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Chapter 1 

Introduction: What is a 

microemulsion ? 

Amphiphilic molecules are composed of two different parts: hydrophobic tail 

and hydrophilic head. An example of an amphiphilic molecule is shown in 

Fig. 1.1. The tail is composed of one or more hydrocarbon chains, usually 

with 6 to 20 carbon atoms, the head is composed of chemical groups of high 

affinity to water [1, 2]. Such a composition of amphiphilic molecules results in 

many amazing properties of systems containing these molecules. Adding an 

appropriate amount of amphiphile to a mixture of oil and water, two liquids 

which are immiscible under normal conditions, causes complete mixing of 

these liquids. The amount of amphiphile necessary to cause mixing depends 

on the strength of amphiphile. The longer the hydrocarbon chain the stronger 

the amphiphile is. The strength of amphiphile depends in similar way on the 

number of hydrophilic groups in the amphiphilic molecule. Complete mixing 

1 
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CHAPTER 1. INTRODUCTION: WHAT IS A MICROEMULSION? 2 

hydrophilic 
head 

j (OCH 2 C~ ~ OJ-1 
:-------·I --------------- ---------------------------- _: 

~ (CH2 )n 
~ I 
~ CH 
: 3 

hydrophobic 
tail 

Figure 1.1: A non-ionic surfactant CnEm. Alkylpolyoxyethylen 

is enabled by lowering the oil-water surface tension by amphiphile. That 

is why the amphiphilic molecules are also called surfactants: surface active 

agents. The surfactant assembles at the interface, forming a monolayer, in 

such a way that the hydrophilic part of the amphiphile is located in water 

and hydrophobic part in oil. The surfactant monolayer separates coherent 

regions of oil and water. Usually the monolayer width is small compared 

to the size of oil and water regions, unless the concentration of surfactant 

is very high. In such a situation the formation of water and oil droplets 

suspended in the surfactant solution is possible. Surfactants dissolved in 

water can form micells of different shape: spherical or cylindrical. They can 

also assemble into bilayers grouping the hydrophobic part of the surfactant 
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CHAPTER 1. INTRODUCTION: WHAT IS A MICROEMULSION ? 3 

inside the bilayer. Such system is called the sponge phase. 

When comparable amount of oil and water are mixed with surfactant a 

new homogeneous, isotropic, thermodynamically stable phase is created [3]. 

This phase, called microemulsion, can coexist with oil and water [4, 1, 2]. 

The measurements of electrical conductivity, self diffusion, NMR and freeze 

fracture microscopy studies indicate that the structure of microemulsion is 

bicontinuous [5, 6, 1, 7, 8]. That is the microemulsion is composed of water 

and oil channels mutually interwoven, separated by the monolayer of surfac

tant. The description of microemulsion structure is a challenge for modern 

condensed matter physics. 

The amphiphilic systems can form apart from the structured disordered 

phase like microemulsion, many ordered phases. The most common are the 

lamellar and hexagonal. The lamellar phase is composed of the regions of 

water and oil separated by the surfactant monolayer. The lamellar phase 

looks like a sandwich composed of the slices of water and oil separated by 

a monolayer of surfactant. The hexagonal phase is composed of cylinders 

of water or oil bounded by the layer of surfactant, arranged on a hexagonal 

lattice, immersed in oil or water. The most interesting are the ordered cubic 

bicontinuous phases. The most prominent examples are the gyroid, double 

diamond (sometimes called diamond), and simple cubic phase. Although the 

structure of a bicontinuous phase on a mesoscopic scale is difficult to study 

experimentally, the experimental methods like freeze fracture microscopy or 

x-ray and neutron scattering revealed some details. In the scattering experi

ments one is able to study the symmetry, the freeze fracture microscopy gives 
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CHAPTER 1. INTRODUCTION: WHAT IS A MICROEMULSION? 4 

some information about the topology. 

The systems containing surfactants are difficult to characterize. They 

are structured liquid ternary mixtures. For example microemulsion on a 

macroscopic level looks like an ordinary, homogeneous fluid. However, it 

is known that the microemulsion is composed of three components: two 

of them, oil and water do not mix in the absence of the third one, the 

surfactant. Thus the presence of the surfactant is crucial. It is obvious that 

information about the location of surfactant in its mixtures characterizes the 

mixtures in the best way. The surfactant forms a monolayer at the 

water-oil interface. This monolayer can be approximated in the 

theory by a mathematical surface. Thus in order to characterize 

the systems containing surfactants it is enough to characterize this 

surface and its properties such as the surface area, genus and its 

curvatures [9, 10, 11, 12, 13]. 

There are three levels of description of these mixtures: macroscopic, meso

scopic, and microscopic. Here we concentrate on the mesoscopic level, de

scribed by the Landau-Ginzburg theory developed recently. We note that 

the most interesting phenomena take place on the mesoscopic scale, that is 

intermediate between the microscopic and macroscopic. The typical sizes of 

oil-rich domains in the mixture are often of the size of 1000A, a size much 

larger than the size of a surfactant ( 25A), but much smaller than the macro

scopic scale of millimeters [1 ]. It means that microemulsion is struc

tured on the mesoscopic scale and that fact justifies the choice of 

the Landau-Ginzburg model for its descriptions. In the next section 
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CHAPTER 1. INTRODUCTION: WHAT IS A MICROEMULSION? 5 

we describe the Landau-Ginzburg theory that we use to generate the surfaces 

in the oil, water, surfactant mixtures. 
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Chapter 2 

Landau-Ginzburg model 

The theoretical model describing the behavior of the system containing sur

factants originates form the expansion in gradients of the Landau-Ginzburg 

free energy [14]: 

F[¢>(r)] = j d3r( ao + a1¢>(r) + a2¢>(r)2 + aa¢>(r)3 + a4 ¢>(r)4 

+ asif>(r) 5 + a6 if>(r) 6 + · · · 

+ c1 I 'Vif>(r) 12 +c2 I 6if>(r) 12 + · · · 

+ if>(r)2 I 'Vif>(r) 12 + ... ). 

(2.1) 

This is the simplest model with a single scalar order parameter if>(r). The 

analysis of (2.1) shows that the essential features of systems with internal 

interfaces can be recovered by keeping c1 < 0 and c2 > 0. The gradient 

term with negative coefficient c1 tends to create the interface, whereas the 

laplacian term with the positive coefficient c2 stabilizes the system. The 

6 
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CHAPTER 2. LANDAU-GINZBURG MODEL 7 

number of terms and the values of coefficients, in the expansion of the scalar 

order parameter qy(r) in power series, depends on the problem to be studied. 

In order to study microemulsion and ordered phases which appear in sys

tems containing surfactants the following Landau-Ginzburg functional was 

proposed [15, 16] based on (2.1) 

F[ cf>( r)] = J d3r ( c I l>cf>(r) 1
2 +g [ cf>(r)] I 'i1 cf>(r) 1

2 

+ f [ 1J( r)] + JlcP( r)). 
(2.2) 

The values of the field qy( r) are proportional to the difference in oil and wat.er 

concentrations and are negative for water and positive for oil region or vice 

versa. The sign is just the matter of convention. The surface 

qy(r) = 0 (2.3) 

describes the interface between oil and water. The function /[1J(r)] is the 

bulk free energy. Jl is the chemical potential difference between oil and water. 

The surfactant degrees of freedom are considered as being integrated out and 

the surfactant properties enter the functional (2.2) through the form of the 

functions g[qy(r)] and /[¢Y(r)]. The functional (2.2) can be also used to model 

the sponge phase. In such a case the negative values of order parameter are 

interpreted as the interior part of the sponge phase and positive as exterior 

part of the phase (or vice versa). 

http://rcin.org.pl



CHAPTER 2. LANDAU-GINZBURG MODEL 8 

The thermodynamic quantities and correlation functions can be obtained 

from (2.2) by functional integration. The two point correlation function is 

given by 

< ¢(rt)l/J(r
2

) >= J D{¢(r)}¢(r1)¢(r2) exp{ -F[¢(r)]} 
J D{ ifJ(r)} exp{ -F[¢(r)]} 

(2.4) 

The functional integration cannot be usually performed exactly. One has 

to use some approximation method to evaluate the functional integral. The 

most often used is mean-field approximation, in which the integral is replaced 

with the maximum of the integrand, i.e. one has to find the minimum of 

F[ ¢( r)], which satisfy the mean-field equation 

c5F[¢(r)] = 
0 c5¢(r) . (2.5) 

In the Gaussian approximation the water-water structure factor Sww ( k) 

(Fourier transform of the correlation function (2.4)) for (2.2) is given by 

1 
Sww(k) ex ck4 + g(¢Jb)k2 + ~f"(¢Jb), (2.6) 

¢Jb E { ¢w, l/Jm, ¢0 }, and for oil-rich phase < ifJ(r) >~ ¢ 0 , for water-rich phase 

< ifJ(r) >c::: ¢w, for microemulsion < ifJ(r) >"' l/Jm = 0. A peak at k > 0 (for 

¢Jb = l/Jm) indicates a local structure of microemulsion with characteristic size 
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CHAPTER 2. LANDAU-GINZBURG MODEL 9 

~ rv 
2
;_. For ¢>b = ¢>0 or ¢>w the structure factor has a peak only at k = 0 

indicating that pure oil and water phase behaves like normal liquid with no 

internal structure. The water-water structure factor Sww(k) can be measured 

in experiments. Thus the quality of the theory can be checked out by com

paring theoretical predictions with an experiment. It turns out that (2.6) 

describes extremally well the data from the scattering experiments [15, 7]. 

The model (2.2) has been successfully used to describe wetting behavior of 

the microemulsion at the oil-water interface [16, 17, 18, 19], to investigate a 

few ordered phases such as lamellar, double diamond, simple cubic, hexagonal 

or crystals of spherical micells [20, 21], and to study the mixtures cotaining 

surfactant in confined geometry [22] . 

