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4. ABSTRACT IN ENGLISH

The main objective of my PhD course was to gain deep insight the synthesis and optical properties
of rhodols, which might be applied in cell imaging and STED microscopy. I have started with
development of the synthesis rhodols possessing endocyclic sulfone fragment. This was achieved
via the 3-step synthesis of corresponding rhodamines, followed by the substitution of
dimethylamino moiety with the oxygen atom. Having new sulfone-rhodols in hand, I decided to
modify one of them by incorporation of hexyl chain with the quaternary phosphonium center at the
terminal position to make the dye suitable for cell imaging. These compounds possess intriguing
optical properties i.e. high fluorescent quantum yields and high Stokes shifts as well as excellent
photostabilities.

The next goal was to develop the synthetic approach towards rhodols from coumarins via
Knoevenagel condensation. For this purpose, I have synthesized 4-hydroxycoumarins possessing
diethylamino moiety and the coumarin analogue with the annulated nitrogen atom at the position 7
and after additional 3 steps I have obtained 3-formyl-coumarins as the rhodol precursors. This
double Knoevenagel condensation of 3-formyl coumarins with dimethyl 1,3-acetonedicarboxylate is
absolutely unprecedent, because at the second step the source of carbonyl group is lactone ester,
which is typically considered to be inert in this type of reactions. I have performed a huge part of
work trying to find the best conditions for this condensation. In this case I tried various Lewis acids,
bases, solvents, different temperature and the reaction time. Besides, on the basis of the electronic
spectroscopy | have developed a convenient method for screening multiple experiments in the tiny
scale to evaluate conversion and yields of reactions without workup and purification. As a matter of
fact, the best catalyst revealed to be piperidine. This reaction allowed me to obtain new rhodols
possessing two ester groups in 13-28% yield. The obtained rhodols demonstrate excellent quantum
yields: 0.47 — 1.00 in DCM and DMSO.

The final of my research was a discovery of an extraordinary straightforward one-step synthesis of
rhodols from m-aminophenols and tetrafluorohydroxybenzaldehyde. This method is similar to
classic Friedel-Crafts condensation with a difference that a molecule of HF forms during the
reaction instead of water as in the original method. The reaction successfully proceeds in toluene or
xylene at elevated temperatures and does not require any bases or other additives. The product
precipitates from the reaction mixture and can be purified via simple recrystallization. This
approach  is  applicable  to m-aminophenols,  4-hydroxy-7-aminocoumarins  and
hydroxyaminonaphthalenes, that allowed me to obtain an uncommon n-expanded linear rhodol and
n-expanded rhodol analogues. This is the first representative of m-expanded rhodols with the
additional benzene ring from amino side possessing the linear chromophore.

-13 -



5. ABSTRACT IN POLISH / STRESZCZENIE W JEZYKU POLSKIM

Glownym celem mojej pracy doktorskiej byto pogtebienie wiedzy na temat syntezy i
wlasciwosci optycznych rodoli, ktére mogg znalez¢ zastosowanie w obrazowaniu
komorkowym i mikroskopii STED. W pierwszej fazie opracowatam synteze¢ rodoli
posiadajacych endocykliczny fragment sulfonowy. Osiggnetam to poprzez 3-etapowa
synteze¢ odpowiednich rodamin, a nastepnie podstawienie ugrupowania
dimetyloaminowego atomem tlenu. Majac w reku nowe rodole sulfonowe, zdecydowatam
si¢ zmodyfikowa¢ jeden z nich poprzez wlaczenie tancucha heksylowego z
czwartorzedowym centrum fosfoniowym w pozycji koncowej, aby barwnik nadawat si¢ do
obrazowania mitochondriow w komorkach eukariotycznych. Zwigzki te posiadaja
intrygujace wlasciwosci optyczne, tj. wysokie wydajnosci kwantowe fluorescenciji i
wysokie przesunigcia Stokesa, a takze doskonalg fotostabilnosc.

Kolejnym celem byto opracowanie syntetycznego podejscia do rodoli z kumaryn poprzez
kondensacj¢ Knoevenagela. W tym celu zsyntetyzowatam 4-hydroksykumaryny
posiadajace ugrupowanie dietyloaminowe i analog kumaryny z pier§cieniowym atomem
azotu w pozycji 7 i po dodatkowych 3 etapach otrzymatam 3-formylo-kumaryny jako
prekursory rodolu. Zastosowana w ostatnim etapie podwojna kondensacja Knoevenagela 3-
formylokumaryn z 1,3-acetonodikarboksylanem dimetylu jest absolutnie bezprecedensowa,
poniewaz w drugim etapie zrédtem grupy karbonylowej jest ester laktonowy, ktory zwykle
uwaza si¢ za niereaktywny w tego typu reakcjach. W czasie optymalizacji tej kondensacji,
probowatam réznych kwasow Lewisa, zasad, rozpuszczalnikdéw, réznej temperatury i czasu
reakcji. Poza tym na podstawie spektroskopii elektronowej opracowatam wygodng metode
»skriningu” wielu eksperymentéw w matej skali w celu oceny konwersji i wydajnosci
reakcji bez obrobki i oczyszczania. W rzeczywisto$ci najlepszym katalizatorem okazata si¢
by¢ piperydyna. Ta reakcja pozwolita mi otrzymaé nowe rodole posiadajace dwie grupy
estrowe z wydajnoscia 13-28%. Otrzymane rodole wykazuja doskonate wydajnosci
kwantowe fluorescencji: 0,47 — 1,00 w DCM 1 DMSO.

Zwienczeniem moich badan byto odkrycie niezwykle prostej, jednoetapowej syntezy rodoli
z m-aminofenoli i tetrafluorohydroksybenzaldehydu. Metoda ta opiera si¢ na klasyczne;j
reakcji Friedela-Craftsa po ktorej nastepuje wewnatrzczasteczkowe aromatyczne
podstawienie nukleofilowe. Reakcja z powodzeniem przebiega w toluenie lub ksylenie w
podwyzZszonej temperaturze i nie wymaga zadnych katalizatoréw. Produkt wytraca si¢ z
mieszaniny reakcyjnej i mozna go oczys$cic przez prosta rekrystalizacje. Podejscie to ma
zastosowanie do m-aminofenoli, 4-hydroksy-7-aminokumaryn i hydroksyaminonaftalenow,
co pozwolito mi uzyskac¢ rzadki liniowy m-rozszerzony rodol 1 analogi rodolu o nt-
rozszerzonym tancuchu. Jest to pierwszy przedstawiciel n-rozprezonych rodoli z
dodatkowym pier§cieniem benzenowym od strony aminowej, posiadajacy liniowy
chromofor.

-14 -



6. GUIDE TO THE DOCTORAL THESIS

6.1 Purpose of the work

The study of biological systems at the cellular and subcellular levels is greatly aided by small
molecule fluorophores of which members of the xanthene family, including fluorescein and
rhodamine, have proven to be invaluable.! Recently, there has been an increased focus on the
manipulation of the photophysical properties of these ubiquitous dyes through structural
modifications. In particular m-expansion, and replacement of the xanthene oxygen atom bridge with
silicon,>* phosphorus,’ sulfur,’ or carbon’ in rhodamine,'*!* fluorescein,'*!> and rhodol'®
scaffolds have proven to be effective. The dyes from this extended family, despite their structural
and functional diversity, share the quintessential characteristics: (a) planar aromatic structures; (b)
excellent spectroscopic properties including intense absorption and fluorescence; (c) relatively
small Stokes shifts; (d) biocompatibility. These features made them particularly attractive in

fluorescence microscopy.

Since the design of commercially available confocal microscopes in 1960s, fluorescence
microscopy has been one of the most important cell research methods, indispensable for life
sciences. Moreover, as biological material by itself shows weak fluorescence response, the usage of
fluorescent markers in microscopy techniques allows selective visualization of the diverse

intracellular structures and monitoring different cellular processes.

The main drawback of this technique however was its spatial resolution which does not exceed 200
nm in the object plane (X, y) and 600 nm along the optical axis. The development of optical
methods in microscopy has led to the emergence of a large number of modern techniques. In 1994
Stimulated Emission Depletion Microscopy (STED microscopy) was proposed as a new super
resolution scanning fluorescence microscopy method.!” This approach is based on reducing the
diameter of dots with an additional STED laser, which suppresses spontaneous emission in the outer
region of the fluorescent spot due to the effect of stimulated emission. The beams of the exciting
and STED lasers are carefully aligned, and the intensity distribution of the STED laser in focus has
the form of a “donut”, with zero intensity in the centre. As a result, at high intensities of the STED
laser, only those molecules exhibit fluorescence, which are located close to the region with zero
intensity, while in the high-intensity zone is mainly stimulated emission of fluorophores that are
rejected in the optical path due to coincidence with the wavelength of the STED laser.'® Sequential
scanning of the entire sample gives a complete picture with super-resolution. In other words, a
STED microscope is a laser scanning confocal microscope that reaches resolution beyond the

diffraction limit by selective quenching of fluorescence.!® Therefore, fluorescence microscopy has
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proven to be the best method for studying the mechanisms of functioning of organisms at the
cellular, subcellular and molecular levels. The first dye used for theoretical description of STED-
microscopy was rhodamine B. Nevertheless, the majority of existing fluorescent dyes turned out to
be ineligible for super resolution imaging due to low photostability or non-suitable optical
properties. Over the last decade, STED microscopy has become a general fluorescent technique,
rather than highly specific method. The desire to answer more advanced cell-biological questions
has led to the increased need for more advanced dyes, which can fulfil principal requirements: large
fluorescence quantum yield in the near-infrared region, large Stokes shift good cell-permeability

and most importantly high photostability.

My PhD-Thesis has two goals, which I plan to realize in parallel. Predominantly I challenged
myself with developing entirely new synthetic methodologies leading to rhodols, rhodols modified
at central bridging atom and ‘rhodol-like’ merocyanines. The methodologies available in the spring
2018 when I started my research work, although useful had many limitations. Predominantly they
did not enable an access to broader range of rhodols possessing additional functionalities and/or an
altered chromophore. The parallel goal was to obtain rhodols with the combination of more suitable
photophysical properties i.e. bathochromically shifted emission, large fluorescence quantum yield

and enhanced photostability.
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6.2 The current state of knowledge in a given field of chemistry

The first mention about rhodol appeared in 1889, when it was prepared in a roundabout way starting
from the decomposition of fluorescein, and was named by Bayer as ‘neuer Farbstoff’.?° Being a
structural hybrid of two dyes already known at that time — rhodamine and fluorescein — the new
chromophore was named ‘rhodafluor’ (lately ‘rhodol”) — the one similar to rhodamine and at the
same time possessing a ‘phenol component” of fluorescein.?! Rhodols inherited photophysical
properties of the parent dyes in terms of large extinction coefficient, large fluorescence quantum
yield and solubility in majority of solvents (Fig.1). On the other hand, rhodols are more photostable

compared to fluoresceins.'®

Ar Ar Ar
® ! °o B CI®
L 89 b
o 2 & R R. O R
o) o) o) 07 0T TN N o) N
10 R R R

Fluorescein Rhodol Rhodamine

Figure 1. Structures of fluorescein, rhodol and rhodamine scaffolds.

All of the abovementioned dyes refer to polymethine dyes, since they possess a chromophore
system, which consists of conjugated double bonds located between two terminal polar moieties.
Rhodamine as one of the most distinguished representatives of cyanine dyes possesses a delocalized
positive charge along the conjugated system, while fluorescein belongs to the oxonole group of
dyes having a delocalized negative charge. In opposition to both parent dyes, rhodol corresponds to

the merocyanine family and has an electronically neutral structure, which is illustrated in two
limiting forms — neutral and dipolar (Figure 2).?

Ar Ar
=4 AN
_R S O R
O (@) l}l (@) O l\ll
R R

Neutral and dipolar limiting forms
of rhodol chromophore

Figure 2. Balance between neutral and dipolar limiting forms of rhodol chromophore.

Comparable to fluoresceins, rhodols illustrate positive solvatochromism possessing red-shifted

absorption and emission maxima in polar solvents. In the same way as parent dyes, rhodols can be
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modified to influence the conjugation chain and, as a matter of fact, the photophysical properties,

which allows to obtain the desired compound suitable for various applications (Figure 3).

Influence of substituents on

‘?"k shifts of abs/em maxima: Fluorescence efficiency:
N -
[ :@ EWG - red shift
N ;{ EDG - blue shift
|
Alk %‘ NHR - Monosubstituted
1,2,3,4-tetrahydroquinoxaline §
(80-140 nm red shift) £
\ o ) .
O 8 NR; - Disubstituted
[]
Ak N 2
Red shift 10-15 nm S
for each linear Ar U Red shift abqut 25.nm |.T=. Aryl groups cause )
for each cyclic chain fluorescence quenching

alkyl or aryl group
Figure 3. The influence of substituents on optical properties of rhodafluors.

The study of the substituent’s nature influence on the absorption and emission spectra is
rationalized by the Dewar-Knott rule.?** It states that incorporation of electron-donating groups
into meso-position 9 and bridging position 10 results in blue-shift of the absorption maxima,

meanwhile the electron-withdrawing groups provoke the opposite effect.

Furthermore, the spectral characteristics of thodol fluorophores, such as emission maximum and
fluorescence quantum yield, are quite dependent on the substitution patterns of the nitrogen atom in
a similar manner to rhodamine.?>*® Rhodols with unsubstituted amino group exhibit very strong
fluorescence at 516 nm. The addition of one alkyl substituent leads to the bathochromic shift of
both absorption and emission maxima.?” Meanwhile, rhodols comprising fully annulated terminal
C-N bonds (julolidine moiety) exhibit even more red-shifted maxima, due to the restricted rotation
of the amino group, though with reduced fluorescence quantum yields. In addition, the introduction
of 1,2,3,4-tetrahydroquinoxaline moiety leads to the Stokes shift increase (80-140 nm) due to the

presence of second electron-donating amino group in the neighboring position (Figure 3).2%%

The aryl moiety plays a substantial role in rhodamines, fluoresceins and rhodols, governing some of
their chemical and photophysical properties. Although, it is located orthogonally to the xanthene
scaffold and is not a part of the chromophore, it decreases the sensitivity of fluorophore’s -
conjugated system to the nucleophiles.*° The presence of the bulky substituent at ortho-position of
benzene moiety increases the fluorescence efficiency, since it inhibits rotation of the aryl part and in

this way minimizes the radiationless deactivation of the excited state.?'*
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Consequently, the analysis of the abovementioned led me to the conclusion that synthesis of new
derivatized rhodols may be the perfect starting point to develop a new generation of stable
functional dyes possessing range of key properties such as: high photostability, cell permeability,

intense fluorescence and susceptibility to external stimuli.

6.2.1 Synthesis of classic rhodols

The first thodol was synthesized in 1889 by Bayer. Previously he had developed synthesis of
fluorescein and rhodamine, which acquired later an industrial value. The further investigations led
to the formation of first rhodol and, thus, a new class of the merocyanine dyes. For this purpose
Bayer had utilized base-induced hydrolysis of fluorescein followed by the formation of
dihydroxybenzoylbenzoic acid and its condensation with m-aminophenol (Scheme 1).

Unfortunately, the authors did not provide any information about yields of both reactions.

@ (), moT g
COOH NaOH COOH 2 COOH

—_—_—
—_—

O \ HOAc O 0 ZnCly, 140-160°C O \
HO 0 o) HO OH Et,N 0 o

Fluorescein 1 3
Scheme 1. Original method of rhodol formation based on a reversed substrate model.

Since 19" century this method still remains favored and is employed in many modern publications.
28.29.43-493542 However, the way of synthesis of benzophenones nowadays is different, since
hydrolysis of fluorescein is not very convenient. Another option is condensation of phthalic
anhydride with resorcinol derivatives in the presence of Lewis acids. This method of rhodol
synthesis is more convenient than ‘classic’ one (Scheme 2) particularly in the case of complex m-
aminophenols.

The most common method of preparation of symmetrical rhodamines and fluoresceins is a Friedel-
Crafts acylation which involves phthalic anhydride and resorcinol or 3-dialkylaminophenol. %!
However, this one-pot method is not applicable for rhodol attainment due to its asymmetrical
structure. For this reason the most straightforward access to the rhodol structure is a two-step
condensation of phthalic anhydride 3 with 3-dialkylaminophenol 2 followed by the reaction of the
obtained benzophenone 4 with resorcinol 5 (Scheme 1).523 Even though this is the original and

short method leading to the formation of the rhodol, the first step suffers from a significant
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disadvantage. The concurring formation of rhodamine B via the addition of second molecule of 3-
dialkylaminophenol 2 is preferrable and proceeds almost immediately. For this reason it is crucial to

use a considerable excess of phthalic anhydride to inhibit the side reaction.

COOH COOH
b O
Et,N OH to'ue”e reflux N OH Et,N
2 o 4,93% 6, 77%

/; O

o) formation of rhodamine

3 proceeds immediately
toluene, reflux Et,N

Rhodamine B

Scheme 2. ‘Classic’ method of rhodol synthesis from phthalic anhydride, 3-aminophenol
and resorcinol.

Nevertheless, this simple procedure results in formation a rhodol skeleton possessing COOH group
in the aryl moiety making product better soluble in water and more attractive for further
modifications. Moreover, the carboxylic group equilibrates between spiro and open dye forms
(Scheme 2). Acidic conditions stimulate the formation of the protonated or the spiroform, while in
basic media rhodols are in the open dye form, since ring closure is impossible due to the salt
formation. Despite all disadvantages, this method still remains one of the most inexpensive, fastest

and the most straightforward approaches towards rhodols,3%-3:61-70:52.71.54-60
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Scheme 3. The equilibrium between the dye open form and spiroform.

The use of acetophenone in the abovementioned method allows to incorporate a methyl group
instead of aryl one at the meso-position of rhodol skeleton (Scheme 4).%7>73 The original
procedure includes Fries rearrangement of 3-acetoxy-N,N-dimethylaniline into acetophenone, which
occurs however, in only 16% yield.’® On the other hand, the transformation of 7-diethylamino-4-
hydroxycoumarin into acetophenone results in 90% yield via ring-opening followed by
decarboxylation.” The condensation of acetophenone 7 with resorcinol 6 occurs in phosphoric acid
and leads to the rhodol formation in 75 % yield. Even though this method allows to incorporate

different substituents in position 9, the synthetic access to the starting aromatic ketones is quite

o HO™ i “OH
& 5 %
Et,N OH Et,N o) o

H3PO,
7 8, 75%

limited.

Scheme 4. The synthesis of thodol 8 from acetophenone 7.

