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Abstract 

 New theoretical model describing the sampling depth of elastic peak electron 

spectroscopy (EPES) has been proposed. Surface sensitivity of this technique can be generally 

identified with the maximum depth reached by trajectories of elastically backscattered 

electrons. A parameter called the penetration depth distribution function (PDDF) has been 

proposed for this description. Two further parameters are descendant from this definition: the 

mean penetration depth (MPD) and the information depth (ID). From the proposed theory, 

relatively simple analytical expressions describing the above parameters can be derived. 

Although the Monte Carlo simulations can be effectively used to estimate the sampling depth 

of EPES, this approach may require a considerable amount of computations. In contrast, the 

analytical model proposed here (AN) is very fast and provides the parameters PDDF, MPD 

and ID that very well compare with results of MC simulations. As follows from detailed 

comparisons performed for four elements (Al, Ni, Pd and Au), the AN model practically 

reproduced complicated emission angle dependences of the MPDs and the IDs, correctly 

indicating numerous maximum and minimum positions. In the energy range from 200 eV to 5 

keV, the averaged percentage differences between MPDs obtained from the MC and the AN 

models were close to 4%. An important conclusion resulting from the present studies refers to 
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the procedure of determination of the inelastic mean free path (IMFP) from EPES. Frequently, 

the analyzed sample is deposited as a thin overlayer on a smooth substrate. From an analysis 

of the presently obtained IDs, is follows that 99% of trajectories in analyzed experimental 

configurations reaches depth not exceeding 2.39 in units of IMFP. Thus, one can postulate 

that a safe minimum thickness of an overlayer should be larger than about 3 IMFPs. For 

example, the minimum thickness of an Al overlayer shoud be about 8 nm at 5000 eV. 

 

Keywords: Theory of electron transport in solids; Monte Carlo simulations; penetration depth 

of backscattered electrons; inelastic mean free path.  

 

Introduction 

 

  The surface sensitive electron spectroscopies, X-ray photoelectron spectroscopy (XPS) 

and Auger electron spectroscopy (AES) are very useful tools for studies of nanostructures due 

to small sampling depths of both techniques. Analysis by XPS and AES is extended over only 

several atomic layers of the surface region. To quantify the thickness of the analyzed layer, 

we need to know a parameter that characterizes the “survival” of signal electrons in 

condensed matter. The relevant parameter used for that purpose, the inelastic mean free path 

(IMFP), is defined as “... average distance that an electron with a given energy travels 

between successive inelastic collisions” [1]. A voluminous material on the theoretical and 

experimental IMFP values is presently available. It has been postulated [2] that the IMFPs 

that are in agreement with the ISO definition can actually be obtained from two methods: (i) 

the IMFPs calculated from experimental optical data, and (ii) the IMFPs measured by elastic 

peak electron spectroscopy (EPES). A very extensive set of calculated IMFPs has been 

published by Tanuma and coworkers for elements [3-5], inorganic compounds [6], and 

organic compounds [7]. The calculated IMFPs obtained from different theoretical models are 

also compiled in the NIST database [8]. One should stress here that these IMFPs refer to the 
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bulk of a solid. The IMFPs of electrons in the surface region may be different than in the bulk 

due to differences in the mechanism of energy losses. Consequently, the signal intensity of 

surface sensitive electron spectroscopies, X-ray photoelectron spectroscopy and Auger 

electron spectroscopy, may be affected by the surface energy losses. Quantification of XPS 

and AES require knowledge of the IMFPs for signal electrons. One can use the calculated 

IMFPs for that purpose, however it is postulated that they should be additionally corrected for 

surface energy losses [9-14]. Relatively simple analytical expressions were proposed for the 

relevant correction: the surface excitation parameter (SEP) [10-13], yet the coefficients 

needed for these expressions were determined for a limited number of solids. Werner et al. 

[12] made an attempt to derive a predictive formula for SEP, however its accuracy is 

generally unknown; it can only be considered as a useful guidance.  

  In contrast to the calculated IMFPs, the IMFPs obtained from EPES measurements 

refer to a thin surface region. We expect that the thickness of the layer sampled by 

backscattered electrons should be comparable to the surface sensitivity of XPS and AES, or 

even smaller since the elastically backscattered electrons pass the surface layer twice, and 

thus the probability of an energy loss is larger than that of photoelectrons and Auger electrons. 

An obvious question arises as to what is the actual sampling depth of EPES measurements. 

This problem has been approached by Jablonski and Powell [15]. It has been proposed that a 

convenient measure of the sampling depth of EPES is the penetration depth distribution 

function (PDDF) [15]. This function was defined as “... the probability that an electron 

incident on the surface at an angle 0Θ  will be elastically backscattered from a maximum 

depth z and emitted in the direction of the analyzer at an angle α  and not be inelastically 

scattered”. The PDDF, ),,( 0Θαξ z , can be normalized so that the integral over depth is equal 

to the elastic backscattering probability, )(∆Ωη , measured within a certain solid acceptance 

angle of an analyzer, ∆Ω : 

)(),,(
0

0 ∆Ω=∫
∞

ηθαξ dzz .      (1) 
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Two useful parameters were proposed to quantify the sampling depth of EPES, both related to 

the PDDF [15]. The mean penetration depth (MPD) was defined as a mean value of the 

PDDF: 

∫

∫
∞

∞

Θ

Θ
=

0
0

0
0

),,(

),,(

dzz

dzzz
G

αξ

αξ
      (2) 

Note that this parameter has a close similarity to the parameter called the mean escape depth 

(Ref. [1], definition 4.203) which characterizes the sampling depth of AES and XPS. The 

emission depth distribution function in this definition is simply replaced by the PDDF. 

Second parameter that describes the sampling depth of EPES is the information depth (ID). 

This parameter, again by analogy with XPS and AES, is defined as a thickness penetrated by 

a specified percentage, IDp , (for example, equal to 90%, 95% or 99%) of electron trajectories 

in particular measurement conditions. The ID can be determined by solving the following 

equation: 

100
),,(

),,(

0
0

0
0

ID

T

p

dzz

dzz
=

Θ

Θ

∫

∫
∞

αξ

αξ
      (3) 

 In experiments involving elastic electron backscattering, we often use samples 

prepared as overlayers deposited galvanically [13] or by vacuum evaporation [13,16] to 

ensure high smoothness of the studied surface. However, we have to make sure that an 

overlayer is of sufficient thickness at a given electron energy to avoid influence of the 

substrate on results of EPES experiments. It has been demonstrated that the sampling depth of 

EPES may be dramatically affected by the substrate in certain experimental configurations 

when the overlayer thickness is too small [17]. A safe thickness of an overlayer can be 

determined experimentally by measuring the elastic backscattering intensity in a given 

experimental geometry and for an electron energy of interest [18,19], however such 
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experiments are very elaborate and thus are not useful as a guidance in practical EPES 

analysis.  