An enormous advantage of the model (2.2) is its simplicity. It is extraor

dinary that the properties of a very complex system are described by the one 

scalar order parameter field. There are a few Landau-Ginzburg theories with 

more than one order parameter field [5, 23, 24, 25, 26, 27]. However, adding 

a new order parameter field does not automatically make the model better. 

It does, for sure, make solving the model more difficult and it involves intro

duction of new parameters, physical meaning of which is not always clear. 

We have used in our calculations the model (2.2) with the functions 

g[¢>(r)], f[¢>(r)] given by 

(2.7) 

(2.8) 
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CHAPTER 2. LANDAU-GINZBURG MODEL 10 

and following set of constants: ¢Jo = -¢Jw = 1, c = 1, w = 1, J-t = 0. Thus 

the functional ( 2. 2) takes the form 

F[c/>{r)] = J d3r( l6.cf>(r) 1
2 +(92cf>(r)2 +go) I 'llcf>{r) 1

2 

+ (¢J(r)2- 1)2(¢J(r)2 + fo)). 
(2.9) 

The function f[ifJ(r)] has by construction three minima, which guarantees 

three phase coexistence, i.e. oil, water, and microemulsion. The minima 

for oil-rich and water-rich phase are of equal depth, which makes the system 

symmetric, therefore J-t has to be set to zero. Varying the parameter fo makes 

the middle phase ( microemulsion) more or less stable with respect to two bulk 

phases. Thus fo is proportional to the chemical potential of microemulsion. 

The constant 92 depends on 9o and fo and is chosen in such a way that the 

correlation function G(r) =< ifJ(r)ifJ(O) > decays monotonically in the oil

rich and water-rich phases. Here we take 92 = 4yf1 + fo - 9o + 0.01. The 

more negative 9o the stronger or the more surfactant is used. 

In the mean-field approximation the stable or metastable phases of the 

system correspond to the minimum of the functional (2.2). Finding the min

ima of the functional (2.2) is not a trivial task. There are not known analytic 

methods to deal with such problems. In the case of bicontinuous phases two 

methods have been used with some success. The first is expansion of the 

order parameter in a Fourier series, the second is Monte Carlo simulation. 
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CHAPTER 2. LANDAU-GINZBURG MODEL 11 

The Fourier series approach was used by Gompper and Zschocke [21]. 

They expanded the order parameter ¢( r) in the following way: 

N 

¢(r) = :E :E ¢K cos(K · r), (2.10) 
i=O KEBi 

where sum runs over all reciprocal lattice vectors of a given lattice structure, 

Bi denotes the ith shell of the reciprocal lattice. Such approach has a few 

disadvantages. One has to know a priori how the solution looks like to be 

able to construct the Fourier series. The quality of the Fourier expansion is 

not know, because it is difficult to say in advance how many shells have to be 

taken to approximate well the investigated structures. Moreover the number 

of shells taken in the approximation is limited, because the more shells are 

taken the more variables have to be minimized. 

The Monte Carlo method, used by Gompper and Kraus [28] seems to be 

an ideal solutions. However, it also has some disadvantages. The continuous 

model has to be discretized. The quality of discretization depends on the size 

of the lattice which is limited by the speed of computers and the computer 

memory. Due to the fluctuations, taken into account in simulations, the 

local properties of the functional, as e.g. the shape of the interface given by 

¢(r) = 0, cannot be described with sufficient accuracy. 

The method we propose is a new one. It requires the discretization of a 

continuous model as in the Monte Carlo simulations, but the local properties 

of the structures can be computed with very high accuracy. Moreover the 
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CHAPTER 2. LANDAU-GINZBURG MODEL 12 

topology of the investigated structures does not have to be known in advance. 

This is enormous advantage of the method, as our results show it would be 

very hard to imagine the topology of many structures discovered by us. 

As we have noticed in the Introduction the crucial information about the 

structure are contained in the properties of the surface ifJ( r) = 0 formed, in 

the system, by surfactant. We have observed [29] the very special property 

of the functional (2.9) related to this surface. We have discovered it by 

analyzing the formula for the mean curvature expressed in terms of the three 

dimensional field ifJ(r). From the form of (2.9) one can realize that indeed 

for some local minima of (2.9) the average curvature given by 

H( ) = -~V ( V¢J(r) ) = -~ ~ifJ(r) V¢J(r)VIV¢J(r)l 
r 2 I\7¢J(r)l 2IV¢J(r)l + 2I\7¢J(r)l 2 

(2.11) 

vanishes at every point of the ¢(r) = 0 surface. It follows from the second 

term of (2.9) that IVifJ(r)l should have the maximal value for ifJ(r) = 0 (note 

that g0 < 0) and consequently the second term (which after a small algebra 

can be written as (8IV¢J(r)l/8n)/2IV¢J(r)l, with 8n denoting the derivative 

along the normal to the surface) in (2.11) vanishes. Also for the ifJ(r), -ifJ(r) 

symmetry we know that H(r) averaged over the whole surface should be 

zero. It means that either ~ifJ(r) is exactly zero at the surface or it changes 

sign. From the first term of (2.9) it follows that the former is favored and 

consequently H(r) = 0 at every point rat the surface ifJ(r) = 0. The surface 

such that the mean curvature vanishes at its every point is called minimal, 

Fig. 2.1 . Therefore before solving (2.9) we observe that among the local 
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CHAPTER 2. LANDAU-GINZBURG MODEL 13 

minima of the functional (2.9) the structures with minimal surfaces should 

be favored. 

Figure 2.1: The figure illustrates a piece of surface with non-positive Gaussian 

curvature. R 1 and R2 are the principal radii. The Gaussian (K) and the 

mean (H) curvatures are expressed in terms of the principal radii as follows: 

H = 211 
+ 212

, K = R
1

1
R

2
• If R1 = - R2 , at every point, the surface is called 

minimal. This implies that K is non-positive at every point. 
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Chapter 3 

Minimization of the functional 

In order to find the local minima of the functional (2.9) we have discretized 

it on the cubic lattice. Thus the functional F[c/>(r)] becomes a function 

F( { cPi,j,k}) of N 3 variables, where L = (N - 1 )h is the linear dimension of 

the cubic lattice, h is the lattice spacing, and { cPi,j,k} stands for the set of all 

variables of the function. Each variable cPi,j,k represents the value of the field 

cf>(r) at the point r = (i,j, k)h, and i,j, k = 1, ... , N. In our calculations we 

use N=129, which results in over 2 million points per unit cell. 

3.1 P eriodic Boundary Conditions 

All structures we have investigated are periodic. Thus periodicity had to 

be incorporated into the functional (2.9). It was done by periodic boundary 

conditions: 

14 
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Figure 3.1: The schematic illustration of the cubic lattice used to discretize 

the functional (2.2). The number of lattice sites is N 3 , the lattice spacing is 

h. The linear dimension of the lattice is L = (N- 1)h. 
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CHAPTER 3. MINIMIZATION OF THE FUNCTIONAL 16 

if>l,j,k = ifJN,j,k 

ifJ3,j,k = if> N +2,j,k 

if>o,j,k = if>N-l,j,k, if>-l,j,k = if>N-2,j,k 

and similar in y and z directions. The points outside the unit cell, given by t he 

periodic boundary conditions, enter the functional through the calculations 

of derivatives of points at the boundary and near the boundary of the lattice, 

i.e. when at least one of the indices i, j, k is equal to 1, 2, N - 1, N. 

3.2 Discretization of derivatives 

The first and second derivatives in the gradient and laplasian term of the 

functional (2.9) at the point r = ( i, j, k )h on the lattice were calculated 

according to the following formulas [30] 

8¢>( r ) ~ ¢i+ l,j,k - if>i-l,j,k 
ax 2h ' 

(3.4) 

and 

82
¢>(r) 1 ( 

Bx2 ~ 12h2 -¢>i+2,j,k + 16¢>i+l,j,k - 30¢>i,j,k + 

161/>i-l,j,k - t/>i-2,j,k) ' 

(3.5) 

and similar in y and z directions. 

(3.1) 

(3.2) 

(3.3) 
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The mixed derivatives used in (3.15), (3.16) are calculated according to 

[30] 

82¢J(r) 1 ( axay --+ - 2h2 cPi+l,j,k + cPi-l,j,k + cPi,j+l,k + cPi,j-l,k 

- 2¢JiJ,k - r/Ji+lJ+l,k - r/Ji-lJ-l,k). 

(3.6) 

Fig. 3.2 illustrates calculation of derivatives on the cubic lattice of: (a) first 

derivatives given by (3.4) , (b) second derivatives given by (3.5) , (c) mixed 

derivatives given by (3.6). In our calculations we used 5-point formula (3.5) 

to calculate the second derivatives in laplasian term in order to have more 

accurate approximation for small lattice size. However the 3-point formula 

given by [30] 

(3.7) 

can also be used. We have compared the values for the free energy density 

calculated for 3-point and 5-point approximation of the second derivatives. It 

turned out that the values of the free energy density differed for small lattice 

size, N = 9, but for big lattice size, N = 129, the difference was negligible 

and both approximations are equally good. Moreover, the calculation of 

derivatives on the lattice boundary requires taking into account the points 

outside the lattice. These points are given by periodic boundary conditions, 

because we have studied periodic structures. Thus the perjodicity is better 

.= J 
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j +2 

j +1 

j 

j-1 

j-2 

j +2 

j +1 

j 

j-1 

j-2 

i-2 i-1 i+1 i+2 

i-2 i-1 i+1 i+2 

(a) 

(c) 

j +2 

j +1 

j-1 

j-2 

i-2 i-1 

18 

(b) 

i+1 i+2 

Figure 3.2: The schematic illustration of formulas used to calculate the 

derivatives of the discretized functional: (a) formula (3.4), (b) formula (3.5), 

(c) formula (3.6). The black circles show the points taken in calculation of 

the derivatives. 
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incorporated into the discretized functional by the 5-point formula, because 

it uses more points outside the unit cell. 

