involving any electrochemical reaction. With the growing interest on the development of re-
newable energy sources, these systems are potentially important since they may complement or
even replace batteries in the energy storage field [2, 68].

2Supercapacitors are classified into electrochemical double-layer capacitors (EDLCs) and pseudocapacitors,
however, ILs are only used in EDLCs since pseudocapacitive mechanisms are generally not active in the presence
of ILs [67].
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2.3 Electrical Double Layers in Ionic Liquids

The classical models of EDL are only valid on the basis of dilute-solution approximation
(concentrations below 0.01 M) [40], but they are not longer valid for ILs and ILs–solvent mix-
tures due to strong Coulombic interactions and typically high concentrations of ions, at which
the ion sizes can no longer be neglected [69–72]. Indeed, theories developed for EDLs have
shown that excluded volume interactions are crucial to properly describe the structure of the
EDL in ILs [41,73–80]. In this respect, Kornyshev established the need for a paradigm change
for describing EDLs in ILs. He proposed a mean-field lattice-gas model accounting for the
finite-size of the ions on EDLs at IL–electrode interfaces and revealed that steric interactions
restrict the absorption of counterions at an electrode and hence influence the charge density
in the EDLs. This leads to the emergence of the so-called camel and bell-shape capacitances,
obtained at low and high IL concentrations, respectively [78], instead of the Gouy-Chapman’s
U-shape.

ILs with and without dilution may exhibit self-assembly and non-monotonic variation of the
EDL with respect to the concentration [40,67]. In more detail, several experimental works have
provided insights into the behavior of ILs at interfaces. One intriguing behavior is a strong layer-
ing effect at the interface observed for the first time by atomic forcemicroscopy (AFM) [81–83],
and then confirmed high-energy X-ray reflectivity [84,85]. Although layering is present for all
the ILs, Perkin et al. [86] have shown that substantial differences can be observed for the char-
acteristic length, which is the distance between the successive layers of adsorbed ions. This
indicates some kind of ‘‘self-assembling’’ properties, and in fact, the characteristic length can
be related to the ions dimension, revealing the formation of patterns such as alternating cation-
anion monolayers or tail-to-tail cation bilayers.

Temperature also plays an important role in the structure and capacitance of EDLs. How-
ever, contradictory results have been reported in the literature, and the consensus is yet to be
reached as to whether capacitance increases or decreases with temperature and under which
conditions. According to the Gouy-Chapman theory, the capacitance decreases for increas-
ing temperature, but the experiments also showed the opposite trends [87–90]. For instance,
Silva et al. [88] studied the ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate
([BMIM][PF6]) and three different electrodes and found that the differential capacitance in-
creases with temperature at all potentials. Lockett et al. [87] found the same behaviour for
imidazolium-based ionic liquids in contact with glassy carbon electrodes. More careful theo-
retical work suggested that both trends are possible [91–93], but there is no general agreement
on the origin of this behavior. For instance, Holovko et al. [91] proposed that the increase
of capacitance is related to the decreased inter-ionic interactions and weaker ion associations,
while Chen et al. [93] argued that the temperature dependence of EDLs is chiefly determined
by the strength and extent of van der Waals interactions. Interestingly, it was shown that the
transition between the camel and bell-like capacitances could also be induced by varying tem-
perature [93, 94], with the bell shape emerging at high temperatures due to breaking of ‘ion
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pairs’ and consequently stronger screening [93].

2.3.1 Electrical double layer differen al capacitance

The structure and the thermodynamic response of EDLs in ILs are strongly influenced by
the interplay of finite size effects, van der Waals and Coulombic interactions [76, 95]. The
classical methods for evaluating EDLs at electrode-ion interfaces involve measurements of the
differential capacitance as a function of electrostatic potential, which is given by

C(U) = dQ

dU
(2.10)

where Q is the surface charge density at the electrode and U is the electrode potential.
One of the most interesting features of ILs is the complicated shape of the double layer

capacitance as a function of the electrostatic potential. Most of the capacitance-voltage curves
have one or two maxima depending on the type of IL, temperature, and the nature of the elec-
trodes [96]. In order to get a deeper understanding of the differential capacitance shapes, Korny-
shev et al. [2,97] proposed a mean-field theory that provides a classification by using a packing
parameter, γ, which corresponds to the ratio of the ionic density in bulk to its maximal value in
the double layer.

FIGURE 2.4 Schematic representation of the packing parameter, γ. Ionic liquid in contact with two
electrodes of opposite charge. Blue spheres denote anions, while yellow spheres denote cations. The
scheme at the left represents the packing parameter γ = 1, and the scheme at the right represents the
packing parameter γ < 1 where the empty spaces denote voids in the lattice. The picture was modified
from Ref. [2].

From a qualitative point of view, the capacitance curve will be bell- or camel-shaped re-
garding the value of γ, and provided anions and cations are of the same size [78]. For γ < 1
(see Figure 2.4-(right)), there are some voids at the EDL that will be filled up by ions as voltage
increases, as a consequence, the capacitance will increase, exhibiting the camel shape, i.e., a
minimum at the potential of zero charge (PZC) 3 and two symmetric maxima [98]. Likewise,
those voids can be either understood as spaces occupied by solvent molecules. Once the voltage
increases, the solvent molecules are expelled out, and the EDL will be filled by ions.

3Ametallic electrode carries a charge density whose magnitude depends on its potential. The specific potential
at which no charge is carried is known as the potential of zero charge. This is a distinctive quantity for a given
metal/solvent interface, and it is independent of the ions in the case in which there is no specific adsorption.
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FIGURE 2.5 Capacitance shapes: Camel and Bell.
Differential capacitance as a function of voltage
showing the well-known camel and bell shapes
at two different bulk densities, ρb = 0.35 and
ρb = 0.04, respectively.

On the other hand, if there are no voids
or no solvent molecules, γ = 1 (see Fig-
ure 2.4-(left)), the counterions will start to
accumulate at the electrode and the EDL
will get thicker, consequently, the capaci-
tance will decrease, demonstrating the bell
shape, which has a single maximum at the
PZC and decreases monotonically as volt-
age decreases [98]. This behavior has been
studied theoretically [73–75, 78, 94, 99–103]
and experimentally [80, 87, 104]. Figure 2.5
shows the well-known bell (red line) and
camel-shaped (black line) capacitance curves
at two different bulk densities, ρb = 0.35
and ρb = 0.04, respectively. The camel-
shaped capacitance is a signature of dilute
electrolytes (γ < 1) and has been extensively
studied [73–75,78, 94, 99–103].

2.3.2 Confinement effects

ILs have become promising candidates, particularly when confined to pores of
nanoscopic/mesoscopic dimensions [68, 105], for many applications in energy storage devices
such as supercapacitors, dye-sensitized solar cells, and fuel cells [94, 105, 106]. The under-
standing of the structure of the ions on electrode surfaces and the properties of the electri-
cal double layers (EDLs) displayed by the interactions between ions and polarized electrodes
are of paramount importance and have been the subject of many theoretical and experimental
works [107].

A deep understanding of the ILs behavior inside pores is still needed, and one of the features
to analyze is whether the ions will locate preferentially at the surface or tend to keep a bulk-like
structure [67]. Nuclear magnetic resonance (NMR) experiments performed on ILs confined in
porous carbon electrodes revealed that the ILs spontaneouslywet the carbon pores in the absence
of any applied potential. However, when applying potential, charging occurs by adsorption of
counterions and desorption of coions from the pores [108]. Similar results were reported from
simulations of slit-shaped pores by performingmolecular dynamics [109–111], or implementing
classical density functional theory approaches [68, 112],

Specifically, in the theoretical formulations, Pizio et al. [68] found that the differential ca-
pacitance exhibits an oscillatory behavior as a function of the pore width, and the magnitude of
the oscillations decreases when the electrostatic potential increases. Furthermore, the capaci-
tance reaches a minimum value for narrower pores. The authors suggested that the capacitance
oscillations could be related to the interference of the EDLs formed at the pore walls. Similar
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behavior was also found by Jiang et al.in [112], where a classical density functional to describe
an IL electrolyte inside a nanopore was implemented. The results unveil that the capacitance
oscillations decay when the pore size increases from one to many times the ion diameter. More-
over, a peak capacitance was found due to the constructive interference of the EDLs at eachwall.
These results could imply that the optimal capacitance can be reached by controlling the pore
width.

It is well known that confinement can induce phase transitions. For instance, capillary
condensation of ILs mixtures in porous electrodes was reported in [113]. A simplified system
of a single electrode pore immersed in a bulk electrolyte was considered, and, as a result of
approaching capillary condensation, a fluctuation-enhanced capacitance over a range of surface
potentials was found. This enhancement is attributed to density fluctuations in the screening
electrolyte due to the phase transition. This enhanced capacitance was also found near the
critical point. In real electrodes, the pore width is highly inhomogeneous; however, this could
be advantageous for inducing fluctuation-enhanced capacitance. This fact relies on the idea that
the topology of the pore can be tailored to display optimal capacitance over a specific potential
window [113].

Another interesting behavior related to the confinement-induced phase transition is reported
in [114]. Tuning-fork-based atomic forcemicroscopemeasurements revealed a dramatic change
of the ILs towards a solid-like phase denoting capillary freezing. This phase transition occurs
below a threshold related to the nature of the confining materials; metallic surfaces promote
freezing. Such behavior is explained by the fact that confinement shifts the freezing transition,
and there is an influence of the electronic screening on IL wetting of the confining surfaces.
These findings provide a better understanding of the ILs confined by metallic nanoporous since
they treat an omitted phenomenon that, in fact, has application in the context of lubrication. In
supercapacitors, for instance, freezing transitions are avoided by using disordered and rough
surfaces. However, this may be beneficial in lubrication where the formation of a weak solid
phase would prevent an undesired direct contact substrate–substrate [114].

In general, confinement will either promote or counteract phase transitions depending on
the adsorbent-adsorbate interactions: repulsive interactions tend to lower the vapor-liquid or
demixing critical points and depress the freezing temperature (here, the geometry of the confin-
ing environment is also important). The opposite behavior is induced by attractive wall-particle
interactions [115].

https://rcin.org.pl



15

Chapter 3
Phase Transi ons in Mixtures

This chapter is devoted to describing phase transitions in mixtures. The
emphasis is placed on the first-order demixing transition in binary mix-
tures (Section 3.1). In Section 3.2, the geometry-induced phase transi-
tions, in particular, the phase transitions in charged systems, are pre-
sented. Additionally, the macroscopic derivation of the Kelvin equation
is presented in this section.

3.1 First-order demixing transi on in binary mixtures

In this thesis, I am interested in a mixture of IL and neutral solvent, which can phase separate
below its upper critical point [116]. Phase separation processes in a mixture are often studied
in terms of the grand thermodynamic potential given by

Ω = U − TS −
∑

i

µiNi (3.1)

where U is the internal energy, T is the temperature, S the entropy, µi, and Ni are the chem-
ical potential and the number of particles of the specie i, respectively. When several chemical
species are present in a mixture, the chemical potential of each species is defined as

µi(T, V, N) =
(

∂F

∂Ni

)
T,V,Ni̸=j

(3.2)

where F is the Helmholtz free energy. The grand thermodynamic potential Ω(T, V, µ) is
the Legendre transform of F (T, V, N) where the natural variable N is replaced by µ.

The mixture of IL and solvent corresponds to a binary system and, in this case, Eq. (3.1) is
re-written as follows

Ω = U − TS − µnN − ∆µNIL (3.3)
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where N = Nn + NIL is fixed and ∆µ = µIL − µn. Likewise, NIL = N+ + N− and
NIL/V = ρ. In order to simplify the notation, we use µ as the chemical potential difference
(µ = µIL − µn) and ρ = ρ+ + ρ− as the IL density.

Figure 3.1a is a schematic representation of the phase diagram in the chemical potential-
temperature plane of the system under consideration. The coexistence line (at chemical poten-
tial µsat) ends at an upper critical point marked by a red circle. Additionally, Figure 3.2 is a
schematic representation of the phase diagram in the concentration-temperature plane. Above
the critical temperature Tc, the system is homogeneous at any temperature and bulk composition
of IL. However, below Tc, the homogeneous IL-solvent mixture becomes unstable for a certain
range of concentration. It will spontaneously phase-separate into two phases, one phase rich in
IL and the other one rich in the solvent. These two phases coexist along a saturation composition
curve, which terminates at a bulk critical point: (ρc, Tc), where ρc is the critical composition of
IL. An example of an experimental phase diagram of an aqueous system of imidazolium-based
ionic liquids taken from [117], is shown in Figure 3.1b.
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FIGURE 3.1 Scheme of an IL-solvent mixture phase diagram in the temperature-chemical potential
plane, and experimental phase diagram of an aqueous system of imidazolium-based ionic liquids.
(a) Scheme of an IL-solvent mixture phase diagram in the temperature-chemical potential plane. Below
Tc (shown by a red circle), two phases coexist along a saturation chemical potential µsat. One phase is
rich in IL, and the other phase is rich in the solvent. Light blue spheres denote cations, while blue spheres
denote anions. Solvent molecules are denoted by yellow spheres. (b) Experimental phase diagram of an
aqueous system of imidazolium-based ionic liquids. The picture was reproduced from [117].

At the critical point, a phase transition occurs due to the competition between the internal
energy U that favors order, and the entropy S of the system, which benefits disorder, depending
upon the temperature value, one of the terms dominates [118]. For T → ∞, the entropic
contribution of the thermodynamic potential dominates, meaning that molecules are arranged
in a disordered phase. However, by decreasing temperature, the system starts ordering upon
approaching an upper critical point implying that molecules can no longer move freely. As a
consequence, droplets or correlated regions of the same type of molecules are formed provided
that the interactions between like-molecules are strong enough. For T → Tc, the size of the
correlated regions, the so-called correlation length ξ, increases compared to the microscopic
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FIGURE 3.2 Scheme of an IL-solvent mixture phase diagram in the temperature-composition plane.
At the left, light blue spheres denote cations while blue spheres denote anions. Solvent molecules are
denoted by yellow spheres. Above the critical temperature Tc, the system is homogeneous for any tem-
perature and bulk composition of IL. Below Tc, the mixture phase separates into one phase rich in IL
and the other phase one rich in the solvent. The critical composition of IL is denoted by ρc. At the right,
the binary mixture phase diagram showing critical (path A) and off-critical (path B) separations into the
two-phase region from the one-phase region. Both paths start at Ti, however, critical separation ends at
Tf,A while off-critical separations ends at Tf,B .

lengths of the system, and at the critical point (T = Tc), ξ diverges.
The conventional classification of the phase transitions is given by the degree of singularity

in the respective thermodynamic potential that describes the system. If the first-order derivative
of the grand potential shows a discontinuity, then there is a first-order phase transition. On the
other hand, if the second- or higher-order derivatives show a discontinuity or a divergence, the
transition is called continuous, or second-order phase transition since the second- or higher-
order derivative first displays a discontinuity or divergence.

At a first-order transition, an initially one-phase system separates into two different coexist-
ing phases (e.g. vapor-liquid or liquid-liquid coexistence). Such phase separation is frequently
studied by setting the system in a region of the phase diagram where the homogeneous state is
stable. Then, a separation into two stable phases is induced by changing the temperature at a
fixed concentration.

Consider the phase diagram shown in Figure 3.2-(right), a phase separation at higher tem-
peratures, Ti > Tc, may be achieved either along the critical concentration line that crosses
through the critical point (path A) or along off-critical paths (path B). Both paths end in a re-
gion bounded by the coexistence curve where there is an unstable region (Tf,A < Tc) and a
metastable region (Tf,B < Tc). Either at Tf,A or Tf,B, the binary mixture will spontaneously
separate into stables IL-rich and IL-poor (solvent-rich) phases.

Let us consider now the phase diagram in Figure 3.3. In the one-phase region (T1 > Tc), the
grand thermodynamic potential function has a single minimum, while in the two-phase region
(T2 < Tc), it has two minima (i.e. the grand potential is bistable). In the coexisting phases,
the intensive parameters: T , µi, and p are equal, and at equilibrium for fixed temperature and
chemical potential, the grand potential in the two phases takes the same value. The system
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FIGURE 3.3 Scheme of grand potential as a function of composition at a fixed chemical potential.
For a temperature in the one-phase region, T1 > Tc (where Tc is the critical temperature), the grand
potential has one minimum. However, for a temperature in the two-phase region, T2 < Tc, the grand
potential has two minima representing the two phases: IL-rich and IL-poor phases.

becomes unstable under infinitesimal concentration fluctuations at the spinodal line (dashed
line in Figure 3.3). For fixed µ, this line is determined by the condition

∂2F

∂ρ2 = ∂2Ω
∂ρ2 = 0 (3.4)

recalling that µ = µIL − µn and ρ = ρ+ + ρ− is the ion density. Likewise, the stability
condition is

∂2Ω
∂ρ2 ≥ 0. (3.5)

For a deeper understanding of the different shapes of the grand potential as a function of the
order parameter 1, let us consider now a phase diagram in the chemical potential-temperature
plane as shown in Figure 3.4a. The dashed lines denote the spinodals, whereas the solid line
represents the bulk coexistence. The symbols mark the regions of interest inside the phase
diagram.

At the spinodals, the grand potential has an inflection point. At the binodal line, marked
by a triangle, both phases IL-rich and IL-poor coexist. Thus, the grand potential exhibits two
minima of equal depth, meaning that both phases are equally stable (Figure 3.4b).

Inside the spinodal region (marked by a star and a circle in Figure 3.4a), the grand potential
exhibits two minima, meaning that there are two phases, but just one of them is stable. At the
left, marked by a star, the IL-poor phase is stable since the grand potential has a lower minimum
for lower values of the order parameter (Figure 3.5a). At the right, marked by a circle, the IL-
rich phase is stable since the grand potential exhibits a lower minimum for higher values of the

1In the case of binary mixtures, the order parameter usually is the composition, as shown in Figure 3.3
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(a) (b)

FIGURE 3.4 Scheme of a phase diagram in the temperature-chemical potential plane illustrating the
spinodal and coexistence lines. (a)The symbols mark the regions of interest at which the grand potential
as a function of the order parameter is plotted to study the system’s behavior. (b) Grand potential as a
function of the order parameter at the binodal line marked by a triangle in Figure 3.4a. At the binodal
line, the IL-rich and IL-poor phases coexist; thus, the grand potential exhibits two minima of equal depth
since both phases are stable.

order parameter (Figure 3.5b).

(a) (b)

FIGURE 3.5 Grand potential as a function of the order parameter inside the spinodal region. (a)
Grand potential as a function of the order parameter inside the region between the left spinodal and the
coexistence line. In this region, the grand potential exhibits a lower minimum for lower values of the
order parameter, meaning that the IL-poor phase is stable. This region is marked by a star in Figure 3.4a.
(b) Grand potential as a function of the order parameter inside the region between the coexistence and
the right spinodal line. In this region, the grand potential exhibits a lower minimum for higher values
of the order parameter, meaning that the IL-rich phase is stable. This region is marked by a circle in
Figure 3.4a.