  An electron transport in the surface region of solids can be well characterized by 

Monte Carlo simulations. This computational tool is proved to accurately predict 

characteristics of elastically backscattered electrons (angular distribution [16,18,20], energy 

dependence [21,22] and overlayer thickness dependence of signal electrons [18,19]). In fact, 

the Monte Carlo algorithms with different simulation strategies are almost exclusively used in 

calculations of the IMFPs from EPES measurements [2,20,23-25]. It has been shown that, on 

minor modification, these algorithms can be used for estimation of the EPES sampling depth 

[15]. However, the Monte Carlo simulations generally require a considerable amount of 

computations, especially in cases when the EPES measurements are performed with analyzers 

having small solid acceptance angle. Consequently, such approach is impractical as a routine 

criterion for estimating a needed thickness of a sample material under study. On the other 

hand, a simple analytical model, in which only one elastic scattering event is considered, leads 

to the estimates of the EPES sampling depth that may dramatically deviate from predictions 

of the Monte Carlo approach. In the present work, an attempt is made to derive an analytical 

formalism that has accuracy similar to Monte Carlo simulations, however it is relatively 

simple to use. Furthermore, the relevant calculations are expected to be much faster than the 

performance of the Monte Carlo algorithms. 

 

2. Theory 

 

  Let us consider here the theoretical models that can be used for description of the 

sampling depth of EPES measurements. At first, let us briefly outline the theoretical models 

that were used in published calculations of the MPD and EPES ID [15]. 

 

2.1. The single large-angle backscattering model 
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We start with the simplest model for the elastic backscattering event designated further here 

with the acronym SLAB. The formalism is based on two assumptions:  

1. Along the trajectory of an elastically backscattered electron, only one large-angle scattering 

event occurs. 

2. Probability of an elastic scattering event along trajectory is much smaller than the 

probability of inelastic interaction. 

The shape of the corresponding trajectory is shown in Fig. 1. The elastically backscattered 

current within a small analyzer acceptance angle is then given by [15,26] 

Ω+Θ
∆Ω=∆Ω

d
d

N el
in

σ
l

α
αη
coσcoσ

coσ)(
0

    (4) 

where N is the atomic density, inλ  is the IMFP, and Ωdd el /σ  is the differential elastic 

scattering cross section (DCS). The PDDF is readily obtained from Eqs (1) and (4) 

















+

Θ
−
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=Θ
αλ

σ
αξ

coσ
1

coσ
1eξp

coσ
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00
0
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eλ z
d

dNz   (5) 

The MPD and the ID derived from Eqs (2), (3) and (5) have the following form [15]  

α
α

λ
coscos

coscos

0

0

+Θ
Θ

= inG       (6) 







 −

+Θ
Θ

−=
100

1ln
coscos

coscos

0

0 ID
in

pT
α
α

l .    (7) 

We note that the MPD and the ID are fully determined by the IMFP and the measurement 

geometry. The elastic scattering effects are not included this formalism. 

 

2.2. The Monte Carlo model 

  Theoretical models implemented in Monte Carlo (MC) algorithms are considered to be 

the most realistic, and consequently, the results obtained from simulations are expected to be 

the most accurate. Details of such calculations were frequently reported [2,15,20-22,25-27]. 

The implemented strategies of simulations may differ in different algorithms, however the 

common assumptions are the following (see Fig. 2): 
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1. An electron changes direction due elastic interaction with a scattering centre of a solid. The 

probability density function of the polar scattering angles, θ , is expressed by the differential 

elastic cross section for isolated atoms 

θ
σ

σ
π

σ
σ

θ σin121)(
Ω

=
Ω

=
d

d
d

d
H el

el

el

el

    (8) 

where elσ  is the total elastic cross section 

Ω
Ω

= ∫ d
d

d el
el π

σ
σ

4
      (9) 

2. The azimuthal scattering angles, ϕ , are described by the uniform distribution. 

3. An electron trajectory follows the Poisson stochastic process; consequently the linear 

distances between elastic scattering events, are distributed exponentially 








 Λ
−=Λ

elel

F
ll

exp1)(       (10) 

where ell  is an electron elastic mean free path 

1)( −= elel Nσl        (11) 

As follows from Fig. 2, to simulate an electron trajectory, one should design samplers of three 

random variables, i.e. Λ, ϕ  and θ . 

  To estimate the PDDF, the following weights should be ascribed to each trajectory 









 −

=∆

cases,otherallin0

depth  maximum  thereachingafter 
analyzertheenteredelectronanif)/exp(

)(
z

x

z

ink

k

l

x   (12) 

where kx  is the length of the kth trajectory. The PDDF is finally calculated from: 

)(1),,(
1

0 z
n

z
n

k
k∑

=

∆=Θ ξαξ       (13) 

where n is the total number of trajectories. The PDDF resulting from the Monte Carlo 

simulations can be then used in calculations of the MPD and the ID from Eqs (2) and (3), 

respectively. 
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2.3. Advanced analytical model 

  The elastic backscattering probabilities, )(∆Ωη , have typically small values and 

obviously depend on the size of an analyzer acceptance solid angle. For example, the ratio 

∆Ω∆Ω /)(η  calculated from the MC method for Au at 2000 eV assuming normal incidence of 

the primary beam and the emission angle, °= 45α , is equal to 31015.6 −×  (Fig. 7 of ref. [26]). 

For an analyzer with conical acceptance angle having the half-cone angle equal to 5o, the 

elastic backscattering probability is equal then to 410471.1 −× . The SLAB theory predicts the 

value of 510052.2 −×  for the same solid angle, which is smaller by a factor of about 7. In 

effect, the Monte Carlo simulations require considerable amount of computations since the 

estimated probabilities are very low, especially in the case of small solid angles. This problem 

becomes more acute in the case of calculations of the PDDF since the number of electrons 

entering the analyzer solid angle is further distributed with respect to the maximum depth 

reached. A considerable number of trajectories must be generated to obtain the PDDF with a 

reasonable precision. A technical problem arises then with the design of the samplers of 

needed random variables. These samplers must be based on a random number generator with 

a very extended period. An attempt is made here to propose an analytical theoretical model 

with accuracy comparable to Monte Carlo algorithm, however with much faster performance. 

  Let us consider an experimental configuration with normal incidence of the primary 

beam. Such geometry was frequently used in for determination of the IMFP from EPES 

measurements [2,20,24,25]. We simplify the assumptions implemented in Monte Carlo 

simulation strategies:  

1. The trajectory of an electron leaving the solid is described by a Poisson stochastic process, 

however only one large-angle scattering event changes the electron direction. Remaining 

elastic collisions do not influence the trajectory shape.  