A modification of the original method, employing monothioresorcinol 10 and benzophenone 9,
gives rhodol analogue 11 possessing the endocyclic sulphur instead of the oxygen atom.>® On the
other hand, the substitution of polyphosphoric acid with 50% sulfuric acid causes the conversion of
monothioresorcinol into resorcinol, thus, resulting in the formation of O-rhodol instead of S-rhodol.
By the time I started my investigation this was the only known example of rhodol with endocyclic

sulphur atom.
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HS/©\OH
e - 208
Et,N OH Et,N s o)

polyphosphoric acid
9 1, 16%

Scheme 5. The synthesis of rhodol with the endocyclic sulphur atom.

One of the most uncommon method is the condensation of phthalimide with m-aminophenols in the
presence of sulfuric acid.”* The authors apply double excess of aminophenol 13, that surprisingly do
not result in the formation of Rhodamine 110, but leads to the cleavage of C-N bond to form

rhodol 14.

C S
O
COOH 13 COOMe
HSO4
X 4 - NH AN
4 1. conc. H,SO,4 180°C
H,N o) NH, 0 2. MeOH, H80,, reflux N 0O 0O

Rhodamine 110 12 14, 10%

Scheme 6. Rhodol formation from phthalimide.

The use of substituted unsymmetrical phthalic anhydrides for rhodol synthesis via ‘classic’ method
results in the formation of the mixture of 5- and 6-substituted derivatives. The separation of these
isomers is challenging and in some cases is even impossible. However, Chevalier has offered the
solution to this issue.”””7 His group has discovered that it is more convenient to use functionalized
aldehydes, instead of phthalic anhydride derivatives, together with 8-hydroxyjulolidine. The
intermediate 17 formed after the reaction of julolidine 16 with aldehyde 15 next undergoes the
reaction with resorcinol affording rhodol 18 (Scheme 7). This type of Friedel-Crafts reaction is
more common for synthesis of fluoresceins or rhodamines than for rhodols. Condensation of
aldehyde with resorcinol or m-aminophenols affords methine intermediate which is more reactive
than starting aldehyde, hence, the further reaction with second molecule of the substrate proceeds
immediately and results in the formation of symmetric dye (rhodamine or fluorescein). That means
that these conditions without any adjustment are not suitable for synthesis of unsymmetrical
rhodols. Chevalier’s group has solved this problem utilizing modern techniques, like RP-HPLC for
analysis and purification. Furthermore, chromatography fractions need to be lyophilized. This

method was applied to various aminophenols affording new rhodols.
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18, 50%

Scheme 7. Rhodol synthesis starting from benzaldehyde and 8-hydroxyjulolidine.

A more advanced synthetic route towards the rhodol chromophore is based on the preparation of the
corresponding xanthone followed by the arylation with organo-metallic reagents (Scheme 8). This
general strategy was utilized for the synthesis of both rhodamines and rhodols. The most
challenging part is the preparation of the suitable xanthone scaffold, which allows for the
modification of the main rhodol skeleton that is impossible to perform applying the conventional
methods. This approach was used to prepare Singapore Green.”® It starts from the condensation of
2-chloro-4-nitrobenzoic acid 19 and 3-acetamidophenol 20, followed by the substitution of the
amino with the alkoxy group. Consecutive reduction and protection afford compounds 24 and 25.

The following arylation and deprotection results in formation of Singapore Green dyes 26 and 27.

(6] O
dOH /@\ 1. K,CO3 Cu, DMF, 130°C
+ -
O,N cl HO NHAc 2. H;S0,4, 80°C O,N 0 NH,
19 20 21
o] 0]
1. NaNOZ‘ HQSO4
1. SnCly+H,0, EtOH 2 H,0
TrHN (6} OR o CPh,Cl, NEt; DCM O,N (6] OR 3. K,CO3 DMF,
' (Me0),SO, or
24, R=CHj; 79% 22, R=CHj 65% I-(CH,)5-OTBS

25, (CH,)sOTBS, 89% 23, (CH,)sOTBS, 76%

é/MgBr
=
1. THF ‘ O
HN (¢} OR

2. DCM, TFA, H,O

26, R=CH3, 79%
27, (CH,)sOTBS, 89%

Scheme 8. The synthesis of Singapore Green 26 and 27.
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Alternatively, substitution of meso-position of xanthone can be beneficial in combination with a
triflation of both hydroxy groups, followed by the amination of one of them (Scheme 9).*%° The
subsequent quenching of the remaining triflate group, its further protection with tert-
butyldimethylsilyloxy group and arylation lead to the formation of the variety of rhodols 36-39. The
method has a great potential to increase the scope of new rhodols by the preparation of the rhodol

heteroanalogues on the one hand, and introducing a plethora of secondary and tertiary amines on the

0 NH 0
.
TfO X ot ~ PMSO o X N7
0

other hand.

28,X=0 32, X=0,32% ~
29, X = C(CHj), 33, X = C(CHy),, 49%
30, X = Si(CH3), 34, X = Si(CHj),, 45%
31, X = P=O(Ph) 35, X = P=O(Ph), 61%

1, Et,;NOH
2. TBDMSCI

3. t-BulLi, ArBr

36,X =0, 7% 4.aq. HCI

37, X = C(CHy),, 48%
38, X = Si(CHz),, 20%
39, X = P=O(Ph), 29%

Scheme 9. General synthesis of rhodols from xanthone derivatives.

Another alteration of this procedure starts from fluorescein possessing carboxylic group in lactone
form. In the original procedure one hydroxy group undergoes protection with MOMCI, while
another one is transformed into triflate yielding compound 40 (Scheme 10).*'*? The subsequent
amination in the presence of Pd catalyst, followed by deprotection of another OH group results in
formation of a range of rhodols 41a-p possessing different amino groups. This approach with a few
slight modifications was successfully applied in the investigations by some other scientific
groups.?” 7 The reactivity of the carboxylic groups in the benzene ring at the meso-position is quite

different so these can be converted independently.3®
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O 1. K,CO3 DMF, MOMCI O
o 2. NaOH, THF/H,0 o -
3. Tf,0, Py, DCM
HO 0 OH MOMO 0 oTf

40, 83%
HOOC ‘
1. NHR4Ry, Pd(OAc),, BINAP,

X
] O O Cs,COg3, toluene, 100°C
RY
N 9) o 2. TFA, DCM
R2

41 a-p

Fluorescein

EN N NN
éSS\NH2 Jé\u/\/ é’s\”/\/\ ﬂu/\/ ;‘{\T/ r\(\ NK/ NK/\

a, 78% b, 78% c, 80% d, 52% e, 66% f, 75% g, 70% h, 68%

0 (0]
Jé\D éé\,\O Jé\N/\O f\m/\Ph f\”/Ph ef\,\‘rph éﬁ\ujv éé\H)kPh

i, 81% i, 92% k, 96% 1, 90% m, 95% n, 92% 0,47% P, 62%

Scheme 10. Synthesis of rhodols possessing various amino substituents via the catalyzed amination

of fluorescein.

The following method shows a partial analogy with the amination of triflated fluoresceins.
Fluorescein derivatives like Pennsylvania Green (42) can undergo the substitution of hydroxy group
with the iodine atom, followed by the Buchwald-Hartwig amination reaction with microwave

irradiation resulting in the formation of rhodol 44 (Scheme 11).%

Pd(OAc),,
CsCO; O
toluene,

PhN(Tf),,
TEA, Lil, xanthpos, . -
F / O F dioxane F F MW, 120°C / O
T T
9 0 OH 120C ¢ o | . 0 o NH
HZN/\/ ~ H
42 43, 85% 44, 60%

-

Scheme 11. Rhodol preparation method via iodine derivative of fluorescein.
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6.2.2 Synthesis of m-expanded rhodols and ‘rhodol-type merocyanines’

Seminaphthorhodafluors or ‘SNARFs’ are also members of rhodol family. These molecules possess
a substituted naphthalene moiety instead of benzene from the side of hydroxy group. Initially, the
authors have utilized 1,6-naphthalenediol 47 and 4-diethylamino-2-hydroxybenzophenone
derivative 4 in the presence of methanesulfonic acid (Scheme 12).%¢ This is an another alteration of
the routine rhodol synthesis in which resorcinol is substituted with various naphthalenediols. In
some cases carboxylic group at the upper ring undergoes esterification to facilitate the purification

process of products.

Originally abbreviation ‘SNARF’ corresponded only to the rhodols obtained in the reaction with
1,6-naphthalenediol by Haugland’s group in 1991.5° However, in following publications authors
have applied this name to fluorophores obtained from another naphthalenediols, including

benzocoumarin 51.3%-90-9

OH OH

O “:Oecoza /“OO O
EtO,C OH HO HOOC
Et,N ‘ o] ! o) 1. TFA, 110 °C, MeSO3H, 90°C, Et,N o)

CO,Et 12h 12h ‘
? o

2. SOCl, EtOH,
46, 63% 90°C, 6 h

OH O
e OO |y
co, P MeO,C
= o OH
<) 49 51
EtN 0 EtN
MeSOzH 1. H,S0,
50, 87% 85°C,4h 90°C,3h
2. H,S04 MeOH
reflux, 24 h

Scheme 12. Preparation of seminaphthorhodafluors.

The use of aldehyde 15 and m-aminophenol instead of ready benzophenone is the adjustment of the

abovementioned method. The one pot reaction of compounds 15 and 16 together with 1,6-
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naphthalenediol 47 in the presence of phosphoric acid using microwave irradiation leads to the
formation of rthodol 53 (Scheme 13).”7 This approach suffers from several significant drawbacks:
low yield of rhodol (due to the formation of corresponding fluorescein in large amounts) as well as
the difficulties with products’ separation and purification. Meanwhile, Chevalier’s group has
managed to receive the same product in 43% yield applying two-step method, which was already

mentioned (Scheme 7).7

SO3Na H3PO4’ air
MW, 200°C
N 15 min
TN OH HO
SO3Na
CHO OH

15 16 47

53, 10%

Scheme 13. One-pot three component method for SNARF preparation.

Exceptional representatives of n-expanded rhodols are fluorophores possessing naphthalene
fragment from amino side. This can be probably explained by difficulty of synthesis of the
corresponding substrates for such reversed ring configuration in comparison to the original pattern.
Rhodol 56 was obtained as a result of condensation between 1-hydroxy-6-piperazine-naphthalene

(55) and benzophenone 54 in the presence of trifluoroacetic acid (Scheme 14).*

I COOH

s o
COOH TFA, 125 °C, 3 h
poalibhae SAS
o) N N

H
o o L_NH N

56, 69%
Scheme 14. Reversed substrate pattern method for synthesis of naphthorhodol.

The aryl moiety at position 9 typically does not influence the photophysical properties since it is
located orthogonally to the main chromophore scaffold. Linking of the aryl fragment to the
xanthene core gives rise to so-called V-shaped dyes.”®” Even though the expansion is not caused by
addition of another benzene ring, additional bond between aryl and xanthene moieties introduces -

expansion, so compounds 60-62 can be still formally classified as n-expanded rhodols (Scheme 15).
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Firstly, the authors have synthesized a V-shaped fluorescein 57, which revealed to have a
significant bathochromic shift of both absorption and emission maxima in comparison to original
fluorescein. However, poor solubility and low quantum yield diminished the advantages. To
improve the spectroscopic properties authors modified the core incorporating piperidine moieties.
Thus, fluorescein 57 was subjected to the triflation procedure, followed by the amination of the
obtained intermediates 58 and 59 with piperidine. As a result 3 rhodol derivatives 60-62 formed as
well as a V-shaped rhodamine 63 as a minor product. In comparison to fluorescein 57, these

products exhibit higher fluorescence quantum yields and the red-shifted both absorption and

emission maxima.

O o PhN(Tf),, DIPEA

58, 30% 59, 28%
jpiperidine (16 equiv.) lpiperidine (10 equiv.)
1. piperidine (1 equiv.) A A
2. NaOH A
3. Amberlyat 15 “61,53%; 62, 10%;63,5% ' 61, 11%; 62, 20%; 63, 7%
‘ 0 I (0] ) I I (¢}
CrO CrO 909 Cr 10
~t+
HO o o QN 0 o Q\J o o) O o) I\O
60, 32% 61 62 63

Scheme 15. Preparation of V-shaped rhodol derivatives.

6.2.3 Synthesis of rhodols with an endocyclic heteroatom

Another strategy to change the photophysical properties of merocyanine dyes is substitution of
bridging oxygen atom with carbon, silicon, selenium or phosphorus containing fragments (Figure

3). The modifications of the rhodol core in this regard can be achieved in various manners.
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Similarly to previously reported fluorescein and rhodamines,??-1:102:51.53.35.61.64.65.100.101 the

substitution of the endocyclic electron-donor oxygen atom in rhodol scaffold with more electron-
deficient silica, selenium or phosphorus containing moieties as well as carbon fragment leads to the
bathochromic shift of both absorption and emission maxima. Furthermore, rhodols with phosphine
oxide moiety exhibit an extraordinary photostability,” compared to that of C-substituted rhodols.’
The orbital interaction between the newly incorporated bridging moiety and xanthene scaffold leads
to the red-shifted absorption and emission properties. This effect can be enhanced by introduction

of more electron-withdrawing moiety.

1. Sec-BuLi
MeO Br AlCl;  MeO Br N 2. SiMe,Cl,, THF
+ Br N - - - =
cl DCM 3.CsCO; DMSO
Br
66, 30%
Br
pgn
N o
” 400
PE—
1. tert-BuLi N Si OMe
2. HCI VAN
3. BBr3
67, 18%

Scheme 16. Preparation of Si-rhodols.

A few approaches towards Si-rhodols were reported. One of them is based on synthesis of the
silicon-containing xanthone 67 starting from 8-bromojulolidine 65 and 2-bromo-4-methoxybenzyl
chloride 64, followed by ring closure via silylation and oxidation of methylene fragment (Scheme
16).' The subsequent arylation of xanthone 67 and deprotection of hydroxy group results in

formation of Si-rhodol 69.

1. Pdy(dba)s

CHCl3, xantphos,
052CO3
benzophenone

Tf0, imine/
O O e ) e L)
o 30C TfO SI 2. 2N HCl, HyN /Si o
aq. THF \
70 71, 100% 72, 100%

Scheme 17. Preparation of Si-rhodols via Pd-catalyzed amination of the corresponding fluorescein.
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Another approach towards Si-rhodols starts from the corresponding fluorescein analogue 70,'*
which is subjected to the triflation of hydroxy group and its following substitution with amino

group in the Pd-catalyzed conditions (Scheme 17).!%

The preparation method for the carborhodols is the most complex among other rhodol analogues.
The synthetic approach consists of 11 steps and proceeds through the formation of unsymmetric

xanthone derivative 77 possessing carbon bridge, followed by the arylation and deprotection od

hydroxy group (Scheme 18).!%

0
1. NaBH;CN
. Q)L 1. A|C|3 DCM AcOH, (CH,0)n
Br/[j\OCH3 2.8nCly, HCl,  H,CO Br NH
73

2. NaBH,, AICI3
DME, EtOH THF
Li O/><
N
N
1. o]
78
1. BuLi, THF
aq. NH4CI “O acetone, aq.NH,CI O O
—_— ~ ~
o) N o) Br l\‘l

75, 58%

2. AICl; DCM
2.20% aq. HCl | ‘ s, DCM, .
77, 20% 3. KMnOy, acetone 76, 54%
0}
\ \/\)\OR
O \%)WO\ O N
COy H
2 2 o %

S
Cl
1. POCI; DCE, NEt;
- N -
RO l\‘l+ o} N

2. BBry, DCM |
79, R=Me, 31% 81, R=CHj 18%
80, R=H, 19% 82, R=H, 10%

Scheme 18. Preparation of C-rhodols.

The transformation of thodamines into rhodols via hydrolysis was first reported in the end of 20"
century.?’ This method seemed to be inefficient with classic oxygen-bridged rhodamines, thus, it
was forgotten for many years. However, rhodamines possessing electron-withdrawing endocyclic
heteroatom appeared to be more reactive in terms of the hydrolysis to form rhodols. Thus, P=O-
bridged rhodamines 84-87 easily undergo substitution of diethylamino moiety with the oxygen atom
under basic conditions resulting in formation of P=O-rhodols 88-91 in high yields.'”” The use of
highly concentrated solutions of sodium hydroxide leads to the formation of the corresponding

fluoresceins. The authors also emphasize that the presence of a bulky substituent at ortho-position
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of aryl moiety is crucial to avoid nucleophilic attack of the hydroxyl ion at position 9, that leads to

the breaking of chromophore conjugation and, thus, to discoloration.

The same approach was utilized for the synthesis of fluorene analogue of rhodol. Grzybowski et.al.
has performed an unprecedented synthesis of rhodamine analogues, which possess central five-
membered ring instead of 6-membered heterocycle.!” Such rhodamine 91 was subjected to the
hydrolysis reaction in the presence of NaOH resulting in the formation of rhodol analogue 92

(Scheme 19).

NaOH, H,0 / MeOH

/\N
83, R;=OCHj Ry=H, R3=OCHj 87, R1=0CHj; Ry=H, R3=0OCHj3; 93%
84, Ry=CHj R,=H, R3=CH3 88, Ry=CHj3 Ry=H, R3=CH3 83%
85, R1=OCHj3; R,=COOH, R3=0OCHj; 89, R4=0CHj; R,=COOH, R3=0OCH3 72%
86, R=H, R,=H, R3=CF4 90, R4=H, Ry=H, R3=CF3 64%

O‘O NaOH, H,O / MeOH O‘O

—N +N— —N O

\ 91 / \ 92, 38%

Scheme 19. Formation of the rhodol-type chromophore via the hydrolysis of corresponding

rhodamines.

Rhodols bearing endocyclic selenium atom are known as well and can be obtained starting from
transformation of 3-bromo-N,N-diethylaniline 94 into diselenide 95.' This method was originally
used for synthesis of thodamines containing endocyclic selenium atom.!'%!!! T this case, to obtain
rhodol 98 the authors had to couple diselenide 95 with allyloxybenzamide 96 affording xanthone 97

and then to perform arylation and deprotection of hydroxy group.
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Scheme 20. Preparation of Se-rhodols.