Outside the spinodal region (marked by a diamond and a square in Figure 3.4a), the grand
potential exhibits a single minimum, meaning that there is one phase. At the left, marked by a
diamond, there is IL-poor phase, since the grand potential exhibits a global minimum at lower
values of the order parameter (Figure 3.6a), whereas at the right, there is IL-rich phase (Fig-
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ure 3.6b).

(a) (b)

FIGURE 3.6 Grand potential as a function of the order parameter outside the spinodal region. (a)
Grand potential as a function of the order parameter outside the spinodal region at the left. In this region,
the grand potential exhibits a single minimum for lower values of the order parameter, meaning that
there is only IL-poor phase. This region is marked by a diamond in Figure 3.4a. (b) Grand potential as a
function of the order parameter outside the spinodal region at the right. In this region, the grand potential
exhibits a single minimum for higher values of the order parameter, meaning that there is only IL-rich
phase. This region is marked by a square in Figure 3.4a.

3.2 Geometry-induced phase transi ons

Fluids under confinement can undergo a dramatic change in their equilibrium and dynamical
properties. The behavior of a confined fluid is significantly different with respect to a bulk fluid,
and this is directly related to the pore morphology, topology, and the magnitude of fluid–surface
to fluid–fluid interactions. As a result, new phase transitions such as wetting, pre–wetting, capil-
lary condensation, filling transitions in wedges, among others, may take place [119–122]. The
fundamental understanding of these phase transitions involves finite-size effects and surface
forces. Furthermore, when the pore size is of an order of magnitude comparable to the inter-
molecular forces, there will be a reduction of the number of nearest-neighbor molecules felt by
the confined molecules. This effect leads to a shift in phase coexistence curves and a lowering
of any critical points [5]. Such phenomenon is explained from the concept of capillary critical-
ity that implies the existence of a temperature, Tcc, below the bulk critical temperature beyond
which liquid-gas phase transition becomes reversible [122].

In the simplest case, gas-liquid condensation transitions are influenced by attractive walls.
Let us consider a saturated gas in contact with a wall. A wetting transition occurs when a thick
liquid layer condenses at the wall while the bulk fluid stays in the gas phase [31]. Depending
on the nature of the surface forces, a drop placed on a substrate can either wet it or not and
spreads over it to form a film. Correspondingly, a non-wetted surface, initially covered by a
film, could be dewetted under an appropriate change of the parameters [4]. Additionally, pre–
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wetting can also occur if the gas is unsaturated. Thus, there is a formation of a thin liquid layer
at the wall [123].

If the confining geometry is cylindrical or slit-shaped pores, the most common example
of confinement–induced phase transition is the capillary condensation phenomenon in which
a gas at pressure p < psat condenses to a liquid-like phase that fills the pore [31]. When the
confining materials are charged then, electrocapillary phenomena take place. Electrocapillarity
involves the thermodynamics of charged interfaces, and it is related to changes in the interfacial
energy such as the electrode potential or to changes in the concentration of the electrolytes in
solution [124]. Electrocapillarity research was started with the work of Gabriel Lippmann [125]
who found that changes in voltage influence the capillary depression of mercury in contact with
electrolyte solutions [126]. Nevertheless, it is important to note that electrocapillary phenomena
are not only restricted to the study of the equilibrium properties of mercury/electrolyte solution
interfaces but also refer to the study of other interfaces, for instance, interfaces between two
immiscible electrolyte solutions [124].

In the presence of an electric field, oppositely charged ions are attracted to the interface
between a conductive and a non-conductive (dielectric) material and exert an interfacial force.
These induced forces are especially strong as the electric field becomes large. However, due to
short-range attractions between ions of the same sign, and the entropy of mixing effect, co-ions
are also attracted together with counterions. If the electric field is sufficiently strong, elec-
trowetting occurs [126]. Additionally, in confinement, there are effects caused by the interplay
of different length scales corresponding to particle sizes, ranges of intermolecular potentials,
and dimensions of confinement [119, 127].

From a macroscopic treatment, consider a mixture of IL and solvent (see Figure 3.2-(left))
confined in an infinite capillary slit. In the limit of large slit width, w, the total grand potential
of the confined phases is the sum of the bulk and surface contributions [31, 128]:

Ωrich = −prichA w + 2σrich(w, µ)A (3.6)

Ωpoor = −ppoorA w + 2σpoor(w, µ)A (3.7)

where prich is the pressure of the IL-rich phase and ppoor is the pressure of the IL-poor phase
at the same chemical potential µ. Additionally, σrich and σpoor are the surface excess grand
potentials of the IL-rich and IL-poor phases, respectively, evaluated at µsat [31, 128, 129]. The
coexistence of IL-rich and IL-poor phases occurs when Ωrich = Ωpoor, then

prich − ppoor = 2
w

(σrich − σpoor) (3.8)

At constant temperature, dp = ρ dµ, and by expanding prich(µ) and ppoor(µ) about psat,
Eq. (3.8) can be written as

µ − µsat = 2
w

(σrich − σpoor)
(ρrich − ρpoor)

(3.9)
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This treatment is valid under the assumption that the density profiles are almost constant
in the slit [128], that is ρ(z) ≈ ρrich and ρ(z) ≈ ρpoor, where ρrich, ρpoor are the density of the
IL-rich and IL-poor phases, respectively.

Confinement shifts the location of the coexistence along a saturation chemical potential
curve, µsat, to a capillary ionization curve that occurs along µci and which ends at a capillary
critical temperature. The phase boundary shift at which capillary ionization takes place satisfies
the macroscopic Kelvin equation [121,130]:

µci = µsat + 2∆σ

w∆ρ
(3.10)

Figure 3.7 shows the capillary ionization line obtained from theKelvin equation (Eq. (3.10)).
Note, it is shifted with respect to the bulk coexistence, µsat, shown in Figure 3.1a.

FIGURE 3.7 Capillary ionization of slit mesopores in the chemical potential-temperature plane. The
black solid line denotes the bulk coexistence (at µsat) that ends at the critical point, while the solid blue
line is the capillary ionization curve obtained from the Kelvin equation (Eq. (3.10)).

https://rcin.org.pl



23

Chapter 4
Development of a Generic Model

In this chapter, the system under consideration is described, and
a generic model to analyze its behavior is developed by combining
the Poisson-Boltzmann and the mean-field theory for phase transi-
tions in mixtures. Additionally, two approximations for describing
the excluded-volume interactions are implemented: lattice-gas and
Carnahan-Starling approximations. In Section 4.2, the phase diagram
for the bulk system is presented. In Section 4.3, we derive the Euler-
Lagrange equations that result from the minimization of the grand ther-
modynamic potential. Finally, in Section 4.4, the system’s thermody-
namic characteristics are obtained.

4.1 Construc on of the Grand-poten al func onal

We consider a mixture of ionic liquid (IL) and neutral solvent, which can phase separate
below its upper critical point. We are interested in the one-phase region close to demixing.
Figure 4.1 shows the system under consideration. We assume that the mixture is in contact
with two planar metallic electrodes separated by a distance w, and the electrostatic potential,
U , is kept constant with respect to the bulk. Additionally, we consider that electrodes prefer
ions or solvent molecules, meaning that the short-range (non-Coulombic) interactions between
the ions/solvent and the surface are different. This preference is called ionophilicty, and it is
denoted by hs.

This system can be described by the following grand thermodynamic potential [98, 131]

Ω[ρ±, u]/A = ωel + ωvdW + ωs − Ts − µi

∫ w

0
dzρi(z), (4.1)

where ωel, ωvdW , ωs and s are the electrostatic energy, the internal energy associated with
van derWaals-like dispersion (non-Coulombic) interactions, the energy associated with the pore
walls, and the entropy (all per surface area), respectively; T is temperature,A is the surface area
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FIGURE 4.1 IL-solvent mixture in contact with a slit-shaped pore. The electrodes are separated by a
distance w, and the electrostatic potential, U , applied at z = 0 and z = w is kept constant with respect
to the bulk. The ion diameter, a, is the same for cations (light blue spheres) and anions (blue spheres).
Yellow spheres represent the solvent. The ionophilicity (or surface field) at z = 0 and z = w is denoted
by hs and describes the electrode preference by ions or solvent.

of the electrode, µi is the chemical potential, and ρi(z) is the local density of the i-th component,
where i = {+, −, n} denotes cations, anions and solvent, respectively.

The electrostatic energy, in kBT units, is given by [73, 132–134]

β ωel[c(z), u(z)] =
∫ w

0
dz
[
cu − 1

8πλB

(
∂u

∂z

)2]
(4.2)

where β = 1/(kBT ), u is the electrostatic potential in kBT/e units with kB denoting the
Boltzmann constant; c = ρ+−ρ− is the charge density per elementary charge e and λB = βe2/ϵr

is the Bjerrum length, where ϵr is the dielectric constant. It is well known that ϵr depends
on temperature, particularly for polar solvents [135–137]. Nevertheless, we assume ϵr to be
temperature-independent and note that its temperature variation should not affect the results
qualitatively, as considered in [131] (see Appendix C). In addition, it is known that polarizability
of solvent and ions may play an important role in the structure and properties of electrical double
layers [97, 101, 132, 133, 138, 139]. To capture generic effects, we have decided to consider a
position-independent dielectric constant, as in [73–76, 78, 79, 93, 97, 102, 139]. The change of
ϵr close to the surface will affect the results quantitatively. However, it is reasonable to expect
that the qualitative behavior will not be altered.

The term ωvdW = ΩvdW /A describes the contribution from attractive non-Coulombic van
der Waals-like interactions to the internal energy, which may lead to demixing of the IL and
solvent, and it can be written as

ΩvdW = 1
2

∫
dr1

∫
dr2ρi(r1)Jij(r1 − r2)ρj(r2), (4.3)

where Jij(r1 − r2) is the interaction between the species i, j at the positions r1, r2 re-
spectively. We perform the coarse-graining procedure as in [133, 140], and assume that
J++ = J−− = J+− and J+n = J−n. This assumption can be valid, provided that when the
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phase separation is driven by the chemical difference between IL and neutral solvent, we can
take into account only the effective interactions leading to phase separation. Thus, Eq. (4.3)
simplifies to

ΩvdW = 1
2

∫
dr1

∫
dr2

[
J++(r)ρ(r1)ρ(r2)+2J+n(r)ρ(r1)ρn(r2)+Jnn(r)ρn(r1)ρn(r2)

]
(4.4)

where r = |r1 − r2|, and ρ(r) = ρ+(r) + ρ−(r) is the local density of the IL at position r.
Additionally, we neglect the density fluctuations (meaning that the fluid is incompressible) and
assume fixed total density of the mixture

ρ+(r) + ρ−(r) + ρn(r) = 1 (4.5)

where ρn(r) is the density of the neutral component in the mesoscopic region at r. Inserting
ρn = 1 − ρ in Eq. (4.4) gives

ΩvdW = 1
2

∫
dr1

∫
dr2

[
J(r)ρ(r1)ρ(r2) + Jµ(r)ρ(r1)

]
(4.6)

where J(r) = J++(r) − 2J+n(r) + Jnn(r) represents the effective interactions leading to
phase separation, and Jµ(r) = 2(J+n(r) − Jnn(r)). We assume that µ+ = µ−, then

ΩvdW −
∑

i

µi

∫
drρi(r) = 1

2

∫
dr1

∫
drJ(r)ρ(r1)ρ(r1 + r) − µ

∫
drρ(r) (4.7)

where µ is the difference between the chemical potentials of an IL and solvent given by

µ = µ+ − µn − 1
2

∫
drJµ(r) (4.8)

We have applied the approach used in [132, 133], which consists on implementing Taylor
expansion of ρ(r1 + r) in Eq. (4.7), around r1

ΩvdW −
∑

i

µi

∫
drρi(r) = 1

2

∫
dr1

[
ρ2(r1)J0 + ρ(r1)J2

d2ρ(r1)
dr2

1
+ ...

]
− µ

∫
drρ(r) (4.9)

where J0 ≈
∫

drJ(r) and J2 ≈
∫

drJ(r)r2/2. Integration by parts of the second term in
Eq. (4.9), leads to

[
ωvdW + ωs −

∑
i

µi

∫
dzρi(z)

]
≈ K


∫ w

0
dz

ξ2
0
2

∂ρ

∂z

2

− 1
2

ρ2


+ ξ0

2
ρ2

0 − hsρ0 + ξ0

2
ρ2

w − hsρw

 (4.10)

− µ
∫ w

0
dzρ(z)
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where

K = −J0 = −
∫

drJ(r) > 0 (4.11)

measures the strength of the dispersion interactions, and

ξ2
0 = 1

2

∫
drJ(r)r2∫
drJ(r)

(4.12)

describes the spatial extension of these interactions (ξ0 is of the same order of magnitude as
the molecular size a). In Eq. (4.10), we took into account that the interactions with the missing
fluid neighbours beyond the system boundary should be subtracted (the first boundary term),
andwe included the direct short-range interactions of the fluid particles with thewall (the second
boundary term).

ωs = −[hsρ(z = 0) + hsρ(z = w)] = −[hsρ0 + hsρw] (4.13)

The electrode’s ionophilicity is denoted by hs and describes the preference of the electrode
for ions or solvent; hs > 0 means that the wall favors ions, and we assumed this preference to
be the same for anions and cations.

Within the local density approximation, the entropy is

− Ts = −T
∫ ∞

0
dzs([ρi(z)]) = kBT

∫ ∞

0
dz

ρ+ ln(a3ρ+) + ρ− ln(a3ρ−) + βfex(ρ)

. (4.14)

The first two terms in Eq. (4.14) come from the entropy of mixing of ions, and the last term
is the excess free energy associated with the excluded volume interactions. If the cations and
anions are of comparable size, but the solvent molecules are much smaller, such that the solvent
can be treated as a structureless continuum, it seems reasonable to use the Carnahan - Starling
(CS) approximation [141] for the excluded volume interactions between the ions only, i.e.,

βfCS
ex (ρ) = ρ

4η − 3η2

(1 − η)2 − 1

, (4.15)

where η = πρa3/6 is the packing fraction of ions. However, if both ions and solvent are of
comparable size, it might be more suitable to use the popular lattice-gas expression

βf lg
ex(ρ) = (ρtot − ρ) ln

[
a3(ρtot − ρ)

]
, (4.16)

which arises from the solvent’s ideal-gas entropy, βfex = ρn ln a3ρn, by assuming the local in-
compressibility conditions, ρ+(r)+ρ−(r)+ρn(r) = ρtot (ρtot = a−3 for the lattice–gas model).
Eq. (4.16) has been employed in a number of important studies, most notably by Bikerman [69],
Wicke and Eigen [70, 72], Borukhov et al. [73], Kilic et al. [100] and Kornyshev [78].

In Eqs. (4.15) and (4.16), the cations and anions are assumed to be of the same size,i.e. ,
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a− = a+ = a, whereas often a+ ̸= a− [142–144]. Gongadze [142] proposed an improved
mean-field model of EDLs that accounts for such ion-size asymmetry and found that it leads to
a pronounced decrease of the capacitance and to shape asymmetry of the capacitance-voltage
curves (with respect to the potential of zero charge), which seems to be consistent with the
experimental observations [87, 96]. These results suggest that the asymmetry in ion sizes may
reduce the capacitance calculated in this work and bring asymmetry in the capacitance-voltage
dependence, but the qualitative behavior due to proximity to demixing shall be captured already
by a model featuring the same sizes of cations and anions.

Summing up, our final expression of the grand potential is [131]

β Ω[ρ±, u]/A =
∫ w

0
dz

ρ+ ln(a3ρ+) + ρ− ln(a3ρ−) + βfex(ρ)


+
∫ w

0
dz

cu − 1
8πλB

∂u

∂z

2 (4.17)

+ βK


∫ w

0
dz

ξ2
0
2

∂ρ

∂z

2

− 1
2

ρ2

+ ξ0

2
ρ2

0 − hsρ0 + ξ0

2
ρ2

w − hsρw


− βµ

∫ w

0
ρdz

4.2 Bulk system

In the absence of confinement surfaces, Eq. (4.17) simplifies to give the bulk system equa-
tion

βΩb(ρ̄b)/V = −βK
ρ̄2

b

2
+ ρ̄b ln

(
ρ̄b

2

)
+ βfex(ρ̄b) − βµρ̄b. (4.18)

where V = wA is the volume, ρ̄b = a3ρb and ρb is the bulk ion density. The equilib-
rium condition, ∂Ωb/∂ρ̄b = 0, leads to a non-linear equation, which we solved numerically.
The solution reveals the existence of two phases, one enriched in ions called IL-rich phase
(ρb = ρrich), and the other enriched in the solvent called IL-poor phase (ρb = ρpoor). Figure 4.2
shows the phase diagrams obtained by implementing both CS and lattice-gas approximations.
The solid lines denote the coexistence between IL-rich and IL-poor phases that occurs when
Ωb(ρrich) = Ωb(ρpoor), and is typical for IL-solvent mixtures [117, 145]. Additionally, there is
a region of temperatures and IL densities where an IL-solvent mixture separates into the IL-
poor and IL-rich phases. This region shrinks for increasing temperature and ends at a critical
temperature Tc.

At the spinodal line, ∂2Ωb/∂ρ2
b = 0, the homogeneous IL-solvent mixture becomes unstable

with respect to density fluctuations. Within our mean-field theory, the spinodal line is given by

T̄c(ρ̄b) = α−1(ρ̄b), (4.19)
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(a) (b)

FIGURE 4.2 Bulk phase diagrams of ionic liquid (IL)-solvent mixtures. (a) Excluded volume given by
the Carnahan-Starling approximation. (b) Excluded volume given by the lattice-gas approximation. The
solid lines represent the first order phase transition between the homogeneous and IL-solvent demixed
phases, and the dashed lines are the spinodal curves given by Eq. (4.19). The circles denote (upper)
critical points. Temperature is expressed in terms of the critical temperature Tc.

where T̄ = kBTa3/K is dimensionless temperature and

α(ρ̄b) =

∂µex

∂ρ̄

∣∣∣∣∣
ρ̄=ρ̄b

+ ρ̄−1
b

. (4.20)

where µex = β∂fex/∂ρ. The spinodals are shown by dashed lines in Figure 4.2. The point
on the spinodal that satisfies dT̄c(ρ̄b)/dρ̄b = 0 corresponds to a critical point (solid circles in the
same figure). For the CS and lattice-gas expressions, we found for the critical points ρ̄c ≈ 0.25,
T̄c ≈ 0.09 and ρ̄c ≈ 0.5, T̄c ≈ 0.25, respectively. In addition, it is worth noting that the obtained
phase diagrams are in good qualitative agreement with the experimental phase diagram shown
in Figure 3.1b.