2. If k elastic collisions occurred along trajectory of an electron leaving the solid, the angular 

distribution of electron directions with respect to the direction of the primary beam is derived 
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taking into account all actual probability density functions describing consecutive single 

elastic scattering events. 

An example of an electron trajectory illustrating the above assumptions is shown in Fig. 3.  

  It has been shown that the above assumptions lead to analytical expressions describing 

the elastic backscattering probability [20,26,28]. Furthermore, the elastic backscattering 

probabilities calculated from an analytical model based on similar assumptions very well 

compare with the measured elastic backscattering probabilities for typical experimental 

geometries and probabilities obtained from Monte Carlo simulations [20,26]. The ratios of the 

elastic backscattering probabilities calculated from an analytical model and from Monte Carlo 

simulations for different pairs of elements were found to differ on average by 3.1% [26]. The 

mean percentage difference between the measured elastic backscattering probabilities and 

probabilities obtained from an analytical formalism, averaged over different elements and 

energies, was equal to 8.8% [26]. We may expect that the parameters describing the surface 

sensitivity of EPES derived from the above model would also be described with a reasonable 

accuracy. An advantage of such approach would be a considerable decrease of the needed 

computing times. 

 Suppose that an electron elastically backscattered from a solid suffered k elastic 

scattering events, and suppose that the large angle collision that is expected to occur along the 

trajectory length took place at a depth z. Let us assume that this is the i-th collision counted 

along the trajectory after an electron entered the solid. Thus, the distance equal to z is in fact 

the sum of i linear distances, each with the length, z∆ , distributed exponentially (see Fig. 3)  








 ∆
−=∆

elel

zzg
ll

exp1)(       (14) 

where ell  is the elastic mean free path. Probability density function of the distance equal to 

the sum of i distances z∆  is given by the Erlang distribution [29] 
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Let us denote by y the linear path of an electron towards the surface. Probability that ik −  

elastic collisions occur along the distance y is given by the Poisson distribution 



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
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−

−
el
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el
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For the emission angle of backscattered electron equal to α , we have αcos/zy =  and Eq. 

(16) can be rewritten as follows 


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


−

−
= −

−−−
el

ik
ikik

el
ik

zz
ik

yW
lµµl

exp
)!(

1
)(

1)(    (17) 

where αµ cos= . The probability that an electron leaving the solid was submitted to k elastic 

scattering events among which i-th interaction was the large angle collision at a depth z is 

expressed by 








 +
−
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== −

−−− µ
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λµλ
1exp
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1

)(
1)()()( 1

eλ

k
ikik

eλ
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Consequently, electron trajectories with k elastic collisions have i positions in which large 

angle collision can take place. We assume that the probability of k elastic collisions which 

occur along the trajectory reaching the depth z irrespective of the position of large angle 

collision is the mean value of probabilities )(zpi
k  

)(1)(
1

zp
k

zp
k

i

i
kk ∑

=

=      (19) 

From Eqs (18) and (19), we obtain 
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The probability that an electron reached the depth z and left the solid without energy loss is 








 +
−=

µ
µ

λ
1exp)(

in

zzU     (21) 
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To calculate the penetration depth distribution function, we also need to know the angular 

distribution of electron directions after k collisions. This distribution is given by [20,26] 

)(cos)(
2

12
2
1)(cos

0
θ

π
θ l

k
l

l
k PAlH ∑

∞

=

+
=     (22) 

where )(cosθlP  are the Legendre polynomials, and the coefficients lA  are the expansion  

coefficients of the differential elastic scattering cross section into a series of Legendre 

polynomials 

θθθ
σ

σ
π π

dP
d

d
A l

el

el
l σin)(coσ2

0
∫ Ω

=      (23) 

As shown in Fig. 3, the angle θ  is related to the emission angle, α , by θπα −= . The PDDF 

can be expressed then as follows 

∑
∞

=

=
1

)(cos)()(),(
k

kk HzpzUz θαξ      (24) 

Introducing Eqs (20) and (21) into Eq. (24), we obtain 
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where tλ  is the total mean free path defined by 
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inel
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+
=        (26) 

The PDDF can be normalized according to different rules [15]. In the present analysis, the 

PDDF is normalized so that the integral with respect to the depth, z, is equal to the elastic 

backscattering probability, η∆ , for a small solid angle of an analyzer, ∆Ω . In that case, we 

have  
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Since the integral in Eq. (27) can be solved analytically 
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we obtain finally 
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The expression given by Eqs (29) is identical with the elastic backscattering probability, 

Ωdd /η , derived from the theory of Oswald, Kasper and Gaukler [28] and from further 

modifications of this theoretical model [20,26].  

  As follows from Eq. (2), to derive an analytical expression for the MPD for the 

advanced analytical model, we need to solve the following integral 
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Introducing Eqs (29) and (31) into Eq. (2), we obtain 
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  An analytical expression for the ID can also be derived from the PDDF given by Eq. 

(25). The integral in the numerator of Eq. (3) can also be solved analytically: 

dzzzH
k

dzz
T

t

k
k

k

k
k

el

T

∫∑∫ 






 +
−







 +
= −

−∞

= 0

1
1

10

1exp)(cos1
)(!

1),(
µ

µ
l

θ
µ

µ
l

αx   (33) 

The integral in the right-hand side of Eq. (33) can be expressed by the incomplete gamma 

function, ),( xkγ  (ref. [30], p. 899). We have 
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Introducing Eq. (33) in Eq. (34), we obtain 
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µ
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TT . It is convenient to express the incomplete gamma function as a ratio 

with respect to the gamma function, )(kΓ  [31] 
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Since the gamma function for an integer argument is given by )!1()( −=Γ kk , the following 

final equation for the ID is obtained 
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The recommended algorithms and a complete computer code for calculations of the 

incomplete gamma function, ),( xkP , are published in ref. [31]. 

 

2.4. Angular distribution after multiple elastic collisions 

  As follows from Eqs (25), (32) and (37), calculations of the PDDF, the MPD and the 

ID from the above analytical formalism, designated here by AN, requires knowledge of the 

angular distribution after multiple elastic scattering, )(cosθkH . We note in Eq. (22) that this 

function is fully described by the series of coefficients lA , i.e. the parameters of expansion of 

the differential elastic scattering cross sections into a series of Legendre polynomials [see Eq. 

(23)]. When these parameters are known, calculations of parameters describing the surface 

sensitivity of EPES can be very fast. 