To sum up, all synthetic approaches towards rhodols can be differentiated into 3 general techniques:
(a) condensation of aromatic 4-amino-2-hydroxyketones with resorcinols or vice versa — 2,4-
dihydroxybenzophenons with m-aminophenols, (b) formation of the correspondent xanthones and
their further arylation and (c) catalytic amination of the appropriate fluorescein derivative. Besides,
there are some methods for the preparation of individual compounds without the possibility of
employing them as a general synthetic approach (e.g. Schemes 5 and 6). Besides, the syntheses of
rhodol analogues possessing endocyclic heteroatoms different from oxygen still are not developed
enough. Formation of C-rhodols is the most challenging and rhodols possessing sulfur groups were
unknown. Another issue is synthesis of n-expanded rhodols. Even though there were several reports
about these compounds, still their formation and the usage are challenging due to the unavailability
of the substrates, difficulty in their synthesis, low yields due to side reactions or poor solubility of

products making them inappropriate for further studies.
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6.3 Results and discussions

6.3.1 Red emissive sulfone-rhodols as mitochondrial imaging agents
By the time I started my first project, I had performed literature search and found out that there was
only one example of rhodol with endocyclic sulfur atom.’® Besides, there was no single report on
rhodols containing sulfone or sulfoxide fragment either.'® Taking into consideration that C-, Si-, Se-
and P-rhodols possess red-shifted absorption and emission maxima, higher quantum yields and
better photostability in comparison to O-rhodols, I have concluded that considering electron-
withdrawing properties of the SO, moiety, SO»-rhodols may exhibit even better photophysical
properties than other representatives of this family. Since P=0 rhodamines successfully undergo
transformation into rhodols due to the presence of electron-withdrawing P=0 moiety,'"” I expected
that the presence of stronger SO group should accelerate such reaction as well. I have started my
work from synthesis of the scope of sulfone-rhodamines using the earlier reported synthetic
approach, which starts from crosslinking of 4,4’-methylenebis(N,N-dimethylaniline) 98 with
oleum.?! At this point I decided to substitute oleum with chlorosulfonic acid, since it is more
commercially available and more convenient to work with (Scheme 21). As a matter of fact I have
received a product 99 with yield slightly higher than in the original method. The conditions of the
subsequent oxidation were altered as well. I have utilized sodium hydroxide in the presence of
TBAB instead of iron (III) chloride in hydrochloric acid and obtained xanthone 100 in 83% yield
(35.7% in the original approach).

NaOH,
HSO3C| TBAB
~N
'\\l T 120°C ” 0 ” o
98 99, 75% 100, 83%

Ar-Br

sec-Buli,
HCI

Scheme 21. Synthetic procedure for SO»-rhodols
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Another controversy was the choice of aryl bromides for future rhodamines. It was very important
to choose the most fitting substituents in SO»-rhodols, because even small structural changes can
influence the photophysical properties. The attack of nucleophile at C9-position of unhindered
rhodols leads to the interruption of the n-conjugation and, thus, to the decoloration.'’! Besides, this
substituent had to be bulky enough to prevent the addition of nucleophile. For example, P=0O-
rhodols possessing methyl group in ortho-position undergo nucleophilic attack under basic
conditions, because CH3 group is not big enough to shield carbon in meso-position, while CF; or

OMe, manage to prevent disruption of chromophore’s m-conjugation system.'?’

For this reason, I have chosen anthracene and aryls possessing trifluoromethyl and methoxy group
in 0-position. Despite my expectations, I was not able to obtain pure SO>-rhodamines 101a-d. Mass
analysis showed that there was always a second rhodamine possessing a monomethylamino moiety
due to the cleavage of one methyl group. It was impossible to purify products using column
chromatography with any liquid or solid phases. Recrystallization did not help either. I decided to
use these rhodamines in next step without any purification. The subsequent hydrolysis cleanly

afforded SO»-rhodols 102a-d (Figure 4).

‘ 77\ ‘ 7\ /7

102a, 39% 102b, 20% 102c, 25% 102d, 23%

Figure 4. Obtained sulfone-rhodols 102a-d

The subsequent idea was to modify one of the obtained rhodols by introduction of
triphenylphosphonium salt to make it suitable for cell imaging. For this reason, I have performed
cleavage of methyl group of rhodol 103d followed by monoalkylation with 1,6-dibromohexane
(Scheme 22).
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Scheme 22. Synthesis of rhodol for mitochondria imaging

The further reaction with triphenylphosphine leads to SO»-rhodol 104. The last step is very
unreliable, since even small changes can influence the conversion, purity and yield. It should be
conducted under inert atmosphere, at high temperature with 10 eq. of PPhs and short reaction time.
Unfortunately, both substrate and product decompose if the reaction time is prolonged. Compound

104 was successfully used for staining mitochondria in cardiac HOC2 cell line.

As I expected, fluorophores 102a-d, 103 and 104 exhibited red-shifted absorption and emission
maxima in comparison to the classic rhodol. Besides, they demonstrated a significant positive
solvatochromism: from Aqps = 543 — 553 nm in toluene to Awps = 667— 669 nm in H,O/DMSO
mixture (Figure 5).
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Figure 5. Absorption (solid) and emission (dotted) spectra of rhodol 102a in different solvents.

These compounds possess high quantum yields in polar solvents — around 0.5 in ethanol,
acetonitrile and DMSO with brightness up to 35,000xM!xcm™. The only exception is rhodol 102¢
— the quantum yield of this compound is low in any solvent (from 0.01 in DMSO to 0.13 in DCM).
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Another advantage of these new core-modified rhodols is their photostability. Dyes 102a and 103
displayed excellent photostability comparable to that of Rhodamine 6G and Cresyl Violet.

6.3.2 Direct transformation of coumarins into orange-red emitting rhodols

Next project was focused on the idea of transformation of coumarins into rhodols. The root of this
concept goes back to the work reported by Gandioso et.al, which based on the transformation of
coumarin’s lactone group into thiolactone (C=S) to make it reactive enough for the condensation
with activated CH, group.''>!3 First, I tried to apply this approach to a few bis-coumarins,''* to
which I had access, to obtain new V-shaped rhodols. I have managed to obtain bis-thio derivatives,
but these compounds revealed to be too capricious and unstable in the reaction mixture. The final
second step was very challenging and the product I obtained displayed poor solubility. Then I
decided to change the reaction platform to start from compounds which would express similar

reactivity. First, I synthesized a scope of 3-formyl coumarins 108a-h (Scheme 23).

oTf Ar Ar
Ry N Ar-B(OH), R N R N
—_— —_—
Ra<
RZ\N 070 Pdjbdag SPhos, 2 N 0" o Ra~y o0 o
|
R3 R4 K3PO4’ THF R3 R4 R3 R4
105, 106 107a-h 108a-h

805, 107a-d, 108a-d: R; = R, = H, R, = R; = Et;
106, 107e-h, 108e-h: -R-R,- = -R3-R,- = -(CH,)5-

Scheme 23. Synthesis of 3-formyl-4-arylcoumarins.

This approach proceeded through the already known formation of 4-hydroxy coumarins from m-
aminophenols and ‘magic malonate’ followed by triflation of the hydroxy group.''>''” Next I
performed Suzuki reaction with various aryl moieties to afford coumarins 107a-h. The following

formylation allowed me obtaining 3-formyl coumarins 108a-h in reasonable yields (Table 1).

Table 1. Yields of compounds 107a-h and 108a-h

Nr R, R, Rs R4 Ar Yield, %
107a H Et Et H o-tolyl 97
107b H Et Et H 2,6-dimethoxyphenyl 76
107¢ H Et Et H 2,3-dimethoxyphenyl 92
107d H Et Et H pyrenyl 86
107e -(CHa)s- -(CHa)3- o-tolyl 90
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107f -(CHa)3- -(CHa)3- 2,6-dimethoxyphenyl 94
107g -(CHy)s- -(CHz)s- 2,3-dimethoxyphenyl 89
107h -(CH>)s- -(CH»)s- 2,4-dimethoxyphenyl 84
108a H Et Et H o-tolyl 60
108b H Et Et H 2,6-dimethoxyphenyl 50
108¢ H Et Et H 2,3-dimethoxyphenyl 28
108d H Et Et H pyrenyl 80
108e -(CHa)3- -(CHa)3- o-tolyl 84
108f -(CHy)s- -(CH»)s- 2,6-dimethoxyphenyl 87
108g -(CHy)s- -(CH»)s- 2,3-dimethoxyphenyl 86
108h -(CHa)3- -(CHa)3- 2,4-dimethoxyphenyl 32

The following step was to perform the reaction between 3-formylcoumarin 108a and Lawesson’s
reagent. Unfortunately, I did not manage to obtain the desired product and the use of P»Ss did not
help either. Meanwhile, I decided to try the direct transformation of 3-formylcoumarins into rhodols

without the conversion into the intermediate thione.

My first attempt was performed with 4-tolyl-3-formylcoumarin 108a and dimethyl 1,3-
acetonedicarboxylate in the presence of InCl; and acetic acid anhydride. As a matter of fact, [ have
obtained a mixture of lots of products, in which I have managed to identify and purify the desired
rhodol 109. However, the yield was extremely low and the purification required several
chromatographic steps. Thus, I have embarked on the long optimization choosing coumarin 108a
and dimethyl 1,3-acetonedicarboxylate as model substrates. In numerous attempts I have altered
acidic and basic catalysts, solvents as well as temperature and the reaction time. Finally, I have
found that the best results I observed when 2,6-lutidine was used. The yield of the product X was
26%. However, when I tried to perform this reaction with coumarin 108b I faced another issue:
there was no substrate in the mixture, but there was a lot of unreacted intermediate (e.g. 109a) even

after 24h of heating.

At this point I had to start another optimization to find better conditions. Together with Dr. Poronik
I have found, that substrate, intermediate and final product have yellow, orange and pink colours
respectively that prompted us to the idea, that reactions for optimisation can be performed in very
small scales and the conversion can be monitored using spectrophotometer. On the basis of the
Lambert-Beer law, I was able to calculate concentrations of the substrate, intermediate and the
product to find the reaction conversion and the product yield. Characteristic band of rhodol was 537
nm, while for substrate 108b and intermediate it was 437 nm and 448 nm respectively. This

optimization technique enabled screening multiple reaction conditions in short time. Eventually, I
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found that the best catalytic system is a piperidine in methanol. The final step in the optimization
was to analyse how the excess of dimethyl 1,3-acetonedicarboxylate influences the reaction
kinetics. I have checked the rate of condensation with 2, 5 and 10 eq. of dimethyl 1,3-
acetonedicarboxylate and the best results were achieved with 10 eq. of the diester. The main
drawback of this method is that acetonedicarboxylate is a highly reactive compound capable to
undergo self-condensation along with numerous other undesired processes in the presence of
piperidine. These by-products possess characteristic bands in the electronic spectrum which can

overlap with the diagnostic peaks, thus making the visualization method less precise.

The double Knoevenagel condensation allows to obtain a range of new rhodols 109 — 116 (Scheme

24).

0 O O Me
C Meo,c._J__co,me Me COMe CO,Me

Me
X ¥ XN X Y0 —_— 0
piperidine, MeOH Coum o) CO,Me
Et,N ) 60 °C Et,N o o ~PVe EtN
108a 109a 109, 27%
( Y

113, 19% 114, 28%
OMe MeO
O OMe O OMe
CO,Me CO,Me
oeS =
\ O Co,Me N O Co,Me
115, 28% 116, 16%
- J

Scheme 24. Knoevenagel condensation of 3-formylcoumarin with dimethyl 1,3-

acetonedicarboxylate and scope of the obtained rhodols
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These new dyes absorb light around 535-560 nm and emit at 560-590 nm (Figure 6). They do not

possess a significant positive solvatochromism, like the majority of other merocyanine dyes,

however, they display large fluorescence quantum yields: 0.47 — 0.68 for rhodols 109-112 and 0.86

—1.00 for dyes 113-116.
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101 — 1a.cHel,
= 110, DMSO
0,8 — 114.0mMs0

0,6+

0,44
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+ 110, DMSO
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S
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Figure 6. Absorption (solid) and emission (dotted) spectra of rhodols 110 and 114.
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COzMe
0}
CO,Me

piperidine, 60 °C

CO,Me
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COZMe
—_—_—

piperidine, 60 °C
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CO,Me

CO,Me

120, 60%

Scheme 25. Condensation of other 3-formylcoumarins with dimethyl 1,3-acetonedicarboxylate

I was curious whether applying this method I would be able to obtain rhodols with unsubstituted

position 9 or with chlorine atom at C9, which could be suitable for further modifications. For this
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reason, | have utilized the corresponding coumarins 117 and 119. To my surprise, I did not observe
even a trace of expected rhodols (Scheme 25). Instead, I had got yellow and red solids with the
identical signals in the MS spectrum. The structures were identified by means of X-ray diffraction

analysis.

6.3.3 One-step transformation of aminophenols and coumarins into rhodols
and ‘rhodol-like’ merocyanines

My final project was focused on the one-step preparation of rhodols and ‘rhodol-like’ merocyanines
starting from easily available substrates. This idea appeared in reference to the reported earlier
procedure of nucleophilic substitution of activated fluoroarenes with phenols.''® Taking into
consideration, that m-aminophenols easily undergo the condensation with aldehydes, I concluded,
that an appropriate arenes possessing a formyl along with the adjacent position prone to the
aromatic nucleophilic substitution can be utilized in synthesis of rhodols. At this point I decided that
the best compound for this aim should be 4-hydroxy-2,3,5,6-tetrafluorobenzaldehyde 122. Since it
was not easily available in large amounts, I had to introduce a formyl group into 2,3,5,6-
tetrafluorophenol using Duff reaction.!'*"'?! Next I have employed this compound in the reaction
with 1,1,7,7-tetramethyl-8-hydroxyjulolidine 121 in toluene at 60 °C without any additives (Scheme
26). To my satisfaction, I have observed the colour change from white to deep pink and glittering
crystals precipitated from the reaction mixture upon cooling. As the yield of rhodols X was not
acceptable I modified the conditions and found that temperature rise positively affects the reaction
outcome resulting in the increase of the reaction yield from 37% to 83%. At the same time other
changes i.e. the addition of Lewis acids, bases or the solvent change did not influence the reaction
positively (Table 2). I have concluded, that nonpolar solvents and high temperature allow to achieve

the highest possible yields without any catalysts or additives.

Table 2. Optimization parameters for reaction of phenol 121 with aldehyde 122

Entry | solvent Temp. / °C | catalyst time / h | yield
1 toluene 60 none 12 37%
2 toluene 90 none 1 83%
3 toluene 90 AICl; 1 68%
4 toluene 90 Sc(OT1)s 1 70%
2.4,6-tri-tert-
5 toluene 90 butylpyridine 1 78%
6 toluene 90 phosphazene base Pi-t-Bu | 1 trace amount
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7 HFIP 80 none 1 0%
8 mesitylene | 165 none 1 75%
9 xylenes 135 none 1 75%

Having the optimised procedure in hands, I decided to apply it to other already available m-
aminophenols and obtained several new rhodols 124-127. My next idea was to expand the reaction

scope by the synthesis of n-expanded ‘rhodol-type’ merocyanines.

F
OHC F a
N on * toluene, 90 °C o
F OH
& F
121 122 123, 83%
' N\
F F
>Hed CIOCC
/\H o O (C4Hg)N 0 0
F F
124, 31% 125, 35%
OH F OH F
CCCL CIOCC
N 0 O (CgH13)N o o
F F
126, 74% 127, 87%

Scheme 26. One-step synthesis of rhodols 123-127 from aminophenols and
tetrafluorohydroxybenzaldehyde (122)

The 7-(dihexylamino)naphthalen-2-ol (129) was obtained from 2,7-dihydroxynaphthalene 128 via
Bucherer reaction. Since I expected that merocyanine 130 would be hardly soluble, I had chosen di-
hexylamino moiety to improve this physicochemical property. Even though, the yield of this
reaction was very poor, the product was subjected to the condensation conditions with aldehyde 123

affording ‘rhodol-like’ merocyanine 130 in 20% yield.
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HO OH NayS,05 H,0,  (CgHq3)oN OH xylene, 160°C o o
160°C

F
128 129, 6% 130, 20%

Scheme 27. Preparation of ‘rhodol-like’ merocyanine 130

At the time when I started my research, I had performed literature search, which indicated clearly
that linear n-expanded ‘rhodol-like’ merocyanines were something really uncommon and their
synthesis might be challenging. The reason for this is that the position 1 in compound 129 is much
more electron-rich than position 3 causing all electrophilic aromatic substitutions to proceed
towards dye 130, and not to its linear isomer. I decided to synthesize the m-expanded rhodol
precursor with the occupied position 1 thus to suppress the condensation into the position 3. This
time I have performed Bucherer reaction of 2,7-dihydroxynaphthalene (128) and di-i-propylamine.
To my surprise, | have obtained a naphthalene derivative 131 with a mono-substituted amino
fragment. The following allylation, rearrangement and reduction of double bond resulted in
formation of product 133. The condensation with benzaldehyde 122 in toluene at 90 °C failed, so I

have finally managed to obtain merocyanine 134 after 72 h reaction in xylene at 160 °C.

HO OH  Na,S,05 H,0, )\ OH  KyCOj o F

160°C CH,CN
128 131, 61% 132, 56%

F

OHC F
F OH
1. in the neat,

)\ OO 500°C, Ar
xylene, 160°C, OH 2. Pd/C, 10%,

72 h Hy MeOH

F
)\ OO \ F
N O o
H
134, 10% 133, 45%

Scheme 28. Synthetic procedure for linear n-expanded ‘rhodol-like’ merocyanine 134
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The last idea was to investigate if | could apply this procedure for 4-hydroxycoumarins to obtain
‘coumarino-rhodols’. For this aim, I obtained coumarins 136 and 137 from 3-dibutylaminophenol
135 and 1,1,7,7-tetramethyl-8-hydroxyjulolidine 121. As in previous case, I had to apply solvent
with the high boiling point. Finally, I managed to obtain merocyanine dyes 138 and 139 in 81% and
51% yields respectively.

OHC F

OH

OH F
2 2
R 'magic malonate' R X "
Rl RN o o =
N OH toluene, reflux |
R' R? R!' R? xylene, reflux
overnight 1
135, 121 136, 72% RORe

137, 38% 138, 81%
139, 51%

135,136, 138: R' = C4Hg RZ=H
121, 137, 139: -R"-R?- = -CH,-CH,-C(CHj3),-
Scheme 27. One-pot synthesis of ‘rhodol-like’ merocyanines 138-139 from 4-hydroxycoumarins

136-137

The new dyes display gentle positive solvatochromism of both absorption and emission. As it was
expected, the substitution of nitrogen with one ethyl moiety (124) results in a blue-shift of
absorption (491 — 536 nm) and emission (550 — 555 nm). Meanwhile the full substitution with alkyl
chains results in bathochromic shift and higher ®q (533/547 nm with @5 89% in case of compound
125 versus 527/547 nm with 77% yield for 124 in acetone) (Table 3). The red-shift is even higher in
case of fully annulated terminal C-N bond (Aabs = 498 — 554 nm, Aem = 546 — 576 nm with quantum
yield up to 85 % in acetone). The presence of hydroxy group at position § in some rhodols (126,
127) does not have a significant influence on the photophysical properties. The distinction of
rhodols 138 and 139 is that they show increased Stokes shifts in comparison to classic rhodols 123

— 127 and their emissions are red-shifted by 50-70 nm.

Table 3. Spectroscopic properties of the obtained merocyanine dyes in chosen solvents - toluene as

nonpolar and acetone as a polar one. Full spectroscopic data can be found in the publication.