4.3 Euler-Lagrange equa ons

The equilibrium properties of the system are described by the minimum of Ω in Eq. (4.17).
Minimization with respect to the electrostatic potential u gives

λ2
D

d2u

dz2 = −c = (1 + ϕ/ρ̄b) tanh(u), (4.21)

where λD = (4πρbλB)−1/2 is the Debye screening length in bulk electrolyte, ρb is the equi-
librium ion density (in bulk), and ϕ = ρ̄ − ρ̄b is the order parameter. The boundary conditions
are, u(w) = u(0) = eU/kBTc, where U is the applied voltage to a pore with respect to bulk
electrolyte. Minimization with respect to the ion density, ρ, gives

ξ2
0

d2ϕ

dz2 + ϕ = T̄ [ln(1 + ϕ/ρ̄b) − ln(cosh(u)) + ∆µex] , (4.22)
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where ∆µex = µex − µb
ex with µb

ex = µex(z = ∞). The boundary conditions are
ξ0ϕ

′(0) − ϕ(0) + h̄s = 0 and ξ0ϕ
′(w) + ϕ(w) − h̄s = 0, where h̄s = a3hs/ξ0.

4.4 Thermodynamic characteris cs

In order to study and analyze the behavior of the ILs under confinement, we calculated some
thermodynamic characteristics such as accumulated charge, stored energy, differential capac-
itance, amount of ions adsorbed into the pore, and the charging mechanisms. In this section,
we derive these expressions, but the results are shown in Chapters 6-7 where we study two
cases. In the first case (Chapter 6), the mixture of IL and solvent is in contact with a single
surface (w → ∞). In the second case (Chapter 7), the mixture of IL and solvent is confined by
slit-shaped mesopore as it is schematically shown in Figure 4.1.

The charge accumulated in an EDL is [98, 131]

Q(u) = −
∫ w

0
c(z) dz (4.23)

As it was presented in Section 2.3, the differential capacitance is given by Eq. (2.10). The
energy stored in the surface is

E(U) =
∫ U

0
C(u) u du (4.24)

Another important characteristic that gives us information about charging mechanisms in-
side the pore is the charging parameter, XD, which is [146, 147]

XD(u) = e

C(u)
dΓ
du

(4.25)

where Γ is the amount of ions adsorbed in the pore 1 and is given by

Γ =
∫ w

0
(ρ(z) − ρb) dz (4.26)

If XD(u) = 0, the charging is due to swapping coions for counterions. However, if XD = 1
there is counterion electrosorption (or simply adsorption), and XD > 1 implies that both coun-
terions and coions are adsorbed in the pore; a negative value of the charging parameter means
desorption of ions from slit pore [98, 131].

However, when the mixture of IL and solvent is confined by a slit-shaped mesopore, capil-
lary ionization transition can be induced by applying a voltage to a mesopore. This transition,
occurring at u = uci, is accompanied by a sudden increase of the accumulated charge in the
pore, which has important consequences for the differential capacitance and the stored energy.
To analyze charging in this case, the charge accumulated in the slit pore is written as

Q(u) = Qpoor(u) + [Qrich(u) − Qpoor(u)] θ(u − uci) (4.27)

1Γ also could be understood as the surface coverage by the ionic liquid.
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whereQpoor(u) andQrich(u) are the accumulated charges in the IL-poor and IL-rich phases,
respectively, and θ(x) is the Heaviside step function equal unity for x > 0 and zero otherwise.
Then,

Q(u) = Qpoor(u) = −
∫ w

0
cpoor(z)dz if u < uci (4.28)

Q(u) = Qrich(u) = −
∫ w

0
crich(z)dz if u > uci (4.29)

and the jump of the accumulated charge at the transition voltage uci, is given by

∆Qci = Qrich(uci) − Qpoor(uci) (4.30)

By inserting Eq. (4.28) and Eq. (4.29) in Eq. (2.10), one can write the capacitance as follows

C(u) = dQpoor

du
θ(uci − u) + dQrich

du
θ(u − uci) + (Qrich − Qpoor) δ(u − uci) (4.31)

where δ(x) is the Dirac delta-function. Then,

Cpoor(u) = dQpoor

du
if u < uci (4.32)

Crich(u) = dQrich

du
if u > uci (4.33)

where Cpoor(u) and Crich(u) are the capacitance in the IL-poor and IL-rich phases, respec-
tively. At the capillary transition, the capacitance diverges, and its expression is given by

C(uci) = Cpoor(uci) + ∆Qciδ(u − uci) (4.34)

Replacing Eq. (4.31) into Eq. (4.24), we obtain the energy stored in a pore

E(U) =
∫ U

0

dQ

du
udu =

∫ U

0

dQpoor

du
(1 − θ(u − uci))u du

+
∫ U

0

dQrich

du
θ(u − uci)u du +

∫ U

0
(Qrich − Qpoor) δ(u − uci)u du (4.35)

Recalling the Dirac delta-function properties, from the last term in Eq. (4.35), we obtain
(Qrich − Qpoor)uci, and finally have

Epoor(U) =
∫ U

0

dQpoor

du
u du if U < uci (4.36)

Erich(U) =
∫ uci

0

dQpoor

du
u du +

∫ U

uci

dQrich

du
u du + (Qrich − Qpoor) uci if U > uci (4.37)
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Therefore, the stored energy acquires an additional contribution at the transition,
∆Eci = uci∆Qci.
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Chapter 5
Analy cal and Numerical Solu on
Approaches

In this chapter, we propose analytical and numerical approaches to
solve the model developed in the previous chapter. Section 5.1 presents
the analytical method, highlighting that the proposed solution only
applies to the single-surface system. In Section 5.2, the numerical
approach is developed for the slit-shaped mesopore system while the
single-surface system is solved by implementing the bvp4c routine in
MATLAB® software .

Recalling the Euler-Lagrange equations presented in Section 4.3, the model to be solved is

λ2
D

d2u

dz2 = −c = (1 + ϕ/ρ̄b) tanh(u) (5.1)

ξ2
0

d2ϕ

dz2 + ϕ = T̄ [ln(1 + ϕ/ρ̄b) − ln(cosh(u)) + ∆µex] (5.2)

In the case of a single surface, the electrostatic potential is subjected to the boundary con-
ditions given by Eqs. (5.3)-(5.4). On the other hand, in the slit-shaped mesopore system, the
boundary conditions for the electrostatic potential are given by Eqs. (5.5)-(5.6).

u(0) = eU/kBTc (5.3)

u(∞) = 0 (5.4)

u(0) = ±eU/kBTc (5.5)

u(w) = eU/kBTc (5.6)

where U is the applied voltage at an electrode with respect to bulk and the signs ± corre-
spond to the cases of electrodes equally and oppositely charged that are studied in Chapter 7.
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Likewise, the order parameter, ϕ is subjected to Eqs. (5.7)-(5.8) for a single surface, and sub-
jected to Eqs. (5.9)-(5.10) for a slit mesopore.

ξ0ϕ
′(0) − ϕ(0) + h̄s = 0 (5.7)

ϕ(∞) = 0 (5.8)

ξ0ϕ
′(0) − ϕ(0) + h̄s = 0 (5.9)

ξ0ϕ
′(w) + ϕ(w) − h̄s = 0 (5.10)

where the ionophilicity is h̄s = a3hs/ξ0. For the system consisting of a single surface, we
have proposed both, an analytical (Section 5.1) and numerical (Section 5.2) approach to solve
Eqs. (5.1) and (5.2) subject to their respective boundary conditions. However, in the case of the
slit-shaped mesopore system, only the proposed numerical solution applies.

5.1 Analy cal solu on

For the system composed of a mixture of IL and solvent in contact with a single sur-
face, an approximate analytical solution is obtained for weak surface potentials, eU/kBTc, and
ionophilicities, h̄s. For this purpose, we have used the standard perturbation analysis in which
we assumed u = u0 + εu1 + ε2u2 + ... and ϕ = ϕ0 + εϕ1 + ε2ϕ2 + ..., where ε is a small
parameter. In the first-order approximation, we obtained the following equations

d2u1

dz2 = λ−2
D u1(z) (5.11)

and

d2ϕ1

dz2 = ξ−2ϕ1(z), (5.12)

where

ξ = ξ0

(
T̄

T̄c(ρ̄b)
− 1

)−1/2
(5.13)

is the correlation length and T̄c is given by Eq. (4.19). The solutions to Eqs. (5.11) and
(5.12) are

u1(z) = eU

kBTc

exp(−z/λD) (5.14)

and

ϕ1(z) = h̄s

ξ0/ξ + 1
exp(−z/ξ) (5.15)

From Eqs. (5.14) and (5.15) one can expect that, in the first-order approximation, the elec-
trostatic potential u and the order parameter ϕ are fully decoupled, meaning that the behavior
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of u is determined entirely by the Debye screening length, λD, as in the classical Debye-Hückel
theory (Section 2.1.1), while the decay of ϕ is determined by the correlation length, ξ.

In the second order perturbation, we obtained

d2u2

dz2 = λ−2
D u2 + λ−2

D

ρ̄b

ϕ1u1 (5.16)

and
d2ϕ2

dz2 = ξ−2ϕ2 + T̄

2 ξ2
0 ρ̄2

b

A(ρ̄b)ϕ2
1 − ρ̄2

bu
2
1

, (5.17)

where
A(ρ̄b) = ρ̄2

b

∂2µ̄ex

∂ρ̄2

∣∣∣∣∣
ρ̄=ρ̄b

− 1. (5.18)

It is worth noting that A(ρ̄b = ρ̄c) = 0, where ρ̄c is the critical density. Thus, in the
second-order, the electrostatic potential u and the order parameter ϕ become coupled. This
coupling determines the highly non-linear behavior of the system as it approaches demixing.
The solutions to Eqs. (5.17) and (5.16) are presented in Appendix A.

Additionally, the differential capacitance can be computed by plugging the electrostatic po-
tential, u, obtained by the perturbation expansion, into Eq. (4.23) and (2.10), then

C = C0 + C2

(
eU

kBTc

)2

+ ..., (5.19)

where

C0 = CD

[
1 + h̄s ξ/λD

(1 + ξ0/ξ)(2ξ/λD + 1)
+ O(h̄s

2)
]

(5.20)

and

C2 = CD

4

3(4ξ/λD + ξ/ξ0 + 1)
[
(ξ/ξ0)2 + 1

]
2(ξ/ξ0 + 1)(2ξ/λD + 1)2ρ̄b α(ρ̄b)

− 1

+ O(h̄s), (5.21)

whereCD = (a/λD)CH is the Debye capacitance andCH = ϵr/4πa the Helmholtz capacitance.

5.2 Numerical solu on

For the single-surface system, the EL equations (Eqs. (5.1)-(5.2) subjected to Eqs. (5.3)-
(5.4) and (5.7)-(5.4)-(5.8)) have been solved by implementing bvp4c routine in MATLAB®

software. However, when the slit-shaped mesopore is considered, the solution becomes numer-
ically unstable.

In order to avoid those numerical problems and obtain a more stable solution when varying
parameters, we can solve the system by implementing a finite differences (FD) scheme in which
we have control over the stability method. For this purpose, Eqs. (5.1)-(5.2) can be expressed
as a reaction-diffusion system that takes the form of semi-linear parabolic partial differential
equations as follows:
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dz

dt

m,n m+1,nm-1,n

m,n-1

m,n+1

FIGURE 5.1 Finite difference discretization grid. Grid scheme where n represents time nodes and m
spatial nodes. The separation between nodes are dz and dt for space and time respectively.

∂tq = D ∂zz q + R(q), (5.22)

where q(z, t) corresponds to the unknown function, D is the diffusion coefficient, and R

accounts for the generation term. Then, by inserting a first order time derivative, we can write
the set of differential equations as follows:

∂tu = −λ2
D∂zzu +

(
1 + ϕ

ρ̄b

)
tanh(u) (5.23)

∂tϕ = −ξ2
0 ∂zzϕ − ϕ + T̄

[
ln
(

1 + ϕ

ρ̄b

)
− ln(cosh(u)) + ∆µex

]
(5.24)

We intend to find the steady state solution which corresponds to the solution of the original
set of equations. Thus, we use a finite differences scheme that is forwarded in time and centered
in space.

By implementing a finite difference scheme forwarded in time and centered in space as
shown in Figure 5.1, we write Eqs. (5.23)-(5.24) in a discrete form:

un+1
m = un

m + Du(un
m+2 − 2 un

m+1 + un
m) + ∆t Ru (5.25)

ϕn+1
m = ϕn

m + Dϕ(ϕn
m+2 − 2 ϕn

m+1 + ϕn
m) + ∆t Rϕ (5.26)

where the diffusion coefficients, Du and Dϕ, are given by

Du = −∆t λ2
D

∆z2 (5.27)

Dϕ = −∆t ξ2
0

∆z2 (5.28)

and ∆t and ∆z are the temporal and spatial discretization steps. The generation terms, Ru and
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Rϕ, are:

Ru =
(

1 + ϕn
m

ρ̄b

)
tanh(un

m) (5.29)

Rϕ = −ϕn
m + T̄

[
ln
(

1 + ϕn
m

ρ̄b

)
− ln(cosh(un

m)) + ∆µex

]
(5.30)

5.2.1 Boundary condi ons

The boundary conditions for ϕ are

ξ0 ϕ′(0) − ϕ(0) + h̄s = 0 (5.31)

ξ0 ϕ′(w) + ϕ(w) − h̄s = 0 (5.32)

Introducing the temporary derivative and expressing Eqs. (5.31)-(5.32) in a discrete form
gives

ξ0

(
ϕn

2 − ϕn
1

∆z

)
− ϕn

1 + h̄s = ϕn+1
1 − ϕn

1
∆t

(5.33)

ξ0

(
ϕn

w − ϕn
w−1

∆z

)
+ ϕn

w − h̄s = ϕn+1
w − ϕn

w

∆t
(5.34)

Then, solving for the node forwarded in time, we have

ϕn+1
1 = ϕn

1 + ∆t
[
ξ0

(
ϕn

2 − ϕn
1

∆z

)
− ϕn

1 + h̄s

]
(5.35)

ϕn+1
w = ϕn

w + ∆t
[
ξ0

(
ϕn

w − ϕn
w−1

∆z

)
+ ϕn

w − h̄s

]
(5.36)

Likewise, the boundary conditions for the electrostatic potential, u, are

u(0) − eU/kBTc = 0 (5.37)

u(w) − eU/kBTc = 0 (5.38)

Since there are no spatial derivatives, then

un+1
1 = un+1

w = eU/kBTc. (5.39)

5.2.2 Solu on stability

For the model (Eqs. (5.1)-(5.2)) to be stable, the coefficients Du and Dϕ must fulfill [148]:

Du ≤ 0.25 (5.40)

Dϕ ≤ 0.25

The values of∆t and∆z have been chosen in such away that the stability condition is preserved.
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Chapter 6
Electrical Double Layers Close to Ionic
Liquid–Solvent Demixing

In this chapter, we study an IL-solvent mixture in contact with a planar
metallic electrode close to demixing. We consider the Lattice-gas and
Carnahan-Starling approximations to describe the excluded-volume in-
teractions. In Section 6.1, we present the charge density and ion density
profiles as well as the differential capacitance calculated from the ana-
lytical solution of the model. These results are compared with those ob-
tained by the full numerical solution. Finally, in Section 6.2, we present
the thermodynamic characteristics of the system under consideration
calculated from the numerical solution presented in Chapter 5.

We consider a mixture of ionic liquid and neutral solvent, which is in contact with a planar
metallic electrode, and the electrostatic potential, U , is kept constant with respect to the bulk as
shown in Figure 6.1. Our interest is in the one-phase region just above demixing.

z

x

y

a

U, hs

FIGURE6.1 IL-solventmixture in contact with a planarmetallic electrode. The electrostatic potential,
U , applied at z = 0 is kept constant with respect to the bulk. The ion diameter, a, is the same for cations
(light blue spheres) and anions (blue spheres). Yellow spheres represent the solvent. The ionophilicity
(or surface field) at z = 0 is denoted by hs and describes the electrode preference for ions or solvent.
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6.1 Analy cal results

First, we analyze the results obtained from the analytical solution based on the perturbation
expansion approach developed in Section 5.1, and compare them with the numerical solution
to Eqs. (5.1)-(5.2), subjected to the boundary conditions given by Eqs. (5.3)-(5.4) for u and
Eqs. (5.7)-(5.8) for ϕ. Figure 6.2 shows the charge density and ion density profiles by consider-
ing the lattice-gas and Carnahan-Starling approximations for the excluded volume interactions.
Solid lines denote the numerical solution, whereas the dashed lines correspond to the second-
order analytical solution. Regarding the ion density, ρ, analytic and numerical solutions differ
significantly for increasing the applied potential. However, for the charge density, the pertur-
bation expansion provides a relatively good approximation, and the solutions agree even for
higher potentials.

(a) (b)

FIGURE 6.2 Density profiles comparing analytical and numerical solutions for the lattice-gas and
Carnahan-Starling approximations. (a) Charge density (top) and ion density (bottom) profiles for the
Lattice-gas approximation. (b) Charge density (top) and ion density (bottom) profiles for the Carnahan-
Starling (CS) approximation. The dashed and solid lines correspond to the analytical and numerical
solutions, respectively. The profiles were obtained at the applied potentials, eU/kBTc, as indicated on
the plots, for ionophilicity a3hs/ξ0 = 0, temperature T/Tc = 1.5, and bulk density a3ρb = 0.05.

Recalling Eq. (5.19), the analytical differential capacitance is given by

https://rcin.org.pl



39

C = C0 + C2

(
eU

kBTc

)2

+ ... (6.1)

where the coefficients C0 and C2 are given by Eqs. (5.20) and (5.21), respectively. The
sign of C2 describes the shape of the capacitance at low potentials. A positive C2 corresponds
to the so-called camel shape that exhibits a minimum at zero potential U = 0. A negative C2

means a maximum at U = 0 and is often associated with the bell-shaped capacitance [78]. Such
capacitance shapes have been extensively studied in the literature [78,79,87,93,94,97,101,139,
149, 150].

By monitoring the change of the sign of the coefficient C2, it is possible to locate the tran-
sition between camel to bell-shaped capacitance. To do so from the analytical solution, let us
neglect the dispersion interactions (that is K = 0) in Eq. (4.17) then, Eq. (5.20) becomes

C0 = CD, (6.2)

and (5.21) reduces to

C2 = CD

4

 3
2ρ̄b α(ρ̄b)

− 1

 (6.3)

Therefore, for K = 0, the sign of C2, and thus the capacitance shape, depends solely on the
IL density. For the lattice–gas model, combining Eq. (4.16) and Eq. (6.3) gives

C2 = CD

4

1 − 3ρ̄b

 (6.4)

which changes sign at ρlg
b = 1/3, meaning a transformation between the bell and camel shapes

at ρlg
b , as first pointed out by Kornyshev [78]. For the CS approximation (Eq. (4.15)), it is

obtained

C2 = CD

4

 3(1 − ηb)4

2(1 + 4ηb + 4η2
b − 4η3

b + η4
b )

− 1

 (6.5)

where ηb = a3πρb/6. After solving the equation C2 = 0 numerically, we obtained the
transition between the camel and bell shapes at ρCS

b ≈ 0.098. It is worth noting that this value
is significantly lower than ρlg

b = 1/3 predicted by the lattice-gas model. This is similar to the
critical density, which is also higher for the lattice-gas model (see Figure 4.2).