  In principle, the coefficients lA  for a given element and electron energy can be 

calculated from Eq. (23), however this approach is inefficient in computational practice due to 

two reasons. First, the differential elastic scattering cross section has to be determined for a 

dense grid of angles to ensure a reasonable accuracy of integration. Second, a considerable 

number of components in the series in Eq. (22) may be needed to reach a reasonable accuracy 
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[20]. The integrand in Eq. (23) becomes then a highly oscillating function which may 

considerably complicate the numerical integration. The recommended procedure takes 

advantage of the fact that the coefficients lA  can be expressed by an analytical formula 

involving only the relativistic phase shifts, +
nδ  and −

nδ , n = 0, 1, 2, ... [20,26]. The relevant 

algorithm requires calculations of the Wigner 3-j symbols 







000
knl

 and 







−110
knl

. 

Details of the above approach were recently published [26]. This approach is facilitated by the 

fact that the needed phase shifts can be calculated from the computer code which is available 

in Computer Physics Communications Program Library [32,33] or obtained from the NIST 

database [34]. Although the recommended formalism is rather complicated, accurate values of 

parameters lA  can be obtained for the index l up to about 600 [26]. 

  Fig. 4 shows examples of energy dependence of the coefficients lA  calculated for Si 

and Pt and for different values of the index l. We see that this dependence is a smooth 

function in logarithmic coordinates which makes possible an accurate interpolation. Thus, a 

database of coefficients lA  prepared for numerous elements for a reasonably dense grid of 

energies in a wide energy range would be a useful tool that considerably decreases the 

computing time of the PDDFs, MPDs and IDs practically without affecting their accuracy. 

This expectation is supported by an extensive analysis of computational procedures in 

calculations associated with EPES [20]. 

 

 

 

 

 

3. Results 
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 In the present analysis of the EPES sampling depth, all three theoretical models 

described in the previous section were used: (i) the single large-angle backscattering model 

(SLAB), (ii) the Monte Carlo model (MC), and (iii) the advanced theoretical model (AN).  

 Parameters defining the sampling depth of EPES have been calculated here for 

exemplary elements with atomic numbers that vary in wide range, i.e. Al, Ni, Pd and Pt. The 

theoretical models used the EPES applications are considered to be of a reasonable accuracy 

at electron energies above 200 eV [20,23,24], although the IMFPs obtained from EPES are 

reported for energies as low as 50 eV [2,25]. As a compromise, the energy of 100 eV was 

assumed as a lowest energy limit considered in the present analysis. The largest photoelectron 

energies observed in typical XPS spectrometers equipped with typical X-ray sources (Mg Kα  

and Al Kα ) do not exceed 1500 eV, however due to growing interest in high energy 

laboratory sources, the upper limit of considered energies reaches about 5000 eV. 

 Theoretical models describing elastic electron backscattering require knowledge of the 

IMFP values [Cf. Eqs (5), (12) and (25)]. In calculations reported here, the IMFPs were taken 

from Tanuma et al. [4]. The differential elastic scattering cross sections, Ωdd el /σ , needed in 

the SLAB and MC models were directly calculated from the ELSEPA code [33]. For the AN 

model, the coefficients lA  were taken from the database calculated earlier [20]. Finally, the 

total elastic scattering cross sections, elσ , needed in all three theoretical models for 

calculations of ell , were also calculated from the ELSEPA program [33]. 

 

3.1. Penetration depth distribution function 

  Since the Monte Carlo simulations are expected to provide the most reliable and 

accurate results, care was taken to perform calculations with a possibly good statistics. For a 

given element, electron energy and the experimental geometry, 7108×  trajectories were 

generated. A small solid acceptance angle of the analyzer with the half-cone angle, α∆ , equal 

to 5o has been assumed. In these calculations, precision of the elastically backscattered 
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probability was typically below 2%. For example, the precision estimated for Pt at 2000 eV 

varied from 0.43% for °= 10α  to 1.37% for °= 70α . 

  The PDDFs calculated from three theoretical models for Ni and Pt in the energy range 

from 200 eV to 5000 eV and for the emission angle, °= 40α , are compared in Figs 5 and 6. 

These functions calculated from the SLAB and the MC models differ distinctly, particularly 

in the region of large depths. Furthermore, the PDDFs calculated from MC simulations in 

some cases distinctly deviates from the exponential dependence. Ultimately, the PDDF 

resulting from the MC model may even exhibit a maximum, e.g. Pt at 2000 eV [see Fig 6(c)]. 

These results confirm the earlier published observations [15]. The PDDFs calculated from the 

AN model [Eq. (25)] seem to agree reasonably well with MC results in the region of depths 

up to about one IMFP. Furthermore, the AN model correctly predicts the presence of 

maximum shown in Fig. 6(c). At larger depths, the PDDFs from the AN and the MC models 

noticeably deviate, although in majority of cases shown in Figs 5 and 6, the PDDFs from the 

AN model is closer the PDDF from the MC model than the PDDF from the SLAB model. 

  Vertical arrows in Figs 5 and 6 indicate the depths corresponding to the MPD and the 

depth corresponding to a thickness a surface layer in which 95% trajectories reach maximum 

(the information depth corresponding to IDp  = 95%). The latter parameter, for brevity, is 

designated by ID(95). Both parameters were calculated from the MC simulations. We note 

that the depth of ID(95) is close to one IMFP in all cases shown in Figs 5 and 6. The MPD is 

smaller than the IMFP by a factor varying between 2 and 3. Thus, both parameters, MPD and 

ID(95) are calculated over the depth range of the PDDF in which there is a reasonable 

agreement between PDDFs from the MC and the AN theoretical models. Consequently, we 

may expect that a reasonable agreement can also be observed between the MPDs and IDs 

resulting from these models. 

  A generic function in the formalism of quantitative XPS is the emission depth 

distribution function (EMDDF) which describes the distribution of depths from which the 

signal electrons originate (ref. [1], definition 4.161). This function obtained from the MC 
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simulations also deviates from linearity in semi-logarithmic coordinates, however this 

deviation typically becomes more pronounced for glancing emission angles of signal 

photoelectrons [35]. There are also very unusual experimental configurations in which a 

maximum in the EMDDF was observed (the X-ray source and an analyzer located at both 

sides of a thin metal foil) [36,37]. However, the maximum in the PDDF in Fig. 6(c) is 

observed at the medium emission angle, α , equal to 40o, and disappears at lower or higher 

energies. To analyze this effect more closely, the dependence of the PDDF on the emission 

angle for platinum at 1000 eV has been calculated from the AN theory (Fig. 7). We note that 

the maximum appears in the PDDFs calculated for emission angles 30o, 40o and 80o. These 

maxima seem to be related to the shape of the differential elastic scattering cross section. The 

cross section for Pt at 1000 eV exhibits two very deep minima at the scattering angles, θ , 

equal to 96o and 144o. These scattering angles correspond to the emission angles, α , equal to 

84o and 36o since, for the considered geometry θα −°= 180 . Thus, there is practically no 

signal from atoms backscattered from atoms close to the surface at these emission angles. Any 

signal intensity is then due to multiple elastic collisions. In order to partially randomize the 

electron directions, a certain trajectory must be passed in a solid. Consequently, an increased 

signal intensity arises then from a depth which is at a certain distance from the surface. 