Solvent | A | Al g [%]
[nm] [nm]
123 Toluene 542 558 0.68
Acetone 546 567 0.85
124 Toluene 491 550 0.43
Acetone 527 547 0.77
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The incorporation of benzene ring into the rhodol scaffold results in the formation of m-expanded
rhodols 130 and 134. These compounds possess large Stokes shifts (up to 4900 cm™ in acetone for
130 and 4400 cm! in acetonitrile for 134). Rhodol 130 display a significant positive
solvatochromism possessing emission maxima from 578 nm in hexane to 798 nm in acetone yet
with low ®q, which almost disappear in polar solvents. In contrast, rhodol 134 shows blue-shifted
absorption and emission compared to 130 (Aas = 527 — 547 nm and Aem =594 — 721 nm with
somewhat higher quantum yields). Both dyes 130 and 134 possess broad and quite featureless

125 Toluene 528 550 0.68
Acetone 533 557 0.89
126 Acetone 533 555 0.91
127 Toluene 527 550 0.68
Acetone 534 552 0.90
130 Toluene 519 578 0.10
Acetone 575 798 0.01
134 Toluene 527 594 0.52
Acetone 545 685 0.34
138 Toluene 528 586 0.21
Acetone 566 619 0.71
139 Toluene 575 598 0.51
Acetone 581 655 0.38

absorption curves (Figure 7).
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Figure 7. Absorption (solid) and emission (dotted) of ‘rhodol-like” merocyanines 130, 134, 138 and
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6.4 Summary and conclusions

I have developed an unprecedented chromophore which possesses an SO, group in the middle of a
rhodol skeleton. Moreover it has been achieved in a straightforward manner and the procedure
consists of only four steps. Electronic spectra of all these modified rhodols display strong
absorption in the range of 500-600 nm, which is almost independent of the nature of the solvent.
Red fluorescence is markedly stronger in polar solvents reaching 50% in DMSO. I have found that
rhodol analogs with the bridging oxygen atom replaced by an SO» group, and equipped with a
triphenylphosphonium functionality, selectively accumulates in mitochondria and allows for

selective penetration and well-resolved fluorescent imaging at nanomolar concentrations.

I have also developed an unprecedented synthesis of rhodols from coumarins. Moreover it has been
achieved in a straightforward manner and the procedure consists of only four steps from easily
available, commercial substrates. This approach involves the double Knoevenagel condensation of
3-formylcoumarins via activation of a lactone’s C=0. This is the first example of this type reactivity
for the ubiquitous lactone group described in the literature. To test the influence of different aryl
groups on both the synthesis and the photophysical properties of the resulting dyes, I have prepared
an extensive family of rthodols. Their electronic spectra display strong absorption in the range of
500-600 nm, which is almost independent of the nature of the solvent. Orange-red fluorescence is

very strong in both non-polar and polar solvents reaching 100% in some cases.

Finally I developed a strikingly simple synthetic strategy to rhodols and ‘rhodols-type’
merocyanines bearing unprecedented sets of substituents. This approach relies on the tandem
reaction of dialkylaminophenols, dialkylaminonaphthols and 4-hydroxycoumarins with
tetrafluorohydroxybenzaldehyde, with two-steps occurring one after another, namely a Friedel-
Crafts reaction followed by intramolecular nucleophilic aromatic substitution. This constitutes the
shortest pathway towards rhodols ever developed. Three heretofore unknown merocyanine-based
architectures were prepared using this strategy from dialkylaminonaphthols and 4-
hydroxycoumarins. The ability to change the structure of original rhodol chromophore into 7t-
expanded merocyanines translates to a comprehensive method for the modulation of photophysical
properties such as shifting the absorption and emission bands across almost the entire visible
spectrum, reaching the highest recorded Stokes shift i.e. 4800 cm ™, ca. 80,000 M ' cm™! brightness,
two-photon absorption cross-section above 150 GM and switching-on/off solvatofluorochromism.

Together with collaborating group from Parma found that replacing linear with non-linear
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conjugation in rhodols-type architectures leads to profound changes in the photophysics originating

from differences in permanent dipole moment changes between ground and the excited states.

Summing up, I realized most of the goals initially stated. In particular I developed three new
synthetic methodologies affording rhodols-type fluorophores. Photostability of these rhodols and
‘rhodol-like’ merocyanines is not better compared to classical rhodols and other photostable dyes.
They are not however markedly less stable either. I demonstrated new synthetic routes which allow
the fine-tuning of the properties for xanthene dyes. Thanks to the widespread use of this class of
fluorophores in multifarious applications, I believe that my results are of paramount importance for

a very broad pool of scientists in different fields.
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The formal replacement of one dialkylamino group in rhodamines with a hydroxyl group transforms
them into rhodols. This apparently minor difference is not as small as one may think; rhodamines belong
to the cyanine family whereas rhodols belong to merocyanines. Discovered in the late 19th century,
rhodols have only very recently begun to gain momentum in the field of advanced fluorescence
imaging. This is in part due to the increased understanding of their photophysical properties, and new
methods of synthesis. Rationalization of how the nature and arrangement of polar substituents around
the core affect the photophysical properties of rhodols is now possible. The emergence of so-called
n-expanded and heteroatom-modified rhodols has also allowed their fluorescence to be bathochromically
shifted into regions applicable for biological imaging. This review serves to outline applicable synthetic
strategies for the synthesis of rhodols, and to highlight important structure—property relationships. In the
first part of this Review, various synthetic methods leading to rhodols are presented, followed by structural
considerations and an overview of photophysical properties. The second part of this review is entirely

rsc.li/chem-soc-rev

1. Introduction

Rhodols belong to the xanthene dye family and have recently
become popular fluorescent scaffolds with many applications
connected to fluorescence microscopy. Though these dyes have
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devoted to the applications of rhodols as fluorescent reporters in biological imaging.

been known since the 19th century their appearance in the
literature has remained limited, being largely overshadowed by
the more popular xanthene chromophores - rhodamine and
fluorescein. Since the title chromophore was first indirectly
synthesized from fluorescein in 1889,' it was named rhodol®
highlighting its similarity to rhodamine yet emphasizing the
inclusion of a ‘phenol functionality’ (Fig. 1). Until 1990 rhodols
remained largely forgotten and only a few reports appeared in
the literature,>™” presumably due to the fact that more
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The controlled hydrolysis of sulfone-rhodamines affords a series of
core-modified red-emitting rhodols, the fluorescence of which is
sensitive to solvent polarity with pronounced bathochromic shifts
recorded in both DMSO and CH3CN combined with an up to 8-fold
increase in the fluorescence quantum yield.

The iconic fluorescent dyes fluorescein and rhodamine, were
first reported by Baeyer and Ceresole in 1871 and 1888,
respectively.” These discoveries were the harbingers of modern
fluorophore chemistry, which rapidly spread in the following
years.>'* One of the lesser known cousins of these two dyes is
rhodol.™ This dye, a structural hybrid of rhodamine and fluor-
escein, inherited their photophysical properties in terms of large
extinction coefficient, high fluorescence quantum yield and
solubility in a majority of solvents. Unlike rhodamines and
fluoresceins, however, rhodols belong to merocyanines that con-
tain a polymethine chain and two terminal heteroatoms in their
chromophore. Numerous analogues of rhodol have been reported
during last decade.">"” More importantly they have been selected
for several key applications such as fluorescent reporters in
biological imaging, membrane potential sensors in cells and
organelles, and photosensitizers in antitumor therapy.'®>' Over
the years the motivation to shift both absorption and emission
bathochromically to the red and NIR regions has increased in
parallel with the importance of fluorescence imaging in cell
biology.**° Along these lines, very recently the synthesis of a
plethora of new fluorophores including sulfone-rhodamines,
which exhibit both absorption and emission maxima in the
near-infrared region, have been reported.”” We reasoned that if
the rhodamine scaffold is replaced by a rhodol, the resulting and
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Red emissive sulfone-rhodols as mitochondrial
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heretofore unknown sulfone-rthodols could possess attractive
photophysical properties. Here we focus on realization of this
vision.

The stepwise synthesis of sulfone-rhodols from benzene-
based building blocks would be a long adventure. In an attempt
to overcome this, we hypothesized that rhodamines possessing
an endocyclic strong electron-withdrawing group may undergo
basic hydrolysis to produce the corresponding sulfone-rhodols,
in a similar manner to that observed for P-rhodamines.?®
Taking this into consideration, we have designed the following
strategy: synthesis of 9-aryl substituted sulfone-rhodamines
followed by conversion into the corresponding rhodols upon
basic hydrolysis.

The design of a specific pattern of substituents on SO,-
rhodols is a very important issue, as relatively small structural
changes can have a pivotal effect on photophysical properties.
The aryl moiety plays a substantial role in rhodamines, fluor-
esceins and rhodols, governing some of their chemical and
photophysical properties.>**° Although, it is located orthogon-
ally to the xanthene scaffold and is not a part of the chromo-
phore, it still decreases the sensitivity of the fluorophore’s
n-conjugation system to nucleophiles. Nucleophilic addition
to the C9-position of unsubstituted rhodols results in disco-
loration of the dye due to interruption of the conjugation chain.
Moreover, the size of the ortho-substituent also plays a crucial
role in the stability of the chromophore towards nucleophilic
attack. Consequently, P—0-rhodols possessing an ortho-tolyl
group at the meso-position undergo slow discoloration under
basic conditions because of the nucleophilic attack of the
hydroxyl anion at the C9-position, while bulkier ortho-
substituents, like CF; or OMe, prevent disruption of the chro-
mophore’s t-conjugation system.”® For both rhodamines and
fluoresceins, substituents at the ortho-position prevent the
rotation of aryl groups, thus minimizing radiationless deactiva-
tion of the excited stated and increasing the fluorescence
efficiency. For the outlined reasons we decided to exclusively
use sterically hindered substituents at the C9-position in
this study.
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Instrumentation and Materials

All chemicals were used as received unless otherwise noted. All reported *H NMR spectra were
collected using 500 MHz and 600 MHz spectrometers. Chemical shifts (6 ppm) were determined with
TMS as the internal reference; J values are given in Hz. Chromatography was performed on silicagel
(230-400 mesh). Preparative thin layer chromatography (TLC) was carried out using Merck PLC Silica
gel 60 F,5, 1 mm plates. The mass spectra were obtained via electron ionization (EI-MS) or electrospray
ionization (ESI-MS). All photophysical studies have been performed with freshly-prepared air-

equilibrated solutions at room temperature (298 K).

S1



A Shimadzu UV-3600i Plus spectrophotometer and an Edinburgh Instruments Spectrofluorometer FS5
equipped with Hamamatsu R13456 PMT were used to acquire the absorption and emission spectra.
Fluorescence lifetimes were measured on Fluorolog TCSPC Horiba. Spectrophotometric grade solvents
were used without further purification. Fluorescence quantum yields were determined in toluene,
CH,Cl,, CH5CN, EtOH, DMSO and H,0 (with 2% DMSOQ) using cresyl violet in EtOH (for measurements
in CH,Cl,, CH;CN, EtOH, DMSO and H,0) and sulforhodamine SR101 (for measurements in toluene) as
standards. Photostability was determined using an Asahi Spectra Max-350 as a light source and
Shimadzu UV-3600i Plus spectrophotometer. FluoroBrite™ DMEM, Foetal Bowine Serum (FBS), 0.25%
Trypsin-EDTA, antibiotics (Penicillin/Streptomycin), L-Glutamine were parched from Gibco, and DMEM
High Glucose, Dulbeco’s Phosphate Buffered Saline from Biowest. The MitoTracker™ Green FM was

purchased from Molecular Probes.

Experimental part
General procedure for the preparation of compounds 4-7.

To a solution of bromoarene (2.4 mmol) in 9 mL of anhydrous THF was slowly added sec-Buli (1.4 M
in cyclohexane, 1.7 mL, 2.4 mmol) at =78 °C and the resulting mixture was stirred for 2 h at the same
temperature. A suspension of ketone 3 (200 mg, 0.6 mmol) in THF (25 mL) was added dropwise over
20 min. The reaction mixture was allowed to warm up to room temperature overnight. To the solution,
30 mL of 2 M HCl was added and the stirring was continued for 18 h. During this time, the color of the
mixture changed from brown to deep green. The mixture was diluted with water and washed five times
with Et,0 to remove unreacted xanthone and byproducts. The aqueous layer was then extracted three
times with CH,Cl,. The combined CH,Cl, layers were dried over Na,SO,. The drying agent was filtered
off and the filtrate was evaporated. The product was recrystallized from the mixture of
Et,0/DCM/MeOH. However, the pure product was not obtained due to the fast cleavage of methyl

group from diethylamino fragment.

Compound 4. Yield 70%.
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It was not possible to get clean NMR spectra, though MS spectrum suggests product 4. HRMS (ESI)
calcd. for Cy5H,7N,0,5 451.1692 [M]**, found 451.1696.

Compound 5. Yield 57%.

: CF4
U0 )
Nt
N S N~
| 0 |

//\\

)

It was not possible to get clean NMR spectra, though MS spectrum suggests product 5. HRMS (ESI)
calcd. for C,4H,,N,0,F3S 459.1354 [M]**, found 459.1318.

Compound 6. Yield 42%.
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It was not possible to get clean NMR spectra, though MS spectrum suggests product 6. HRMS (ESI)
calcd. for C5;H,;N,0,5 491.1793 [M]**, found 491.1793.

Compound 7. Yield 78%.
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It was not possible to get clean NMR spectra, though MS spectrum suggests product 4d. HRMS (ESI)
calcd. for CysH,4N,03F3S 489.1460 [M]*, found 489.1460.

General procedure for the preparation of compounds 8-11. To a solution of SO,-Rhodamine (0.040
mmol) in 50.0 mL of CH,Cl, and 20.0 mL of 0.5 M NaOH aq. was added. The mixture was stirred for 1 h
at room temperature, diluted with DCM, and washed four times with water. The organic layer was
dried over Na,SO,. The drying agent was filtered off and solvents were evaporated under reduced
pressure. The product was purified using column chromatography (silica, CH,Cl, : acetone 95:5). After

evaporation of the solvent and drying under vacuum rhodols were obtained as violet-blue solids.

Compound 8. Yield 25%. M.p. 224-225°C

'H NMR (500 MHz, CDCl;) 6: 7.45 (t, 1H,J=8.4 Hz), 7.39 (d, 1H, J= 2.7 Hz), 7.28 (d, 1H, J = 1.9 Hz), 6.94
(d, 1H, J = 9.9 Hz), 6.92 (d, 1H, J = 9.2 Hz), 6.68 (d, 2H, J = 8.4 Hz), 6.60 (dd, 1H, J; = 8.4 Hz, J, = 2.7 Hz),
6.28 (dd, 1H, J; = 9.9 Hz, J, = 1.9 Hz), 3.69 (s, 6H), 3.14 (s, 6H); 13C NMR (126 MHz, CDCl;) &: 186.9,
160.8, 154.7, 148.1 (2), 143.1, 141.3, 136.6, 134.1, 130.2, 128.5, 124.1, 122.0, 117.2, 115.0, 110.0,
106.7, 58.9, 43.1; HRMS (ESI) calc. for C,3H,;NOsSNa 446.1038 [M + Na]*, found 446.1034.

Compound 9. Yield 25%. M.p. 210-212°C
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9

Yield 39%. *H NMR (500 MHz, CDCl3) &: 7.89 (d, 1H, J = 7.6 Hz), 7.73 (t, 1H, J = 7.3 Hz), 7.69 (t, 1H, J =
7.5 Hz), 7.43 (d, 1H, J = 2.4 Hz), 7.33 (d, 2H, J = 9.1 Hz), 6.68 (t, 1H, J = 10.1 Hz), 6.65 (s, 1H), 6.58 (dd,
1H, J;= 9.1 Hz, J, = 2.4 Hz), 6.27 (dm, 1H), 3.17 (s, 6H); 3C NMR (126 MHz, CDCl;) 6: 183.6, 151.9, 145.6,
144.9,140.0, 137.7, 134.6, 133.7, 132.1, 131.2, 129.6, 127.5, 126.9, 126.9, 126.5, 120.8, 118.9, 114.0,
107.5, 40.3; HRMS (ESI) calcd. for CpHi;NO;SF; 432.0881 [M + HJ*, found 432.0874.
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Compound 10. Yield 11%. M.p. 250°C(dec.)
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'H NMR (600 MHz, CDCls) 6: 8.65 (s, 1H), 8.11 (d, 2H, J = 8.52 Hz), 7.69 (d, 2H, J = 8.7 Hz), 7.51 (m, 3H),
7.44 (m, 3H), 6.50 (d, 1H, J = 10 Hz), 6.42 (d, 1H, J = 9.3 Hz), 6.36 (dd, 1H, J; = 9.2 Hz, J, = 2.8 Hz), 6.10
(dd, 1H, J; =9.9 Hz, J, = 1.7 Hz), 3.13 (s, 6H); 13C NMR (151 MHz, CDCl3) 6: 183.4, 152.0, 148.1, 144.7,
140.2, 138.1, 135.1, 130.9, 130.2, 128.8, 128.7, 128.3, 127.8, 127.4, 126.0, 125.9, 125.5, 122.3, 119.5,
114.5, 107.5, 40.3; HRMS (ESI) calcd. for C,gH,,NO5S 464.1320 [M + H]*, found 464.1337.

Compound 11. Yield 25%. M.p. 238-240°C
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1H NMR (500 MHz, CDCl;) &: 7.42 (d, 1H, J = 2.8 Hz), 7.36 (d, 1H, J = 1.9 Hz), 7.31 (d, 1H, J= 2.0 Hz), 7.21
(d, 2H,J = 1.6 Hz), 6.74 (dd, 2H, J; = 19.4 Hz, J, = 9.6 Hz), 6.59 (dd, 1H, J; = 9.2 Hz, J, = 2.8 Hz), 6.28 (dd,
1H, J; = 10.0 Hz, J, = 2.0 Hz), 3.95 (s, 3H), 3.17 (s, 6H); 3C NMR (126 MHz, CDCl3) 6: 182.6, 160.2, 151.9,
146.0, 145.0, 140.0, 137.9, 134.7, 132.5, 130.8, 127.5, 126.4, 125.2, 121.3, 119.3, 117.4, 114.0, 107.4,
55.8, 40.3; HRMS (ESI) calcd. for C,3H1sNO,SF; 462.0987 [M + H]*, found 462.0983.

Compound 12.