On the other hand, when dispersion interactions are considered (K ̸= 0), Eq. (5.21) includes
temperature dependence and becomes complex. Thus, we have solved it numerically by using
bvp4c routine in MATLAB® 2017a software. Figures 6.3a and 6.3b show the diagrams for each
excluded-volume approximation with the transition lines separating the regions of positive and
negative curvatures in the low voltage capacitance. The examples of the capacitance shapes are
presented in Figures 6.3c and 6.3d for the parameters shown by colored symbols in Figures 6.3a
and 6.3b. The capacitance curves demonstrate that our analytical solutions are valid only in the
vicinity of u = 0. The full numerical solution is needed to describe the capacitance behavior
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properly.

(a) (b)

(c) (d)

FIGURE 6.3 Differential capacitance comparing analytical and numerical solutions for the lattice-
gas and Carnahan-Starling approximations. (a) Capacitance diagram showing the region of positive
and negative sign of coefficientC2 in the low-voltage capacitance (see Eq. (5.21)) for the Lattice-gas (lg)
approximation (Eq. (4.16)). (b) Capacitance diagram showing the region of positive and negative sign
of coefficient C2 in the low-voltage capacitance (see Eq. (5.21)) for the Carnahan-Starling (CS) approx-
imation (Eq. (4.15)). (c) Example of capacitance in the low-voltage region for the CS aproximation. (d)
Example of capacitance in the low-voltage region for the lg approximation. The capacitance curves were
obtained at temperature T/Tc = 1.5 and two different bulk densities marked by colored square symbols
in their respective capacitance diagram. Dashed lines denote the analytical approximation, whereas the
solid lines were obtained by solving Eqs. (4.21)-(4.22) numerically (see Section 5.2). In all the plots, the
ionophilicity a3hs/ξ0 = 0, and for typical values of the ion diameter a = 0.7 nm and room temperature
for Tc, the various units are: thermal voltage e/kBTc ≈ 26 mV for voltage, thermal electric capacitance
e2/(kBTca

2) ≈ 620µF cm−2 for capacitance.

6.2 Numerical results

The full numerical solution of Eqs. (4.21) and (4.22) allows us to explore and analyze the
system’s behavior in a wide range of voltages, temperatures, and densities. First, in order
to calculate the differential capacitance (according to Eq. (2.10)), we fix the voltage and the

https://rcin.org.pl



41

temperature above demixing and vary the bulk density. Figure 6.4 is a phase diagram in the
temperature-bulk density plane. The colored symbols mark three different bulk densities at a
fixed temperature above the demixing region, T/Tc = 1.2.

FIGURE 6.4 Phase diagram in the temperature-bulk density plane illustrating the region at which
numerical results are obtained. Initially, we are interested in the region above demixing (T/Tc > Tc)
to analyze the system’s behavior when the bulk density is varied.

Figures 6.5a and 6.5b show that, for both approximations CS and lg, the differential capac-
itance can have multiple peaks as a function of the applied potential U , depending on the IL
concentration ρb. As it was presented in Section 2.3.1, the case of low ion concentrations has
been extensively studied, and consistently, for a3ρb the capacitance curve exhibits a minimum
at the PZC and two symmetric maxima. In other words, at low concentrations, the capacitance
displays a camel-like shape. Likewise, at higher concentrations, we obtained the well-studied
bell-shaped capacitance that exhibits a single maximum at the PZC and decreases monotoni-
cally as the voltage increases. Interestingly, our calculations revealed that the capacitance could
exhibit three peaks at intermediate IL concentrations. The first peak is at the PZC, which is char-
acteristic of high densities, whereas the two other peaks at the positive and negative potentials.
Inspired by the camel- and bell-like shapes proposed by Kornyshev, we call this new shape
”bird-like” capacitance, given the similarity of its shape to a flying bird. It is worth noting
that the Lattice-gas approximation also predicts the bird-shaped capacitance, and this is sur-
prising since recently Chen et al. [93] extended the steric-only lattice-gas model (i.e., K = 0
in Eq. (4.17)) to account for the temperature dependence and studied the capacitance in a wide
range of temperature. Still, they did not observe the bird-like capacitance. Additionally, we
note that Alam et al. [150] have experimentally observed the appearance of humps at the poten-
tial of zero charge in the U-shaped capacitance for N2-saturated room-temperature ILs on some
electrodes; the emergence of wings in the bell-shaped capacitance was reported in a simulation
study by Sha et al. [105] for neat BMIM-PF6 on a gold surface. Our analysis suggests that these
behaviors can be related to the wetting properties of ionic liquids.

Figures 6.6a and 6.6b present the capacitance diagrams in the ionophilicity-bulk density
plane for a temperature above the critical temperature, that is, T/Tc = 1.2, meaning that the
IL–solvent is always in the mixed state. These diagrams show the regions where the capacitance
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(a) (b)

FIGURE 6.5 Differential capacitance shapes. (a) Differential capacitance for the Lattice-gas (lg) ap-
proximation as a function of applied potential at constant temperature,T/Tc = 1.2, ionophilicity
h̄s = a3hs/ξ0 = 0.13, and three different bulk densities, demonstrating the camel-, bird-, and bell-
shaped capacitance. (b) Differential capacitance for the Carnahan-Starling (CS) approximation as a
function of applied potential at constant temperature,T/Tc = 1.2, ionophilicity h̄s = a3hs/ξ0 = 0.025,
and three different bulk densities, demonstrating the camel-, bird-, and bell-shaped capacitance. For typ-
ical values of the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal
voltage e/kBTc ≈ 26 mV for voltage, thermal electric capacitance e2/(kBTca

2) ≈ 620µF cm−2 for
capacitance.

curves present shapes of camel, bird, and bell for the CS and lattice-gas approximations. The
diagrams of both models exhibit a similar topology. However, for the lattice-gas model, the
transformations between the different capacitance shapes are shifted to higher densities. This
is consistent with the case in which the dispersion interactions were neglected (see Figure 6.3)
and is in similarity to the bulk phase diagram, in which the demixing region is also shifted to
higher densities (Figure 4.2b).

Figures 6.6c and 6.6d show the capacitance diagrams for a temperature below the critical
temperature T/Tc = 0.9. Interestingly, the CS approximation predicts the camel-like shape
even for high densities, but only provided the electrode is strongly ionophobic. This could be
since, close to demixing, an ionophobic electrode (negative or low values of hs) can induce a
(macroscopically) thick layer of an ion-poor (or solvent-rich) phase in such a way that the sys-
tem in the vicinity of the electrode behaves as being effectively dilute. Additionally, for higher
temperatures (far from demixing according to Figure 6.4), only the bell shape is observed for
dense ILs. It is also interesting to highlight that the bell- and camel-like shapes are separated
by a narrow domain of bird-like capacitance. However, for the lattice-gas approximation, there
is no camel shape at high densities, and only the bird- and bell-shaped capacitance are displayed.

Changes in the temperature can also induce a transformation from one capacitance shape to
another at fixed bulk density, as is shown in Figures 6.7a and 6.7b. In this sense, it is interest-
ing to analyze the advantages, from an energetic point of view, of decreasing the temperature
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(a)

Lattice-gas

(b)

Carnahan-Starling

(c) (d)

FIGURE 6.6 Differential capacitance diagrams close to demixing. (a) Capacitance diagram for the
Lattice-gas (lg) approximation showing the regions of camel, bird, and bell-like capacitance at constant
temperature, T/Tc = 1.2. The dashed horizontal line denotes the value of h̄s = a3hs/ξ0 = 0.13 and
the symbols mark the bulk densities ρb used in Figure 6.5a. (b) Capacitance diagram for the Carnahan-
Starling (CS) approximation showing the regions of camel, bird, and bell-like capacitance at constant
temperature, T/Tc = 1.2. The dashed horizontal line denotes the value of h̄s = a3hs/ξ0 = 0.025 and the
symbols mark the bulk densities ρb used in Figure 6.5b. (c)Capacitance diagram for the lg approximation
for temperature below Tc, T/Tc = 0.9. The white region denotes the domain of the IL-solvent demixing
(Figure 4.2a). (d)Capacitance diagram for the CS approximation for temperature below Tc, T/Tc = 0.9.
The white region denotes the domain of the IL-solvent demixing (Figure 4.2b). For typical values of the
ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage e/kBTc

≈ 26 mV for voltage, thermal electric capacitance e2/(kBTca
2) ≈ 620µF cm−2 for capacitance.

towards demixing where the bird-like capacitance emerges from the bell shape.

Additionally, to achieve a deeper insight into the charging process close to demixing, we
calculated the stored energy and the charging parameter given by the Eqs. (4.24)-(4.25), re-
spectively. Figures 6.8a and 6.8b show the stored energy obtained at two different temperatures
for the lg and CS approximations. In the range of applied voltages, the stored energy is higher
at T/Tc = 1, which is closer to demixing. The increase of the stored energy for decreasing
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(a) (b)

FIGURE 6.7 Differential capacitance close to demixing. (a)Differential capacitance for the Lattice-gas
(lg) approximation as a function of applied potential at constant bulk density ρb = 0.17, ionophilic-
ity h̄s = a3hs/ξ0 = 0.08, and two different temperatures, demonstrating the bell-shaped capacitance
for T/Tc = 1.2 and the bird-shaped capacitance for T/Tc = 1. (b) Differential capacitance for
the Carnahan-Starling (CS) approximation as a function of applied potential at constant bulk density
ρb = 0.17, ionophilicity h̄s = a3hs/ξ0 = 0.08, and two different temperatures, demonstrating the bell-
shaped capacitance for T/Tc = 1.2 and the bird-shaped capacitance for T/Tc = 1. For typical values of
the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage e/kBTc

≈ 26 mV for voltage, thermal electric capacitance e2/(kBTca
2) ≈ 620µF cm−2 for capacitance.

temperature can be related to the capacitance behavior. Close to demixing, capacitance
increases due to the voltage-induced increase of ion density at the surface vicinity, such that
the bell-shaped capacitance acquires wings, and then, the bird-shaped emerges (Figures 6.7a
and 6.7b). The charging parameter, shown in Figures 6.8c and 6.8d, also corroborates this
fact, since XD becomes greater than unity for the temperature close to demixing, meaning that
both cations and anions are adsorbed into the surface layer, leading to a strong peak in the
charging parameter and the capacitance. However, for higher voltages, the charging parameter
decreases to XD ≈ 1, which is consistent with the capacitance behavior that also decreases in
this range of voltages. Specifically, in the case of the lattice -gas approximation (Figures 6.8a),
the temperature dependence of the stored energy is weaker as compared to the CS model
(Figures 6.8b). Furthermore, the two curves cross each other at higher voltages, and the stored
energy becomes higher for higher temperatures. Nonetheless, qualitatively, the differential
capacitance (Figures 6.7a) and the charging parameter (Figures 6.8c) exhibit similar behaviors
as for the CS model.

Finally, in order to get a bigger picture of the energy dependence on temperature, Fig-
ures 6.9a and 6.9b show the stored energy and the accumulated charge, respectively, as a func-
tion of the temperature at voltage eU/kBTc = 20, bulk density ρb = 0.17 and ionophilicity
a3hs/ξ0 = 0.08 for the CS approximation. Consistently to Figure 6.8b, the stored energy (as
well as the accumulated charge) increases when the temperature decreases from T/Tc = 1.2 to
T/Tc = 1 (see Figures 6.9a and 6.9b) or, in other words, there is an energetic gain while the
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(a) (b)

(c) (d)

FIGURE 6.8 Energy storage and charging close to demixing. (a) Stored energy for the Lattice-gas
(lg) approximation as a function of applied potential. (b) Stored energy for the Carnahan-Starling
(CS) approximation as a function of applied potential at constant bulk density ρb = 0.17, ionophilic-
ity h̄s = a3hs/ξ0 = 0.08, and two different temperatures: T/Tc = 1.2 (red curve) and T/Tc = 1
(green curve). (c) Charging parameter for the lg approximation as a function of applied potential. (d)
Charging parameter for the CS approximation as a function of applied potential. In all the plots, the bulk
density ρb = 0.17, ionophilicity h̄s = a3hs/ξ0 = 0.08, and two different temperatures: T/Tc = 1.2
(red curves) and T/Tc = 1 (green curves). For typical values of the ion diameter a = 0.7 nm and
room temperature for Tc, the various units are: thermal voltage e/kBTc ≈ 26 mV for voltage, and
kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy.

system approaches demixing. This temperature dependence of the stored energy can be used to
generate electricity from waste heat [15,151–154]. Figure 6.9d shows the order parameter and
charge density profiles. At temperature T/Tc = 1, the order parameter grows next to the surface
by accumulating more co-ions (besides the counterions) so that the ion density at the electrode
increases. For the reason that the dispersion interactions favor higher ion densities, partially
compensating the electrostatic repulsions. Therefore, the stored energy and the accumulated
charge are higher for decreasing temperature. It is worth noting that a small peak developed in
the ion density ρ and the charge density c at short distances arises due to “missing neighbors”
created by the electrode (term (ξ0/2)ρ2

0 in Eq. (4.17)).
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(a) (b)

(c) (d)

FIGURE 6.9 Stored energy behavior as a function of temperature for the Carnahan-Starling (CS)
approximation. (a) Stored energy as a function of the temperature. (b) Charge accumulated in the
EDL as a function of the temperature. The charge increases when the temperature decreases towards
demixing (c) Bulk phase diagram in the temperature-bulk density plane showing the temperatures used
in panel (a)-(b), the red square denotes T/Tc = 1.2, whereas the green square represents T/Tc = 1.0.
The stored energy increases when the temperature decreases towards demixing. (d) Densities profiles.
Order parameter ϕ = a3(ρ − ρb) (dashed lines), where ρ = ρ+ + ρ− is the ion density, and the
charge density c = a3(ρ − ρb) (solid lines) calculated at T/Tc = 1 (green lines) and T/Tc = 1.2
(red lines) marked by colored squares in the previous panels. In panels (a),(b) and (d), the bulk density
ρb = 0.17, voltage eU/kBTc = 20, and ionophilicity h̄s = a3hs/ξ0 = 0.08. For typical values
of the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal volt-
age e/kBTc ≈ 26 mV for voltage, e/a2 ≈ 2 e nm−2 ≈ 32µC cm−2 for accumulated charge, and
kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy.
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Chapter 7
Capillary Ioniza on and Charging of
Slit Mesopores

In this chapter, we demonstrate that a mixture of IL and neutral solvent
confined into a slit-shaped mesopore undergoes a capillary ionization
transition under certain conditions. In Section 7.1, the results for the
case of non-polarized slit mesopore are shown; while in Section 7.2, we
reveal that the capillary ionization transition can be induced by apply-
ing voltage. Additionally, we present the thermodynamic characteris-
tics derived in Chapter 4 and analyze the influence of the slit width and
electrode’s ionophilicity on the energy storage. Finally, in Section 7.3,
we present the calculations for the case in which the electrodes are op-
positely charged and compute the integral capacitance, which will be
useful in the next chapter.

We consider the mixture of IL and neutral solvent confined into a slit-shaped mesopore as
shown in Figure 4.1 and take into account the Carnahan-Starling expression to describe the
excluded volume interactions. As it was presented in Section 3.2, confinement induces new
phase transitions and, given the system under consideration, we demonstrate that capillary ion-
ization transition can be induced by changing parameters such as temperature, slit width (w),
ionophilicity (hs), and potential difference (U ) applied to the pore walls. Detailed information
about how the capillary ionization transition is obtained is presented in Appendix B.

7.1 Non-polarized slit-shaped mesopores

First, the case of non-polarized mesopores (U = 0) is studied. Figure 7.1 shows the phase
diagrams in the temperature-bulk density (Figure 7.1a) and the temperature-chemical potential
(Figure 7.1b) planes. Black lines denote the bulk coexistence, while the blue lines correspond
to the capillary ionization (ci) curve for a slit width w = 20a, which is shifted with respect to
the bulk system. The location of a capillary ionization transition is estimated by implementing
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the Kelvin equation (Eq.(3.10)) and is shown by a solid blue line in Figure 7.1. We obtain a
good quantitative agreement with the numerical solution curve shown by unfilled squares in
Figure 7.1.

(a) (b)

FIGURE 7.1 Capillary ionization of non-polarized slit mesopores I. (a) Phase diagram in the temper-
ature - bulk density plane. The solid black line denotes the bulk coexistence, the solid blue line is the
capillary ionization transition line estimated by the Kelvin equation, and the unfilled squares show to
the capillary ionization curve obtained by numerical solution. (b) Phase diagram in the temperature-
chemical potential plane. The colors and symbols are the same as in (a). In all the plots, the ionophilicity
a3hs/ξ0 = 0.25, and slit width w = 20a.

Concerning the Kelvin equation (given by Eq. (3.9)), it is important to highlight that σrich

and σpoor were calculated as follows, respectively

2σrich = Ωrich/A − w Ωb/V (7.1)

2σpoor = Ωpoor/A − w Ωb/V (7.2)

where Ωb is the grand potential of the bulk system given by Eq. (4.18), and Ωrich and Ωpoor

are the grand potentials of the IL-rich and IL-poor phases, respectively, given by Eq. (4.17).
From the bulk coexistence, the IL-rich and IL-poor densities, ρrich and ρpoor, are known 1.
Knowing the respective densities, the EL equations are solved and their solutions are inserted
in Eqs. (4.17) and (4.18) to compute Ωrich and Ωpoor.

Figure 7.2a shows the phase diagram in the temperature-ionophilicity plane, at chemical
potential µ/kBTc = −4.57 and slit width w = 20a, which consists of a line of first-order phase
transitions between the IL-poor and IL-rich phases. Thus, a phase transition can be induced by
changing temperature or the pore wall’s preference towards ions or solvent. At higher values of
a3hs/ξ0, the IL-rich phase is more stable since the mesopore walls have a stronger preference
for IL to solvent, meaning that the walls are ionophilic. On the other hand, at lower or negative

1ρrich corresponds to the right branch of the temperature-bulk density phase diagram, whereas ρpoor is the left
branch in such diagram.
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(a) (b)

(c) (d)

FIGURE 7.2 Capillary ionization of non-polarized slit mesopores II. (a) Capillary phase transition
diagram in the temperature-ionophilicity plane at chemical potential µ/kBTc = −4.57 and slit width
w = 20a. The horizontal dashed line shows the value a3hs/ξ = 0.25 used in the results shown
below, and orange symbols mark the transition temperature, Tci, for this value of hs. (b) Capillary
phase transition diagram in (w−1, T/Tc) plane at chemical potential µ/kBTc = −4.57 and ionophilicity
a3hs/ξ = 0.25. The vertical dashed line indicates the slit width, w = 20a, implemented in the results
shown below. As in (a), orange symbols mark the transition temperature, Tci, for this value of 1/w. (c)
Amount of IL adsorbed in the pore as a function of temperature at chemical potential µ/kBTc = −4.57,
slit widthw = 20a, and ionophilicity a3hs/ξ0 = 0.25. Orange filled triangles (up and down), denote the
transition temperature, Tci = 0.74. (d) Ion density profiles inside the pore at the coexistence indicated
in panel (c).

values of a3hs/ξ0, solvent molecules are preferred by the pore walls, and thus, the IL-poor
region is wider. Figure 7.2b is the phase diagram in the temperature-inverse of the slit width
plane at chemical potential µ/kBTc = −4.57 and ionophilicity a3hs/ξ0 = 0.25. Thus, a phase
transition can be induced by changing temperature, slit width, or the walls’ preference towards
ions or solvent.