 

 

 

3.2. Mean penetration depth 

 The MPDs for considered elements in the energy range from 100 eV to 5000 eV are 

shown in Figs 8-11. These parameters for the SLAB and AN models ( SLABG  and ANG ) were 

calculated from Eqs (6) and (32), respectively. The MPD from the MC calculations ( MCG ) 

was estimated by introducing the PDDF from Eq. (13) into the defining formula [Eq. (2)].  

  In practically all cases, the MPDs calculated from the AN and MC models agree 

reasonably well, while the MPD obtained from the SLAB model considerably deviates. The 
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only exception is observed in the region of high energies for Al (1000 eV, 2000 eV and 5000 

eV) and Ni (5000 eV). In these cases, the angular dependence of MPDs obtained from the 

three theoretical models is similar. The MPDs, SLABG , is always a monotonically decreasing 

function of the emission angle, α . More accurate models, the AN and MC models, provide 

the angular dependence that frequently exhibit a maximum, or even two maxima (e.g. MPD 

for Pt at 500 eV). The shape of angular dependence of the MPD and the position of the 

maximum or maxima are in a very good agreement.  

  Let us quantify the differences between MPDs shown in Figs 8-11. To evaluate the 

reliability of the AN model, the following percentage deviations from were calculated for a 

given emission angle:  

AN

MCAN
MC G

GG
G

−
=∆ 100      (38) 

Furthermore, let us evaluate comparison of both analytical models described here. We have 

then  

AN

SLAMAN
SLAB G

GG
G

−
=∆ 100      (39) 

Examples of these results are shown in Figs 12 and 13. Generally, the percentage differences 

between the MPDs from the MC calculations and the from the AN model do not exceed about 

10%. More pronounced differences are observed for the largest emission angle considered 

( °= 80α ) or for the lowest energy (100 eV). As expected, the percentage differences SLAMG∆  

are much larger than MCG∆ . They may even reach 80% (see e.g. Ni at 200 eV). Let us 

average the percentage deviations between the MC and the AN models over the considered 

angular range according to the rule 

∑
=

∆=>∆<
α

α

n

i

i
MCMC G

n
G

1

)(1      (40) 

where αn  is the number of emission angles. Similarly, we use the following averaging 

procedure for the AN and the SLAB models: 

http://rcin.org.pl



 19 

∑
=

∆=>∆<
α

α

n

i

i
SLABSLAB G

n
G

1

)(1     (41) 

Results of calculations are compiled in Table 1. We see that the MPDs from the MC and the 

AN models agree very well. The mean percentage differences >∆< MCG  are typically below 

5%. Distinctly larger values were found only for the lowest energy. Since applications of the 

EPES method is recommended for energies above 200 eV, the values of >∆< MCG  were 

further averaged over energy range from 200 eV to 5000 eV. As shown in Table 1, these 

averages vary from 3.24% to 4.68% which proves an excellent agreement between the MC 

and the AN theoretical models. In fact, a similar agreement was found recently in comparison 

of ratios of elastic backscattering probabilities resulting from Monte Carlo simulations and 

from an analytical formalism based on similar assumptions as the presently considered AN 

model (Table 3 of ref. [20]). 

 The mean percentage differences between the AN and SLAB analytical models, 

>∆< SLAMG , are larger than >∆< MCG  in majority of cases; they even reach 38%. For 

consistency, the mean percentage differences, >∆< SLAMG , are further averaged over the 

energy range from 200 eV to 5000 eV. The averaged values reach 26.12% for Pt; thus they 

are considerably larger than the same averaged differences between the AN and the MC 

models. Consequently, the SLAB model cannot be recommended for estimation of the MPDs 

of EPES. 

 

3.3. Information depth 

  The ID due to backscattered electrons, T, was calculated for three routinely selected 

percentages IDp : %90=IDp , %95=IDp  and %99=IDp . The IDs due to the SLAB model 

were calculated from Eq. (7). For the AN model, calculations were more complicated since 

the nonlinear equation [Eq (37)] had to be solved. However, these calculations were relatively 

fast. Finally, the IDs corresponding to the MC model were obtained by solving the defining 

equation [Eq. (3)] after introducing the PDDF function estimated from the MC simulations 
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[Eqs (12) and (13)]. Exemplary results for Al and Ni at 500 eV are shown in Fig 14. We note 

that the shape of the emission angle dependence of the IDs is very similar to the shape of the 

MPDs. However, the agreement between IDs form the MC and the AN models is not so good 

as in the case of the corresponding MPDs [see Figs 8(c) and 9(c)]. Generally, the IDs 

resulting from the AN model are overestimated with exception of the region of the largest 

emission angles. Pronounced deviations are observed for the largest percentage, IDp , i.e. 

%99=IDp . This difference can be partially ascribed to the fact that 99% of the signal 

intensity is comparable with precision of the backscattered current estimated from the Monte 

Carlo simulations (typically between 0.5% and 1.5%).  

  In Figs 15 and 16, the emission angle and energy dependence of the ID for the signal 

percentage %95=IDp  , T(95), is shown. These results were obtained for Pd and Pt using 

three theoretical models (AN, MC and SLAB). As in the case of Al and Ni (Fig. 14), we 

observe reasonably good agreement between IDs obtained from the AN and MC theoretical 

model, although the difference seems to be larger as in the case of the MPDs. The shape of 

angular dependence of IDs is very close to the angular dependence of the MPDs shown in 

Figs 10 and 11. Except for the emission angle 80o, the IDs obtained from the AN theoretical 

model are noticeably overestimated. As in the case of MPDs shown in Figs 8-11, the IDs from 

the SLAB model have a different shape of the angular dependence (a monotonic decrease) 

and considerably deviates from the IDs calculated from the AN and MC models.  

  Let us determine the mean percentage deviations between the AN and MC models and 

also between the two analytical models (AN and SLAB). They were calculated from similar 

criterions as in the case of MPDs [see Eqs (38) – (39)] 

∑
=

∆=>∆<
α

α

n

i

i
MCI∆MCI∆ pT

n
pT

1

)()(1)(     (42) 

∑
=

∆=>∆<
α

α

n

i

i
SLABI∆SLABI∆ pT

n
pT

1

)()(1)(     (43) 

where MCIDpT )(D  and SLABIDpT )(D  are percentage differences given by 

http://rcin.org.pl



 21 

ANID

MCIDANID
MCID pT

pTpT
pT

)(
)()(

100)(
−

=D     (44) 

ANID

SLABIDANID
SLABID pT

pTpT
pT

)(
)()(

100)(
−

=D     (45) 

The mean percentage deviations were calculated for percentages IDp  equal to 90%, 95% and 

99%. Results are compiled in Tables 2 - 4. As expected, the mean percentage differences 

between the AN and MC models, MCIDpT )(D , are on average about twice larger as in the case 

of the MPDs. For %90=IDp  and %95=IDp  they are very close (Tables 2 and 3). The total 

mean averaged over the energy range from 200 eV to 5000 eV varies between 7.21% and 

8.64%. Slightly more pronounced mean percentage differences are found for %99=IDp  

(Table 4). The total mean reaches then 10.04%. As expected, the mean percentage deviations 

between the SLAB and the AN models, SLABIDpT )(D  are much larger. The total mean reaches 

24%. Thus, we may state that the AN model is a convenient and reasonably accurate tool that 

can be used for estimation of the sampling dept of EPES. 