A solution of 11 (400 mg, 0.87 mmol) in dry DCM (50 ml) under Ar was cooled to at 0°C and boron
tribromide (225 mg, 0.9 mmol, 0.085 ml) was added dropwise upon stirring. The reaction was allowed
to warm to rt and left stirring overnight. The mixture was diluted with 25 ml of saturated sodium
bicarbonate and organic layer was separated, dried over sodium sulfate, filtrated and concentrated
under the low pressure. The product was purified utilizing column chromatography (CH,Cl, : acetone

95:5).
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Yield 50%. M.p. 186-188°C

OH
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1H NMR (500 MHz, DMSO-d;) 6: 10.59 (s, 1H), 7.35 (1H, d, J = 3 Hz), 7.28 (2H, m), 7.20 (1H, dd, J; = 8.5
Hz, J, = 2.5 Hz), 7.01 (1H, d, J = 2 Hz), 6.86 (1H, dd, J; = 9 Hz, J, = 2.5 Hz), 6.79 (1H, d, J = 10 Hz), 6.72
(1H, d, J = 9.5 Hz), 6.27 (1H, dd, J; = 10 Hz, J, = 3 Hz), 3.15 (6H, s); 3C NMR (126 MHz, DMSO- d;) &:
182.26, 158.40, 151.95, 147.30, 144.88, 139.42, 138.05, 134.86, 133.02, 128.88, 128.64, 128.40,
126.72, 124.52, 124.24, 122.70, 122.34, 119.53, 119.41, 117.91, 114.82, 113.17, 113.13, 107.06; °F
NMR (500 MHz, CDCl;) é: -58.42; HRMS (ESI) calcd. for C,,H;;NO,SF; 448.0830 [M + H]*, found
448.0820.

Compound 13.

Compound 12 (194 mg, 0.43 mmol) was dissolved in dry CH;CN (10 ml) followed by the addition of
K,CO; (240 mg, 1.74 mmol). 1,6-dibromohexane (159 mg, 0.65 mmol, 0.1 ml) was added under Ar and
the reaction mixture was left refluxing for 18h. After the reaction complete, the solvent was
evaporated under reduced pressure and the residue was dissolved in 50 ml of DCM. The organic layer
was washes 3 times with water (50 ml), dried over Na,SO, and concentrated in vacuo. The obtained
solid was next boiled in 20 ml of hexane, filtered and washed again with hexane. The product was next

purified via column chromatography (CH,CI, : acetone 95:5).

Yield 50%. M.p. 125-127°C(dec.)

BFW\/\
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E CFs
U
\ITI S o)

//\\

OO
13
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IH NMR (500 MHz, CDCl5) 6: 7.41 (d, 1H, J = 2 Hz), 7.35 (d, H, J= 2 Hz), 7.31 (d, 1H, J = 2 Hz), 7.19 (m,
2H), 6.77 (d, 1H, J = 10 Hz), 6.73 (d, 1H, J = 9 Hz), 6.58 (dd, 1H, J; = 9.5 Hz, J, = 3 Hz), 6.28 (dd, 1H, J; =
10 Hz, J, =3 Hz), 4.09 (t, 2H, /= 6 Hz), 3.46 (t, 2H, J = 6 Hz), 3.17 (s, 6H), 1.92 (dq, 4H, J; =22 Hz, J, =7
Hz), 1.57 (m, 4H); 1°F NMR (500 MHz, CDCl;) &: -59.53; 3C NMR (126 MHz, CDCl;) &: 183.63, 159.64,
151.80, 146.11, 144.92, 139.97, 137.94, 134.78, 132.46, 130.67, 127.41, 126.32, 124.94, 121.20,
119.29, 117.64, 113.97, 113.01, 107.38, 77.25, 77.00, 76.75, 68.42, 40.27, 33.70, 32.59, 28.90, 27.83,
25.25. HRMS (ESI) calcd. for C,gH,;NO,SBrF;Na 632.0694 [M + Na]*, found 632.0658.

Compound 14.

73 mg (0,12 mmol) of 13 with 0,31g (1,2 mmol) of triphenylphosphine in 0,3 ml of DMA was heated at
120° for 35 min under Argon. After cooling the reaction was diluted with a mixture hexane/Et,0, the
crude product was filtered and washed again and next purified via column chromatography on a
reversed phase (RP-18) in CH;CN. After evaporation if the solvent the product was washed with EtOAc

for 1h to give 12 mg of the product.

Yield 11%. M.p. 137-139°C(dec.)

PhsP2
~ N TN
s 0

! ®
CFs
(1)
N S o)

| //\\

(OJNO)
14

1H NMR (500 MHz, CD;CN) &: 7.74 (bm, 15H), 7.42 (bd, 2H, J; = 6.5 Hz,), 7.3 (bs, 2H), 7.13 (bs, 1H), 6.83
(d, 1H, J = 10 Hz), 6.79 (d, 1H, J = 9.5 Hz), 6.73 (dd, 1H, J; = 9. Hz, J, = 3 Hz), 6.22 (dd, 1H, J; = 9 Hz, J, =
2 Hz), 4.11 (t, 2H, J = 6.5 Hz), 3.27 (bm, 2H), 3.17 (s, 6H), 1.78 (q, 2H, J = 7.5 Hz), 1.7 (g, 2H, J = 7.5 Hz),
1.63 (q, 2H, J = 7.5 Hz), 1.54 (q, 2H, J = 7.5 Hz); 1F NMR (500 MHz, CD5CN) &: -59.95; HRMS (ESI) calcd.
for CagHa,NO,SF5P 792.2524 [M]*, found 792.2505.
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(a) X-ray structure

(b) Crystal packing

Figure S1. X-Ray structure of compound 11 (a) and crystal packing (b).
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Figure S2. Absorption (solid) and emission (dotted) of compound 8 in toluene, CH,Cl,, EtOH, CH;CN,
DMSO, H,0 (containing 2% DMSO).

Normalized absorption
Normalized emission

Figure S3. Absorption (solid) and emission (dotted) of compound 9 in toluene, CH,Cl,, EtOH, CH;CN,
DMSO, H,0 (containing 2% DMSO).
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Figure S4. Absorption (solid) and emission (dotted) of compound 10 in toluene, CH,Cl,, EtOH, CH;CN,
DMSO, H,0 (containing 2% DMSO).
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Figure S5. Absorption (solid) and emission (dotted) of compound 11 in toluene, CH,Cl,, EtOH, CH;CN,
DMSO, H,0 (containing 2% DMSO).
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Normalized absorption
Normalized emission

500 600 700 700 800

Figure S6. Absorption (solid) and emission (dotted) of compound 12 in toluene, CH,Cl,, EtOH, CH;CN,
DMSO, H,0 (containing 2% DMSO).

Normalized absorption
Normalized emission

Figure S7. Absorption (solid) and emission (dotted) of compound 14 in DMSO and H,0 (2% of DMSO).
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Time-resolved fluorescence data

Table S1. Fluorescence decay data for compounds 8 and 10.2

Comp. | Solvent | Age/ nM | Agps / nM | A4 A, n/ns | ©,[ns] | k-108 /st | k,108/s?
CH,Cl, | 336 670 4.20 1.02 1.36

8 CH:CN | 336 700 5.24 0.99 0.92
DMSO | 336 700 433 1.15 1.16
CH,Cl, | 336 670 38 62 0.46 2.06 2.83 18.9

10 CH;CN | 336 700 100 0.32 0.25 31.0
DMSO | 336 700 94 6 0.32 6.13 0.31 31.1

2: The values of the radiative k, and non-radiative k,, rates are approximated on the basis of equations:

k. = O¢/t1 and k,, = 1/1,-k,

a ] |, b) ]

Counts
Counts

U aldabbatigld ] L

t/ns t/ns

Figure S8. Fluorescence decay for 8 (a) and 10 (b) in CH,Cl,, CH;CN and DMSO.
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Absorption dependence on pH

Ar Ar
+H*
O \ / O
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Scheme S1. SO,-rhodol protonation
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Figure S9. a) Absorption spectra of compound 8 at various pH values. b) The plots of absorbance of

compound 8 at 667 nm as function of pH value and their fitting curve (pK, = 3.21, r = 0.9994).

b)
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L
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w @
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Figure S10. a) Absorption spectra of compound 9 at various pH values. b) The plots of absorbance of

compound 9 at 669 nm as function of pH value and their fitting curve (pK, = 2.78, r = 0.9964).
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Figure S11. a) Absorption spectra of compound 11 at various pH values. b) The plots of absorbance of

compound 11 at 669 nm as function of pH value and their fitting curve (pK, = 2.68, r = 0.9841).
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Figure S12. a) Absorption spectra of compound 12 at various pH values. b) The plots of absorbance of

compound 12 at 669 nm as function of pH value and their fitting curve (pK, = 2.91, r = 0.99894).
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Compound 10 undergoes the formation of aggregates in DMSO-water media. The latter is not sensitive

to a pH change.

——1.0

Absorbance

mmmﬂwﬂmmmm
350 400 450 500 550 600 650 700 750
Alnm

Figure S13. Absorption spectra of compound 10 at various pH values.
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Photostability measurements

Photostability was determined through the variation in absorption of each sample at the appropriate
absorption maximum wavelength (A,,,) with respect to irradiation time. Ethanol was selected as the
solvent. Concentrations giving similar optical densities (A = 1) were used. Quartz cells of samples were
irradiated with a 300 W Xe lamp (Asahi spectra MAX-350, light power: 0.16 W/cm?2) for 150 min at 25
°C equipped with a UV/vis mirror module through a glass fiber. The absorption spectra were measured
at appropriate times during the irradiation. Cresyl violet, Rhodamine 6G and DPP (2,5-dimethyl-3,6-
bis(3,4-dimethoxyphenyl)pyrrolo[3,4-c]pyrrolel,4(2H,5H)-dione) were used as references.

1.0 ez

.....

089 N\ TR %,

i ] N 0 g
S .......
E .........
o 0.6+ :
Q
N
] i
= =—4— Cresyl Violet
g 0.4  —4— Rhodamine 6G

++4--Compound 8
++ &+ Compound 9
0.2 4+ ¢+ Compound 10
++4++Compound 11
4+ Compound 12
—+—DPP

ll) 3|0 ' E:O l QIO l ‘1.|7_0 l ‘1%0
t/ min
Figure S14. Photostability of sulfone-rhodols compared to the Rhodamine 6G, Cresyl Violet and DPP
(2,5-dibutyl-3,6-bis(3,4-dimethoxyphenyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) measured in EtOH
using a collimated light source from a 300W Xe lamp.
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Figure S15. Photostability of sulfone-rhodols at ‘pH 7 (a) and at pH1 (b) (in H,0 containing 2% DMSO)
compared to the Rhodamine 6G, Cresyl Violet and DPP (2,5-dibutyl-3,6-bis(3,4-
dimethoxyphenyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) in EtOH measured using a collimated light

source from a 300W Xe lamp.

Stability experiments were not performed for compound 10 as it precipitated in course of the stability
test.

S24



Cell culture conditions

The rat embryonic cardiomyoblast-derived cell line H9C2 were cultured at 37°C in a humidified
atmosphere containing 5% CO, in DMEM supplemented with 10% foetal bovine serum, 2 mM

glutamine, 100 U/ml penicillin, and 100 g/ml streptomycin.

Fluorescence localization of 14 within the cells

The HI9C2 cells were loaded with fluorophores in DMEM medium supplemented with 10% foetal bovine
serum, 2 mM glutamine, 100 U/ml penicillin, and 100 g/ml streptomycin at 37°C in a humidified
atmosphere containing 5% CO, for 15-30 minutes with the 14 compound at the final concentration
ranging from 200 to 500 nM. The final concentration of the MitoTracker™ Green FM was 150 nM. Both
fluorophores were dissolved in DMSO and for the loading were supplemented with 20% Prluronic-127.
The final concentration of the Pluronic-127 was kept below 0.05% in the loading buffer. Before
measurements, the incubation medium was repleaced with FluoroBriteTM DMEM. The measurements
were performed on Olympus IX83 confocal microscope with the water objective 60x UPLSAPO 60XW.

The data were transferred to the Imagel and prepared for presentation.

A %

Figure S16. Intracellular localization of 13 compound as detected using confocal fluorescence

microscopy. (A; A’) The fluorescence of MitoTracker™ Green (green) as a well-established marker for
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mitochondria, (B; B’) the fluorescence of the 13 (red) recorded with 559 nm excitation wavelength and
emission range 610-750 nm, (C; C’) overlay picture recorded simultaneously for two fluorophore in

living H9C2 cells line. A’, B’, C’ pictures recorded for with higher magnification 3x.

Results

The dye 13 has a unlocalized distribution inside the H9C2 cells.
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Figure S17. Effect of red emissive sulfonorhodols on apoptosis and necrosis of the H9C2 cells. Change

in luminescence (RLU) as a measure of apoptosis and fluorescence (RFU) over the time. Statistical

significance relative to the control was determ

ined by two-way ANOVA with Tukey post-hoc test;

p>0.05 (ns), p<0.05(*), p<0.01(**), p<0.0001(****); n=9
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Methods

In order to determine the viability of cells under the influence of the tested red emissive
sulfonorhodols 13 and 14, an annexin V-based apoptosis and necrosis test (RealTime-Glo ™ Annexin V
Apoptosis and Necrosis Assay, Promega) was performed, allowing the simultaneous examination of

the effect of the substances on the induction of apoptotic and necrotic cell death.
Materials

RealTime-Glo ™ Annexin V Apoptosis and Necrosis Assay, Promega JA1011.
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The lactone carbonyl group of coumarin derivatives has been
shown to participate in intramolecular Knoevenagel condensations,
enabling the unprecedented direct transformation of coumarins
into rhodols. The resulting rhodols, possessing two ester groups,
have very intense orange-red fluorescence.

Rhodols are merocyanine dyes occupying an intermediate
position between rhodamines and fluoresceins." Recently they
have been successfully utilized to build various sensors for
intracellular fluorescence imaging, examination of neuronal
excitability and visualization of metastases.” ® Although various
methods for the synthesis of rhodols and their analogues have
been developed over the last decades they lack versatility and
efficiency.””"? In particular they are not compatible with certain
functional groups being present on substrates.

To overcome these limits we envisioned an entirely new
retrosynthetic disconnection relying on 3-formylcoumarins and
dimethyl 1,3-acetonedicarboxylate, that may in principle lead to
rhodols via double Knoevenagel condensation (Scheme 1). The
direct inspiration for this endeavour was Prelog’s work on the
synthesis of benzene derivatives from aliphatic precurors.""* If
successful this strategy would lead to heretofore unknown
rhodols possessing two ester groups at positions 2 and 4.

Given the poor electrophilic properties of the carbon atom of
the pyran-2-one heterocycle, Marchan and co-workers trans-
formed coumarin into thionocoumarin in order to enable its
further reaction with various nucleophiles.">'® Our application
of this approach for V-shaped bis-coumarin gave the corres-
ponding rhodol in 30% yield (see the ESI,¥ Scheme S4).

“ Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52,
01-224 Warsaw, Poland. E-mail: dtgryko@icho.edu.pl
b CEISAM Lab—UMR 6230, CNRS, University of Nantes, Nantes, France.
E-mail: Denis.Jacquemin@univ-nantes.fr
i Electronic supplementary information (ESI) available: Quantum chemical
calculation and experimental data, synthetic procedures as well as, '"H and
C{'"H} NMR spectra. CCDC 2125095 and 2125096. For ESI and crystallographic
data in CIF or other electronic format see DOI: 10.1039/d1cc06924a
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This prompted us to attempt the direct one-pot transformation
of 3-formylcoumarins into rhodols. Our initial experiments have
proven that for the reaction of 7-diethylamino-3-formylcoumarin
with dimethyl 1,3-acetonedicarboxylate, the double Knoevenagel
condensation proceeds only in the presence of indium chloride'”
and acetic anhydride. The yield of the expected product, however,
was very low and its stability was poor due to the absence of any
substituent at position 9 of the final rhodol. This position is
subjected to nucleophilic attack by many nucleophiles, including
water and methanol. Facing this obstacle we resolved to block the
methine carbon atom with an ortho-substituted aryl group.'” The
additional advantage of this strategy is that the presence of a
sterically hindered aryl group is known to be beneficial for
increasing the fluorescence quantum yield of the resulting
rhodol.">"®"?

To implement this approach we developed a synthetic route
towards 4-aryl-3-formylcoumarins. Triflated hydroxycoumarins
S1 and S9 were subjected to Suzuki coupling to form coumarins
$2-S5 and S$10-S13 which were converted into two series of
aldehydes 1, S6-S8 and S14-S17 respectively (see the ESILt
Schemes S2 and $3).2*"

The first attempts at performing the Knoevenagel condensation
of formyl-coumarin 1 as a model substrate with dimethyl 1,3-
acetonedicarboxylate (2) in the presence of InCl; and acetic acid
anhydride resulted in the formation of the rhodol 4 in a very low
yield accompanied by sizable quantity of intermediate 3 (Table 1
and Scheme 2). Various bases and Lewis acids in different solvents
were trialled to improve this reaction (Table 1). Optimization
resulted in finding that 2,6-lutidine is an optimal catalysts system

mo
] 9 1
7 =9 2_CO;Me RoN o o
3 [———] 2
RNE F T07 Ty o MeOQC/Y\COZMe

COoMe o

Scheme 1 Retrosynthetic concept of the coumarin into rhodol
transformation.
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Instrumentation and Materials

All chemicals were used as received unless otherwise noted. All reported 'H and 3C NMR spectra were
collected using 500 MHz and 600 MHz spectrometers. Chemical shifts (&6 ppm) were determined with
TMS as the internal reference; J values are given in Hz. Chromatography was performed on silicagel
(230-400 mesh). Preparative thin layer chromatography (TLC) was carried out using Merck PLC Silica
gel 60 F,5, 1 mm plates. The mass spectra were obtained via electron ionization (EI-MS) or electrospray
ionization (ESI-MS). All photophysical studies have been performed with freshly-prepared air-

equilibrated solutions at room temperature (298 K).
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A Shimadzu UV-3600i Plus spectrophotometer and an Edinburgh Instruments Spectrofluorometer FS5
equipped with Hamamatsu R13456 PMT were used to acquire the absorption and emission spectra.
Spectrophotometric grade solvents were used without further purification. Fluorescence quantum
yields were determined in CH,Cl, and DMSO using Rhodamine 6G in EtOH and sulforhodamine SR101
(for measurements of compounds 8-11 in DMSO) as standards. Photostability was determined using

an Asahi Spectra Max-350 as a light source and Shimadzu UV-3600i Plus spectrophotometer.

Optimization of reaction conditions for the rhodol synthesis

As a model reaction we chose the formation of rhodol 5 from coumarin aldehyde S6 through

intermediate $20 (Scheme S2)

Conditions

Scheme S1. The formation rhodol 5 from coumarin aldehyde S6.