Figure 7.2c shows the amount of IL adsorbed in the mesopore and reveals that capillary
ionization is induced by decreasing temperature, meaning that the amount of the IL adsorbed in
the pore suddenly increases at the transition as the temperature is decreased. At temperatures
T/Tc < Tci/Tc, where Tci is the temperature at which capillary ionization occurs, the IL-rich
phase is stable since the pore surface is ionophilic, and the thermal effects are negligible com-
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pared to the IL-surface interactions. Figure 7.2d corresponds to the ion density profiles inside
the pore calculated at the parameters shown by orange symbols in Figure 7.1a and Figures 7.2a
and 7.2b, that is, at chemical potential µ/kBTc = −4.57, ionophilicity a3hs/ξ0 = 0.25 and slit
width w = 20a.

7.2 Voltage-induced capillary ioniza on and charging of slit
mesopores. The case of equally charged electrodes

In this section, we study the system’s behavior when voltage is applied to a pore with re-
spect to the bulk electrolyte at chemical potential µ/kBTc = −4.57, slit width w = 20a, and
ionophilicity a3hs/ξ0 = 0.25. Figure 7.3 shows phase diagrams plotted in the temperature-
chemical potential plane for different applied voltages, eU/kBTc, where the results from the
Kelvin equation (Chapter 3) and the numerical solution (Chapter 5) are compared. As the ap-
plied voltage increases from 0 to 20, the transition curve is moved to the left (with respect to the
curve at zero voltage), meaning that the IL-rich region becomes wider as the voltage increases.
Counterintuitively, at eU/kBTc = 46, the transition line moves to the right between curves at
eU/kBTc = 20 and eU/kBTc = 10. In general, there is a good agreement between the results
obtained from the Kelvin equation (solid blue lines in the plots) and the numerical solution (blue
squares in the plots). However, as the voltage increases, there is no similarity between the two
curves in the IL-rich region, meaning that the proposed model is not suitable for such very high
ion densities.

(a) (b) (c)

FIGURE 7.3 Capillary ionization of equally charged slit-shaped mesopore under applied voltages.
Phase diagram plotted in the temperature-chemical potential plane for different applied voltages. (a)
Voltage-induced capillary ionization at applied voltage eU/kBTc = 10. (b) Voltage-induced capil-
lary ionization at applied voltage eU/kBTc = 20. (c) Voltage-induced capillary ionization at applied
voltage eU/kBTc = 46. The slit width w = 20a, where a is the ion diameter, and the ionophilicity
a3hs/ξ0 = 0.25, where ξ0 is the bare correlation length. In all the plots, the symbols have been obtained
by numerical calculations shown in Chapter 5, and the blue solid line corresponds to the results of the
Kelvin equation derived in Chapter 3 (Eq. (3.10)).

Figure 7.4a is a phase diagram plotted in the voltage-temperature plane and shows that the
region of the IL-rich phase becomes wider as the voltage is applied to a pore with respect to the
bulk electrolyte. The applied potential favors the counter-ions to stay inside the pore, and at the
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(a)

IL-poor

IL-rich

(b)

IL-rich

IL-poor

(c) (d)

FIGURE 7.4 Voltage-induced capillary ionization and charging of equally charged slit-shapedmeso-
pore. (a) Phase diagram in the voltage-temperature plane. The thick black line denotes the first-order
transitions between the IL-rich and IL-poor phases while the thin vertical lines indicate the temperatures:
T/Tc = 0.72 (blue), T/Tc = 0.78 (red), T/Tc = 0.838 (green), used in the other panels. The horizontal
lines show the values of voltage used in Figure 7.9. (b) Amount of IL adsorbed in the pore. (c) Accu-
mulated charge in the pore as a function of the applied voltage. (d) Charging parameter, XD. In all the
plots the pore width w = 20a, chemical potential µ/kBTc = −4.57 and ionophilicity a3hs/ξ0 = 0.25,
where ξ0 is the bare correlation length and a the ion diameter. For typical values of the ion diameter
a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage e/kBTc ≈ 26 mV for
voltage, and e/a2 ≈ 2 e nm−2 ≈ 32µC cm−2 for accumulated charge.

same time, co-ions are brought along. However, at high voltages, eU/kBTc > 32, the transi-
tion curve bends, and the IL-poor phase becomes wider, implying that the capillary ionization
transition takes place from the IL-rich phase to the IL-poor phase for increasing voltage. The
vertical lines denote the temperatures at which the thermodynamic characteristics such as ac-
cumulated charge, differential capacitance, adsorption, charging parameter, and stored energy
are calculated. Figures 7.4b to 7.4d show the ion adsorption, Γ, accumulated charge, (Q), and
the charging parameter, XD, respectively, calculated at three different temperatures. Capillary
ionization transition can be induced by applying a voltage to a mesopore, and this transition is
accompanied by an abrupt increase of the charge accumulated in the pore (Figure 7.4c); this
fact has important consequences for capacitance and energy storage.
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(a) (b)

FIGURE 7.5 Charge and ion density profiles at the capillary ionization transition of equally charged
slit-shaped mesopores. (a) Charge and ion density profiles at eU/kBTc = 21. (b) Charge and ion den-
sity profiles at eU/kBTc = 46. In all the plots, the chemical potential µ/kBTc = −4.57, the temperature
T/Tc = 0.838, slit width w = 20a, and ionophilicity a3hs/ξ0 = 0.25, where ξ0 is the bare correlation
length and a the ion diameter. The dashed horizontal lines show the bulk values in the corresponding
phases. The filled symbols represent the IL-rich phase while the unfilled symbols denote the IL-poor
phase.

In the case in which there is no transition (T/Tc = 0.72), the characteristics Γ, Q, and XD

are all continuous functions of voltage. At T/Tc = 0.78, a capillary phase transition occurs at
eU/kBTc = 10, and thus, there is a jump in Γ that represents the transition from the IL-poor
to IL-rich phase. However, the behavior at T/Tc = 0.838 seems peculiar since Γ exhibits two
transitions, from the IL-poor to IL-rich phase at eU/kBTc = 21, and the other one from IL-rich
to IL-poor phase at eU/kBTc = 46. Figure 7.4d shows the charging parameter, XD. In the
IL-poor phase, XD quickly becomes larger than unity, which means that charging proceeds by
adsorption of both co and counter-ions. In the IL-rich phase, 0 < XD < 1 and hence charging
is a combination of counter-ion adsorption and co-ion swapping for counter-ions.

In order to obtain a deeper understanding of the re-entrant behavior of the capillary ion-
ization line in Figure 7.4a, we analyze the charge and ion density profiles for T/Tc = 0.838
at eU/kBTc = 21 and eU/kBTc = 46 (Figure 7.5). The difference between the ion struc-
tures near the pore walls in the IL-rich and IL-poor phases decreases for increasing voltage. At
high voltage, the charge density as well as the ion density near the pore walls (z/w < 2.5 and
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z/w > 17.5) are the same in both phases. Thus, the thermodynamic state becomes determined
by the in-pore bulk region, favoring the IL-poor phase.

IL-poor

IL-rich

FIGURE 7.6 Voltage-induced capillary ionization of equally charged slit-shaped mesopore at differ-
ent chemical potentials. Phase diagrams in the voltage-temperature plane showing first-order transitions
between the IL-rich and IL-poor phases for a few values of the chemical potential. The black thick line
corresponds to the chemical potential µ/kBTc = −4.57 of Figure 7.4a. The pore width w = 20a and
ionophilicity a3hs/ξ0 = 0.25, where ξ0 is the bare correlation length and a the ion diameter. The green
symbols mark the voltages used to calculate the profiles shown in Figure 7.5.

Intending to obtain a wider picture of the re-entrant behavior, we consider a few more
chemical potentials in the phase diagram plotted in the temperature-voltage plane. Figure 7.6
shows that at high temperatures, it is possible that, instead of bending, the transition line breaks
into two lines ending at their respective critical points; these critical points form a critical
line at which the surface of first-order transitions ends. However, in this region, locating the
transitions appears problematic within our numerical approach.

Figure 7.7a shows the differential capacitance. At low temperatures, the system is in the
IL-rich region, characterized by a high ion density, and hence, the capacitance has a bell shape,
consistent with earlier studies [78]. At higher temperatures, the IL-poor phase becomes stable,
and the capacitance shape changes to bird-like [80, 98]. It is worth noting that, according to
Eq. (4.34), the capacitance at the capillary ionization diverges; thus, the vertical arrows in Fig-
ure 7.7a for the temperatures T/Tc = 0.78 and T/Tc = 0.838 denote this divergence, meaning
that the capacitance tends to infinity at the capillary ionization transition. Figure 7.7b cor-
responds to the stored energy in the pore, and from Eq. (4.37), one can see that there is an
additional contribution at the transition given by ∆Eci = uci∆Qci, which appears as a jump in
the stored energy.

Figure 7.8 shows the magnitude of the jumps in the accumulated charge, ∆Qci, and
stored energy, ∆Eci, along the transition line in Figure 7.4a. This transition curve bends at
eU/kBTc ≈ 32 and for voltages eU/kBTc < 32, the transition proceeds from IL-poor to IL-rich
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(a) (b)

FIGURE 7.7 Differential capacitance and stored energy at the capillary ionization of equally
charged slit-shaped mesopore. (a) Differential capacitance.(b) Stored energy. The chemical poten-
tial µ/kBTc = −4.57, the pore width w = 20a, and ionophilicity a3hs/ξ0 = 0.25, where ξ0 is the
bare correlation length and a the ion diameter. In both plots, blue lines denote T/Tc = 0.72, red
T/Tc = 0.78, and green T/Tc = 0.838. The vertical arrows indicate that capacitance diverges at the
capillary ionization transition according to the Dirac delta function in Eq. (4.34). For typical values of
the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage e/kBTc

≈ 26 mV for voltage, thermal electric capacitance e2/(kBTca
2) ≈ 620µF cm−2 for capacitance, and

kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy.

(a) (b)

FIGURE 7.8 Magnitude of the jumps in the accumulated charge and stored energy along the cap-
illary ionization line. (a) Jumps in the accumulated charge as a function of the transition voltage
eUci/kBTc. (b) Jumps in the stored energy as a function of the transition voltage eUci/kBTc. Chemical
potential µ/kBTc = −4.57, slit width w = 20a and ionophilicity a3hs/ξ0 = 0.25, where ξ0 is the bare
correlation length and a the ion diameter. Symbols mark the transition voltage in Figure 7.9. For typi-
cal values of the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal
voltage e/kBTc ≈ 26 mV for voltage, e/a2 ≈ 2 e nm−2 ≈ 32µC cm−2 for accumulated charge, and
kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy.

phase, and thus, the magnitude of the jump in the charge and the energy is positive. Neverthe-
less, this jump upon capillary ionization is negative for voltages eU/kBTc > 32, where the tran-
sition occurs from the IL-rich to IL-poor phase. Examples of a positive and negative magnitude
of the jump in the charge and the energy are shown in Figure 7.9 which corresponds to the charge
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and stored energy in a pore as a function of the temperature, calculated at eU/kBTc = 20 and
eU/kBTc = 46 (these voltages are marked by symbols in Figure 7.8). It is important to note that
there is no direct linear correspondence between the accumulated charge (integral capacitance)
and the stored energy. In particular, a decrease in the accumulated charge may accompany an
increase in the stored energy.

(a) (b)

FIGURE 7.9 Accumulated charge and stored energy in equally charged slit-shaped mesopore as a
function of temperature. (a) Accumulated charge (top) and stored energy (bottom) for applied volt-
age eU/kBTc = 20. (b) Accumulated charge (top) and stored energy (bottom) for applied voltage
eU/kBTc = 46. The colored areas show the regions with one and two transitions as indicated by the
corresponding numbers. Chemical potential µ/kBTc = −4.57, slit width w = 20a and ionophilicity
a3hs/ξ0 = 0.25, where ξ0 is the bare correlation length and a the ion diameter.

7.2.1 Influence of the slit width and ionophilicity on the energy storage

It is interesting to study the influence of ionophilicity and the slit width on both the accu-
mulated charge and the stored energy of the system. Figures 7.10a and 7.10b show the accumu-
lated charge and stored energy as a function of the ionophilicity for three different temperatures:
T/Tc = 0.72, T/Tc = 0.78 and T/Tc = 0.838 at voltage eU/kBTc = 50 and fixed slit width
w = 20a. The accumulated charge increases for increasing ionophilicity, meaning that more
ions are attracted to the electrode’s surface. However, the stored energy decreases at higher
ionophilicities, and the capacitance’s shape could explain such behavior. Strongly ionophilic
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FIGURE 7.10 Ionophilicity’s influence on the accumulated charge and stored energy of equally
charged slit-shaped mesopore. (a) Accumulated charge as a function of the ionophilicity at voltage
eU/kBTc = 50 and slit width w = 20a. The blue lines correspond to temperature T/Tc = 0.72,
red lines to T/Tc = 0.78, and green lines to T/Tc = 0.838. (b) Stored energy as a function of the
ionophilicity at voltage eU/kBTc = 50 and slit width w = 20a. The blue lines correspond to tem-
perature T/Tc = 0.72, red lines to T/Tc = 0.78, and green lines to T/Tc = 0.838. In panels (a)
and (b), the filled and unfilled squares mark the parameters used in panels (c) and (d), and denote the
IL-rich and IL-poor phases coexisting at the capillary ionization transition. (c) Charge density profile
at T/Tc = 0.838, ionophilicity a3hs/ξ0 = 1.45, and slit width w = 20a. (d) Ion density profile at
T/Tc = 0.838, ionophilicity a3hs/ξ0 = 1.45, and slit width w = 20a. In all the plots, the chemi-
cal potential µ/kBTc = −4.57, ξ0 is the bare correlation length and a the ion diameter. For typical
values of the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal
voltage e/kBTc ≈ 26 mV for voltage, kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy, and
e/a2 ≈ 2 e nm−2 ≈ 32µC cm−2 for accumulated charge.

electrodes display a bell-shaped capacitance in which there is a high amount of ions close to
the electrode’s surface (maximum at PZC). Still, the capacitance rapidly decreases for higher
voltages. The stored energy is directly related to the capacitance’s behavior, and for this reason,
decreases when ionophilicity increases. Consistently to Figure 7.4a, there is a jump in the ac-
cumulated charge and the stored energy indicating the capillary phase transition at temperature
T/Tc = 0.838. The filled and unfilled squares denote the IL-rich and IL-poor phases, respec-
tively, that coexist at the phase transition (a3hs/ξ0 = 1.45). Figures 7.10c and 7.10d show
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the ion and charge density profiles at the capillary ionization transition. At such high voltage,
eU/kBTc = 50, the near-surface structure of ions are similar in both phases. Thus, the system’s
behavior is determined by the bulk-like conditions.

Figures 7.11a and 7.11b show the accumulated charge and the stored energy, respectively,
as a function of the slit width at voltage eU/kBTc = 50, temperature T/Tc = 0.838 (this
temperature is shown by a green vertical line in Figure 7.4a), and three different values of
the surface field or ionophilicty: a3hs/ξ0 = −0.05, a3hs/ξ0 = 0.25, and a3hs/ξ0 = 2. These
values correspond to cases of ionophobic electrodes, medium ionophilic electrodes and strongly
ionophilic electrodes, respectively.

In Figure 7.11a, the accumulated charge is higher for the strongest ionophilic electrode
(a3hs/ξ0 = 2), meaning that more ions are brought to the surface. Thus the electrostatic at-
tractions and the van der Waals interactions between the pore walls and the ions are additive
and stronger than the repulsive forces. The jump in every curve marks the capillary ionization
transition occurring at wci. For w < wci, the IL-rich phase is stable, whereas the IL-poor phase
is stable for w > wci. The accumulated charge decreases when the slit width increases within
the respective stable phase. In a wider slit, the ion-wall interactions become weaker since the
ions are distributed in a wider space, and then, the accumulated charge decreases.

Let us consider a3hs/ξ0 = 0.25 (red curve in Figure 7.11a). The filled and unfilled squares
mark the IL-rich and IL-poor phases, respectively, coexisting at the capillary phase transition.
For w ≤ 10a, the ions in the center of the slit perceive both electrodes with equal strength, and
the attraction of counterions and repulsion of coions to the center of the slit is stronger since
it comes from two electrodes. Close to an electrode, the second one does not interact strongly
with ions if the first one is far away. For this reason, for w > 20a, the accumulated charge
depends on w very weakly. The central part is bulk-like and does not contribute to the charge.
Figure 7.11c shows the charging parameter, XD. At u < Uci (with eUci/kBTc = 17.6), the
IL-poor phase is stable and, as it was presented in Section 4.4, since XD > 1 in the IL-poor
phase, both coions and counterions are adsorbed into the surface. Consistently, the differential
capacitance (Figure 7.11d) is higher for u < Uci. On the other hand, for u > Uci, the IL-
rich phase is stable and 0 < XD < 1, meaning that there is a partial swapping of coions for
counterions. Then, the charging parameter decreases as the voltage increases. The differential
capacitance exhibits such behavior as well, implying that, near the surface, there is a dense layer
of counterions as the voltage increases. Thus, there is a screening that causes a rapid decrease
in the capacitance.

The stored energy, however, decreases for strongly ionophilic electrodes, and the differential
capacitance shapes can explain such a behavior. As presented in Figure 6.6 (Chapter 6), strongly
ionophilic electrodes display a bell-shaped capacitance, characterized by a peak at PZC (due to
the high amount of ions in the surface); however, capacitance decreases for higher voltages
due to the screening of a dense ionic layer at the electrode surface. An ionophobic electrode
displays the camel-shaped capacitance that exhibits a minimum at PZC and two maxima at
higher voltages. Since the energy depends on C(u) u (see Eq. (4.24)), therefore the maximum
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(a)

IL-rich

IL-poor

(b)

IL-rich

IL-poor

(c)

IL-poor

IL-rich

(d)

FIGURE 7.11 Influence of the slit width on the accumulated charge and stored energy of equally
charged slit-shaped mesopore. (a) Accumulated charge as a function of the ionophilicity at volt-
age eU/kBTc = 50 and temperature T/Tc = 0.838. The blue lines correspond to ionophilicity
a3hs/ξ0 = −0.05 (ionophobic electrodes), red lines to a3hs/ξ0 = 0.25 (medium-ionophilic electrodes),
and green lines to a3hs/ξ0 = 2 (strongly ionophilic electrodes); where ξ0 is the bare correlation length
and a the ion diameter. (b) Stored energy as a function of the ionophilicity at voltage eU/kBTc = 50 and
temperature T/Tc = 0.838. The blue lines correspond to ionophilicity a3hs/ξ0 = −0.05 (ionophobic
electrodes), red lines to a3hs/ξ0 = 0.25 (medium-ionophilic electrodes), and green lines to a3hs/ξ0 = 2
(strongly ionophilic electrodes); where ξ0 is the bare correlation length and a the ion diameter. In panels
(a) and (b), the filled and unfilled squares denote the IL-rich and IL-poor phases coexisting at the capillary
ionization transition. (c) Charging parameter as a function of the voltage at temperature T/Tc = 0.838,
ionophilicity a3hs/ξ0 = 0.25, and slit width w = 18a. (d) Differential capacitance at temperature
T/Tc = 0.838, ionophilicity a3hs/ξ0 = 0.25, and slit width w = 18a. The vertical arrows indicate
that capacitance diverges at the capillary ionization transition according to the Dirac delta function in
Eq. (4.34). In all the plots, the chemical potential µ/kBTc = −4.57. For typical values of the ion diame-
ter a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage e/kBTc ≈ 26 mV for
voltage, kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy, and e/a2 ≈ 2 e nm−2 ≈ 32µC cm−2

for accumulated charge.

at larger voltages leads to larger energy. Medium-ionophilic electrodes display the bird-shaped
capacitance.
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7.3 Voltage-induced capillary ioniza on and charging of slit
mesopores. The case of oppositely charged electrodes

In this section, we study the case in which the walls of the mesopore are oppositely charged 2

at chemical potential µ/kBTc = −4.57, slit width w = 20a, and ionophilicity a3hs/ξ0 = 0.25.
In this case, the solution presented in Chapter 5 remains valid but the BCs related to the elec-
trostatic potential are u(0) = −eU/kBTc and u(w) = eU/kBTc.