3.3 Choosing t he surface 

The order parameter field ifJ( r) carries enormous amount of information about 

the local structure of the phases we have investigated. The most interesting 

is the topology of the phases, described by the surface 

ifJ(r = (x, y, z)) = 0, (3.8) 

dividing positive and negative regions of the order parameter field. Thus it 

was crucial in our studies to find the location of the surface ifJ(r) = 0. 

It is highly unlikely, because of numerical accuracy, that a value of the 

field ifJ(r) = c/Ji,j,k at the point r = ( i, j, k )h on the lattice is exactly zero. 

Therefore the points of the surface have to be localized by interpolation 

between the neighboring sites of the lattice. If ¢J(r1 = (i,j,k)h) = c/Ji,j,k < 0 

and ¢J(r2 = (i+l,j, k)h) = l/>i+l,j,k > 0 then the point r0, for which ¢J(r0) = 0, 

must lie between the points r 1 = (i,j, k)h and r 2 = (i + l,j, k)h. Moreover, 

the location of r0 depends on the values of the field at the points r1 and r2 

in the following way 

(
. + lc/Ji,j,kl . k) h r 0 = t , J, . I c/Ji,j,k - ifli+l,j,k I 

(3.9) 
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This approximation is legible because the field c/J(r) is very smooth. Fig. 3.3 

1.0 

0.5 

0.0 

-0.5 

-1.0 
0.0 1.0 2.0 3.0 

X 

Figure 3.3: The order parameter profile ¢>(x) for the lamellar phase, calcu

lated from the functional (2.9) for the parameters fo = 0 and g0 = 0. Half of 

the unit cell is presented. Here N = 400, thus, h, the distance between the 

lattice size is 3.4/400 = 0.0085. Certainly this justifies the linear interpola

tion. 

shows the profile of the order parameter ¢>( x) for the lamellar phase. In the 

vicinity of ¢>(x) = 0 the profile is almost a straight line. Thus for small values 

of lattice spacing, h, finding the points of the surface ¢>( r) = 0 should not 

introduce significant errors. As our calculations show it is done with high 

accuracy. 
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3.4 Triangulation, Surface Area, Volume 

In the way described in the preceding section one can find the points of the 

surface ¢( r) = 0 located between the neighboring lattice sites. However this 

is not enough to describe the surface. It is also necessary to specify the 

connections between these points to characterize the surface. 

Due to discretization the unit cell is divided on (N -1)3 small cubes of the 

size of lattice spacing, h. The surface ¢( r) = 0 passing through a small cube 

cuts out of it a polygon, which edges are formed by intersection of the surface 

and faces of the small cube. The edges of the polygon can be approximated 

by straight lines. The possible configurations of the surface ifJ(r) = 0 cutting 

a small cube are pictured in Fig. 3.4. The surface ifJ(r) = 0 can cut out only 

four kinds of polygons: a triangle, a tetragon, a pentagon, a hexagon. The 

edges of these polygons except a triangle do not lie in a common plane. It is 

necessary to specify also the connections between the vertices of the polygon, 

to characterize the surface unambiguously. It was done in the way shown in 

Fig. 3.4 with thick dotted lines in the patches of the surface inside the small 

cubes. This procedure makes the surface covered only with triangles. The 

triangulation described above was used to calculate the surface area inside a 

unit cell by summing up the surface area of all triangles. 

The triangulation was also used to calculate the volume ratio of the two 

subvolumes.The surface ifJ(r) = 0 separates the volume of a given phase 

into two subvolumes, first occupied by the field ifJ(r) > 0 and second by 

¢( r) < 0. In order to calculate the volume occupied by the negative or 
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Figure 3.4: The possible configurations of passing the surface ¢J(r) = 0 

through the field ¢J( r) discretized on the lattice. Black circles represent 

¢Ji,j,k < 0, whereas white circles ¢Ji,j,k > 0. The cubes represent the smallest 

pieces, of the lattice of the linear dimension, h. 
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positive values of the field if>(r) the volume of the small cubes not cut by the 

surface ¢>( r) = 0 is calculated. Next we use the triangulated surface ¢>( r) = 0 

to divide the small cubes with the values of the field ¢>( r) of different sign at 

the vertices. The surface if>(r) = 0 divides a small cubes into two polyhedra. 

The volumes of these polyhedra for negative and positive values of the field 

if>(r) was calculated and added to the previously calculated volume for regions 

of positive and negative values of if>(r ). 

For more than one periodic surface, in the unit cell, it is necessary to 

separate different surfaces to be able to calculate surface area and genus of 

each surface. In order to find the points which belong to the same surface one 

has to chose an arbitrary point on one of the surfaces and following the con

nections between points find the rest of the points belonging to this surface. 

The set of connections will uniquely specify the surface. Fig. 3.5 illustrates 

the way this process can be done for two surfaces. Having chosen an arbi

trary point on one surface, represented by a black circle in Fig. 3.5a, one 

has to find among all the connections between couples of points specified by 

the triangulation, the connections including this point. They are represented 

by thick solid lines connecting the black circle with the white circles. Next 

one has to chose arbitrarily a point among the points represented by white 

circles and find all connections between this point and the points remaining 

after removing from the set of connections the connections containing the 

first point. This is shown in Fig 3.5b. Such procedure has to be repeated 

until no more than one point represented by the white circle is left. 
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(a) 

(b) 

(c) 

Figure 3.5: The schematic illustration of the separation of two disjoint sur

faces. 
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3.5 Euler characteristics, genus 

25 

The triangulation can also be used to calculate the Euler characteristics, x, 

of the surface inside the unit cell. The calculation of x can be done according 

to the Euler formula [31] 

X= F + V- E, (3.10) 

where F,V,E is the number of faces (F), vertices (V), and edges (E) of the 

polygons cut out by the surface ifJ(r) = 0 in the small cubes of dimension of 

lattice spacing, (Fig. 3.5). The fact that each polygon is inside a small cube 

makes the calculation very easy, because each vertex of the polygon belongs 

to four polygons since it lies in the edge of the small cube. Therefore to 

calculate x one does not need to know the connections between points. It is 

sufficient to know only how many times the surface ifJ( r) = 0 cuts the edges 

of the small cube and how many cubes it cuts. The number of faces (F) is 

therefore the number of small cubes cut by the surface ifJ(r) = 0, that is the 

cubes with the values of the field ifJ(r) = 1Ji,j,k of different sign at its vertices. 

The number of vertices is given by the number of intersections of the surface 

ifJ(r) = 0 with the edges of the small cubs taken with a weight 1/4, because 

each edge belongs to four cubes. The number of edges (E) is the same as 

the number of vertices, but it has to be taken with a weight 1/2 because the 

polygon edges lie in the faces of small cubes and each face belongs to two 

cubes. 
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The Euler characteristic for the closed surface is related to the Gaussian 

(K) curvature and genus (g) of this surface in the following way (31, 32] 

X= 2~ L KdS = 2(1- g), (3.11) 

where the integral is taken over the surface S. Genus is an integer number 

and tells how many holes are in a closed surface. For example the genus for 

a sphere is zero, for a torus is one and for a pretzel is two. The structures we 

have investigated are infinite and periodic. The genus for an infinite surfaces 

is infinite, of course, but for a finite piece of this surface, in a unite cell, is 

finite and characterize the surface. Due to periodicity the unit cubic cell can 

be treated as a closed surface in four dimensions making calculation of genus 

for the infinite periodic surface fully justified (33]. Therefore the genera of 

the structures were calculated according to: g = 1 - x/2, where x was the 

Euler characteristics for the surface inside a unit cell. 

3.6 Curvatures 

The Gaussian and the mean curvatures present another characteristics of the 

internal surfaces given by if>(r) = 0. In the description of the model we have 

mentioned that some of the structures in the model should be characterized 

by zero mean curvature at every point of the internal interface. Here we 

present the method used to compute Gaussian and mean curvatures. The 

unit normal n( r) at the point r is given by the gradient of the field ¢>( r): 

http://rcin.org.pl



CHAPTER 3. MINIMIZATION OF THE FUNCTIONAL 27 

\7¢(r) 
n(r) = I \7¢(r) 

1

. (3.12) 

The mean (H) curvatures is given by the divergence of the unit vector [34], 

normal to the surface at the point r, n(r) 

(3.13) 

and the Gaussian curvature (K) by the formula [35] 

(3.14) 

In numerical calculations of the curvatures we used the following formulas [34, 

36]: 

H= 
1 B 

2J¢~ + ¢~+¢~A 
(3.15) 

(3.16) 

where A, B , and C are obtained from: 
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( ifJxx - >..) ifJxy ifJxz ifJx 

det 
¢Yyx ( ¢Yyy - >..) ¢Yyz ¢Yy 

= A>..2 + B>.. + C (3.17) 
ifJzx ¢Yzy ( ifJzz - )..) ifJz 

ifJx ¢Yy ifJz 0 

and are given by: 

(3.18) 

B = ifJ; ( ¢Yyy + ifJzz) + ifJ~ ( ifJxx + ifJzz) + ifJ~ ( ifJxx + ¢Yyy) 
(3.19) 

- 2¢Jx¢Yy¢Yxy - 2¢Jx¢Jz¢Yxz - - 2¢Jy¢Yz¢Yyz 

C =ifJ;(ifJ~z- ¢Yyy¢Yzz) + ifJ~(ifJ;z- ifJxxifJzz) + ifJ~(ifJ;y- ¢Jxx¢Yyy) 

+ 2ifJxifJz(ifJxz¢Yyy- ¢Yxy¢Yyz) + 2¢Jx¢Yy(¢Yxy¢Yzz- ifJxzifJyz) (3.20) 

+ 2¢Yy¢Jz( ¢Yyz¢Yxx - ¢Yxy¢Yxz) 

The mean and Gaussian curvatures have to be computed at the points of 

the surface ifJ(r) = 0. These points do not lie exactly at the lattice sites. In 

order to calculate the derivatives of the field ifJ(r) at the point r 0 , for which 

ifJ(r0 ) = 0, according to the formulas (3.4), (3.5), (3.6) the values of the field 

ifJ(r) at the points r 0 + (O,O,h), r 0 + (O,h,O), r 0 + (h,O,O), r 0 + (0,0,2h), 
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ro + (0, 2h, 0), ro + (2h, 0, 0), ro + (0, h, h), r 0 + (h, h, 0), r 0 + (h, 0, h) have to 

be interpolated. The way the interpolation is done is shown in Fig. 3.6. The 

4. 