Optical absorption measurement was chosen as a convenient instrumental method for the rhodol
formation. The samples of coumarin aldehyde substrate were weighed with a 102 mg precision, that
allows keeping the concentration of the substrate within the same range for all optimization
experiments. First we determined molar absorptivity (¢) of coumarin aldehyde substrate, the
intermediate and the rhodol product (Fig. S1). The concentration (c) of the substrate and the reaction
product was calculated based on the Beer—Lambert law (Eq. 1), where A is absorbance and / is optical

path length in cm:

A=¢€lc (1)
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Figure S1. The absorption spectrum for S6, $20 and 5 in CH,Cl,.
The standard procedure for all optimization experiments was chosen as follows:

Coumarin aldehyde (1mg) was dissolved in 1 mL of an appropriate solvent with a certain excess of 2 in
the presence of basic catalyst at certain conditions. To check the concentration an 20 pL aliquot was
taken from the reaction mixture and diluted to 5 mL with CH,Cl,. The absorption at the maxima was
taken into account to calculate the concentration and the reaction yield of rhodol. Before the
experiment started the exact amount of coumarin substrate was determined. In course of the reaction
the concentrations of coumarin substrate and rhodol were monitored at equal time periods specified
for each experiments. A dependence of the reaction yield on time allowed us finding optimal

conditions for this type of transformation (Fig. S2).

To eliminate misinterpretations in the analysis of experiments we consider both spectroscopic data
and TLC as in a number of experiments side reaction occurred that distorted the absorption data. For
instance, all experiments in acetic anhydride as a solvent led to a formation of side products that has
absorption in the same range as rhodol 5, though rhodol formed very fast. We observed the similar
situation for tests performed in pyridine or quinoline. The reactions were not efficient, besides that

side products formed.

Studying model reaction in methanol in the presence of 1 eq. of piperidine we found that the use of
10eq. of dimethylacetondicarboxylate 2 leads to efficient conversion towards rhodol 5 with a minimum
of side reactions, though due to the presence of little amount of side products having absorption at

the spectral range of rhodol the reaction yield was overestimated (Fig. S2).

Using this method we have studied other rhodol formation to find the standard synthetic procedure.

The chosen examples of the dependencies are shown in Fig. S2.
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Figure S2. The optimization for the rhodols synthesis (A: Rhodol 4; B: Rhodol 5; C: Rhodol 6; B: Rhodol
8.). The rhodol evolution at using different excess of 2 based on the absorption at the correspondent
absorption maxima. The intensity of rhodol signal is overestimated due to residual absorption of

contaminants in this region.
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Experimental part

OTf

Ar Ar
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COzMe
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S4, S7, 6: S5, S8, 7:
OMe

Scheme S2. Synthetic route from coumarin S1 to rhodols 4-7.

General procedure for the preparation of compounds S2-S5.

Compound S1 (10 mmol), arylboronic acid (15 mmol), bis(dibenzylideneacetone)-palladium(0) (0,25

mmol), 2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl (SPhos) (0,75 mmol) and tribasic potassium

phosphate (40 mmol) were placed under Ar in a flame-dried Schlenk flask. Dry and degassed THF (50

ml) was added and the reaction mixture was stirred at 70°C for 4h under inert atmosphere. After the

reaction was complete the mixture was diluted with DCM, filtered through celite and washed with

NaHCO; solution (3 x 150 ml). The organic layer was dried over Na,SO, and concentrated under vacuo.

The residue was purified using column chromatography (hexane : EtOAc 1:1 + 1% AcOH).

Compound S2. Yield 97%. M.p. 95-96°C
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o6

Et,N 0" o

Me

IH NMR (500 MHz, CDCl3) 6 7.35 (m, 1H, H-Ar), 7.32 — 7.27 (m, 2H, H-Ar), 7.16 (dd, J = 7.5, 1.5 Hz, 1H, H-
Ar), 6.82 (d, J = 9.0 Hz, 1H, H-Ar), 6.56 (d, J = 2.6 Hz, 1H, H-Ar), 6.45 (dd, J = 9.0, 2.6 Hz, 1H, H-Ar), 5.94
(s, 1H, C-H), 3.40 (q, J = 7.1 Hz, 4H, CH,), 2.18 (s, 3H, CH5- Ar), 1.20 (t, J = 7.1 Hz, 6H, CH); 13C NMR (126
MHz, CDCl;) 6 162.2, 156.4 (2), 150.7, 135.8, 135.3, 130.3, 128.7, 128.3, 127.8, 125.8, 108.8, 108.6,
108.5, 97.6, 44.7, 19.7, 12.4; HRMS (ESI) calc. for CyoH,:NO,Na 330.1470 [M + Nal*, found 330.1465.

Compound S3. Yield 76%. M.p. 136-138°C

MeO I OMe
O
EtoN (@) (@]

1H NMR (500 MHz, CDCls) & 7.36 (t, J = 8.4 Hz, 1H, H-Ar), 6.85 (d, J = 8.9 Hz, 1H, H-Ar), 6.66 (d, J = 8.4
Hz, 2H, H-Ar), 6.55 (d, J = 2.5 Hz, 1H, H-Ar), 6.45 (d, J = 8.9 Hz, 1H, H-Ar), 5.98 (s, 1H, C-H), 3.71 (s, 6H,
OCHs), 3.39 (g, J = 7.1 Hz, 4H, CH,), 1.19 (t, J = 7.1 Hz, 6H, CHs); 13C NMR (126 MHz, CDCl;) 6 162.6,
157.6, 156.3, 150.4, 130.3, 127.4, 113.5, 111.0, 109.2, 108.3, 104.0, 99.7, 55.9, 44.8, 12.5; HRMS (ESI)
calc. for C,;H,3NO4Na 376.1525 [M + Na]*, found 376.1535.

Compound S4. Yield 92%. M.p. 123-124°C
O OMe
OMe
o6
Et,N o~ o

1H NMR (500 MHz, CDCl5) & 7.14 (t, J = 7.9 Hz, 1H, Ar), 7.05 — 6.98 (m, 2H, Ar), 6.81 (dd, J = 7.6, 1.6 Hz,
1H, Ar), 6.58 (d, J = 2.5 Hz, 1H, Ar), 6.53 — 6.47 (m, 1H, Ar), 6.04 (s, 1H, C-H), 3.93 (s, 3H, OCHs), 3.67 (s,
3H, OCHs), 3.40 (g, J = 7.1 Hz, 4H, CH,), 1.20 (t, J = 7.1 Hz, 6H, CH5); 3C NMR (126 MHz, CDCl5) 6 162.2,
156.3, 153.7, 152.9, 150.6, 146.3, 130.6, 128.9, 124.2, 121.6, 113.1, 109.1, 108.5, 108.4, 97.4, 61.3,
55.9, 44.7, 12.4; HRMS (ESI) calc. for C,;H,3NO,Na 376.1525 [M + Na]*, found 376.1532.

Compound S5. Yield 86%. M.p. 130-131°C
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S
o 0

IH NMR (500 MHz, CDCl3) 6 8.28 — 8.22 (m, 2H, Ar), 8.19 (dd, J = 7.6, 1.2 Hz, 1H, Ar), 8.18 — 8.10 (m, 2H,

Et,N

Ar), 8.07 —7.99 (m, 2H, Ar), 7.95 — 7.89 (m, 2H, Ar), 6.75 (d, J = 9.1 Hz, 1H, Ar), 6.64 (d, J = 2.6 Hz, 1H,
Ar), 6.33 (dd, J = 9.1, 2.6 Hz, 1H, Ar), 6.24 (s, 1H, C-H), 3.39 (q, J = 7.1 Hz, 4H, CH,), 1.19 (t, J = 7.1 Hz,
6H, CH); 13C NMR (126 MHz, CDCl;) & 162.1, 156.5, 155.9, 150.8, 131.7, 131.3, 130.8, 128.6, 128.5,
128.2,127.2,126.3 (2), 125.7, 125.5, 124.7, 124.6 (2), 110.4, 109.5, 108.6, 97.6, 44.8, 12.4; HRMS (ESI)
calc. for CpoH,3sNO,Na 440.1626 [M + NaJ*, found 440.1613.

General procedure for the preparation of compounds 1, S6-S8.

Phosphorus oxychloride (7,7 mmol) was added dropwise to a solution of 7-diethylamino-4-aryl-
coumarin (S2-S5) (5 mmol) in DMF (15 ml) upon cooling on ice. The reaction mixture was allowed to
stir at 50°C for 24h. The solution then was cooled to room temperature, poured into NaHCO; aqueous
solution (20 g in 100 ml H,0) with 300 ml of crashed ice. The precipitate which formed was filtered,
washed with distilled water, dried under vacuum and purified via recrystallization from hexane + 2-

propanol.

Compound 1. Yield 60%. M.p. 160-161°C

l Me
e
N (@) (@]

'H NMR (500 MHz, CDCl3) 6 9.83 (s, 1H, CHO), 7.39 (td, J = 7.5, 1.4 Hz, 1H, H-Ar), 7.35-7.26 (m, 2H, H-

Et,

Ar), 7.06 (dd, J = 7.5, 1.4 Hz, 1H, H-Ar), 6.80 (d, J = 9.2 Hz, 1H, H-Ar), 6.52 (d, J = 2.6 Hz, 1H, H-Ar), 6.48
(dd, J=9.2, 2.6 Hz, 1H, H-Ar), 3.45 (q, J = 7.1 Hz, 4H, CH,), 2.10 (s, J = 2.4 Hz, 3H, CH;-Ar), 1.23 (t, J= 7.1
Hz, 6H, CH,); 13C NMR (126 MHz, CDCl;) & 188.2, 162.0, 160.0, 157.8, 153.2, 135.1, 133.0, 130.5, 130.1,
128.9, 127.6, 125.8, 112.2, 109.8, 108.7, 97.0, 45.1, 19.4, 12.4; HRMS (ESI) calc. for C»H,;NO;Na
358.1419 [M + NaJ*, found 358.1415.

Compound S6. Yield 50%. M.p. 213-215°C
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MeO I OMe
e
(@) (@]

IH NMR (500 MHz, CDCl5) 6 9.81 (s, 1H, CHO), 7.41 (t, J = 8.4 Hz, 1H, H-Ar), 6.92 (d, J = 9.1 Hz, 1H, H-Ar),

Et,N

6.67 (d, J = 8.4 Hz, 2H, H-Ar), 6.52 — 6.44 (m, 2H, H-Ar), 3.69 (s, 6H, OCHs), 3.43 (g, J = 7.1 Hz, 4H, CH,),
1.22 (t,J=7.1Hz, 6H, CH3); 13C NMR (126 MHz, CDCl;) 6 188.7, 160.2, 157.7,157.4,157.1, 152.9, 130.9,
129.9, 113.4, 110.3, 109.4, 109.0, 103.9, 96.9, 55.9, 45.0, 12.5; HRMS (ESI) calc. for C;H,3sNOsNa
404.1474 [M + Na]*, found 404.1486.

Compound S7. Yield 28%. M.p. 163-164°C

O OMe

OMe
e
o O

IH NMR (500 MHz, CDCl5) 6 9.98 (s, 1H, CHO), 7.16 (t, J = 7.9 Hz, 1H, H-Ar), 7.05 (d, J = 8.2 Hz, 1H, H-Ar),

Et,N

6.93 (d, /= 9.1 Hz, 1H, H-Ar), 6.66 (d, J = 7.6 Hz, 1H, H-Ar), 6.53 — 6.45 (m, 2H, H-Ar), 3.94 (s, 3H, OCHs),
3.67 (s, 3H, OCH), 3.43 (q, J = 7.1 Hz, 4H, CH,), 1.22 (t, J = 7.1 Hz, 6H, CH5); 3C NMR (126 MHz, CDCl5)
6188.4,160.5,158.8,157.6, 153.0, 152.7, 145.7, 130.9, 128.0, 124.2,120.7,113.1, 112.5,109.7, 109.2,
97.0, 60.9, 55.8, 45.1, 12.4; HRMS (ESI) calc. for C,,H,3NOsNa 404.1474 [M + Na]*, found 404.1479.

Compound S8. Yield 80%. M.p. 169-171°C

PO%
N o O

H NMR (500 MHz, CDCls) 6 9.79 (s, 1H, CHO), 8.30 - 8.22 (m, 2H, H-Ar), 8.21 —8.12 (m, 3H, H-Ar), 8.04

Et,

(t,J = 7.6 Hz, 1H, H-Ar), 8.01 (d, J = 9.1 Hz, 1H, H-Ar), 7.83 (d, J = 7.8 Hz, 1H, H-Ar), 7.72 (d, J = 9.1 Hz,
1H, H-Ar), 6.63 — 6.55 (m, 2H, H-Ar), 6.30 (dd, J = 9.3, 2.6 Hz, 1H, H-Ar), 3.41 (q, J = 7.1 Hz, 4H, CH,),
1.19 (t,J = 7.1 Hz, 6H, CH,); 3C NMR (126 MHz, CDCl;) 6 188.0, 161.4, 160.0, 157.8, 153.2, 131.8, 131.3,
131.2,130.8, 128.8, 128.7, 128.3, 128.0, 127.3, 126.4, 125.9 (2), 125.7, 124.5 (3), 124.1, 113.6, 109.9,
109.8, 97.0, 45.2, 12.4; HRMS (ESI) calc. for C3oH,sNO; 446.1756 [M + H]*, found 446.1761.
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General procedure for the preparation of compounds 4-7.

Aldehyde (1, S6-S8) (1 mmol), dimethyl-1,3-acetonedicarboxylate (2) (10 mmol) and piperidine (1
mmol) were dissolved in methanol (3 ml) and allowed to stir at 60°C for 20h. The solvent was
evaporated and the residue was washed with diethyl ether. The crude product was purified via column

chromatography (CH,Cl, : MeOH 93:7).

Compound 4. Yield 28%. M.p. 258-260°C

l Me
CroCe™
Et,N (@) (0]

CO,Me

IH NMR (500 MHz, CDCl3) 6 7.52 (s, 1H, H-Ar), 7.45 (td, J = 7.6, 1.4 Hz, 1H, H-Ar), 7.4 — 7.33 (m, 2H, H-
Ar), 7.12 (d, J = 7.5 Hz, 1H, H-Ar), 6.90 (d, J = 9.1 Hz, 1H, H-Ar), 6.62 — 6.55 (m, 2H, H-Ar), 4.01 (s, 3H,
OCHs), 3.81 (s, 3H, OCHs), 3.50 (q, J = 7.3 Hz, 4H, CH,), 2.06 (s, 3H, CHs - Ar), 1.26 (t, J = 7.1 Hz, 6H, CHs);
13CNMR (126 MHz, CDCl;) 6 176.7, 167.1, 166.4, 156.2, 155.6, 155.3, 153.6, 136.0, 135.1, 132.1, 130.7
(2),129.7,129.0,128.2,126.1,113.0, 112.1,111.1, 110.9, 96.9, 52.3, 52.2, 45.3, 19.6, 12.6; HRMS (ESI)
calc. for Co,gH,3NOg 474.1917 [M + H]*, found 474.1903.

Compound 5. Yield 21%. M.p. 217-218°C

MeO l OMe
Croce™
Et,N (@) (0]

COzMe

1H NMR (500 MHz, CDCl3) 6 7.61 (s, 1H, H-Ar), 7.51 — 7.41 (t, J = 8.4 Hz, 1H, H-Ar), 7.02 - 6.96 (m, 1H, H-
Ar), 6.73 — 6.67 (m, 2H, H-Ar), 6.59 — 6.53 (m, 2H, H-Ar), 4.00 (s, 3H, OCH;), 3.82 (s, 3H, OCHs), 3.66 (s,
6H, OCH;), 3.48 (q, J = 7.1 Hz, 4H, CH,), 1.25 (t, J = 7.1 Hz, 6H, CH,); 3C NMR (126 MHz, CDCl;) 6 176.8,
167.5, 166.7, 157.7, 156.3, 156.0, 153.4, 151.3, 135.8, 131.6, 130.4, 127.5, 113.3, 112.5, 111.5, 110.8,
109.5,104.1, 96.7, 55.9, 52.2, 52.0, 45.1, 12.6; HRMS (ESI) calc. for CosH3oNOg 520.1971 [M + H]*, found
520.1978.

Compound 6. Yield 13%. M.p. 210-211°C
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O OMe
OMe
o™
O O

CO,Me

Et,N

IH NMR (500 MHz, CDCl3) 6 7.70 (s, 1H, H-Ar), 7.21 (t,J = 7.9 Hz, 1H, H-Ar), 7.11 (dd, J = 8.3, 1.5 Hz, 1H,
H-Ar), 7.06 — 7.01 (m, 1H, H-Ar), 6.73 (dd, J = 7.7, 1.5 Hz, 1H, H-Ar), 6.61 — 6.55 (m, 2H, H-Ar), 4.01 (s,
3H, OCHs), 3.96 (s, 3H, OCH;), 3.82 (s, 3H, OCH;), 3.61 (s, 3H, OCH;), 3.49 (q, J = 7.2 Hz, 4H, CH,), 1.25
(t, J = 7.1 Hz, 6H, CHs); 3C NMR (126 MHz, CDCl3) & 176.6, 167.1, 166.4, 156.1, 155.6, 153.6, 152.9,
152.8, 146.5, 135.4, 131.0, 127.7, 126.7, 124.4, 121.8, 113.8, 112.8, 112.4, 111.2, 110.9, 96.7, 61.2,
55.8,52.2, 52.0, 45.2, 12.5; HRMS (ESI) calc. for CogH3oNOg 520.1977 [M + HJ*, found 520.1978.

Compound 7. Yield 23%. M.p. 211-213°C

oo™
N (@) @]

COzMe

Et,

H NMR (500 MHz, CDCl3) 6 8.33 (d, J = 7.8 Hz, 1H, H-Ar), 8.29 (d, J/ = 7.7 Hz, 1H, H-Ar), 8.25 - 8.15 (m,
3H, H-Ar), 8.07 (t, J = 7.6 Hz, 1H, H-Ar), 8.01 (d, J = 9.1 Hz, 1H, H-Ar), 7.86 (d, J = 7.8 Hz, 1H, H-Ar), 7.61
(d, J = 9.1 Hz, 1H, H-Ar), 7.43 (s, 1H, H-Ar), 6.73 (d, J = 9.4 Hz, 1H, H-Ar), 6.67 (d, J = 2.5 Hz, 1H, H-Ar),
6.41 (dd, J = 9.4, 2.5 Hz, 1H, H-Ar), 4.05 (s, 3H, OCH), 3.64 (s, 3H, OCHs), 3.47 (q, J = 7.2 Hz, 4H, CH,),
1.24(t,J=7.1Hz, 6H, CH3); 13C NMR (126 MHz, CDCl;) 6 176.7, 166.8, 166.4, 156.1, 155.6, 154.7, 153.6,
135.3,132.3, 131.3, 130.8, 129.5, 129.1, 128.8, 128.3, 127.2, 126.9, 126.8, 126.6, 126.2, 126.0, 124.6
(2),124.4,124.1,113.6,113.0,112.1, 111.1, 96.9, 52.4, 52.0, 45.3, 12.6; HRMS (ESI) calc. for C3;H3oNOg
584.2073 [M + H]*, found 584.2075.
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Scheme S3. Synthetic route from coumarin S9 to rhodols 8-11.
General procedure for the preparation of compounds $10-S13.