(a) (b) (c)

FIGURE 7.12 Capillary ionization of oppositely charged slit-shaped mesopores. Phase diagram plot-
ted in the temperature-chemical potential plane for different applied voltages. (a) Voltage-induced cap-
illary ionization at applied voltage eU/kBTc = 10. (b) Voltage-induced capillary ionization at applied
voltage eU/kBTc = 20. (c) Voltage-induced capillary ionization at applied voltage eU/kBTc = 45.4.
The slit width w = 20a, where a is the ion diameter, and the ionophilicity a3hs/ξ0 = 0.25, where ξ0 is
the bare correlation length. In all the the plots, the symbols have been obtained by numerical calculations
shown in Chapter 5, and the blue solid line corresponds to the results of the Kelvin equation derived in
Chapter 3 (Eq. (3.10)).

Figure 7.12 shows phase diagrams plotted in the temperature-chemical potential plane for
different applied voltages, eU/kBTc, where the results from the Kelvin equation (Chapter 3)
and the numerical solution (Chapter 5) are compared. As the applied voltage increases from
0 to 45.4, the transition curve is moved to the left (with respect to the curve at zero voltage),
meaning that the IL-rich region becomes wider as the voltage increases. There is a fair agree-
ment between the results obtained from the Kelvin equation (solid blue lines in the plots) and the
numerical solution (blue squares in the plots). However, at higher voltages where the IL-rich
phase is favored, there is no similarity between the two curves, especially at high temperatures.

In the case of oppositely charged walls, we obtain a similar behavior to that of the case of
equally charged electrodes. Figure 7.13a is a phase diagram plotted in the voltage-temperature
plane. The IL-rich phase region becomes wider as the voltage is applied to a pore with
respect to the bulk electrolyte. We also observe the re-entrant behavior, meaning that the
capillary ionization line bends at higher voltages where the transition occurs from the IL-rich
phase to the IL-poor phase. Similarly, the vertical lines denote the temperatures at which
the thermodynamic characteristics such as accumulated charge, differential capacitance,

2This case corresponds to a conventional electrochemical double-layer capacitor.
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(a)

IL-rich

IL-poor

(b)

IL-poor

IL-rich

(c) (d)

FIGURE 7.13 Voltage-induced capillary ionization and charging of oppositely charged slit-shaped
mesopores. (a) Phase diagram in the voltage-temperature plane. The thick black line denotes the first-
order transitions between the IL-rich and IL-poor phases while the thin vertical lines indicate the tem-
peratures: T/Tc = 0.72 (blue), T/Tc = 0.78 (red), T/Tc = 0.84 (green), used in the other panels.
The horizontal lines mark the voltages eU/kBTc = 20 and eU/kBTc = 45.4 used in Figure 7.16. (b)
Amount of IL adsorbed in the pore. (c) Accumulated charge in the pore as a function of the applied volt-
age. (d) Charging parameter, XD. The chemical potential µ/kBTc = −4.57, the pore width w = 20a,
and ionophilicity a3hs/ξ0 = 0.25, where ξ0 is the bare correlation length and a the ion diameter. In all
the plots, blue lines denote T/Tc = 0.72, red T/Tc = 0.78, and green T/Tc = 0.84. For typical values
of the ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage
e/kBTc ≈ 26 mV for voltage, and e/a2 ≈ 2 e nm−2 ≈ 32µC cm−2 for accumulated charge.

adsorption, charging parameter, and stored energy are calculated. Figures 7.13b, 7.13c and
7.13d show the ion adsorption, Γ, accumulated charge, (Q), and the charging parameter, XD,
respectively, calculated at T/Tc = 0.72, T/Tc = 0.78, and T/Tc = 0.84.

Let us consider now the case in which there are two transitions, T/Tc = 0.84 (green line in
Figure 7.13a). Figure 7.14 shows the charge and ion density profiles at eU/kBTc = 21.5 and
eU/kBTc = 45.4. The difference between the ion structures near the pore walls in the IL-rich
and IL-poor phases decreases for increasing voltage. At high voltage, the charge density as
well as the ion density near the pore walls (z/w < 2.5 and z/w > 17.5) are the same in
both phases. Thus, the thermodynamic state becomes determined by the in-pore bulk region,
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(a) (b)

FIGURE 7.14 Charge and ion density profiles at the capillary ionization transition of oppositely
charged slit-shaped mesopores. (a) Charge and ion density profiles at eU/kBTc = 21. (b) Charge and
ion density profiles at eU/kBTc = 46. In all the the plots, the chemical potential µ/kBTc = −4.57,
the temperature T/Tc = 0.84, slit width w = 20a, and ionophilicity a3hs/ξ0 = 0.25, where ξ0 is the
bare correlation length and a the ion diameter. The dashed horizontal lines show the bulk values in the
corresponding phases. The filled symbols represent the IL-rich phase while the unfilled symbols denote
the IL-poor phase.

favoring the IL-poor phase.

Figure 7.15a shows the differential capacitance. At low temperatures, the system is in the
IL-rich region, characterized by a high ion density, and hence, the capacitance has a bell shape.
At higher temperatures, the IL-poor phase becomes stable, and the capacitance shape changes
to bird-like. Figure 7.15b corresponds to the stored energy in the pore. Since the walls are
oppositely charged, the accumulated charge, the differential capacitance, and the stored energy
are calculated from z = 0 to z = w/2. Thus, those characteristics’ magnitude is roughly half
of the magnitude when the two walls are equally charged.

Finally, since the behavior is similar to the case of walls equally charged, we only present the
accumulated charge and the stored energy as a function of the temperature. Figure 7.16 shows
the accumulated charge and the stored energy as a function of the temperature for two voltages
eU/kBTc = 20 and eU/kBTc = 45.4 at which there is a positive and negative magnitude of the
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(a) (b)

FIGURE 7.15 Differential capacitance and stored energy at the capillary ionization of oppositely
charged slit-shaped mesopores. (a) Differential capacitance. The vertical arrows indicate that capac-
itance diverges at the capillary ionization transition according to the Dirac delta function in Eq. (4.34).
(b) Stored energy. The chemical potential µ/kBTc = −4.57, the pore width w = 20a, and ionophilicity
a3hs/ξ0 = 0.25, where ξ0 is the bare correlation length and a the ion diameter. In both plots, blue
lines denote T/Tc = 0.72, red T/Tc = 0.78, and green T/Tc = 0.838. For typical values of the
ion diameter a = 0.7 nm and room temperature for Tc, the various units are: thermal voltage e/kBTc

≈ 26 mV for voltage, thermal electric capacitance e2/(kBTca
2) ≈ 620µF cm−2 for capacitance, and

kBTc/a2 ≈ 0.84 mJ cm−2 ≈ 0.23 nW cm−2 for energy.

jump, respectively when the capillary transition occurs.

7.3.1 Integral capacitance for dilute and semi-dilute mixture

In this section, we compute the integral capacitance for small and medium bulk density of
ions, ρb and different values of ionophilicity, hs. These results would be useful to compare with
the molecular simulation results presented in the next chapter. The integral capacitance is given
by

Cint(U) = Q

U
(7.3)

Figures 7.17 and 7.18 show the integral capacitance calculated at bulk density ρb = 0.08
and ρb = 0.17, respectively, by implementing both approximations for the excluded volume in-
teractions: Carnahan-Starling and lattice-gas. In this case, we have considered temperatures far
from coexistence since these results will be useful for comparison purposes with the molecular
simulations (presented in the next chapter).

Regarding the behavior of integral capacitance itself, it is important to highlight that, as
the differential capacitance, Cint(U) exhibits the three different shapes displayed so far, that is,
bell-, camel- and bird-like. However, the integral capacitance shape seems to be more sensitive
to the entropic approximation chosen, meaning that, under the same set of parameters, integral
capacitance displays different forms when implementing CS or lg expressions. Additionally,
this trend is consistent with our results in Chapter 6, where we found that, when implementing
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(a) (b)

FIGURE 7.16 Accumulated charge and stored energy in oppositely charged slit-shaped mesopores
as a function of temperature. (a)Accumulated charge (top) and stored energy (bottom) for applied
voltage eU/kBTc = 20. (b) Accumulated charge (top) and stored energy (bottom) for applied voltage
eU/kBTc = 45.4. The colored areas show the regions with one and two transitions as indicated by the
corresponding numbers. Chemical potential µ/kBTc = −4.57, slit width w = 20a and ionophilicity
a3hs/ξ0 = 0.25, where ξ0 is the bare correlation length and a the ion diameter.

lg expression, the transformations between the different capacitance shapes are shifted to higher
densities with respect to the CS approximation.

For a dilute system with a3ρb = 0.08 (see Figure 7.17), the capacitance’s shape strongly de-
pends on the ionophilicity. A poorly ionophilic electrode (a3hs/ξ0 = 0.01) displays bird-shaped
capacitance at every temperature for both CS and lg approximations. However, in the latter case,
the displayed ”wings” are more prominent. For a stronger ionophilic electrode (a3hs/ξ0 = 0.2
and a3hs/ξ0 = 0.5), the capacitance shape does not depend on the temperature anymore in the
case of the CS expression, and thus, bell-shaped is displayed, implying that more ions are close
to the surface electrode independent of the temperature. Therefore, the capacitance has a max-
imum at PZC and then decreases for increasing voltage. In the case of lg approximation, the
bell-like capacitance is the only observed shape, provided the electrode is strongly ionophilic
(see Figure 7.17b (bottom)).

For a more concentrated system with a3ρb = 0.17 (see Figure 7.18), mostly bell shape
is observed with the CS approximation. A smooth bird-shape is displayed only for a poorly
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(a)

Carnahan-Starling

(b)

Lattice-gas

FIGURE 7.17 Integral capacitance of oppositely charged slit-shaped mesopores at bulk density
a3ρb = 0.08. (a) Integral capacitance calculated for the Carnahan-Starling (CS) approximation and
three different values of ionophilicity: a3hs/ξ0 = 0.01 (top), a3hs/ξ0 = 0.2 (middle), and
a3hs/ξ0 = 0.5 (bottom). (b) Integral capacitance calculated for the Lattice-gas (lg) approximation
and three different values of ionophilicity: a3hs/ξ0 = 0.01 (top), a3hs/ξ0 = 0.2 (middle), and
a3hs/ξ0 = 0.5 (bottom). In all the plots, ξ0 is the bare correlation length and a the ion diameter. Blue
lines correspond to temperature T/Tc = 1.0, red lines T/Tc = 1.2, and green lines denote T/Tc = 1.6.
The slit width w = 40a. The voltage is measured in thermal voltage e/kBTc ≈ 26 mV, and capacitance
is measured in unit of CH = ϵr/4πa.
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(a)

Carnahan-Starling

(b)

Lattice-gas

FIGURE 7.18 Integral capacitance of oppositely charged slit-shaped mesopores at bulk density
a3ρb = 0.17. (a) Integral capacitance calculated for the Carnahan-Starling (CS) approximation and
three different values of ionophilicity: a3hs/ξ0 = 0.005 (top), a3hs/ξ0 = 0.1 (middle), and
a3hs/ξ0 = 0.2 (bottom). (b) Integral capacitance calculated for the Lattice-gas (lg) approximation
and three different values of ionophilicity: a3hs/ξ0 = 0.005 (top), a3hs/ξ0 = 0.1 (middle), and
a3hs/ξ0 = 0.2 (bottom). In all the plots, ξ0 is the bare correlation length and a the ion diameter. Green
lines correspond to temperature T/Tc = 1.0 and blue lines denote T/Tc = 2.2. The slit width w = 40a.
The voltage is measured in thermal voltage e/kBTc ≈ 26 mV, and capacitance is measured in unit of
CH = ϵr/4πa.
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ionophilic electrode and the lowest temperature considered T/Tc = 1.0 (Figure 7.18a (top)).
In the case of the lg expression, a well-defined bird shape is displayed. However, for the high-
est temperature and the highest ionophilicity, there is a transition between bird to bell shapes
(Figure 7.18b (bottom)).

We finally remark that the capacitance increases as the temperature decreases but only for
low values of the electrode’s ionophilicity. If the system’s concentration is large or the electrodes
are strongly ionophilic, this trend is no longer observed, and the capacitance increases as the
temperature increases.

https://rcin.org.pl



67

Chapter 8
Molecular Simula ons

In this chapter, we present results of Molecular Dynamics (MD) simula-
tions of the system under consideration. The results presented are sup-
plementary and support the theoretical results presented in the previous
chapters. In Section 8.1 we present a brief description of the computa-
tional methods. In Section 8.1.1 we explore the bulk behavior to locate a
phase separation. We compare the results with the Hypernetted-chain
(HNC) theory. In Section 8.1.2, the studied mixture is confined to a
slit-shaped mesopore. We present the comparison between two simula-
tion approaches, constant potential, and constant charge simulations.
The integral capacitance and adsorption results are presented in Sec-
tion 8.1.3. The MD simulations were performed in LAMMPS, and the
codes were provided by Prof. Enrique Lomba from the Institute of Phys-
ical Chemistry Rocasolano (IQFR) in Madrid.

Molecular simulations have become an essential tool for a wide range of research fields,
from self-assembly clusters in colloids to large complex structures such as biological mem-
branes. Computer simulations of molecular systems aim to analyze/understand macroscopic
behavior from computing microscopic interactions to get a more in-depth insight into the phys-
ical principles underlying various processes. In this sense, molecular simulations have served
many purposes, such as interpreting experimental results, understanding fundamental molecu-
lar theories providing quantitative estimates of experimental or purely theoretical results, and
the capability to extrapolate data to ranges often experimentally inaccessible.

One important aspect when performing molecular simulations is that the reliability of the
predictions of molecular simulations relies on the proper choice of the force field for the system
of interest. A fundamental problem is how to efficiently sample the configuration space that
includes all the possible molecular conformations for the global low energy regions, which a
molecular system in thermal equilibrium will populate.

The Molecular Dynamics method is very general, and the basic idea is to solve Newton’s
equations of motion, F⃗i = ma⃗i, that each particle in the system obeys. The interest in MD is
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generally focused on two levels: dynamical information since it is possible to collect informa-
tion about process flow, aggregation, or nucleation rates, calculate diffusion constants or other
transport coefficients, or determine the particle’s trajectory by keeping track of each simulation
step. Additionally, thermodynamic averages imply that the ergodicity hypothesis is assumed to
be fulfilled for a sufficient number of particles, meaning that the time average of the simulated
system is the same as the ensemble average.

8.1 Model and simula on details

In this section, we analyze the response of the fluid to an external field from an atomistic
perspective. To that aim, we have devised a molecular “toy model” composed of three types of
equally sized spherical particles, two of them with opposite charges (ions) and a larger number
of uncharged particles (solvent). The interactions are described as follows

uαβ(r) = uαβ
LJ(r) + ZαZβe2

4πϵ0r
(8.1)

where e is the electron charge, Zα(β) are the ion charges (in electron units) and ϵ0 is the vac-
uum permittivity. The dispersion interactions are represented by truncated and shifted Lennard-
Jones potentials of the form

uαβ
LJ(r) =


4ε
[(

aαβ

r

)12
−
(

aαβ

r

)6
]

− 4ε
[(

aαβ

Rc

)12
−
(

aαβ

Rc

)6
]

if r ≤ Rc

0 if r ≥ Rc

(8.2)

where Rc is the truncation radius of the dispersive interactions. The energy and length
potential parameters are adjusted, together with Rc, to get a mixture that undergoes phase sep-
aration under appropriate temperature and density conditions. The pore’s confining walls are
made up of three graphene layers on each side, which were created using the graphene sheet
tool of the VMD package [155]. The atomic positions of each carbon atom in the electrode
are assumed fixed during the simulations. From our previous theoretical findings, in this case
study we will deal with ionophilic walls. Thus, we have set the wall-ion interactions as attrac-
tive and wall-solvent interactions as repulsive. Each carbon atom on the graphene sheets carries
a charge defined in terms of the charge surface density or directly by fluctuating charges calcu-
lated using a constant potential simulation scheme (we will comment on this later). Coulombic
forces were computed using the particle-particle-particle-mesh algorithm (P3M) [156] with an
accuracy of 10−8 and slab geometry [157] (except for bulk phases) and an electrostatic cutoff,
Rcoul

c = 13.5 Å. We have applied standard three-dimensional periodic boundary conditions for
bulk simulations, and only in two space directions when dealing with the confined system. The
simulations have been carried out using the molecular dynamics package LAMMPS [158]. The
simulation time step was set to 1 fs, and temperatures were kept fixed using a Nosé-Hoover
thermostat with a relaxation time of 100 fs. Equilibration was achieved after runs of 2 ns and
production runs were 4 ns long. Averages were performed using 4000 independent configura-
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tions along the production run. We implemented real units 1. However, to compare the capaci-
tance obtained from the theory and simulations, we express the quantities in reduced units. The
conversion from real to reduced units is presented in Appendix D.

+/+ -/- +-/s s/s +-/w s/w
ε (Kcal/mol) 0.238 0.238 0.238 0.238 0.138 0.075
a (Å) 3.4 3.4 3.4 3.4 3.4 3.8
RLJ

c (Å) 6.0 6.0 6.0 12.0 6.0 4.265
Rcoul

c (Å) 13.5 13.5 - - 13.5 -

TABLE 8.1 Potential parameters of the electrolyte mixture and the wall-particle interactions. Solvent
interactions are denoted by s, and those that involve wall particles by w.