4. 

4. 

4. 

i-2 i-1 

... ,. 

i+1 i+2 

j+3 

j+2 

j+ 1 

j-1 

j-2 

Figure 3.6: The way of interpolation of derivatives of the field ifJ(r) at the 

surface ifJ(r) = 0. The big black circle represents the point on the surface 

ifJ( r) = 0, the smaller black circles represent the points taken in calculations 

of derivatives. The arrows show the points on the lattice taken to interpolate 

the points between the lattice sites. 

big black circle represents the point r 0 . The smaller black circles represent 

the points taken to calculate the derivatives. The values of the field in these 

points are interpolated from the values of the field at the nearest sites of the 
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lattice indicated by the arrows. The point r 0 is I</>· . ~~~·.k! 1 = !lh away ,,,,k ,,J+l,k 

from the point r = (i, j, k)h. Then the value of the field c/J(r) at e.g. the 

point ro+ (O,h,O) is !lh(c/Ji,j+l,k- cPi,j,k)· The values of the field c/J(r) in the 

remaining points can be calculated in a similar way. 

It is remarkable that the properties characterizing two dimensional surface 

can be inferred from the three dimensional field. 

3. 7 Building initial configuration 

The minimization procedure always requires an initial configuration. Here 

we present the initial configurations used in minimization of structures of 

different symmetries. 

Figure 3.7: The initial configuration used to create structures of symmetry 

of simple cubic phase 

The initial configuration is set up by building the field c/J( r) for a unit cell 
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Figure 3.8: The initial configuration used to create structures of symmetry 

of double diamond phase 

first on a small cubic lattice, N = 3 or 5, analogically to a two component, 

AB, molecular crystal. The value of the field </>(r) = </>i,j,k at the point 

r = ( i, j, k) h on the lattice is set to 1 if in the molecular crystal an atom A is 

in this place, if there is an atom B </>i,j,k is set to -1, if there is an empty place 

cPi,j,k is set to 0. Fig. 3. 7 shows the initial configuration used to build the 

field ¢>( r) for the simple cubic phase unit cell. Filled black circles represent 

atoms of type A and hollow circles represent atoms of type B. In this case all 

sites are occupied by atoms A or B. Fig. 3.8 shows the initial configuration 

used to build the field ifJ(r) for the double diamond phase in 1/8 of the unit 

cell. There are unoccupied sites in this case and in these sites the value 

of the field ¢>( r) = </>i,j,k is set to zero. It would be difficult to present the 

initial configuration for the gyroid phase, because it would require drawing 

the picture of lattice of size N = 9. Such a picture would be unreadable. 
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Therefore we present this configuration schematically in Fig. 3.9. The solid 

and dotted lines show the channels of oil and water. The thick dashed lines 

show the region occupied by rectangular parallelepiped used to build the unit 

cell. The fractions represent the value of z coordinate of an atom in the unit 

cell. In order to better visualize this configuration we present in Fig. 3.10 

the points on the lattice, in a unit cell, with the values of the field ¢J( r) set 

initially to -1 (light grey spheres) and + 1 (dark grey spheres). 

·-------·' I 

I 3/8 5/8: 
I I 

I I 

: 1/8 7/8 : 
,•. ---- --•, 

. . ·- ------. I 

I 7/8 1/8 : 
I I 

I I 

: 5/8 3/8: .·-- ---- -.. I , , , 

Figure 3.9: The schematic representation of the initial configuration used to 

create structures of symmetry of gyroid phase. 

The tetrahedrons drawn in Fig. 3. 7 and Fig. 3.8 with thick solid lines are 

the kaleidoscopic cells used to build the unit cell. The way of constructing 

the unit cell by replicating the kaleidoscopic cell is described in Section 3.8. 

One can easily see now, that in order to build the field in a unit cell on 

a small cubic lattice, N == 3 , it is enough to specify the values of the field 
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Figure 3.10: The initial configuration used to create structures of symmetry 

of gyroid phase. 

¢(r) = ¢i,j,k only at the points inside the tetrahedrons. The values of the field 

at the remaining points can be set by using the symmetry of the structures. 

Thus instead of specifying 33 = 27 values of ¢i,j,k one has to specify these 

values at four point of the cubic lattice for the simple cubic structure. Using 

this method in the case of double diamond structures gives even bigger gain, 

where it is sufficient to set the values of the field at five points in order to 

set up the field for a cubic lattice containing 53 = 125 points. 

The small lattice can be enlarged to desired size by changing the number 

of points from N to 2N - 1 and finding the values of ¢>i,j,k in new lattice 

sites by interpolation. Fig. 3.11 illustrates how the interpolation can be 

done. The hollow circles represent the values of the lattice mapped to the 

enlarged lattice. The values on the edges of the cube, represented by black 
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Figure 3.11: The illustration of interpolation done during enlarging the lattice 

SIZe. 

circles, are calculated by taking 1/2 of the sum of the values on vertices of 

the cube common with these edges. The values at the center of faces of the 

cube, represented by light grey circles, are computed as 1/4 of the sum of 

the values at the edges common with these faces. The value at the center of 

the cube is calculated as 1/6 of the sum of the values at the centers of the 

cube faces. There are of course other possibilities of doing the interpolation. 

The interpolation done to enlarge the lattice has no influence on the results. 

It may only speed up the calculations if it is done appropriately. 

3.8 Symmetry 

We impose on the field c/J(r) the symmetry of the structure we are looking 

for by building up the field inside a unit cubic cell of a smaller polyhedron, 
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replicating it by reflections, translations, and rotations. These polyhedra are 

pictured with thick solid lines in Figs. 3.12, 3.14, 3.13. They are identical 

with the polyhedra described by Coxeter [37] as kaleidoscopic cells. Such a 

procedure not only guarantees that the field has required symmetry but also 

enables substantial reduction of independent variables cPi,j,k in the function 

F( { cPi,j,k} ). 

The structures we have generated can be, in principle, characterized by 

space group symmetry [38, 39, 32] analogically to molecular crystals. The 

simple cubic structure has the space group I m3m, double diamond F43m, 

gyroid I a3d. However this is not always obvious even for the structures 

of simple topology which Bravais lattice should be assign to a given struc

ture [32]. For more complex structures assigning a Bravais lattice becomes 

not clear. Therefore we decided to characterize the symmetry of the struc

tures, we have generated, by including it in the class of symmetry character

istic for the following structures: simple cubic, double diamond, and gyroid. 

All these structures belong to the class of cubic symmetry, thus here we 

generate only the structures belonging to this class. 

The structures having the symmetry of the simple cubic phase are built 

of quadrirectangular tetrahedron replicating it by reflection, Fig. 3.12. The 

faces of the tetrahedron lie in the planes of mirror symmetry. The volume of 

the tetrahedron is 1/48 of the unit cell volume. 

The structures of the double diamond phase symmetry are built in the 

following way. First the unit cell is divided into eight smaller cubes. The field 

in the one of the small cubes is built of trirectangular tetrahedron in the same 
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Figure 3.12: The thin solid lines show the unit cell. The thick solid lines 

show the kaleidoscopic cell used to create structures of simple cubic phase 

symmetry: the quadrirectangular tetrahedron. See Fig. 3. 7. 

Figure 3.13: The thin solid lines show 1/8 of the unit cell. The thick solid 

lines show the kaleidoscopic cell used to create structures of double diamond 

phase symmetry: trirectangular tetrahedron. See Fig. 3.8. 
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way as in the previous case, Fig. 3.13. The volume of the tetrahedron is 1124 

of the unit cell volume. Next the field in the unit cell is build of this cube by 

translations and translations combined with a change of sign of the field from 

¢i,j,k to -¢i,j,k· The cube with the field build of the tetrahedron is translated 

by the following vectors: [LI2, Ll2, 0], [0, Ll2, Ll2], and [LI2, 0, Ll2]. Next 

the sign of the field in the small cube is changed and the cube with such 

a different field is translated by the following vectors: [0, 0, Ll2], [0, Ll2, 0], 

[LI2, 0, 0], and [LI2, Ll2, Ll2]. L in both cases is the unit cell length. Such 

a procedure enables reduction of the unit cell volume by a factor 11 (8 * 24) = 

11192. 

If the ¢(r),-¢(r) symmetry is not applied the trirectangular tetrahedron 

can also be used to create the structures of double diamond phase symmetry. 

In such a case the cube shown in Fig. 3.13 as 118 of the unit cell becomes 

the unit cell. The unit cell volume is therefore reduced by the factor 1124. 

The structures of gyroid phase symmetry are built of rectangular paral

lelopiped, Fig. 3.14. It consists 1116 of the unit cell volume. The parallelop

iped is rotated by 90 degrees according to four fold screw rotation axis parallel 

to z direction, located at the point r = ( L I 4, L I 4, L I 4) and translated in the 

direction of z axis by the vector [ L I 4, 0, 0]. Repeating this operation three 

times fills out 1 I 4 of the unit cell volume with a new rectangular parallelop

iped spanned by a vector [L, Ll2, Ll2] located at the point r = (0, 0, 0). Next 

this new parallelopiped is rotated according to two fold rotation axis parallel 

toy direction and located at the point r = (LI2, 0, Ll2). The parallelopiped 

created by this operation spanned by the vector [L, Ll2, Ll2] located at the 
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X 

Figure 3.14: The thin solid lines show the unit cell. The thick solid lines show 

the kaleidoscopic cell used to create structures of gyroid phase symmetry: the 

parallelepiped. See Figs. 3.9, 3.10. 

point r = (L/2,0,0) is translated by the vector [-L/2,£/2,0]. The sign of 

the field in this parallelopiped is changed from if>i,j,k to -if>i,j,k· After these 

transformation 1/2 of the unit cell is recreated. The other half of the unit cell 

is created of the previous one by rotating it according to two fold rotation 

axis parallel to z direction and located at the point r = (L/2, L/2, 0). 