Compound S9 (10 mmol), arylboronic acid (15 mmol), bis(dibenzylideneacetone)-palladium(0) (0.25
mmol), 2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl (SPhos) (0.75 mmol) and tribasic potassium
phosphate (40 mmol) were placed under Ar in a flame-dried Schlenk flask. Dry and degassed THF (75
ml) was added and the reaction mixture was stirred at 70°C for 7h under inert atmosphere. After the
reaction was complete the mixture was diluted with DCM, filtered through celite and washed with
NaHCOj; solution (3 x 150 ml). The organic layer was dried over Na,SO, and concentrated under vacuo.

The residue was recrystallized from methanol.

Compound S$10. Yield 90%. M.p. 166-167°C

S11



1H NMR (600 MHz, CDCl3) 6 7.37 — 7.34 (m, 1H, H-Ar), 7.32 - 7.26 (m, 2H, H-Ar), 7.14 (dd, J=7.6, 1.4
Hz, 1H, H-Ar), 6.39 (s, 1H, H-Ar), 5.89 (s, 1H, C-H), 3.29 —3.21 (m, 4H, CH,), 2.95 (t, / = 6.5 Hz, 2H, CH,),
2.60 (t, /= 6.5 Hz, 2H, CH,), 2.17 (s, 3H, CH3-Ar), 2.02 - 1.97 (m, 2H, CH,), 1.93-1.88 (m, J=7.9, 5.5 Hz,
2H, CH,); 3C NMR (151 MHz, CDCl;) 6 162.5, 156.6, 151.4, 145.9, 136.2, 135.3, 130.2, 128.5, 128.4,
125.7, 123.8, 118.2, 108.3, 108.2, 106.8, 49.9, 49.5, 27.5, 21.5, 20.6, 20.5, 19.7; HRMS (ESI) calc. for
Cy,H,1NO,Na 354.1470 [M + Na]*, found 354.1469.

Compound S11. Yield 94%.

1H NMR (500 MHz, CDCl;) 6 7.36 (t, J = 8.4 Hz, 1H, H-Ar), 6.66 (d, J = 8.4 Hz, 2H, H-Ar), 6.43 (s, 1H, H-Ar),
5.92 (s, 1H, C-H), 3.70 (s, 6H, OCH;), 3.23 — 3.19 (m, 4H, CH,), 2.94 (t, J = 6.6 Hz, 2H, CH,), 2.62 (t, J =
6.4 Hz, 2H, CH,), 2.02 — 1.99 (m, 2H, CH,), 1.97 — 1.93 (m, 2H, CH,); 13C NMR (126 MHz, CDCl5) 6 162.9,
157.6,151.4,150.7, 145.6, 130.1, 123.4, 117.9, 114.0, 110.3, 109.0, 106.7, 104.1, 56.0, 50.0, 49.6, 27.5,
21.6, 20.8, 20.6; HRMS (ESI) calc. for C,3H,3NO,Na 400.1525 [M + Na]*, found 400.1529.

Compound S12. Yield 89%. M.p. 208-210°C

1H NMR (500 MHz, CDCl5) & 7.13 (t, J = 7.9 Hz, 1H, H-Ar), 7.02 (dd, J = 8.3, 1.5 Hz, 1H, H-Ar), 6.78 (dd, J
=7.7, 1.5 Hz, 1H, H-Ar), 6.56 (s, 1H, H-Ar), 5.97 (s, 1H, C-H), 3.93 (s, 3H, OCHs), 3.67 (s, 3H, OCH3), 3.27
—3.20 (m, 4H, CH,), 2.94 (t, J = 6.5 Hz, 2H, CH;), 2.69 — 2.55 (m, 2H, CH,), 2.02 - 1.96 (m, 2H, CH,), 1.92
—1.87 (m, 2H, CH,); 3C NMR (126 MHz, CDCl;) 6 162.5, 153.9, 152.8, 151.3, 146.2, 145.9, 131.0, 124.2,
124.1,121.6,118.1,112.8, 108.4, 108.4, 106.6, 61.3, 55.8, 50.0, 49.5, 27.5, 21.5, 20.7, 20.5; HRMS (ESI)
calc. for C,3H,3NO4Na 400.1525 [M + Na]*, found 400.1522.

Compound $13. Yield 84%. M.p. 201-203°C
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'H NMR (500 MHz, CDCl;) 6 7.13 — 7.08 (m, 1H, H-Ar), 6.59 = 6.57 (m, 3H, H-Ar), 5.95 (s, 1H, C-H), 3.87
(s, 3H, OCH,), 3.73 (s, 3H, OCHs), 3.23 (t, /= 5.8 Hz, 4H, CH,), 2.93 (t, /= 6.5 Hz, 2H, CH,), 2.64 (t, /= 6.4
Hz, 2H, CH,), 2.01 - 1.96 (m, J = 6.2 Hz, 2H, CH,), 1.94-1.89 (d, / = 6.0 Hz, 2H, CH,); 3C NMR (126 MHz,
CDCl;) 6 162.8,161.5, 157.6, 153.9, 151.3, 145.6, 130.8, 124.2,118.3,117.8, 109.2, 108.8, 106.7, 104.5,
99.0, 55.6, 55.5,49.9, 49.6, 27.6, 21.6, 20.8, 20.5; HRMS (ESI) calc. for C,3H,3NO,4Na 400.1525 [M + NaJ*,
found 400.1530.

General procedure for the preparation of compounds S14-S17.

Phosphorus oxychloride (7.7 mmol) was added dropwise to a solution of 7-diethylamino-4-aryl-
coumarin ($10-S13) (5 mmol) in DMF (15 ml) upon cooling on ice. The reaction mixture was allowed to
stir at 50°C for 24h. The solution then was cooled to room temperature, poured into NaHCO; aqueous
solution (20 g in 100 ml H,0) with 300 ml of crashed ice. The precipitate which formed was filtered,
washed with distilled water and methanol, dried under vacuo and purified via recrystallization from

MeOH/CH,Cl,.

Compound S14. Yield 84%. M.p. 201-203°C

1H NMR (500 MHz, CDCl5) 6 9.80 (s, 1H, CHO), 7.38 (t, J = 7.5 Hz, 1H, H-Ar), 7.33 — 7.24 (m, 2H, H-Ar),
7.03 (d, J = 7.5 Hz, 1H, H-Ar), 6.35 (s, 1H, H-Ar), 3.36 — 3.32 (m, 4H, CH,), 2.94 (t, J = 6.4 Hz, 2H, CH,),
2.57 (t,J=6.2 Hz, 2H, CH,), 2.08 (s, 3H, CH;-Ar), 2.00 (quint, J = 6.2 Hz, 2H, CH,), 1.90 (quint, J = 6.3 Hz,
2H, CH,); 3C NMR (126 MHz, CDCI3) 6 188.4, 161.6, 160.3, 152.9, 149.0, 135.2, 133.5, 130.0, 128.7,
127.8,126.1,125.7,119.5, 111.3, 108.4, 106.0, 50.3, 49.9, 27.5, 21.1, 20.2, 20.2, 19.5; HRMS (ESI) calc.
for C3H,,NO5 360.1600 [M + H]*, found 360.1588.

Compound S15. Yield 87%. M.p. 263-265°C
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1H NMR (500 MHz, CDCl) 6 9.77 (s, 1H, CHO), 7.41 (t, J = 8.4 Hz, 1H, H-Ar), 6.66 (d, J = 8.4 Hz, 2H, H-
Ar), 6.49 (s, 1H, H-Ar), 3.68 (s, 6H, OCHs), 3.34 — 3.28 (m, 4H, CH,), 2.92 (t, J = 6.4 Hz, 2H, CH,), 2.60 (t,
J = 6.3 Hz, 2H, CH,), 1.97 (quint, J = 6.1 Hz, 2H, CH,), 1.91 (quint, J = 6.1 Hz, 2H, CH,); 13C NMR (126
MHz, CDCl;) & 188.8, 160.4, 157.3, 157.1, 152.8, 148.7, 130.7, 125.5, 119.1, 112.3, 110.8, 108.7, 105.8,
103.9, 56.0, 50.2, 49.9, 49.6, 27.5, 21.1, 20.3 (2); HRMS (ESI) calc. for C,4H,;NOsNa 428.1474 [M + Na*,
found 428.1472.

Compound S16. Yield 86%. M.p. 242-244°C

IH NMR (500 MHz, CDCl3) 6 9.89 (s, 1H, CHO), 7.15 (t, J = 7.9 Hz, 1H, H-Ar), 7.06 (d, J = 8.2 Hz, 1H, H-
Ar), 6.64 (d, J = 7.6 Hz, 1H, H-Ar), 6.50 (s, 1H, H-Ar), 3.94 (s, 3H, OCHs), 3.66 (s, 3H, OCH), 3.36 — 3.32
(m, 4H, CH,), 2.91 (t, J = 6.4 Hz, 2H, CH,), 2.59 (t, J = 6.4 Hz, 2H, CH,), 1.97 (quint, J = 6.2 Hz, 2H, CH,),
1.89 (quint, J = 6.0 Hz, 2H, CH,); 3C NMR (126 MHz, CDCl;) & 188.0, 160.1, 158.4, 152.3, 152.2, 148.7,
145.2,127.8, 126.0, 123.7, 120.3, 119.2, 112.6, 110.6, 108.3, 105.3, 60.4, 55.4, 49.9, 49.4, 27.0, 20.5,
19.7 (2); HRMS (ESI) calc. for C,4H,3NOsNa 428.1474 [M + Na]*, found 428.1481.

Compound $17. Yield 32%. M.p. 210-211°C

1H NMR (500 MHz, CDCl5) 6 9.80 (s, 1H, CHO), 6.97 (d, J = 8.3 Hz, 1H, H-Ar), 6.60 (dd, J = 8.3, 2.3 Hz, 1H,
H-Ar), 6.57-6.56 (m, 2H, H-Ar), 3.88 (s, 3H, OCHs), 3.70 (s, 3H, OCH), 3.35 — 3.29 (m, 4H, CH,), 2.92 (t,
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J = 6.4 Hz, 2H, CH,), 2.64 — 2.58 (m, 2H, CH,), 2.02 — 1.95 (m, 2H, CH,), 1.93 — 1.88 (m, 2H, CH,); 13C
NMR (126 MHz, CDCl;) & 188.9, 161.7, 160.3, 159.1, 157.7, 152.9, 148.6, 130.3, 126.3, 119.1, 114.8,
112.1, 109.1, 106.0, 104.5, 98.7, 55.7, 55.5, 50.2, 49.9, 27.5, 21.1, 20.3 (2); HRMS (ESI) calc. for
C,aH23NOsNa 428.1474 [M + NaJ*, found 428.1472.

General procedure for the preparation of compounds 8-11.

3-formyl coumarin (S14-S17) (1 mmol), dimethyl-1,3-acetonedicarboxylate (2) (10 mmol) and
piperidine (1 mmol) were dissolved in methanol (5 ml) and allowed to stir at 60°C for 20h. The solvent
was evaporated and the residue was washed with diethyl ether. The crude product was purified via

column chromatography (CH,Cl, : MeOH 9:1).

Compound 8. Yield 19%. M.p. 265-266°C

1H NMR (500 MHz, CDCls) & 7.49 — 7.41 (m, 2H, H-Ar), 7.38 — 7.33 (m, 2H, H-Ar), 7.10 — 7.08 (m, 1H, H-
Ar), 6.47 (s, 1H, H-Ar), 3.98 (s, 3H, OCH;), 3.80 (s, 3H, OCHs), 3.41 -3.37 (m, 4H, CH,), 2.95 — 2.91 (m,
2H, CH,), 2.63 (t, J = 6.2 Hz, 2H, CH,), 2.08 — 1.99 (m, 5H, CH-Ar, CH,), 1.98 — 1.89 (m, 2H, CH,); 13C
NMR (126 MHz, CDCl5) 6 176.2, 167.4, 166.6, 155.8, 155.0, 151.1, 149.7, 136.0, 134.8, 132.5, 130.6,
129.5,129.0, 127.8, 126.1, 126.0, 121.2, 112.2, 111.1, 110.8, 105.8, 52.2, 52.1, 50.5, 50.2, 27.5, 20.9,
20.0, 19.8, 19.6; HRMS (ESI) calc. for C3oH,5NOg 498.1917 [M + H]*, found 498.1921.

Compound 9. Yield 28%. M.p. 260-262°C

IH NMR (500 MHz, CDCl3) & 7.57 (s, 1H, H-Ar), 7.46 (t, J = 8.4 Hz, 1H, H-Ar), 6.70 (d, J = 8.4 Hz, 2H, H-
Ar), 6.57 (s, 1H, H-Ar), 3.98 (s, 3H, OCH;), 3.82 (s, 3H, OCHs), 3.65 (s, 6H, OCHs), 3.41 — 3.34 (m, 4H,
CH,), 2.93 (t, J = 6.4 Hz, 2H, CH,), 2.65 (t, J = 6.2 Hz, 2H, CH,), 2.03 - 1.98 (m, 2H, CH,), 1.97 — 1.92 (m,
2H, CH,); 13C NMR (126 MHz, CDCl;) & 176.4, 167.9, 166.9, 157.7, 156.3, 151.3, 151.0, 149.6, 135.5,
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131.5, 127.0, 126.1, 120.9, 112.1, 111.8, 111.5, 109.9, 105.5, 104.1, 56.0, 52.1, 52.0, 50.5, 50.2, 27.6,
21.1, 20.2, 19.8; HRMS (ESI) calc. for C3;H3NOg 544.1971 [M + H]*, found 544.1970.

Compound 10. Yield 28%. M.p. 200°C (dec.)

IH NMR (500 MHz, CDCl5) & 7.66 (s, 1H, H-Ar), 7.21 (t, J = 7.9 Hz, 1H, H-Ar), 7.10 (d, J = 8.2 Hz, 1H, H-
Ar), 6.74 — 6.68 (m, 1H, H-Ar), 6.60 (s, 1H, H-Ar), 3.98 (s, 3H, OCH), 3.97 (s, 3H, OCH;), 3.81 (s, 3H,
OCH;), 3.59 (s, 3H, OCH), 3.41 —3.37 (m, 4H, CH,), 2.92 (t, J = 6.4 Hz, 2H, CH,), 2.65 —2.62 (m, 2H, CH,),
2.03 — 2.00 (m, 2H, CH,), 1.95 — 1.90 (m, 2H, CH,); 13C NMR (126 MHz, CDCl;) & 176.2, 167.6, 166.6,
152.9, 146.5, 135.3, 127.1 (2), 126.6, 124.3, 121.9, 113.6, 111.4, 105.6, 61.2, 55.8, 52.1, 52.0, 50.5,
50.2, 27.5, 20.9, 20.1, 19.8; HRMS (ESI) calc. for C3;H3oNOg 544.1971 [M + HJ*, found 544.1974.

Compound 11. Yield 16%. M.p. 181°C(dec.)

1H NMR (500 MHz, CDCl3) & 7.64 (s, 1H, H-Ar), 7.02 (d, J = 8.3 Hz, 1H, H-Ar), 6.68 — 6.60 (m, 3H, H-Ar),
3.97 (s, 3H, OCHs), 3.91 (s, 3H, OCH;), 3.82 (s, 3H, OCH;), 3.68 (s, 3H, OCH;), 3.40 — 3.36 (m, 4H, CH,),
2.92 (t,J = 6.3 Hz, 2H, CH,), 2.66 (t, J = 6.3 Hz, 2H, CH,), 2.01 (quint, J = 6.2 Hz, 2H, CH,), 1.99 — 1.90 (m,
2H, CH,); 13C NMR (126 MHz, CDCl3) & 176.2, 167.7, 166.7, 162.2, 158.0, 156.1, 153.1, 151.3, 149.5,
135.8,131.4, 127.1, 126.6, 120.8, 114.0, 112.0, 111.9, 111.5, 105.6, 104.9, 99.1, 55.7, 55.5, 52.1, 52.0,
50.5, 50.2, 27.6, 21.0, 20.1, 19.8; HRMS (ESI) calc. for C3;H3NOg 544.1971 [M + HJ*, found 544.1975.

General procedure for the preparation of compounds 12, 13.
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3-formyl coumarin (S18, S19) (1 mmol), dimethyl-1,3-acetonedicarboxylate (2) (10 mmol) and
piperidine (1 mmol) were dissolved in methanol (5 ml) and allowed to stir at 60°C for 20h. The

precipitate which formed was filtered and recrystallized from MeOH/CH,Cl..

Compound 12. Yield 21%. M.p. M.p. 250°C(dec.)

Starting compound S18 was synthesized following a procedure described in the literature.?

'H NMR (500 MHz, CDCl3) 6 11.66 (s, 1H, OH), 8.92 (s, 1H, H-Ar), 7.09 (s, 1H, H-Ar), 4.01 (s, 3H, OCH;),
3.99 (s, 3H, OCHs), 3.28 — 3.24 (m, 4H, CH,), 2.89 (t, J = 6.5 Hz, 2H, CH,), 2.74 (t, J = 6.3 Hz, 2H, CH,),
1.98 (quint, J = 6.1 Hz, 4H, CH,); 13C NMR (126 MHz, CDCl;) 6 169.5, 168.4, 162.6, 160.8, 149.4, 146.1,
139.0, 135.6, 122.9, 117.9, 115.6, 111.7, 110.5, 107.4, 103.4, 52.9, 52.7, 49.9, 49.3, 27.9, 21.5, 20.7,
20.6; HRMS (EI) calc. for C,3H,;NO; 423.1318 M*, found 423.1302.

Compound 30. Yield 60%. M.p. 288-289°C

Starting compound S19 was synthesized following a procedure described in the literature.?

1H NMR (500 MHz, 1,1,2,2-CD,Cl,) & 8.04 (s, 1H), 7.58 (s, 1H), 6.38 (s, 1H), 3.82 (s, 3H, OCHs), 3.76 (s,
3H, OCH;), 3.37 — 3.32 (m, 4H, CH,), 2.85 — 2.82 (m, 4H, CH,), 1.99 — 1.94 (m, 4H, CH,); 13C NMR (500
MHz, 1,1,2,2- CD,Cl,) 6 165.6, 163.4, 161.6, 159.6, 154.6, 151.9, 149.0, 136.9, 121.6, 119.9, 113.3,
106.0, 99.8, 95.8, 94.6, 52.2, 51.0, 50.2, 49.7, 27.7, 20.9, 20.1, 19.9; HRMS (ESI) calc. for C,3H»;NO;Na
446.1216 [M + Nal*, found 446.1218.
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Lawesson's
reagent

—_—
0-DCB,
140°C, 4h

Scheme S4. Transformation of bis-coumarins into V-shaped rhodols.