 

4. Discussion and conclusions 

 

  An intriguing feature that is observed in the emission angle dependence of MPDs and 

IDs is presence of a maximum, or even maxima, that appear for all elements considered here 

at certain energies. This effect was initially reported for Au at 1000 eV and tentatively related 

to the shape of the differential elastic scattering cross section [15]. As follows from the AN 

model outlined in Fig. 3, the elastic backscattering event is dominated by a single large angle 

elastic collision. Thus, the minimum of in the differential elastic scattering cross section leads 

to a minimum in the emission angle dependence of the elastic backscattering probability. 

Thus effect has been visualized experimentally for Au at energies of 500 eV and 800 eV [18]. 

The minima in the signal intensities seem to be correlated with maxima observed in the 

angular dependence of MPDs and IDs. 
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  Let us consider here this effect more closely. We select for analysis an element and 

energies for which two minima were found, i.e. Pt at 200 eV and 500 eV [Cf. Figs 11(b) and 

11(c)]. Fig. 17 compares the differential elastic scattering cross sections with the signal 

intensity, and the corresponding parameters defining the sampling depth. In the lowest panel, 

the differential elastic scattering cross sections in the large scattering angle range is shown. 

The emission angle, α , is related to the scattering angle θ  by θα −°= 180  (see Fig. 3). 

Positions of minima correspond to minima in the emission angle dependence of the signal 

intensity shown in the middle panel. The AN model was used in these calculations. However, 

at the same angles, we observe maxima in the emission angle dependence of the MPDs and 

IDs. The origin of this effect seems to be similar as in the case of maxima in PDDFs. If an 

analyzer in positioned in vicinity of the minimum in the differential elastic scattering cross 

section, backscattered electrons due to large-angle scattering event practically do not 

contribute to the signal intensity. The signal is dominated by electrons with randomized 

directions. To be partially randomized due to small scattering angle events, the trajectory of 

an electron must be longer compared with a situation in which the large-angle scattering is 

dominating. As follows from Fig. 3, the trajectory length and the depth are related; a longer 

trajectory reaches a larger depth.  

 Important information can be obtained from values of maxima in the angular 

dependence of the MDPs and IDs. Let us express the sampling depth as a following ratio 

in

ID
IDID

pTpR
λ

)()( =       (46) 

These ratios were calculated for all elements and energies in the angular range °≤≤ 850 α  

and the maximum value, )(max
850 IDID pR
°≤≤a

, was determined. The AN theoretical model was 

used in this analysis. Results are shown in Fig. 18. As expected, the largest ratios were 

obtained for the percentage, IDp  = 99%; they are shown in the upper panel of Fig. 18. The 

largest values in this panel are equal to 2.39 and 2.37 for Al and Ni at 5000 eV, respectively. 

From this observation, we can estimate the minimum thickness of an overlayer that is needed 
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for the EPES measurements, e.g. measurement of the IMFPs for an overlayer material. The 

value of 2.37 can be overestimated due to two reasons. First, we analyzed here all the angular 

range varying  from α  = 0o to α  = 85o while the range of angles recommended for EPES is 

more narrow, e.g. the range recommended in ref. [26] is diminished to °≤≤° 7435 α . Second, 

the AN model tends to overestimate the ID as compared to the MC model (see Figs 15 and 

16). However, the AN model is very convenient to use in calculations of the maximum ID due 

to a large speed of computations. On the other hand, we analyzed here only four elemental 

solids. If this analysis is extended to other solids, larger maximum values can be obtained. For 

safety, let us tentatively assume that the recommended minimum thickness of an overlayer for 

the EPES measurements is equal to 3 IMFPs. For example, the largest IMFP values used here 

is 8.021 nm for Al at 5000 eV [4]. Thus, the minimum overlayer thickness postulated here for 

EPES measurements is close to 24 nm. The IMFPs for these estimations for elements can be 

taken from Tanuma et al. [4]. For compounds, the TPP-2M predictive formula is 

recommended [7]. 

  Main objective of the present work was to derive a fast and accurate algorithm for 

calculating parameters describing the sampling depth of EPES, i.e. PDDF, MPD and ID. The 

AN theoretical model fulfils these requirements. It should be mentioned, however, that the 

series in Eqs (25), (32) and (37) is slowly convergent. To accelerate the convergence, one can 

take advantage of the fact that after a certain number of elastic collisions, 0k , the distribution 

of electron directions becomes close to uniform in space, i.e. the distribution )(cosθkH after 

randomization reaches the constant value )4/(1 π . Let us consider the series in denominator of 

Eqs (32) and (37). We have 

=+= ∑∑∑
∞

=

−

=

∞

= 0

0

4
1)(cos)(cos

1
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since )1ln(
1

s
k
s

k

k

−−== ∑
∞

=

. Another condition for fast performance of the AN formalism is a 

convenient access to the database of the parameters lA  since an algorithm for calculating 

these parameters is rather involved [20,26], and such calculations may require a considerable 

computer time. Such a database is presently prepared for publication [38]. 

  Analysis of the AN model was limited here to elemental solids. However, this model 

can be readily generalized to compounds. Let us consider a compound consisting of m 

elements; and let us denote the atom fraction of i-th element by ix . It has been shown that the  

parameter lA  to be used in the AN formalism for compounds is given by [20] 

∑
=

=
m

i

i
lil ApA

1

)(        (48) 

where )(i
lA  is the lA  parameter for the i-th element, and ip  is  the probability that the elastic 

scattering event occurs on the i-th atomic species 

∑
=

= m

j

j
elj

i
eli

i

x

x
p

1

)(

)(

σ

σ
       (49) 

Thus, to calculate the distribution of electron directions after k collisions, )(cosθkH , we 

replace the expression k
lA )(  in Eq. (22) by 

km

i

i
li Ap 






∑
=1

)( . For calculations of the PDDF, MPD 

and ID for compounds [Eqs ((25), (32) and (37)], we also need to know the elastic mean free 

path, ell . The following expression has been proposed [20]  

∑

∑

=

== m

i

i
eli

m

i
ii

A
el

x

Mx

N
1

)(

11

σρ
l  ,      (50) 

where ρ  is the density of a compound and iM  is the corresponding atomic mass.  