3.9 Conjugate gradient method 

We use conjugate gradient method [40] to minimize the function F( { if>i,j,k} ). 

Minimization was done with respect to { if>i,j,k} for a given value of the cell 

length L = ( N - 1) h. We have varied h to find the cell length for the 

lowest value of the free energy functional F( { ¢>i,j,k} ). First we have done 
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the calculation for a small lattice size N = 33. The configuration obtained 

for the lattice size N was next used to produce the configuration for the 

bigger lattice size 2N- 1. It was done by interpolation the values of the field 

¢( r) = </Ji,j,k from the small lattice to fill out the empty sites on the bigger 

lattice in the way described in Section 3. 7. 

The conjugate gradient method requires calculation of partial derivatives 

of the function F( { </Ji,j,k}) 

8F( { </Jz,m,n}, ¢h,mi,nJ 

8</Jh,mi,nl 
(3.21) 

where { </Jz,m,n} is the set of all variables of the function F[{ </Ji,j,k}] except 

the variable ¢lJ,m1 ,n1 • This derivative can be, in principle, calculated analyt

ically. However, due to reduction of the unit cell volume (see for example 

Figs. 3.12, 3.13 ) these derivatives would have to be computed in a different 

way in different places of this volume, therefore the analytical calculation 

of the derivatives would require different formulas for these derivatives at 

the vertives, edges and faces. The analytical calculation of derivatives would 

also introduce some inconsistency to our calculations, because we calculate 

all other derivatives numerically. Fortunately, it does not imply the loss of ac

curacy, therefore the derivatives (3.21) are approximated in our calculations 

by 

F( { </Jz,m,n}, </Jii,mi,ni + tl¢)- F( { </Jz,m,n}, ¢h,m1,nJ 
tl¢ 

(3.22) 
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where ~¢ < < cPi,j,k· It is extremally important to code this part of the 

program efficiently. It may result in speeding up the program by few orders 

of magnitude if the number of variables cPi,j,k is large. It is worth to note 

that the value of the expression (3.22) depends only on the values of ¢LJ,m1 ,n
1 

its near neighbors and next near neighbors. Thus instead of calculating the 

values of the function F( { cPi,j,k}) in all lattice points it is sufficient to calculate 

these values only in a few points. 

-0.05 

-0.10 

-0.15 

-0.20 
5917 33 65 129 

N 

Figure 3.15: The free energy per unit volume for the simple cubic structure, 

calculated from the functional (2.9) for the parameters fo = 0 and g0 = 0 as 

a function of the lattice size. 

The solution for the discretized model of a continuous functional is ob-

tained with certain accuracy. The accuracy depends on the value of the 
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Figure 3.16: The normalized surface area per face of the unit cell of </J(r) = 0 

for the simple cubic structure, calculated from the functional (2.9) for the 

parameters fo = 0 and g0 = 0 as a function of the lattice size. 
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lattice spacing h and the number of points N. We have checked the accuracy 

of our results by calculating the free energy and the surface area of¢( r) == 0 

for a few different sizes of the lattice. Fig. 3.15 shows that the free energy 

is very sensitive for the lattice size. We used in our calculations N == 129 

which results in over 2 million points per unit cell. This value seems to give 

sufficient accuracy for the calculation of the free energy. For the calculation 

of the surface area of ¢(r) == 0 smaller lattice can be used to obtain high 

accuracy. Fig. 3.16 shows that the values of the surface area of the internal 

interface change only slightly for N == 33, 65, 129. 
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Chapter 4 

Results 

We have generated lots of unknown structures as well as few known. Among 

the generated surfaces are the triply periodic minimal surfaces. These sur

faces have been considered paradigms of the internal interface in the ordered 

phases formed in the mixtures containing surfactant. We describe these sur

faces in Section 4.1. To the best of our knowledge the results we present 

are the first ones showing that a triply periodic minimal surface can be the 

solution of a physical model. In Section 4.2 we present unknown surfaces of 

low genus resulted from our model. We speculate that some of these surfaces 

can be new triply periodic minimal surfaces. The surfaces of high genus are 

presented in Section 4.3. The pictures of these surfaces strongly resemble the 

pictures of microemulsion taken during freeze fracture microscopy studies. In 

Section 4.4 we describe new type of structures, the multiply continuous 

ones. Our discovery calls for new experiments confirming or rejecting the 

existence of such structures in real systems (so far only bicontinuous struc-

43 
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tures have been considered). The phase diagram of the model is presented 

in Section 4.5. 

4.1 Minimal Surfaces 

The following simple experiment can be used for the direct visualization of a 

simple patch of minimal surface: Take a metal non-planar frame and immerse 

it in the water solution of soap. The soap bubble which forms on this frame 

assumes the shape that minimizes its surface free energy associated with the 

surface tension and consequently it forms a surface of least area. Thus these 

surfaces are called minimal surfaces. Such experiments can be traced back 

to Leonardo da Vinci but in fact the detailed studies of this type were done 

and published by Plateau (41] and hence later the problem of surface of least 

area spanning a given loop has been named the Plateau problem. 

The history of physics and mathematics of minimal surfaces ran in par

allel. Lagrange in 1761 (before Plateau) derived the equations for a surface 

of least area that is equivalent to the condition of vanishing mean curva

ture at every point on the surface. The representation of these surfaces in 

terms of harmonic functions was given by Weierstrass in 1866 and this rep

resentation has served many researchers up to date for their generations. A 

new qualitative insight into the mathematics of the problem was obtained by 

Schwarz and his student Neovius, who showed that simple patches of mini

mal surfaces can be put together to give smooth periodic three dimensional 

structures, which are called now triply periodic minimal surfaces (TPMS) 
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or sometimes infinite periodic minimal surfaces (IPMS). They identified five 

phases three of which were of the cubic symmetry i.e. P, D and C(P). Plateau 

and Schwarz in fact entertained scientific contacts, but none of them had en

visaged the role of these surfaces as physical interfaces. Rediscovery of the 

problem is due to Schoen [39], who identified 4 new surfaces of cubic sym

metry(G, I-WP, F-RD and O,C-TO). In 1976 Scriven [42] hypothesized that 

such surfaces could be used for the description of physical interfaces appear

ing in ternary mixtures of water, oil and surfactants. In 1967/68 Luzzati et 

al [43, 44, 45, 46] observed this type of ordering in the lecithin-water and 

lipid-water systems. One of the phases observed by them was the phase of 

the same symmetry as the G Schoen minimal surface. It seems that both 

Schoen's and Luzzati discovery were made independently. In fact this phase 

appears to be very common in biological systems. Another example of such 

surfaces is found in the system of diblock copolymers, commercially impor

tant materials for the production of plastics. AB diblock copolymer consists 

of two macromolecules chemically bonded together. At low temperatures the 

system forms ordered A-rich and B-rich domains, with the points of bondage 

at the interface between the domains. In 1988 Thomas et al [4 7] observed 

that the PS/PI (polystyrene/polyisoprene) diblock copolymer forms a struc

ture of the same symmetry as the D (diamond) Schwarz surface and argued 

on the basis of the relative volume fraction of PS and PI component that the 

resulting physical interface must be the surface of constant mean curvature 

at every point of the surface. Such surface belongs to the family of minimal 

surfaces [39, 32, 48). 
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Surfaces are ubiquitous. Even in the ionic crystals one can imagine a 

periodic zero potential surfaces (POPS in short), having same symmetry as 

the crystal [49]. Although, POPS do not have usually the same geometry as 

minimal surfaces (their mean curvature varies along the surface), nonetheless 

they share the same topology (genus etc) and symmetry as the latter. 

The minimal surfaces are usually described in terms of Weierstrass inte

gral equations. The Weierstrass representation gives the coordinates (x, y, z) 

on a minimal surface of the point represented by w on the complex plane [50] 

1
Wl 

x = Re (1- w2 )R(w)dw, 
wo 

1
WI 

y = Re i(l + w2 )R(w)dw, 
wo 

( 4.1) 

1
Wl 

z = Re 2wR(w)dw, 
wo 

where R( w) is the Weierstrass characteristic function for the surface, Re 

stands for "real part", w = Wa + iwb and i = .J=f. When the function R( w) 

is replaced with R(w)ei0 the surface described by the function R(w) is trans

formed into another surface called the adjoint surface. Such transformation 

is called the Bonnet transformation [51] and () is known as the Bonnet angle. 

The Bonnet transformation preserves the Gaussian and mean curvatures. 
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4.1.1 Schwarz surfaces D, P and Schoen surface G 

The Schwarz primitive surface P and Schoen gyroid surface G are related 

to the D-surface by the Bonnet transformation: the Bonnet angle for the 

P-surface is 90° and for the G-surface is 38.015°. The Weierstrass function 

for the fundamental element of the surfaces D is given by [50, 52] 

(4.2) 

with an integration domain given by the points around the origin limited by 

4 circles with radius J2 and centers at ±J2, ±i.J2. 

Here we use our model to generate surfaces. The fact that the P,D,G 

surfaces are adjoint means that the histograms of the Gaussian curvature for 

these surfaces should be the same. In fact the histograms look very similar 

(see Figs. 4.6, 4.10, 4.14), the small differences result form the numerical 

accuracy. The mean curvature of the minimal surface is zero at every point, 

thus its histogram should be a single infinitely sharp peak at H = 0. Here 

it is smeared (see Figs. 4.7, 4.11, 4.15) due to numerical accuracy. In fact it 

Eerves as a good estimate of the errors for curvatures. 

It is interesting that the value of the free energy in our model (2.9) for each 

of these structures is the lowest for all the structures of given symmetry, i.e. 

among all structures of the symmetry of gyroid phase G, this phase has the 

lowest free energy. These phases are generated independently of the initial 

configuration, provided that the unit cell length is set close to the minimal 
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length. If the cell length is taken close to multiple length of of the unit cell 

then multiple images of a given structure are created. 