The set of potential parameters is collected in Table 8.1. The charges of cations are set to
Z+ = 0.25e and Z− = −0.25e those of anions. The reduction on the ionic charge acts as
an effective dielectric constant, which considers that our solvent is apolar (and non-polarizable)
and thus does not screen the electric fields. This implies a relative dielectric constant εr = 16 for
|Z±| = 1, or εr = 64 for |Z±| = 2. Our simulations have been run in the canonical ensemble,
and to reproduce bulk conditions in the middle of the pore, we have used relatively large pore
widths. We have considered samples of 4184 solvent molecules, and 1038 ions (solvent mole
fraction xs = 0.8). Samples with two total densities, ρtot = ρs + ρ+ + ρ−, 0.022 molecules/Å3

and 0.01 molecules/Å3 have been simulated, by which the inner graphene layers are placed
136 Å and 166 Å apart, respectively. This corresponds to effective pore widths (space accessible
to molecular centers) of 131 Å and 160 Å.

8.1.1 Searching for the demixing condi ons

Before the simulations of the confined system, we have to identify the conditions that lead
to demixing. A one-to-one comparison with the theory would require a simulation in the Grand
Canonical Ensemble (e.g., a Grand Canonical Monte Carlo) since our theoretical calculations
have been performed at a constant chemical potential. This would be highly cumbersome
from a simulation standpoint since within the density range we are considering, the required
insertion moves would have a very low acceptance ratio. We have bypassed this problem to
some extent by using large pores, in which the middle region acts as a reservoir of ions where
bulk conditions are mostly preserved. Using our theoretical results as a guide, we are looking
for conditions of low ionic concentration, which we have kept constant at a mole fraction of
xi = (ρ+ + ρ−)/ρtot = 0.2. With the concentration fixed in the canonical ensemble (i.e., total
density is also kept constant), one has to lower the temperature and look for a signature of the
transition temperature. We have used the Hypernetted Chain (HNC) integral equation to ob-
tain an estimate of the transition. It is well known that for temperatures close to the spinodal

1Distance in Å, energies in kcal/mol, pressure in bar, charge in electron units and voltage in V [159].
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decomposition line, this equation and most approximations based on the Ornstein-Zernike rela-
tion break down [160]. The no-solution boundary of the equation will then provide the sought
estimate of the transition temperature. The HNC equation for a homogeneous multicomponent
mixture is composed of the Ornstein-Zernike (OZ) relation

hαβ(r12) = cαβ(r12) +
∑

λ

ρλ

∫
cαλ(r13)hλβ(r32)dr3 (8.3)

coupled with the HNC closure

hαβ(r) = exp [−uαβ(r)/kBT + hαβ(r) − cαβ(r)] − 1 (8.4)

where the total correlation function is hαβ = gαβ − 1, being gαβ the partial pair distribution
function between species α and β. The partial direct correlation function, cαβ is defined by
the OZ relation, and in contrast with the pair distribution function, does not diverge (become
macroscopically long-ranged) when reaching the critical point. The set of Eqs. (8.3) and (8.4)
can be solved iterating back and forward from Fourier space (where Eq. (8.3) is deconvoluted)
and taking proper account of the long range of the Coulombic interactions that is directly re-
flected in the direct correlation functions. The procedure followed here is a generalization to
multicomponent electrolytes with soft cores of the code published in reference [161]. After a
series of runs, we have delimited the no-solution region of the HNC for our mixture, which we
illustrate in Figure 8.1. It is essential to highlight, however, that these curves do not represent
a phase diagram. They are an indication that state points close to the shaded areas will have
strong concentration fluctuations, and the system will undergo a demixing transition if the state
point is shifted into the shaded region.
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FIGURE 8.1 No-solution region of the HNC equation for our model of electrolyte. On the right are
results computed at constant composition and varying total density. On the left results for constant density
changing composition.
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Next, we wonder to what extent these results are reliable. Aside from the arduous com-
putation of the phase diagram of our system using, e.g., thermodynamic integration or ad hoc
simulation techniques [162], we can get a grasp of how close we are to a phase transition by
monitoring the evolution of density and concentration fluctuations. Density-density correlations
are measured in Fourier space by means of the total structure factor,

SNN(Q) = 1
N

⟨ρ̃(Q)ρ̃(−Q)⟩

= 1
N

〈∣∣∣∣∣∑
i

e−iQ·Ri

∣∣∣∣∣
2〉

(8.5)

where the tilde denotes Fourier transformation, N is the number of particles, Ri indicates
the particle positions, and ⟨. . .⟩ represents an ensemble average. This latter quantity is experi-
mentally accessible from several diffraction techniques (neutron, X-ray scattering, etc.). Its low
wave number behavior is directly related to the isothermal compressibility, χT ,

lim
Q−→0

SNN(Q) ∝ ρkBTχT . (8.6)

It is known that SNN(Q → 0) diverges in the case of vapor-liquid transitions. In the case
of mixtures, besides density fluctuations, one can also analyze the correlation between concen-
tration fluctuations, which also will diverge at the consolute point. The case of binary liquids
is straightforward, and the concentration-concentration structure factor reduces to

Scc(Q) = N⟨C̃α(Q)C̃α(−Q)⟩

= x2
2S11(Q) + x2

1S22(Q) − 2x1x2S12(Q), (8.7)

where C̃α(Q) = ρ̃α(Q)/ ˜ρtot(Q), and Sαβ(Q) are the corresponding partial structure fac-
tors, which can be calculated from the expression (8.5) by restricting the summation to the
appropriate particle types after expanding the squared term within the average, namely

Sαβ(Q) = xαδαβ + 1
N

∑
i∈α

∑
j∈β

exp[−Q · (Ri − Ri)]. (8.8)

In our case, we have three components, but since the electroneutrality condition couples
anion and cation densities, we can actually consider our system as a binary mixture of ions and
solvent as far as concentration fluctuations are concerned. In Figure 8.2a we present the HNC
and simulation total and concentration-concentration structure factors when approaching the
temperature of demixing. We observe that the theory agrees remarkably well with the simu-
lation, and Scc(Q → 0) exhibits a clear tendency to diverge when approaching the demixing
temperature. The low-Q behavior ofSNN is typical of a high-density fluid (low compressibility)
away from the liquid-vapor transition.

From the HNC we have estimated the demixing temperature at ρtot = 0.022 Å−3 to be
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(a) (b)

FIGURE 8.2 Structure factors. (a) Total and concentration-concentration structure factors when ap-
proaching the temperature of demixing computed in the HNC (curves) and obtained from simulation.
(b) Concentration-concentration structure factor across the periodic dimension when approaching the
demixing transition.

360 K, and at ρtot = 0.01 Å−3, 315 K. These will be the values we will be using for the refer-
ence temperature corresponding to the vicinity of the demixing transition and denoted by Tc in
what follows, although one must bear in mind that the values for the simulated system will be
somewhat lower. Finally, we have to consider that the system under consideration is confined in
one direction, which has an immediate consequence in the structure factor calculation from sim-
ulation because of the loss of periodicity along one of the directions. In this case, we have split
the non-periodic dimension into three regions, two of which will be in contact with the walls
and one in the center. The latter should practically display bulk behavior. The corresponding
structure factors, Eqs. (8.5) and (8.7), will be calculated only over the unconfined directions,
(e.g x, y). In Figure 8.2b, we illustrate the behavior of the concentration-concentration structure
factors calculated across the periodic dimensions for our confined mixture when approaching
the vicinity of the demixing conditions. One can appreciate the considerable increase of the
concentration fluctuations. Such an increase can be further visualized for two snapshots taken
along simulations in which the walls have already been slightly charged (see Figure 8.3).

Due to the charged walls, cations (violet) are adsorbed preferentially on the anode (left)
and anions (blue) on the cathode (right). At 500 K, the pore is more or less uniformly filled
with ions associated in dimers and tetramers. As the temperature is lowered, the concentration
fluctuations substantially increase. At 300 K, large aggregates appear as a precursor of the full
demixing that is likely to occur for sufficiently long times. The qualitative picture provided by
the snapshots fits the behavior found in Figure 8.2b for the concentration-concentration structure
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(a)

500 K

BRAGGED

(b)

300 K

FIGURE 8.3 Snapshots of configurations of simulation run for ρtot = 0.022 Å−3 and xi = 0.2 when
approaching the critical temperature, estimated by the HNC to 360 K. Walls are slightly charged
(σq = 5.77 × 10−5 e/Å2) and some cations (violet) and anions (blue) are adsorbed on them. One can
appreciate on the left that most ions are uniformly distributed throughout the pore, whereas at lower
temperature there is a visible tendency to form larger aggregates.

factor.

8.1.2 Constant poten al vs constant charge simula ons

We have run constant potential simulations and compared the results with those of constant
charge runs. In the former case, we have used the method proposed by Wang et al. [163]. In
this approach, which follows the method of Reed, Lanning and Madden closely [164], with
corrections from Gingrich and Wilson [165], each charge site in the electrodes is represented
by a Gaussian charge distribution of the form

ρj(r) = qj
1

η3π3/2 exp[−η2|r − rj|2] (8.9)

where qj are the charges on each graphene atom, placed at rj . The explicit values of qj

are obtained using a variational procedure that minimizes the total electrostatic energy (which
includes the energy due to an external potential, U0) with respect to the charge values at each
molecular dynamics step. In this way, the external potential is kept constant. The inverse Gaus-
sian width of the distribution is set to η = 1.979 Å−1 [164]. This procedure is computationally
expensive in itself. Additionally, as implemented in [163], one can no longer take advantage of
Newton’s third law (fij = −fji) when evaluating the forces in a molecular dynamics calcula-
tion, which duplicates further the computational burden. On the other hand, constant potential
calculations correspond more closely to the physical situation in which a capacitor is connected
to an external source, and its plates are kept at a fixed voltage. The method itself allows for a
direct calculation of the differential capacitance, in terms of the total charge fluctuation of the
electrodes [166] for a fixed number of ions, N , namely

Cδ
N = ⟨(δQ)2⟩

kBTA
+ C0 (8.10)
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The quantity in brackets corresponds to the charge fluctuation, A is the electrode area, and
C0 is the intrinsic capacitance that can be estimated by fitting the difference between the differ-
ential capacitance calculated by numerical differentiation of the surface charge with respect to
the potential, and that obtained by Eq. (8.10) with C0 = 0 (see [166]). These methods require
incredibly long simulations (over hundreds of nanoseconds), which can only be done with a
limited number of particles. As a result, for a fixed number of particles, we decided to calculate
the integral capacitance [167].

C = σq

∆U − ∆Uσq=0
(8.11)

where σq is the surface charge density, ∆U is the potential difference between the elec-
trodes, and ∆Uσq=0 corresponds to the neutral case. In our case, we can neglect this latter
quantity. Once the density profiles for ions are calculated, the charge density is obtained as
c(z) = Z+ρ+(z) + Z−ρ−(z), from which it is possible to derive the corresponding Poisson
potential using the integral form of Poisson’s equation [167]

u(z) = u(0) − 1
ϵ0

∫ z

0
(z − z′)c(z′)dz′ − uel(z) (8.12)

We have set the left electrode potential to zero, u(0) = 0, and finally, uel(z) is the contribu-
tion to the potential derived from the charge distribution of the electrodes. This can be obtained
analytically from Eq. (8.9) placing the electrodes perpendicular to the z-axis and integrating
over the x, y dimensions. If each electrode is represented by its average surface charge density,
σq(zi), Poisson’s equation in one dimension together with Eq. (8.9) yield

uel(z) = 1
ϵ0

no.of layers∑
i=1

σq(zi)
(

− 1
ηπ1/2 e−η2(z−zi)2 − (z − zi) (1 + erf(η(z − zi)))

)
(8.13)

being erf(x) the error function. We have performed constant potential simulations with
∆U = 1V and, ρtot = 0.022 Å−3 and 500 K. With the charge density profiles, we have solved
Eq. (8.12) as a consistency check. Additionally, the average surface charge densities of each
graphene layer, σq(zi) have been used later to run constant charge simulations. To that aim, all
σq(zi) belonging to the anode/cathode have been added and assigned to the inner graphene layers
or the corresponding anode and cathode in the constant charge simulation, keeping the charge
uniformly distributed over the atoms. In Figure 8.4 we summarized the results of comparing
constant potential and constant charge simulations.

The top graphs illustrate the density profiles of ions and solvent, clearly showing the pref-
erence of ions for the walls. The profiles reach bulk values rapidly. We have approximately a
region of 25 molecular diameters around the pore center where the system displays bulk behav-
ior. For our purposes, then a large portion of the pore can act as an ion reservoir. On the middle
graphs, we have the charge density, c(z), and integrated charge density,
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FIGURE 8.4 Density profiles, integrated charge density and Poisson potential. Density profiles (upper
graphs), integrated charge density (middle graphs) and Poisson potential (bottom graphs) obtained from
(a) the constant potential and (b) constant charge simulations. The green dashed lines correspond to the
voltage consistent with an uniform field in a dielectric medium.

cI(z) =
∫ z

−w/2
(Z+ρ+(z′) + Z−ρ−(z′)) dz′ (8.14)

The perfect screening of the electrodes after the first ionic layers is evidenced. In addition,
as a consistency check, we show the charge density obtained from the differential Poisson’s
equation cu = ϵ0∇2u(z), which agrees with the simulated quantity. Differences in the charge
density in the vicinity of the electrode’s position result from the fact that for constant poten-
tial simulations, charges are spread over the three graphene layers, while in constant charge
simulations, they are concentrated in the inner layers. In the lower graphs, we illustrate the
Poisson’s potential, and in the case of constant potential simulations, it can be appreciated that
the input∆U = 1V is exactly recovered at the boundaries. The constant charge simulation with
the appropriate electrode surface charge densities exhibits a five percent departure in the com-
puted Poisson potential. The value obtained corresponds to the potential difference between
the inner electrodes in the constant potential simulation. We can conclude that both simulation
approaches lead to consistent results for the voltage values of interest to us, and the lower the
voltage or electrode charge, the better the agreement. Consequently, for our study, we will
restrict ourselves to the constant charge molecular dynamics approach.
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8.1.3 Integral capacitance and adsorp on

We have run several series of constant charge simulations, in which charges were added to
the inner layers of the graphene electrodes, ranging from 2 × 10−4e/atom to 2 × 10−3e/atom,
for both the low and moderate ionic concentration case. When comparing theory and simu-
lations, we must readjust the Bjerrum length used in the theoretical model. If we recall that
this quantity is given by λB = e2/(4πϵ0ϵrkBT ) 2, in our case where ϵr = 16 to account for
the scaling of the charges, we get λB = 10425.0/T (K) Å (hence λB(315 K) = 33.095 Å and
λB(360 K) = 28.95 Å). In the theoretical calculations we have assumed λB/a = λc

B(Tc/T ).
When making comparisons, we will use reduced quantities, by which all densities will be scaled
with the molecular diameter (a3ρ). Thus, our system for ρtot = 0.022 Å−3 corresponds to a
reduced ionic density a3ρi = 0.17, and the dilute system ρtot = 0.01 Å−3 to a3ρi = 0.08. Con-
cerning the capacitance and voltage, we will use thermally scaled quantities, namely C/CH ,
with CH = ϵr/(4πa) and eU/kBTc. The ionophilicity, hs, was tuned to account for the average
attraction (potential energy) of the ions due to the sole contribution of the walls.

For the dilute system (with a3ρi = 0.08), the integral capacitance displays, at every tem-
perature, a bird-shaped capacitance as appreciated in Figure 8.5b. Although the camel-like
capacitance is a signature of dilute systems, this shape is not displayed since the electrode is
strongly ionophilic. Thus, the capacitance shape exhibits a peak at PZC regardless of the low
bulk density. Additionally, it is worth noting that, as found in previous chapters, capacitance
increases as the temperature is lowered towards the demixing transition. In Figure 8.5b, we
observe that the simulation results reproduce the trends predicted by the theory. One can see a
substantial capacitance increase when approaching the demixing temperature, in fact, more sig-
nificant than that found by the theory. One also observes that the maximum in the capacitance
at low voltages, close to the PZC, is less visible in both theory and simulation for the highest
temperature. However, in the latter instance, there are substantial statistical uncertainties to
allow for solid conclusions.

For the more concentrated system with ρia
3 = 0.17, Figure 8.5c shows that at the highest

temperature, the integral capacitance displays a peak at the PZC and then decreases as the
voltage increases exhibiting a bell-shaped curve. When approaching demixing, capacitance
again increases due to the voltage-induced increase of ion density at the surface vicinity,
meaning that both cations and anions are adsorbed into the surface layer, leading to a higher
capacitance. For higher voltages, capacitance decreases monotonously. On the other hand, in
Figure 8.5d, we see that simulation results are affected by very large statistical uncertainties.
Therefore it is not possible to draw any conclusion concerning the shape of the capacitance
curve. Close to demixing, there is a peak at PZC and two maxima at eU/kBTc ≈ 15, in
qualitative agreement with the theory. In any case, when comparing with the low-density
results of Figures 8.5a and 8.5b, one observes that the capacitance increase is approximately
four times larger in that case for the simulation results. The theoretical curves show the same

2This expression is written in standard units. However, in Chapter 4, the Bjerrum lengthwaswritten in Gaussian
units with 4πϵ0 = 1.
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(a) (b)

(c) (d)

FIGURE 8.5 Integral capacitance. (a) Computed from the theory at bulk density a3ρi = 0.08,
ionophilicity a3hs/ξ0 = 0.01, where ξ0 is the bare correlation length, a the ion diameter, slit width
w = 40a. (b) Computed from MD simulations at ion density a3ρion = 0.08. In panels (a) and (b),
blue lines correspond to temperature T/Tc = 1.0 (λB/a = 3.309), red lines correspond to temperature
T/Tc = 1.2 (λB/a = 2.78), and green lines denote T/Tc = 1.6 (λB/a = 2.085). (c) Computed from
the theory at bulk density a3ρi = 0.1, ionophilicity a3hs/ξ0 = 0.002, where ξ0 is the bare correla-
tion length, a the ion diameter, slit width w = 40a. (d) Computed from MD simulations at ion density
a3ρion = 0.17. In panels (c) and (d), green lines correspond to temperature T/Tc = 1.0 (λB/a = 2.978),
and blue lines denote T/Tc = 2.2 (λB/a = 1.303).The capacitance is measured in unit of CH .

trend, although in a less pronounced fashion. From this comparison, it is tempting to conclude
that, for ρia

3 = 0.17 the system is approaching the threshold of the region where capacitance
grows with increasing temperature.

Finally, we analyze how the ionic density and the proximity to the demixing temperature
affect the electrolyte adsorption onto the electrodes. For this purpose, we have calculated the
adsorption coefficient as

Γ =
∫ w/2

0

(
ρ+(z) + ρ−(z) − ρbulki

)
dz, (8.15)

where ρbulki = ⟨ρ+(w/2) + ρ−(w/2)⟩, meaning that Γ measures the ex-
cess of ions over the bulk value (determined at the center of the pore for suffi-
ciently large pores) due to the presence of the electrodes and the electrode charge.
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FIGURE 8.6 Capillary ionization of slit mesopores in
the chemical potential-temperature plane. The black
solid line denotes the bulk coexistence (at µsat) that ends
at the critical point, while the solid blue line is the capil-
lary ionization curve obtained from the Kelvin equation
(Eq. (3.10)).