  It would certainly be of interest to compare the presently proposed criteria of the 

sampling depth with experimental observations. Although no simple and universal procedure 

for such comparisons seems to be available, an experimental approach outlined below can be 
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useful for selected solids. Let us consider an experiment in which the elastic backscattering 

probability is measured for an overlayer deposited in consecutive increments on a substrate. 

The pair overlayer-substrate and the experimental configuration should be selected so that this 

probability varies considerably with the overlayer thickness. A good example of such system 

is the Au overlayer deposited on the Ni substrate [18,19]. Let us denote by )(∆Ωtη  the elastic 

backscattering probability for an overlayer of thickness t, and by )(0 ∆Ωη  the elastic 

backscattering probability for an uncovered substrate. An example of the overlayer thickness 

dependence of the ratio, 

)(
)(

)(
0 ∆Ω
∆Ω

=
η
η

η
ttR ,      (51) 

measured for the Au/Ni system at energy of 500 eV, taken from ref. [19], is shown in Fig. 19. 

We see that this ratio varies by the factor of three. The upper vertical lines indicate values of 

the ID calculated from the advanced theoretical model [Eq. (37)]. Values of ID(90), ID(95) 

and ID(99) (equal to 1.021 nm, 1.268 nm and 1.835 nm, respectively) are located in the region 

of thicknesses in which presence of the substrate does not have any effect on measured 

relative intensities, )(tRη . 

  On close inspection of Fig. 19, one can propose a crude estimation an overlayer 

thickness corresponding to the ID. It has been found [19] that the overlayer thickness 

dependence of )(tRη  can be well approximated by the expression 

)exp()](1[)()( tkRRtR −∞−+∞= ηηη    (52) 

where )(∞ηR  is the relative intensity corresponding to large overlayer thicknesses, and k is 

the fitted constant. Let us assume that the relative intensity becomes practically constant if it 

does not deviate from )(∞ηR  by more than several percent, e.g. %10=∆p  

IDp
R

RtR
p −=

∞

∞−
=D 100

)(
)()(

100
η

ηη     (53) 
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Let us calculate the thickness t for the three routinely used percentages, IDp . From Eq. (52) 

and (53), the following relation can be derived.  













∞−

∞−
−=

)(1
)(

100
100ln1)(

η

η

R
Rp

k
pt ID

ID    (54) 

The thicknesses )( IDpt  calculated from Eq. (54) are indicated by vertical lines in the lower 

part of Fig. 19 [ )90(t = 0.905 nm, )95(t = 1.105 nm, )99(t = 1.570 nm]. Although these values 

differ somewhat from the theoretical IDs, we may tentatively state that a given thickness 

)( IDpt  can be a conside3red as a reasonable experimental measure of the sampling depth of 

EPES measurements. We note that the presently proposed criterion for safe overlayer 

thickness, equal to three IMFPs, provides the value 835.03×  nm = 2.505 nm which is located 

in the horizontal part of the plot shown in Fig. 19. 

  In conclusion, elastic peak electron spectroscopy is a convenient tool for analytical 

applications in studies of overlayers with thickness in the range of nanometers. Determination 

of the IMFPs for overlayers is an application of a particular importance. It has been recently 

proved that the analytical formalism based on the same assumptions as in the present work 

leads to the IMFPs of similar accuracy as Monte Carlo algorithms [20]. For the energy range 

from 200 eV to 5000 eV, the percentage deviation between the IMFPs from the MC and the 

AN algorithms averaged over 13 elements was equal to 3.09%. In the present work, the mean 

percentage deviation between the MPDs from the MC and AN models varies from 3.24% to 

4.68%. The mean percentage differences between IDs from two theoretical models are about 

twice larger. The emission angle dependence of the ID is shown to have a complicated 

structure for some elements and energies which are shown to be correlated with the shape of 

the differential elastic scattering cross section. The maximum value of the ID is shown not to 

exceed a layer with thickness of three IMFPs which leads to a convenient guidance of the 

minimum overlayer thickness suitable for EPES measurements. 
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Table 1. Mean percentage deviations, >∆< MCG  and >∆< SLABG , calculated from Eqs (40) 

and (41), respectively. The total mean values are obtained by averaging the mean percentage 

deviations over the energy range from 200 eV to 5000 eV, i.e. over the range of validity of the 

EPES method. 

 

 
================================================= 
Energy   Mean percentage deviation, >∆< MCG  (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 
 
   100    2.10    8.73  10.17  17.68 
   200    1.87    5.79    6.32    5.06 
   500    2.96    3.10    4.12    7.63 
 1000    4.31    2.98    3.23    3.41 
 2000    4.42    4.47    2.31    3.99 
 5000    2.63    5.37    4.10    3.29 
 
Total mean:   3.24    4.34    4.02    4.68 
 
 
_______________________________________________________ 
 
Energy   Mean percentage deviation >∆< SLABG  (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 

 
   100  31.93  33.07  32.26  10.44 
   200  22.90  37.83  30.20  19.99 
   500  10.42  31.82  31.50  27.04 
 1000    0.98  21.00  27.95  35.17 
 2000    3.68    8.11  17.24  29.89 
 5000    3.87    3.41    4.82  18.50 
 
Total mean:   8.37  20.43  22.34  26.12 
 
================================================= 
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Table 2. Mean percentage deviations, >∆< MCT )90(  and >∆< )90(SLABT , calculated from 

Eqs (42) and (43), respectively. The total mean values are obtained by averaging the mean 

percentage deviations over the energy range from 200 eV to 5000 eV. 

 

 
================================================= 
Energy  Mean percentage deviation >∆< MCT )90( , (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 
 
   100    5.54  14.33  13.83  22.29 
   200    5.32    9.91  11.16    9.78 
   500    7.07    6.44    7.93  11.52 
 1000    8.68    7.34    6.22    7.37 
 2000    8.37    9.20    6.24    7.64 
 5000    6.63  10.30    8.38    6.87 
 
Total mean:   7.21  8.64    7.98    8.64 
 
 
_______________________________________________________ 
 
Energy  Mean percentage deviation >∆< SLABT )90( , (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 

 
   100  30.70  31.30  29.56    6.04 
   200  22.70  36.72  26.99  17.12 
   500  10.25  30.59  29.19  23.95 
 1000    0.99  20.73  25.81  33.58 
 2000    3.66    7.94  16.92  27.44 
 5000    3.91    3.33    4.70  17.71 
 
Total mean:   8.30  19.86  20.72  23.96 
 
================================================= 
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Table 3. Mean percentage deviations, >∆< MCT )95(  and >∆< )95(SLABT , calculated from 

Eqs (42) and (43), respectively. The total mean values are obtained by averaging the mean 

percentage deviations over the energy range from 200 eV to 5000 eV. 