The fact that the G and D structures are the most stable among structures 

of a given symmetry suggest that they can be found in real system. In fact 

the phases, diamond D and gyroid G, have been discovered in real systems 

in diblock copolymers [47, 53, 54, 55, 56]. However, the discovery of the 

gyroid phase, after the diamond phase had been found real systems, was not 

straighforward. It took the researchech about six years to find the gyroid 

phase. 

Figure 4.1: Schwarz diamond surfaceD generated from the functional (2.9). 

The unit cell. Off front view. 
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Figure 4.2: Schwarz diamond surfaceD generated from the functional (2.9). 

The unit cell. Off diagonal view . 
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Figure 4.3: Schwarz diamond D surface generated from the functional (2.9) 

1/8 of the unit cell. Off front view. 
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Figure 4.4: Schwarz diamond surface D generated from the functional (2.9) 

The middle element of the unit cell. Off diagonal view. 

Figure 4.5: Schwarz diamond surface D generated from the functional (2.9) 

The middle element of the unit cell. Off front view. 

http://rcin.org.pl



CHAPTER 4. RESULTS 

0.20 

0.10 -
,.....--

0.00 
-0.30 

,.....--

I 
,.....--

~ 

I 

-0.20 

I 

-
-~-,.....-- ~ 

II 

-0.10 0.00 
K 

Figure 4.6: The histogram of the Gaussian curvature for the surface D 
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Figure 4. 7: The histogram of the mean curvature for the surface D 
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Figure 4.8: Schwarz surface P generated from the functional (2.9). The unit 

cell. Off front view. 

.. ·· - .... 

··~···~·~:./1 

/;' 

•.... / 
... .._ . ...._ ___ _ 

---·-··-··········· / 

Figure 4.9: Schwarz primitive surface P generated from the functional (2.9) 

1/8 of the unit cell. Off front view. 
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Figure 4.10: The histogram of the Gaussian curvature for the surface P 
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Figure 4.11: The histogram of the mean curvature for the surface P 
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·· . - ................... . 

Figure 4.12: Schoen gyroid surface G generated from the functional (2.9) 

The unit cell. Off front view. 

Figure 4.13: Schoen gyroid surface G generated from the functional (2.9) 

The unit cell. Off diagonal view. 
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Figure 4.14: The histogram of the Gaussian curvature for the surface G 
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Figure 4.15: The histogram of the mean curvature for the surface G 
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4.1.2 Schoen 1-WP and O,C-TO minimal surface 

The I-WP surface was discovered by Schoen [39]. He built the models of the 

surface, identified its space group as I m3m. That is why the letter I is in 

the first part of the name given by him to this surface. The W P stands for 

"wrapped package" because of the resemblance of finite portions of the graph 

to the arrangement of string on a simply wrapped package. The Weierstrass 

characteristic function for I-WP surface is [51, 57]: 

(4.3) 

The I-WP surface was found in star block co-polymers [58]. The results of our 

study suggest that it can also be found in the ternary surfactant mixtures. 

The O,C-TO surface was discovered by Schoen [39]. The Weierstrass 

function for this surface is not known and no other information except genus 

and the symmetry are described in the literature. Here we report for the first 

time the volume fraction of the two subvolumes divided by the OCTO surface, 

see Table 4.1. No body so far has shown the existence of this structure in real 

systems. The surface obtained from the functional (2.9) strongly resembles 

the one described by Schoen. The histogram of the mean curvature suggest 

that this surface can be minimal. However, this is the only structure which 

cannot be minimized with respect to the cell length. For all structures except 

this one we were able to find the minimal cell length, i.e. varying the cell 

length we were able to find such length for which the free energy density of 
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Figure 4.16: Schoen surface 1-WP generated from the functional (2.9) The 

unit cell. Off front view. 
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Fi~re 4.17: Schoen surface 1-WP generated from the functional (2.9) 1/8 of 

th( unit cell. Off front view. 
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Figure 4.18: The histogram of the mean curvature for the surface 1-WP 
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Figure 4.19: The histogram of the Gaussian curvature for the surface 1-WP 
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the functional (2.9) is in minimum. The O,C-TO structure collapses to 1-WP 

when the cell length is varied. Such a behavior suggests that this structure 

is very unstable and finding it in real systems is problematic. 

Figure 4.20: Schoen surface O,C-TO generated from the functional (2.9) The 

unit cell. Off front view. 
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Figure 4.21: Schoen surface O,C-TO generated from the functional (2.9) 1/8 

of the unit cell. Off front view. 
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Figure 4.22: The histogram of the mean curvature for the surface O,C-TO 
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Figure 4.23: The histogram of the Gaussian curvature for the surface O,C-TO 
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Name Cell Energy Surface Genus Volume 

Length Area Fraction 

p 7.88 -0.181 2.3453 3 0.5 

[2.3451068] 

D 12.56 -0.188 3.8387 9 0.5 

[3.8377862] 

I-WP 11.78 -0.180 3.4640 7 0.533 

[3.4646016] 

G 10.08 -0.190 3.0919 5 0.5 

O,C-TO 14.68 -0.162 3.6805 10 0.535 

Table 4.1: The geometrical properties of the known minimal surfaces ob

tained from the functional (2.9), for the parameters fo = 0.0, g0 = -3.0. In 

the square brackets are given the exact values found in the literature. Surface 

area S, in the table, is the normalized per face of the unit cube L2 surface 

areaS of the interface in the unit cell, S =Sf L2
, L = (N- 1)h. The energy 

is given per unit volume. 
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4.2 Low genus surfaces 

In this section we present several examples of low genus surfaces of different 

symmetry: BFY, CPD, GP, DDU, GM. Very interesting are the BFY and 

CPD surface. They are of the same symmetry as the Schwarz P surface. The 

BFY surface can be generated from an arbitrary initial configuration if the 

length of the unit cell is set close to the equilibrium length, i.e. the length 

for the minimum of the functional (2.9). The pattern cut out on the face of 

the unit cell for BFY surface resembles "butterfly" wings. That is why we 

have given the symbol BFY to this surface as a abbreviation for "butterfly". 

It is remarkable that the volume fraction for BFY structure is 0.5. 

The volume fraction for the CPD is not equal to 0.5, as it is In the 

case of I-WP and O,C-TO structures. CPD surface is very similar to the 

minimal surface discovered by Neovius (39, 32]. The difference is such that 

CPD surface has a hole inside a unit cell, therefore its genus is bigger. The 

histograms of the mean curvature for BFY and CPD surfaces suggest that 

they can be minimal, Figs 4.26, 4.30. 

Very interesting histogram has the GP surface, Fig. 4.35. This is the 

structure of gyroid phase symmetry. The histogram of the mean curvature 

for G P surface is peaked at H = 0 as it is for minimal surfaces, but it has 

also two symmetric peaks at H i= 0. It rather cannot be attributed to the 

numerical errors, because this surface has low genus (g = 21) and thus should 

be calculated with high accuracy. 
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Figure 4.24: BFY surface generated from the functional (2.9). The unit cell. 

Off front view. 
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Figure 4.25: BFY surface generated from the functional (2.9). 1/8 of the 

unit cell. Off front view. 
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Figure 4.26: The histogram of the mean curvature for the surface BFY 
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Figure 4.27: The histogram of the Gaussian curvature for the surface BFY 
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Figure 4.28: CPD surface generated from the functional (2.9). The unit cell. 

Off front view. 
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Figure 4.29: CPD surface generated from the functional (2.9). 1/8 of the 

unit cell. Off front view. 
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Figure 4.30: The histogram of the mean curvature for the surface CPD 
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Figure 4.31: The histogram of the Gaussian curvature for the surface CPD 
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Figure 4.32: GP surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.33: GP surface generated from the functional (2.9). The unit cell. 

Off diagonal view. 
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Figure 4.34: The histogram of the Gaussian curvature for the surface G P 
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Figure 4.35: The histogram of the mean curvature for the surface GP 
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The structures G M and DDU are generated of trirectangular tetrahedron, 

see Fig. 3.13, i.e. in a similar way as the double diamond phase. The differ

ence is such that 1/8 of the unit cell for the double diamond phase is a unit 

cell for the structures DDU and GM. The topology of the DDU structure is 

similar to the topology of the double diamond D structure. It can be seen 

by comparing the unit cell for DDU, Fig. 4.37, and the middle element of 

the double diamond structure D, Fig. 4.4. Thus it is rather unlikely that 

the DDU surface is minimal. This is also confirmed by the histogram of the 

mean curvature, Fig. 4.40. Although the DDU surface is not minimal it does 

not mean that the DDU structure cannot be found in real systems. In the 

scattering experiments one can investigate the symmetries of the structures, 

and on such basis one can guess the properties of the surfaces found in a given 

structure. The DDU structure was not known so far, and nobody considered 

its existence in real systems. 

The G M structure is a combination of the Schwarz P surface, Fig. 4.8, 

and DDU surface. This surface as the DDU one also should not be minimal, 

see Fig. 4.46 The structures DDU and G M are not symmetric, i.e the volume 

fraction of oil and water is not equal to 0.5. The cubic cell for GM and DDU 

contains a few not connected pieces of the surface ifJ( r) = 0. However the 

whole surface is continuous. We have collected 8 cubic unit cells and shown 

in Figs. 4.38, 4.39, 4.44, 4.45 to illustrate how the infinite continuous triply 

periodic surface is built of the cubic unit cell. 

Whether new surfaces we have generated are minimal or not is an inter

esting question. On the basis of numerical analysis we can speculate that 
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Figure 4.36: DDU surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.37: DDU surface generated from the functional (2.9). The unit cell. 

Off diagonal view. 
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Figure 4.38: DDU surface generated from the functional (2.9). 8 unit cells. 

Off front view. 

Figure 4.39: DDU surface generated from the functional (2.9). 8 unit cell. 