The adsorption is plotted in Figure 8.6
as a function of the potential (in thermal
units) scaled with the respective ion den-
sities and ion diameter. From this fig-
ure, it is possible to visualize the tem-
perature effect on the concentration, re-
moving the sheer effect of the higher ion
concentration in the system. Results for
the denser system are depicted in the up-
per graph. For the higher ionic concen-
tration, we observe that the voltage de-
pendence is minimal for high tempera-
tures. When approaching demixing, the
adsorption decreases with increasing po-
tential. In addition, by reducing the tem-
perature by a factor of two, adsorption
is increased in the same proportion. In
the dilute system, we see that the volt-
age dependence of adsorption is almost
negligible at high temperature; however,
when approaching the spinodal decom-
position temperature, there is a 30% rise
in adsorption when voltage is increased
up to eU(kBTc) ≈ 30. At high voltage
and low temperature, electrostatic energy dominates. When comparing the bulk ionic concen-
tration for our two systems, there is a factor two, whereas the charge density of the dilute system
near the electrode is nearly eighty percent that of the more concentrated one. Away from demix-
ing, the ratio between bulk ionic concentrations and charge density equals two in both instances.
In the low-density case, it is easy to increase the near-electrode charge by adding counterions.
However, it may be easier to increase the near-electrode charge in the higher density case by
removing coions. In the first case, the adsorption increases, but in the second case, it decreases.
This explains the qualitatively different behavior displayed by the dilute system at low temper-
atures and why the scaled adsorption at high temperatures is almost independent of voltage.
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Chapter 9
Conclusions

This thesis studied electrical double layers with ionic liquid–solvent mixtures close to
demixing under two confinement forms. Upon demixing, the mixture can separate into a phase
rich in ions, called IL-rich, and a phase rich in the solvent called IL-poor phase (Figure 4.2).
We proposed a mean-field model suitable to describe the system (Chapter 4). In particular, we
considered the cations and anions to be of the same size, the dielectric constant as temperature-
and position-independent. Additionally, we treated the hard-core interactions on the level of
the local-density approximation.

In the first case of confinement (Chapter 6), we studied an IL-solvent mixture in contact with
a single planar electrode. We considered the Carnahan-Starling (CS) and lattice-gas expressions
for the excess free energy associated with the excluded volume interactions. We solved this
model analytically and numerically, and the results can be summarized as follows.

• Analytic expressions were obtained by using perturbation expansion, which provides
good agreement with the numerical results for the charge density at low potentials (Fig-
ure 6.2). Likewise, we determined the capacitance shapes (at low potentials) and calcu-
lated the capacitance diagrams analytically, showing the regions in which positive (camel
shaped) and negative curvatures are displayed. The transformation between the camel-
and bell-like shapes can be induced by changing the ion density and temperature (Fig-
ure 6.3).

• The numerical calculations revealed the emergence of a bird-shaped capacitance which
exhibits three peaks as a function of voltage (Figure 6.5). We also calculated the ca-
pacitance diagrams where we showed the regions with the camel, bird, and bell shapes,
obtained by changing the electrode’s ionophilicity and bulk ion density at different fixed
temperatures (Figure 6.6).

• Interestingly, when we consider the Carnahan-Starling free energy, the camel-shaped ca-
pacitance, which is a signature of dilute electrolytes, can be displayed at high densities in
the case of ionophobic electrodes. However, when implementing the lattice-gas entropy,
the camel-like capacitance is not displayed in the high-density regime.

• We found that a transformation between the bell and bird shapes can be caused by varying
temperature (Figure 6.7) due to voltage-induced adsorption of an IL at an electrode, as
manifested by the charging parameter XD (Figures 6.8c and 6.8d), which shows a strong
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peak at a non-zero voltage. Such an enhanced electrosorption leads to stronger screening
and hence to the appearance of wings in the bell-shaped capacitance.

• We calculated the energy stored in an EDL at different temperatures (Figures 6.8a and
6.8b). For the CS entropy, the energy increases when approaching demixing, which can
be used to generated electricity from heat [15, 131, 151–154]. For the lattice-gas model,
however, there seems to be no energy enhancement when approaching demixing. This
suggests that the type of solvent (particularly the size of solvent molecules) can play an
important role in energy storage. It will be interesting to study such solvent-dependent
effects in more detail in future work.

Although we presented a simple model with a number of simplifying assumptions, andmore
detailed and realistic models, or simulations, will alter, from a quantitative point of view, the
results of our calculations, we reasonably expect that our model still captures the qualitative
behavior and provides the basis for further studies of electrical double layers in the vicinity
of ionic liquid–solvent demixing. It would be interesting to validate our predictions by more
rigorous theories, simulations, and experiments, especially those obtained at high ion concen-
trations at which the local density approximation is known to be inaccurate [168]. However, it
is worth noting that our simulation results confirmed the main theoretical findings, and we will
comment on this latter.

In the second case, we studied ionic liquid-solvent mixtures in slit-shaped nanopores (Chap-
ter 7). We considered the Carnahan-Starling (CS) for the excess free energy associated with the
excluded volume interactions. To solve the model numerically, we implemented a finite differ-
ences (FD) scheme. The results obtained are summarized next.

• For non-polarized mesopores, we computed the capillary ionization transition curve and
plotted it against the bulk phase diagram to show the coexistence shift when the system is
confined (Figure 7.1). Additionally, we estimated the location of the capillary transition
by implementing the Kelvin equation and obtained a good agreement with our numerical
solution.

• We revealed that a pore could become spontaneously ionized as a function of temperature,
slit width, or applied voltage, as manifested by a jump in the amount of an ionic liquid
adsorbed in the pore (Figures 7.2 and 7.4).

• Voltage-induced capillary-ionization transition exhibits a re-entrant behavior and creates
jumps in the accumulated charge and stored energy. Although in real porous electrodes
with a pore-size distribution, these jumps will be averaged out, the possibility to obtain
a sudden increase in the stored energy by minute changes of voltage or temperature is
spectacular. It may be used to boost energy storage or generate electricity from waste
heat (Figure 7.4).

• We analyzed the re-entrant behavior (i.e. a second capillary transition at higher voltages)
from the density profiles (Figure 7.5) and found that at high voltages, the thermodynamic
state is determined by the in-pore bulk region, and the IL-poor phase is favored.
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• We studied the influence of the slit width and electrode’s ionophilicity in the energy stor-
age. We found that the stored energy decreases as the ionophilicity increases since a
strong ionophilic electrode displays the bell-like capacitance that exhibits a maximum
at PZC and rapidly decreases as the voltage increases (Figure 7.10). Regarding the slit
width, the stored energy decreases when the slit becomes wider. In a wider slit, the ion-
wall interactions become weaker since the ions are distributed in a wider space, and then,
the accumulated charge decreases. Additionally, we note that the dependence on the slit
width w is only when w < 2λD.

• We calculated the integral capacitance for oppositely charged electrodes and different
bulk densities (Figures 7.17 and 7.18) and found that integral capacitance displays, as the
differential capacitance does, the three different shapes: camel, bird, and bell shapes.

Concerning the molecular simulations (Chapter 8), we have studied the concentration fluc-
tuations of a simple electrolyte model consisting of two charged Lennard-Jones spheres in a
solution of an uncharged Lennard-Jones liquid confined by parallel graphene layers as elec-
trodes. Using constant potential molecular dynamics simulations and several constant charge
simulations, we have analyzed the effect of the proximity to the demixing transition on the elec-
tric double layers and, as predicted by the theoretical results, we have confirmed the existence
of two relevant trends in the response of capacitance to concentration fluctuations: in dilute
systems, capacitance increases as the demixing temperature is approached, and when the ionic
concentration increases this effect tends to become less and less apparent, until the opposite be-
havior takes over. Additionally, we have found that the “bird-like” capacitance, predicted by our
theory, appears when LJ interactions are taken into account and may lead to phase separation.
Finally, we have calculated the adsorption (Eq. (8.15)) that provides a structural explanation of
the effects observed on the capacitance.
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Appendix A
Second-order perturba on expansion

In the frame of the standard perturbation expansion procedure presented in Chap-
ter 5, the solutions of the electrostatic potential and the order parameter were assumed:
u = u0 + εu1 + ε2u2 + ... and ϕ = ϕ0 + εϕ1 + ε2ϕ2 + ..., for the electrostatic potential,u,
and the order parameter ϕ, respectively, where ε is a small parameter.

In the first order approximation, we obtained Eqs. (5.11) and (5.12), with their respective
solution given by Eqs. (5.14) and (5.15). In the second-order expansion, we obtained Eqs. (5.17)
and (5.16), their respective solutions are given as follows

u2(z) = eUhs

kBTcλ2
Dρ̄b(ξ−1

0 + ξ−1)(2λ−1
D ξ−1 + ξ−2)

exp(−z(λ−1
D + ξ−1))

− eUhs

kBTcλ2
Dρ̄b(ξ−1

0 + ξ−1)(2λ−1
D ξ−1 + ξ−2)

exp(−z/λD) (1)

ϕ2(z) =

−

2λ−1
D + ξ−1

0

ξ−1
0 + ξ−1

 ξ−2
0 T̄ eU2

2(kBTc)2(ξ−2 − 4λ−2
D )


−

2ξ−1 + ξ−1
0

ξ−1
0 + ξ−1

ξ−2
0 T̄A(ρ̄b)
6ρ̄bξ−2

 hs

ξ−1
0 + ξ−1

2 exp(−z/ξ)

+ ξ−2
0 T̄ eU2

2(kBTc)2(ξ−2 − 4λ−2
D )

exp(−2z/λD) + ξ−2
0 T̄A(ρ̄b)
6ρ̄bξ−2

 hs

ξ−1
0 + ξ−1

2

exp(−2z/ξ)

(2)

where
A(ρ̄b) = ρ̄2

b

∂2µ̄ex

∂ρ̄2

∣∣∣∣∣
ρ̄=ρ̄b

− 1. (3)

Then, the final expressions of the electrostatic potential and the order parameter are
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u(z) = eU

kBTc

exp(−z/λD) − eUhs

kBTcλ2
Dρ̄b(ξ−1

0 + ξ−1)(2λ−1
D ξ−1 + ξ−2)

exp(−z/λD)

+ eUhs

kBTcλ2
Dρ̄b(ξ−1

0 + ξ−1)(2λ−1
D ξ−1 + ξ−2)

exp(−z(λ−1
D + ξ−1)) (4)

ϕ(z) =

 hs

ξ−1
0 + ξ−1 −

2λ−1
D + ξ−1

0

ξ−1
0 + ξ−1

 ξ−2
0 T̄ eU2

2(kBTc)2(ξ−2 − 4λ−2
D )


−

2ξ−1 + ξ−1
0

ξ−1
0 + ξ−1

ξ−2
0 T̄A(ρ̄b)
6ρ̄bξ−2

 hs

ξ−1
0 + ξ−1

2 exp(−z/ξ)

+ ξ−2
0 T̄ eU2

2(kBTc)2(ξ−2 − 4λ−2
D )

exp(−2z/λD) + ξ−2
0 T̄A(ρ̄b)
6ρ̄bξ−2

 hs

ξ−1
0 + ξ−1

2

exp(−2z/ξ) (5)
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Appendix B
Calcula on of the capillary ioniza on
transi on

FIGURE B.1 Phase diagram in the temperature-
chemical potential plane, illustrating the spinodal
region in which the grand potential has two min-
ima.

For the studied system, let us consider
the bulk phase diagram shown in Figure B.1.
In order to obtain the capillary ionization
transition line, the chemical potential is var-
ied within the spinodal region (shown by red
arrows), where the grand potential exhibits
two minima along a fixed temperature line.
Then, Eqs. (5.25)-(5.26) are solved to obtain
the electrostatic potential, u(z), and the
order parameter, ϕ(z), profiles. The grand
potential is calculated by inserting u(z) and
ϕ(z) into Eq. (4.17), and two solutions are
obtained, denoting the IL-rich and IL-poor
phases. The intersection point between both
branches of the grand potential indicates the
chemical potential at the capillary ionization
transition, µci.

To illustrate how we obtained the capillary ionization curves, consider the phase diagram
in Figure 7.4a. For instance, at Tci/Tc = 0.838, there are two capillary transitions (re-entrant
behavior described in Chapter 7). Figure B.2a shows the grand potential curve as a function
of the chemical potential at Tci/Tc = 0.838 for two different voltages eU/kBTc = 21 (top)
and eU/kBTc = 46 (bottom). The intersection point corresponds to µci/kBTc = 4.57 at which
capillary ionization occurs in both voltages.

Likewise, it is possible to obtain the capillary ionization curve by looking at the grand po-
tential branches’ intersection as a function of the temperature or the applied voltage. In fact,
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(a) (b)

FIGURE B.2 Grand potential as a function of the chemical potential and temperature. (a) Grand
potential as a function of the chemical potential at fixed temperature Tci/Tc = 0.838 calculated at two
different voltages: eU/kBTc = 21 (top) and eU/kBTc = 46 (bottom). Black lines denote the IL-poor
phase whereas blue lines denote the IL-rich phase. Red point marks the chemical potential at the capil-
lary ionization transition, µci/kBTc = −4.57, which correspond to the intersection point between both
branches (IL-rich and IL-poor) of the grand potential. (b) Grand potential as a function of the tempera-
ture at fixed chemical potential µci/kBTc = −4.57 calculated at two different voltages: eU/kBTc = 21
(top) and eU/kBTc = 46 (bottom). Black lines denote the IL-poor phase whereas blue lines denote the
IL-rich phase. Red point marks the temperature at the capillary ionization transition, Tci/Tc = 0.838,
which correspond to the intersection point between both branches (IL-rich and IL-poor) of the grand
potential.

we have considered the grand potential as a function of three parameters, temperature T/Tci,
chemical potential µ/kBTc and voltage eU/kBTc. The results obtained by keeping two of these
parameters constant and varying the other one should be consistent, which is a way to check
our calculations. Figures B.2b show the grand potential as a function of the temperature at
fixed chemical potential µci/kBTc = −4.57 for two different voltages eU/kBTc = 21 and
eU/kBTc = 46, the intersection temperature, Tci/Tc = 0.838, marks the capillary ionization
transition. This is consistent with Figure B.2a.

Consistently, Figure B.3 shows the grand potential difference, ∆Ω = Ωrich − Ωpoor, as a
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function of the applied voltage at fixed chemical potential µci/kBTc = −4.57 and temperature
Tci/Tc = 0.838. Capillary ionization occurs when the curve crosses the zero-line, in this case
at eU/kBTc = 21 and eU/kBTc = 46.

FIGURE B.3 Grand potential difference as a function of the voltage at fixed chemical potential
µci/kBTc = −4.57 and temperature Tci/Tc = 0.838. The grand potential difference is calcu-
lated as ∆Ω = Ωrich − Ωpoor. The red points mark the voltages at which capillary ionization occurs,
eU/kBTc = 21 and eU/kBTc = 46. This is consistent with the results shown in the previous figures.
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Appendix C
Temperature effect on the Bjerrum
length

To single out the effects related to demixing, we have assumed the relative dielectric con-
stant, ϵr as temperature independent. At room temperature, ϵr ranges from 80 for water down
to about 10 for less polar solvents like alkohols and increases monotonically with increasing
temperature [169–171]. Correspondingly the Bjerrum length λB = e2/(ϵrkBT ) acquires a rel-
atively weak dependence on temperature and can increase or decrease with temperature. We
have assumed λB/a = λc

B(Tc/T ). However, for simplicity we could assume a temperature-
independent Bjerrum length λB = a (corresponding to ϵr ≈ 80 at room temeprature). Fig-
ure C.1 shows that the temperature dependence and the choice of ϵr do not affect our results
qualitatively.

(a) (b)

FIGURE C.1 Effect of Bjerrum length on voltage-induced capillary ionization transitions. (a) Phase
diagrams in the temperature-voltage plane showing the locations of first-order transitions between the
IL-rich and IL-poor phases for a few values of the Bjerrum length λB expressed in terms of the ion
diameter a. (b) Phase diagrams for the Bjerrum length λB/a = 1 and for a temperature-dependent
Bjerrum length λB(T ) = λc

B(Tc/T ), where λc
B (= a) is the Bjerrum length at the critical temperature

Tc. This temperature dependence of λB(T ) means that ϵr is temperature independent.
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Appendix D
Units conversion in LAMMPS

In Chapter 8, molecular simulations were performed in real units. However, in order to
compare the results obtained with those obtained from our model, a transformation from real
units to reduced is required. Recalling the parameters used in the molecular simulations, we
have

ϵ = 0.238 Kcal/mol

a = 3.4 Å

q = 0.25 e

ρtot = 0.0221 Å−3

With ϵ/kB = 119.846 K then, the reduced quantities are

T ∗ = kBT (K)
ϵ

= T (K)
119.846

Reduced temperature (6)

q∗ = q(e)
ϵ
√

4πϵ0a
= 5.06434 Reduced charge (7)

u∗ = U

ϵN
= U(Kcal/mol)

0.238N
Reduced energy (8)

Now, we express the capacitance and voltage in thermal units. Thermal voltage is given by

eU

kBTc

= eU(eV )
8.617333262 × 10−5(eV K−1)Tc(K)

(9)

Regarding the thermal capacitance per unit of surface area, we have

C

CH

= a(Å)Q(e)w−2(Å−2)
U(V )ϵ0(eV −1Å−1)

(10)
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where CH = ϵ0/a is the Helmholtz capacitance. Additionally, the permitivity ϵ0 must be
expressed in units e2(eV )−1Å−1, then

C

CH

= a(Å)σq(e/Å−2)
0.0055263U(V )(e2(eV )−1Å−1)

(11)

The potential energy exerted by the electrodes over the ions 1 has been calculated by means
of three simulations:

1) All wall’s particle interactions set to zero (except for a small wall-particle repulsion to
avoid overlaps with the electrodes) to obtain UWp = 0.

2) All wall’s solvent-particle interactions set to zero to obtain UWs = 0.
3) The wall-ion interaction set to UWi = UWs=0 − UWp=0.

In reduced units, and divided by the number of particles, one gets UW±/N±ϵ = −0.385.
This energy is due to the presence of two walls of area LxLy/a2 ≈ 153. The contribution to the
ion particle energy because of the presence of the walls per unit area is

UW±a2

N±ϵLxLy

= −0.00252 (12)

The calculation has been run for kBT/ϵ = 4.17 (that is, 500 K in LAMMPS real units,
recalling that Tc ≈ 360 K).

1The solvent particles only experience a short term repulsion; therefore its net contribution is almost zero.
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Computa onal tools

Most of the calculations (analytical and numerical) presented in this thesis, as well as the
result plots, have been done using MATLAB® software [172]. In the case of the single-charged
surface system, the bvp4c routine of the same software was implemented.

The Molecular Dynamics simulations have been performed in LAMMPS simulator [158,
159,173], and to visualize the simulations of the system under consideration, we have used the
tool OVITO [174].

Finally, the text has been written in LaTex environment [175], and all the schemes have
been done using Inkscape [176].
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