 

 
================================================= 
Energy  Mean percentage deviation >∆< MCT )95(  (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 
 
   100    6.28  15.08  13.78  21.81 
   200    5.60    9.51  11.77  10.06 
   500    7.16    6.55    7.39  11.56 
 1000    8.57    7.37    5.49    7.10 
 2000    8.54    9.51    5.94    6.74 
 5000    6.30  10.50    8.37    6.57 
 
Total mean   7.24    8.69    7.79    8.41 
 
 
_______________________________________________________ 
 
Energy  Mean percentage deviation, >∆< SLABT )95( , (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 

 
   100  29.48  30.02  28.01    4.35 
   200  22.30  36.12  24.60  14.45 
   500  10.07  29.46  27.78  21.86 
 1000    1.13  20.15  24.25  32.44 
 2000    3.49    7.85  16.47  25.97 
 5000    3.86    3.06  4.65  16.80 
 
Total mean   8.17  19.33  19.55  22.30 
 
================================================= 
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Table 4. Mean percentage deviations, >∆< MCT )99(  and >∆< )99(SLABT , calculated from 

Eqs (42) and (43), respectively. The total mean values are obtained by averaging the mean 

percentage deviations over the energy range from 200 eV to 5000 eV. 

 

 

 
================================================= 
Energy  Mean percentage deviation, >∆< MCT )99( , (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 
 
   100    8.47  16.81  15.57  20.78 
   200    7.36  10.59  13.89  12.15 
   500    7.62    8.71    8.05  12.75 
 1000    8.52    9.60    7.44    8.88 
 2000    8.38  10.19    7.65    7.89 
 5000    5.90  10.43    8.56    8.54 
 
Total mean:   7.56    9.90    9.12  10.04 
 
 
_______________________________________________________ 
 
Energy  Mean percentage deviation >∆< SLABT )99(  (%) 
  (eV)  ___________________________________________ 
 
     Al     Ni     Pd     Pt 

 
   100  27.12  27.05  25.16    3.17 
   200  21.17  33.99  21.34  10.23 
   500    9.68  27.65  25.61  19.29 
 1000    1.41  18.83  21.59  30.03 
 2000    3.11    7.68  15.69  23.74 
 5000    3.75    2.44    4.58  15.47 
 
Total mean:   7.82  18.12  17.76  19.75 
 
================================================= 
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Figure Captions 

Fig. 1. Scheme of trajectory of elastically backscattered electron illustrating the single large-

angle backscattering model (SLAB). 

Fig. 2. Scheme of trajectory of elastically backscattered electron illustrating the strategy of 

Monte Carlo calculations (MC). 

Fig. 3. Example of an electron trajectory illustrating assumptions of the analytical formalism 

(AN) and the notation used.  

Fig. 4. 3D plots of the dependence of parameters lA  on energy and the index l varying in the 

range 500 ≤≤ l . (a) Aluminium; (b) platinum. 

Fig. 5. Penetration depth distribution function calculated for nickel assuming the emission 

angle, α , equal to 40o. Depth is expressed in terms of the IMFP for a particular electron 

energy. Solid line: the AN formalism; dotted line: the SLAB model; circles: the Monte Carlo 

calculations. Vertical arrows indicate the depth corresponding to the mean penetration depth 

and the 95% information depth. (a) Energy of 200 eV; (b) 500 eV; (c) 2000 eV; (d) 5000 eV. 

Fig. 6.The same as Fig 5 except for platinum. 

Fig. 7. Dependence of the PDDF the on the emission angle, α , calculated from the AN model 

for platinum and energy of 1000 eV. Depth is expressed in terms of the IMFP. 

Fig 8. Dependence of the mean penetration depth on the emission angle, α , calculated for 

aluminium. Solid line: the AN formalism; dotted line: the SLAB model; circles: the Monte 

Carlo calculations. (a) Energy of 100 eV; (b) 200 eV; (c) 500 eV; (d) 1000 eV; (e) 2000 eV; 

(f) 5000 eV. 

Fig. 9.The same as Fig 8 except for nickel. 

Fig. 10.The same as Fig 8 except for palladium. 

Fig. 11.The same as Fig 8 except for platinum. 

Fig. 12. Percentage differences between MPDs for nickel obtained from considered 

theoretical models. Solid line: difference between the AN and the SLAB models [ SLABG∆ , Eq. 
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(39)]; circles: difference between the AN and the MC models [ MCG∆ , Eq. (38)]. (a) Energy of 

100 eV; (b) 200 eV; (c) 500 eV; (d) 1000 eV; (e) 2000 eV; (f) 5000 eV.  

Fig. 13. The same as Fig. 12 except for platinum. 

Fig. 14. Dependence of the information depth on the emission angle, α , calculated for energy 

of 500 eV and the three percentages, IDp , considered here ( %90=IDp , %95=IDp  and 

%99=IDp ). Solid line: the AN model; symbols: the MC calculations. The angular 

dependence of the MPD is also show here for comparison (dotted line). Horizontal line 

indicates the IMFP value. (a) aluminium; (b) nickel.  

Fig. 15. Dependence of the ID(95) on the emission angle, α , calculated for palladium. Solid 

line: the AN formalism; dotted line: the SLAB model; circles: the Monte Carlo calculations. 

(a) Energy of 100 eV; (b) 200 eV; (c) 500 eV; (d) 1000 eV; (e) 2000 eV; (f) 5000 eV. 

Fig. 16. The same as Fig. 15 except for platinum. 

Fig. 17. (Upper panel) Angular dependence of MPD (solid line) and ID(95) (dotted line) 

calculated from the AN model for platinum. (Middle panel) The corresponding angular 

dependence of the backscattered intensity. (Lower panel) The differential elastic scattering 

cross section plotted in coordinates Ωdd el /σ  versus θα −°= 180 . Vertical lines indicate 

positions of minima in the DCS. 

Fig. 18. Value of maximum in the angular dependence of the ID( IDp ) expressed in units of 

the IMFP as a function of energy .Circles: aluminium; triangles: nickel; squares: palladium; 

diamonds: platinum. (a) Percentage of signal intensity, IDp  = 99%; (b) IDp  = 95%; (c) IDp  = 

90%. 

Fig. 19. Dependence of the relative elastic backscattering probability of 500 eV electrons, 

)(tRη , on thickness of the Au overlayer deposited on the Ni substrate. Triangles: the 

experimental data; solid line: the fitted function [Eq. (52)]. The vertical lines indicate 

positions of the information depths [ID(90), ID(95) and ID(99)], and thicknesses at which the 

influence of the substrate starts to be negligible [t(90), t(95) and t(99); see text for details]. 
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