Off diagonal view. 
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Figure 4.40: The histogram of the mean curvature for the surface DDU 
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Figure 4.41: The histogram of the Gaussian curvature for the surface DDU 
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Figure 4.42: GM surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.43: GM surface generated from the functional (2.9). The unit cell. 

Off diagonal view. 
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Figure 4.44: GM surface generated from the functional (2.9). 8 unit cells. 

Off front view. 

Figure 4.45: GM surface generated from the functional (2.9). 8 unit cells. 

Off diagonal view. 
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Figure 4.46: The histogram of the mean curvature for the surface GM 
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Figure 4.47: The histogram of the Gaussian curvature for the surface GM 
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Name Cell Energy Surface Genus Volume 

Length Area Fraction 

CPD 15.2 -0.174 4.3588 14 0.515 

BFY 16.7 -0.180 4.9641 19 0.5 

DDU 23.04 -0.181 3.2972 3 0.529 

GM 24.00 -0.176 3.4925 6 0.520 

GP 18.32 -0.183 5.4840 21 0.5 

Table 4.2: The geometrical properties of low genus surfaces obtained from 

the functional (2.9), for the parameters fo = 0.0, g0 = -3.0. Surface areaS, 

in the table, is the normalized per face of the unit cube L2 surface area S of 

the interface in the unit cell, S =Sf L2
, L = (N- 1)h. The energy is given 

per unit volume. 

many of these surfaces are minimal. However, the definite answer is left to 

mathematicians, which have investigated the problem of minimal surfaces for 

over 100 years. We are more interested in the physics of the problem and 

in general in obtaining new undiscovered periodic surfaces (not necessarily 

minimal). Certainly not all of the generated surfaces are minimal e.g. GP, 

DDU, GM (see the mean curvature histograms). 
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4.3 High genus embedded periodic surfaces 

The high genus surfaces are most easily generated for the values of parame

ters fo and g0 in (2.9) taken near the boundary of lamellar and microemulsion 

phase and for the bigger unit cell length, L = (N- 1)h, than the length of 

structures of low genus. This suggest the the microemulsion can be con

sidered as a bicontinuous structure of high genus surface. These are only 

speculations based on theoretical studies. New experiments are needed to 

check these speculations. We hope that our results will help experimentalists 

to design such experiments. 

We present in this chapter several examples of high genus surfaces of 

different symmetry. The structure CD has the symmetry of double diamond 

phase, the structure SCN1 has the symmetry of the simple cubic phase, 

and the structures GX1,GX2, GX3, GX5, GX6, GX7 have the gyroid phase 

symmetry. 

The CD structure is especially interesting, because it has the same sym

metry as the Schwartz diamond D phase. It has been generated in the same 

way as the diamond D phase, that is we have reduced the unit cell by a factor 

1/192. Having done such a reduction we hardly expected the possibility of 

generation of a new surface. In fact, enlarging the length of the cubic cell 

we usually have got the multiple replicas of the diamond D structure, except 

the case when CD structure was generated. 
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Figure 4.48: CD surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.49: CD surface generated from the functional (2.9). The unit cell. 

Off diagonal view. 
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Figure 4.50: CD surface generated from the functional (2.9). 1/8 of the unit 

cell. Off front view. 

Figure 4.51: CD surface generated from the functional (2.9). 1/8 of the unit 

cell. Off diagonal view. 
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Figure 4.52: The histogram of the mean curvature for the surface CD 
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Figure 4.53: The histogram of the Gaussian curvature for the surface CD 
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The SCNl surface is similar to BFY surface, but because its unit cell 

length is larger the surface is more complex. Comparison of these surfaces 

can be used as an example how the functional (2.9) keeps the size of water 

and oil region the same for different structures. For the bigger cell length 

the surface dividing the oil and water region is folded few times in order to 

keep the sizes of the oil and water region resulted from the functional (2.9) 

for a given values of the parameters / 0 , g0 • It is amazing that the surface, 

representing the layer of surfactant in the model (2.9), is folded in such a 

way that its mean curvature tends to be zero. 

The wealth of the high genus structures, even for the same symmetry, 

suggest the possibility of coexistence of these structures. We can speculate 

on the structure of microemulsion on the basis of these results. One can 

imagine that microemulsion is locally ordered like the phases we describe. 

Thus it is structured but globally disordered. 

http://rcin.org.pl



83 

..... : -··~ .......................... _ 

............... ___ _ 

Figure 4.54: SCNl surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.55: SCNl surface generated from the functional (2.9). The unit cell. 

Off diagonal view. 
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Figure 4.56: SCNl surface generated from the functional (2.9). 1/8 of the 

unit cell. Off front view. 

-, ..... , ' / 
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Figure 4.57: SCNl surface generated from the functional (2.9). 1/8 of the 

unit cell. Off diagonal view. 
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Figure 4.58: The histogram of the Gaussian curvature for the surface SCNl 
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Figure 4.59: The histogram of the mean curvature for the surface SCNl 
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We have generated high genus surfaces of vanishing curvatures. The 

existence of such surfaces in real systems was questioned. The researches 

argued that it is impossible to build high genus periodic surface because of 

large curvatures, which could not be accommodated by the displacement of 

surfactant molecules at the surface (59]. As we can see from Table 4.3 high 

genus surfaces have large sizes of the unit cell and therefore their curvatures 

(see Gaussian curvatures) are similar in magnitude to those of surfaces of low 

genus. Therefore the argument against the existence of these surfaces does 

not hold. 

The pictures of the high genus structures, especially the gyroid ones, 

strongly resemble the pictures of microemulsion taken during freeze fracture 

microscopy studies [5, 8]. The gyroid high genus surfaces have in general 

lower free energy that the surfaces of other symmetries. We can speculate 

that this symmetry would be preferred in real systems. In fact the Schoen 

gyroid G minimal surface is the most common in nature among the known 

minimal surfaces. The gyroid surfaces do not have planes of symmetry. This 

may cause easier adaptation of their shape to the structures encountered in 

nature, like diblock copolymers, lipid-water solution or surfactant mixtures. 
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Figure 4.60: GXl surface. The unit cell. Off front view. 

Figure 4.61: GXl surface. The unit cell. Off diagonal view. 
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Figure 4.62: The histogram of the mean curvature for the surface GXl 
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Figure 4.63: The histogram of the Gaussian curvature for the surface GXl 
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Figure 4.64: GX2 surface. The unit cell. Off front view. 

Figure 4.65: GX2 surface. The unit cell. Off diagonal view. 
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Figure 4.66: The histogram of the mean curvature for the surface GX2 
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Figure 4.67: The histogram of the Gaussian curvature for the surface GX2 
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Figure 4.68: GX3 surface. The unit cell. Off front view. 

Figure 4.69: GX3 surface. The unit cell. Off diagonal view. 
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Figure 4. 70: The histogram of the mean curvature for the surface GX3 
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Figure 4.71: The histogram of the Gaussian curvature for the surface GX3 
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The properties of high genus surfaces are calculated with lower accuracy 

than the properties of those of low genus ones. It is so because we have used 

the same size of the lattice, N, for the unit cell. This results in bigger lattice 

spacing, h. For high genus structures more surface has to be accommodated 

in the unit cell, therefore the calculation of the derivatives is less accurate. 

The biggest errors are in calculations of the curvatures, because all pos

sible approximations are accommodated in these calculations. First is the 

approximation used to find the surface ¢(r) = 0. The location of this surface 

has to be linearly interpolated between the lattice sites. The folmulas for 

the mean and Gaussian curvature are also numerical approximations of the 

analytic expressions. The derivatives used in calculations are also numeri

cal approximations. The points used to calculate the derivatives have to be 

interpolated between the lattice sites. Finally the discretization and mini

mization of the functional also introduces some errors. It is amazing that, 

in spite of all those sources of errors, the curvatures are calculated with such 

a high accuracy, which can be seen looking at the histograms of the mean 

curvature for P,D,G minimal surfaces. 
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Figure 4. 72: GX4 surface. The unit cell. Off front view. 

Figure 4. 73: GX4 surface. The unit cell. Off diagonal view. 
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Figure 4. 7 4: The histogram of the mean curvature for the surface GX4 
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Figure 4.75: The histogram of the Gaussian curvature for the surface GX4 
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Figure 4. 76: GX5 surface. The unit cell. Off front view. 

Figure 4. 77: GX5 surface. The unit cell. Off diagonal view. 
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Figure 4. 78: The histogram of the mean curvature for the surface GX5 
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Figure 4. 79: The histogram of the Gaussian curvature for the surface GX5 
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Figure 4.80: GX6 surface. The unit cell. Off front view. 

Figure 4.81: GX6 surface. The unit cell. Off diagonal view. 
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Figure 4.82: The histogram of the mean curvature for the surface GX6 
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Figure 4.83: The histogram of the Gaussian curvature for the surface GX6 
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Name Cell Energy Surface Genus 

Length Area 

SCN1 25.6 -0.178 7.4288 45 

CD 28.88 -0.167 8.2257 73 

GX1 25.36 -0.182 7.622 53 

GX2 26.48 -0.183 8.081 69 

GX3 31.72 -0.181 9.657 109 

GX4 26.16 -0.186 7.907 53 

GX5 34.40 -0.178 10.519 157 

GX6 41.32 -0.186 12.459 141 

Table 4.3: The geometrical properties of high genus surfaces obtained from 

the functional (2.9), for the parameters / 0 = 0.0, g0 = -3.0. Surface areaS, 

in the table, is the normalized per face of the unit cube £ 2 surface area S of 

the interface in the unit cell, S = S /£2
, L = ( N - 1) h. The energy is given 

per unit volume. The volume fraction for all structures is 0.5. 
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4.4 Multiply continuous embedded periodic 

surfaces 

The possibility of the existence of multiply continuous structures was never 

discussed so far to the best of our knowledge. Although the idea seems to be 

trivial nobody has considered it. So far only bicontinuous phases have been 

considered both in the theoretical and experimental studies. In the bicon

tinuous structure the single surface separates the volume into two disjoint 

subvolumes. In our phases there is more than one periodic surface which 

disconnects the volume into three or more disjoint subvolumes.The experi

mental results do not rule out the existence of such structures, contrary the 

experiment on the electrical conductivity support the idea [5, 6]. It would be 

very interesting to design an experiment answering the question whether the 

structures considered so far as bicontinuous are only bicontinuous or maybe 

they are multiply continuous. 

The multiply continuous structures are most easily generated for the val

ues of parameters fo and g0 in (2.9) taken near the boundary of lamellar and 

water (oil) phase and for the bigger unit cell length, L = (N -1)h, than the 

length of structures of low genus. 

We present the multiply continuous structures of the simple cubic phase 

symmetry (SCL1,SCL2, Figs. 4.84,4.86) and of the gyroid phase symmetry 

(GL1,GL2 Figs. 4.88,4.90). The SCL1 structure is triply continuous, the 

GL1,SCL2 are four-tuply continuous, and GL2 is six-tuply continuous. For 

bigger size of the unit cell one is able to generate the structures n-tuply 
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continuous. It is remarkable that the volume fraction of oil and water is 0.5 

for all these structures. The genera for all surfaces in a given structure are the 

same. Other properties of the multiply continuous structures are described 

in Table 4.4. 

The SCL1 surface is especially interesting. Although the outer and inner 

surface looks different, see Fig. 4.84, they have the same surface area, see 

Table 4.4. In fact they are built of the same piece of the surface. The picture 

of 1/8 of the unit cell, see Fig. 4.85, explains how two different periodic 

surfaces can be built of the same surface patch. 

The SCL2 structure is composed of three different embedded periodic 

surfaces, Figs. 4.86,4.87. The middle surface is the Schwarz minimal surface 

P, its normalized surface area of these surfaces are the same within the nu

merical errors, see Tables 4.4, 4.1. Similar, the middle phase surface in GL1 

structure is the Schoen minimal surface G. 

The GL2 structure suggest that one can generate arbitrary n-tuply con

tinuous structures. It is only necessary to set the cell length sufficiently 

large. We have not attempted generation of such structures because, due to 

the limits imposed by computer memory and speed of processor, the lattice 

spacing would be too big for a given size of the lattice to obtain reasonable 

accuracy. 
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Figure 4.84: SCL1 surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.85: SCL1 surface generated from the functional (2.9). 1/8 of the 

unit cell. Off front view. 
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Figure 4.86: SCL2 surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.87: SCL2 surface generated from the functional (2.9). 1/8 of the 

unit cell. Off front view. 

http://rcin.org.pl



105 

Figure 4.88: GLl surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.89: GLl surface generated from the functional (2.9). The unit cell. 

Off diagonal view. 

http://rcin.org.pl



106 

Figure 4.90: GL2 surface generated from the functional (2.9). The unit cell. 

Off front view. 

Figure 4.91: GL2 surface generated from the functional (2.9). The diagonal 

cell. Off front view. 
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Name Cell Energy Surface Genus 

Length Area 

SCL1 14.96 -0.175 4.090 3 

1 2.045 

2 2.045 

SCL2 21.14 -0.178 5.780 3 

1 1.716 

2 2.348 

3 1.716 

GL1 26.32 -0.187 7.546 5 

1 2.226 

2 3.096 

3 2.226 

GL2 41.16 -0.185 11.887 5 

1 1.659 

2 2.736 

3 3.097 

4 2.736 

5 1.659 

Table 4.4: The geometrical properties of multiply continuous structures ob

tained from the functional (2.9), for the parameters / 0 = 0.0, g0 = -3.0. 

Surface area S, in the table, is the normalized per face of the unit cube L2 

surface areaS of the interface in the unit cell, S =Sf L2
, L = (N -1)h. The 

energy is given per unit volume. The volume fraction for all surfaces is 0.5. 

The genus is given for any single surface in the structure. 
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4.5 Stability of different phases in the model 

We have investigated many bicontinuous phases of different symmetries, gen

era and dimensions of the unit cell. The bicontinuous phase with the lowest 

value of the free energy turned out to be the gyroid, but the only stable 

liquid crystalline phase in this model is the lamellar phase. Fig. 4.92 shows 

the plot of the free energy as the function of the parameter fo for the lamel

lar and gyroid phase. The phase diagram for the model (2.9), in mean-field 

>. 
0> 
:t..... 
Q) 
c 
w 

-0.20 

-0.40 

-0.60 
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Figure 4.92: The free energy per unit volume for the lamellar phase ( dashed 

line ) and gyroid phase (solid line ) for the model (2.9). The parameter go 

was equal to -3.0. 

approximation, calculated by Gompper and Zschocke [21] and checked here 

is shown in Fig. 4. 93. Other bicontinuous phases behave in the same way 
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Figure 4.93: The phase diagram for the model (2.9) 

as the gyroid and lamellar. The value of the free energy in the vicinity of 

microemulsion boundary converges to the value of the free energy for the 

microemulsion. 

We have also studied the stability of bicontinuous phases for different 

function describing surfactant, g[cf>(r)]. We have used the following form of 

g[cf>(r)] : 

(4.4) 

We have expected that this form of g[cf>(r)] would make the interface between 

oil and water sharper and therefore it would lower the free energy. The in-
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terface indeed was sharper as we expected, but the unit cell length decreased 

also. This resulted in higher values of the free energy than before and all hi

continuous phases were metastable as in the previous case. It might suggest 

that one order parameter functional is not sufficient to describe the behavior 

of ordered phases. Howver, it has been observed recently [60] that one may 

expect the stabilization of the gyroid phase in Monte Carlo simulation. Thus 

the fluctuations can play a significant role in the stabilization of bicontinuous 

phases. We note that in the case of multi-parameter Landau models intro

duced in recent years [5] we may expect the stabilization of the various phases 

which in the one order parameter Landau model are only metastable [25]. 

Our current results are a very good starting point for investigation of the 

stability of bicontinuous phases in multi-parameter Landau functionals. 
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Chapter 5 

Summary and Conclusion 

The method of solving the functional (2.9), we have applied, allowed us to 

make several discoveries. We have discovered that the solutions of 

the physical model of microemulsion can be triply periodic minimal 

surfaces. To the best of our knowledge this is the first such discovery. So 

far the triply periodic minimal surfaces were generated from the Weirstrass 

representation or from the definition of the mean curvature. 

We have discovered many triply periodic surfaces of non-positive Gaus

sian curvature. Some of them may be new minimal surfaces. Especially 

interesting are the surfaces of high genus. The existence of such surfaces 

may suggest that microemulsion can be such a surface of very high genus. 

For over one hundred years mathematicians have discovered a few infinite em

bedded periodic minimal surfaces of cubic symmetry. We have discovered, 

by using our method, several new infinite periodic surfaces of cubic 

symmetry, which are very likly to be miminal. The problem of peridic 

111 
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surfaces is being rediscovered over recent years because of their importance 

in physich and biology. We are convinced that this work will help to make 

other workers signifacant progress in this area. 

We have discovered, never considered yet, multiply continuous 

cubic structures formed in ternary mixtures of water, oil and surfactant. 

The idea of multiple continuity of cubic structures is the novel one. Our 

results call for new experimental techniques which could be used to discern 

between bicontinuous and multiply continuous structures. We hope that 

these new structures will soon be discovered in real systems. 

Very often to see means to understand. We have not only calculated 

the properties of many cubic structures, investigated their stability, but also 

presented the pictures of new structures. We hope that this will help other 

workers better understand the phenomena in ternary liquid mixtures, diblock 

copolymers, and biological systems. 

We have presented the general method for the generation of pe

riodic surfaces of non-positive Gaussian curvature. This method can 

be well applied by physicists working in soft condensed matter, mathemati

cians working in topology, biologists and crystallographers. We are positive 

that the richness of the method is far from being explored by our work. 

The answers we have given in this work do not close the problem we have 

investigated. Contrary, our results open new area to investigate by other 

workers, can be a pointer for experimentalists to design new experiments. 

Our results are also an ideal starting point, for theoreticians, to pursue the 

studies of Landau-Ginzburg models with more than one order parameter 
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field [25], to investigate dynamical properties of complex systems [61, 62] 

or to study complex fluids in confined geometries [22]. These are only a few 

benefits of this work and we are convinced that this is not a complete list. 
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Streszczenie pracy doktorskiej 

"Statystyczna teo ria mieszanin zawierajqcych surfaktanty" 

We wst~pie opisane zostaly podstawowe wlasnosci mieszanin zawierajq,ych 

surfaktant. Celem pracy bylo zbadanie mezoskopowej struktury takich mie

szanin, a w szczegulnosci powierzchni tworzonych przez czq,steczki surfak-

tantu na granicy faz wody i oleju 

W rozdziale drugim opisano model funkcjonalu Landaua-Ginzburga za

proponowany do opisu powierzchni w badanych mieszaninach. u zyty zostal 

funkcjonal Landaua-Ginzburga z jednym skalarnym parametrem uporzq,dkowania 

reprezentujq,cym r6znic~ koncentracji wody i oleju. 

W rozdziale trzecim zostalopisany spos6b rozwiazania funkcjonalu Landaua

Ginzburga oraz spos6b obliczania wielkosci charakteryzujq,cych powierzchnie 

tworzone przez czq,steczki surfaktantu. 

W rozdziale piq,tym przedstawiono otrzymane wyniki. Zostal zapropo-

nowany nowy spos6b genrowania powierzchni o ujemnej krzywiznie Gaus

sowskiej. Zostalo odkryte, ze rozwiazaniami modelu Landaua-Ginzburga 

opisujacego mieszaniny zawierajace surfaktant sq. tr6jperiodyczne powierzch-

nie minimalne. Zostalo odkryte kilkana8cie nowych rodzaj6w tr6jperiodycznych 

powierzchni o ujemnej krzywiznie Gaussowskiej. Wiele z tych powierzchni 

jest najprawdopodobniej powierzchniami minimalnymi. Odkryto nowe, nigdy 

do tej pory nie dyskutowane w literaturze struktury wielociq,gle. 
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