Compound S22. Yield 18%. M.p. 170-171°C

The starting compound S21 was synthesized according to the literature procedure.? The bis-coumarin
S$21 (1 mmol) together with Lawesson’s reagent (1,25 mmol) were dissolved in 25 ml of dry o-DCB and
the reaction was heated at 140°C for 4 hours. After the solvent was evaporated under the vacuo, the
residue was filtered through a silica pad, washed with mixture of hexane and CH,Cl, (1:1) and
concentrated under vacuo. The product was next purified via DCVC (CH,CI, : hexane 1:2) followed by

the recrystallization from the mixture of hexane and CH,Cl..

IH NMR (500 MHz, CDCls) & 8.07 (dd, J = 8.1, 1.5 Hz, 1H, H-Ar), 7.96 (d, J = 9.3 Hz, 1H, H-Ar), 7.66 (ddd,
J=8.5,7.2, 1.5 Hz, 1H, H-Ar), 7.42 (dd, J = 8.4, 1.2 Hz, 1H, H-Ar), 7.35 (ddd, J = 8.3, 7.3, 1.3 Hz, 1H, H-
Ar), 6.75 (dd, J = 9.4, 2.7 Hz, 1H, H-Ar), 6.60 (d, J = 2.6 Hz, 1H, H-Ar), 3.50 (q, J = 7.2 Hz, 4H, CH,), 1.28
(t, J = 7.2 Hz, 6H, CHs); 13C NMR (126 MHz, CDCl;) & 190.6, 190.5, 158.6, 155.2, 153.3, 139.8, 134.1,
131.0,129.2, 124.8,121.1, 117.3, 117.0, 111.3, 105.6, 97.0, 45.4, 12.5; HRMS (El) calc. for CyoH1;NO,S,
367.0701 M*, found 367.0706.

Compound S23. Yield 30%. M.p. 294-295°C

S18



0,03 mmol of compound S22, 0,072 mmol of Cs,CO; and 0,3 mmol od dimethyl 1,3-
acetonedicarboxylate were mixed together in 2 ml of CH;CN and were allowed to stir at r.t. overnight.

The solvent was evaporated and the residue was purified using DCVC (0,1-2% MeOH in CH,Cl,).

1H NMR (500 MHz, CDCl5) & 8.27 (d, J = 8.1 Hz, 1H, H-Ar), 8.14 (d, J = 9.4 Hz, 1H, H-Ar), 7.65 (t, /= 7.8
Hz, 1H, H-Ar), 7.46 (d, J = 8.3 Hz, 1H, H-Ar), 7.37 (t,J = 7.7 Hz, 1H, H-Ar), 6.74 (dd, J = 9.4, 2.7 Hz, 1H, H-
Ar), 6.55 (d, J = 2.6 Hz, 1H, H-Ar), 3.98 (d, J = 7.1 Hz, 6H, OCH), 3.51 (q, J = 7.1 Hz, 4H, CH,), 1.29 (t, J =
7.1 Hz, 6H, CH,); 3C NMR (126 MHz, CDCls) 6 175.4, 165.6, 165.4, 157.3, 154.2, 152.8, 151.3, 150.7,
140.1, 134.0, 129.7, 128.2, 124.5, 118.8, 116.3, 110.5, 105.4, 105.1, 98.1, 52.3, 52.3, 45.1, 12.6; HRMS
(EI) calc. for Cp7H,3NO; 473.1457 M*, found 473.1470.
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A total of 1869 frames were collected. The total exposure time was 45.69 hours. The frames were
integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration
of the data using a monoclinic unit cell yielded a total of 20848 reflections to a maximum 6 angle

of 68.75° (0.83 A resolution), of which 3496 were independent (average redundancy 5.963,
completeness = 97.3%, R = 6.44%, Rqig = 4.22%) and 2521 (72.11%) were greater than 20(F?). The
final cell constants of a = 11.7140(13) A, b = 9.9926(12) A, c = 16.775(2) A, B = 98.713(7)°, volume
=1940.9(4) A3, are based upon the refinement of the XYZ-centroids of 7169 reflections above 20 o(l)
with 5.329° < 20 < 136.6°. Data were corrected for absorption effects using the numerical method
(SADABS). The ratio of minimum to maximum apparent transmission was 0.825. The calculated
minimum and maximum transmission coefficients (based on crystal size) are 0.7320 and 0.8440.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space
group P 121/n 1, with Z = 4 for the formula unit, C,5H,,NO;. The final anisotropic full-matrix least-
squares refinement on F2 with 326 variables converged at R1 = 4.93%, for the observed data and wR2
=13.29% for all data. The goodness-of-fit was 1.015. The largest peak in the final difference electron
density synthesis was 0.650 e-/A3 and the largest hole was -0.324 e-/A3 with an RMS deviation

of 0.044 e /A3. On the basis of the final model, the calculated density was 1.449 g/cm3 and

F(000), 888 e.

Table S2. Sample and crystal data for 12.

Identification code KVy0620A

Chemical formula Cy3H,1NO;

Formula weight 423.41 g/mol

Temperature 296(2) K

Wavelength 1.54178 A

Crystal size 0.194 x 0.244 x 0.368 mm

Crystal habit yellow prisms

Crystal system monoclinic

Space group P121/n1

Unit cell dimensions a=11.7140(13) A o =90°
b =9.9926(12) A B =98.713(7)°
c=16.775(2) A y = 90°

Volume 1940.9(4) A3

V4 4

Density (calculated) 1.449 g/cm?

Absorption coefficient 0.903 mm-™!

F(000) 888

Table S3. Data collection and structure refinement for 12.

Theta range for data collection [4.31 to 68.75°

Index ranges -14<=h<=14, -11<=k<=10, -20<=I<=20

Reflections collected 20848

Independent reflections 3496 [R(int) = 0.0644]

Coverage of independent

reflectiins ° 97.3%

Absorption correction numerical

Max. and min. transmission 0.8440 and 0.7320

Structure solution technique  |direct methods
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Structure solution program

SHELXL-2014 (Sheldrick, 2014)

Refinement method

Full-matrix least-squares on F?

Refinement program

SHELXL-2014 (Sheldrick, 2014)

Function minimized

5 Wiy - F2)?

Data / restraints / parameters

3496 /0/326

Goodness-of-fit on F2

1.015

Final R indices

2521 data; 1>20(1)

R1=0.0493, wR2 =
0.1180

all data

R1=0.0726, wR2 =
0.1329

Weighting scheme

w=1/[0%(F,%)+(0.0563P)%+0.9257P]
where P=(F,2+2F2)/3

Largest diff. peak and hole

0.650 and -0.324 eA3

R.M.S. deviation from mean

0.044 eA3

Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters (A2) for 12.

U(eg

) is defined as one third of the trace of the orthogonalized U;; tensor.

x/a

y/b

z/c

U(eq)

N1

0.79545(16
)

0.8429(2)

0.96972(13
)

0.0496(5)

o1

0.40679(11
)

0.73599(15
)

0.98848(9)

0.0430(4)

02

0.22301(12
)

0.69230(18
)

0.98329(10
)

0.0534(5)

03

0.42098(15
)

0.32825(19
)

0.27994(10
)

0.0564(5)

04

0.65852(14
)

0.33896(17
)

0.22349(11
)

0.0592(5)

05

0.63780(12
)

0.53689(17
)

0.28201(9)

0.0484(4)

06

0.20390(14
)

0.27387(19
)

0.26422(11
)

0.0596(5)

07

0.08283(13
)

0.38296(18
)

0.17120(11
)

0.0560(5)

C1

0.9165(2)

0.8403(3)

0.0081(2)

0.0665(8)

C2

0.9551(2)

0.7029(3)

0.0347(2)

0.0626(8)

C3

0.88157(19
)

0.6484(3)

0.09211(18
)

0.0543(7)

c4

0.75485(17
)

0.6737(2)

0.06535(13
)

0.0387(5)

C5

0.71712(17
)

0.7696(2)

0.00534(14
)

0.0383(5)

C6

0.59773(17
)

0.7873(2)

0.98031(13
)

0.0369(5)

C7

0.5524(2)

0.8849(3)

0.91468(18
)

0.0501(6)

C8

0.6456(3)

0.9451(4)

0.8743(2)

0.0893(11
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x/a

y/b

z/c

U(eq)

)

C9

0.7564(2)

0.9621(3)

0.9255(2)

0.0719(9)

C10

0.67491(17
)

0.6033(2)

0.10043(14
)

0.0377(5)

C11

0.55527(16
)

0.6212(2)

0.08003(13
)

0.0335(5)

C12

0.52187(16
)

0.7126(2)

0.01808(13
)

0.0343(5)

C13

0.31944(16
)

0.6681(2)

0.01591(13
)

0.0365(5)

Ci14

0.35030(16
)

0.5755(2)

0.08252(12
)

0.0316(5)

C15

0.46661(16
)

0.5535(2)

0.11724(12
)

0.0314(5)

Ci6

0.48664(17
)

0.4678(2)

0.18456(13
)

0.0351(5)

C17

0.39510(18
)

0.4064(2)

0.21439(13
)

0.0381(5)

C18

0.28036(17
)

0.4263(2)

0.17743(13
)

0.0370(5)

C19

0.26035(17
)

0.5115(2)

0.11245(13
)

0.0356(5)

C20

0.60377(18
)

0.4383(2)

0.23082(14
)

0.0394(5)

C21

0.7529(2)

0.5265(3)

0.32706(17
)

0.0644(8)

C22

0.18693(19
)

0.3537(2)

0.20899(14
)

0.0430(6)

C23

0.9883(2)

0.3055(4)

0.1955(2)

0.0831(10
)

Table S5. Bond lengths (A) for 12.

N1-C5

1.379(3)

N1-C9

1.441(3)

N1-C1

1.466(3)

01-C13

1.364(2)

01-C12

1.384(2)

02-C13

1.203(2)

03-C17

1.345(3)

03-H3

0.95(3)

04-C20

1.198(3)

05-C20

1.328(3)

05-C21

1.446(3)

06-C22

1.216(3)

07-C22

1.319(3)

07-C23

1.458(3)

C1-C2

1.492(4)

C1-H1A

0.99(3)

C1-H1B

1.08(4)

C2-C3

1.489(4)

C2-H2A

0.98(3)

C2-H2B

1.06(3)

C3-C4

1.506(3)

C3-H3A

0.99(3)

C3-H3B

1.00(3)

C4-C10

1.373(3)

C4-C5

1.411(3)

C5-Cé

1.409(3)

C6-C12

1.385(3)

C6-C7

1.506(3)
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C7-C8 1.496(4) |C7-H7A 0.95(3)

C7-H7B 0.95(3)  |c8-C9 1.454(4)
C8-H8A 0.97 C8-H8B 0.97

C9-H9A 0.97 C9-H9B 0.97

C10-C11 1.403(3) |C10-H10 0.97(3)

C11-C12 1.395(3) |C11-C15 1.457(3)
C13-C14 1.454(3) |C14-C19 1.390(3)
C14-C15 1.415(3) |C15-Cl6 1.408(3)
C16-C17 1.393(3) |C16-C20 1.500(3)
C17-C18 1.406(3) |C18-C19 1.375(3)
C18-C22 1.476(3) |C19-H19 0.98(2)
C21-H21A |0.96 C21-H21B |0.96

C21-H21C 0.96 C23-H23A [0.96

C23-H23B  |0.96 C23-H23C |0.96

Table S6. Bond angles (°) for 12.

C5-N1-C9 118.8(2) C5-N1-C1 117.6(2)
C9-N1-C1 116.8(2) [C13-01-C12 122.32(17)
C17-03-H3 104.4(17) |C20-05-C21 116.72(19)
C22-07-C23 115.7(2)  |N1-C1-C2 112.1(2)
N1-C1-H1A 102.2(18) |C2-C1-H1A 113.6(18)
N1-C1-H1B 110.9(19) |C2-C1-H1B 108.8(19)
H1A-C1-H1B 109.(3) C1-C2-C3 110.6(3)
C1-C2-H2A 107.3(16) |C3-C2-H2A 111.0(16)
C1-C2-H2B 108.8(15) |C3-C2-H2B 110.8(15)
H2A-C2-H2B 108.(2) C2-C3-C4 112.7(2)
C2-C3-H3A 113.8(18) |C4-C3-H3A 107.4(18)
C2-C3-H3B 113.8(19) |C4-C3-H3B 107.4(18)
H3A-C3-H3B 101.(3) C10-C4-C5 119.56(19)
C10-C4-C3 119.5(2) |C5-C4-C3 121.0(2)
N1-C5-C4 120.84(19) IN1-C5-C6 120.0(2)
C4-C5-Cé 119.16(19) |C12-C6-C5 118.2(2)
C12-C6-C7 120.25(19) |C5-C6-C7 121.5(2)
C8-C7-C6 113.0(2) |C8-C7-H7A 108.1(19)
C6-C7-H7A 111.(2) C8-C7-H7B 109.0(19)
C6-C7-H7B 112.0(19) [H7A-C7-H7B 103.(3)
C9-C8-C7 115.2(3) |C9-C8-H8A 108.5
C7-C8-H8A 108.5 C9-C8-H8B 108.5
C7-C8-H8B 108.5 H8A-C8-H8B 107.5
N1-C9-C8 113.1(2)  |N1-C9-H9A 109.0
C8-C9-H9A 109.0 N1-C9-H9B 109.0
C8-C9-H9B 109.0 HO9A-C9-H9B 107.8
C4-C10-C11 123.4(2) C4-C10-H10 115.0(14)
C11-C10-H10 121.5(14) |C12-C11-C10 114.99(19)
C12-C11-C15 119.07(17) |C10-C11-C15  [125.9(2)
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C6-C12-01 113.74(18) |C6-C12-C11 124.53(18)
01-C12-C11 121.73(18) |02-C13-01 116.56(19)
02-C13-C14 125.79(19) |01-C13-C14 117.63(17)
C19-C14-C15 121.01(19) |C19-C14-C13 117.17(18)
C15-C14-C13 121.80(17) |C16-C15-C14  [117.22(18)
C16-C15-C11 125.66(18) |C14-C15-C11 117.12(18)
C17-C16-C15 120.82(18) |C17-C16-C20 114.90(19)
C15-C16-C20 124.26(18) |03-C17-C16 117.33(19)
03-C17-C18 121.62(19) |C16-C17-C18 121.0(2)
C19-C18-C17 118.28(19) |C19-C18-C22 122.8(2)
C17-C18-C22 118.9(2) |C18-C19-C14 121.59(19)
C18-C19-H19 122.0(12) |C14-C19-H19 116.4(12)
04-C20-05 124.6(2) |04-C20-C16 124.9(2)
05-C20-C16 110.47(18) |05-C21-H21A 109.5
05-C21-H21B 109.5 H21A-C21-H21B (109.5
05-C21-H21C 109.5 H21A-C21-H21C (109.5
H21B-C21-H21C |109.5 06-C22-07 123.0(2)
06-C22-C18 123.4(2) |07-C22-C18 113.6(2)
07-C23-H23A 109.5 07-C23-H23B 109.5
H23A-C23-H23B |109.5 07-C23-H23C 109.5
H23A-C23-H23C |109.5 H23B-C23-H23C (109.5

Table S7. Torsion angles (°) for 12.

C5-N1-C1-C2 42.9(4) C9-N1-C1-C2 -166.2(3)
N1-C1-C2-C3 -58.2(4) C1-C2-C3-C4 44.2(4)
C2-C3-C4-C10 164.4(3) C2-C3-C4-C5 -16.2(4)
C9-N1-C5-C4 -163.7(2) C1-N1-C5-C4 -13.4(3)
C9-N1-C5-C6 18.1(3) C1-N1-C5-C6 168.3(2)
C10-C4-C5-N1 179.2(2) C3-C4-C5-N1 -0.1(3)
C10-C4-C5-C6 -2.5(3) C3-C4-C5-C6 178.1(2)
N1-C5-C6-C12 -179.4(2) C4-C5-C6-C12 2.3(3)
N1-C5-C6-C7 0.2(3) C4-C5-C6-C7 -178.0(2)
C12-C6-C7-C8 -173.4(3) C5-C6-C7-C8 6.9(4)
C6-C7-C8-C9 -31.8(4) C5-N1-C9-C8 -43.1(4)
C1-N1-C9-C8 166.4(3) C7-C8-C9-N1 49.8(4)
C5-C4-C10-C11 -0.1(3) C3-C4-C10-C11 |179.3(2)
C4-C10-C11-C12 2.8(3) C4-C10-C11-C15 |-177.4(2)
C5-C6-C12-01 -179.19(18) C7-C6-C12-01  [1.1(3)
C5-C6-C12-C11 0.5(3) C7-C6-C12-C11  |-179.1(2)
C13-01-C12-Cé 177.40(19) C13-01-C12-C11 [-2.3(3)
C10-C11-C12-C6 -3.0(3) C15-C11-C12-C6 (177.2(2)
C10-C11-C12-01 176.71(19) C15-C11-C12-01 |-3.1(3)
C12-01-C13-02 -176.7(2) C12-01-C13-C14 (4.5(3)
02-C13-C14-C19 -1.6(3) 01-C13-C14-C19 |177.10(19)
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02-C13-C14-C15 -179.9(2) 01-C13-C14-C15 [-1.2(3)
C19-C14-C15-C16  [-2.0(3) C13-C14-C15-C16 [176.32(19)
C19-C14-C15-C11  [177.85(19) C13-C14-C15-C11[-3.9(3)
C12-C11-C15-C16  |-174.23(19)  [C10-C11-C15-C166.0(3)
C12-C11-C15-C14  [6.0(3) C10-C11-C15-C14 [-173.8(2)
C14-C15-C16-C17  [0.9(3) C11-C15-C16-C17 [-178.9(2)
C14-C15-C16-C20  |-177.24(19)  [C11-C15-C16-C203.0(3)
C15-C16-C17-03 -178.59(19)  |C20-C16-C17-03 [-0.3(3)
C15-C16-C17-C18  [1.1(3) C20-C16-C17-C18(179.4(2)
03-C17-C18-C19 177.6(2) C16-C17-C18-C19 [-2.0(3)
03-C17-C18-C22 -3.3(3) C16-C17-C18-C22[177.1(2)
C17-C18-C19-C14  [1.0(3) C22-C18-C19-C14[-178.1(2)
C15-C14-C19-C18  [1.0(3) C13-C14-C19-C18[-177.3(2)
€21-05-C20-04 4.9(3) C21-05-C20-C16 |-175.93(19)
C17-C16-C20-04 81.0(3) C15-C16-C20-04 [-100.7(3)
C17-C16-C20-05 -98.1(2) C15-C16-C20-05 [80.2(3)
€23-07-C22-06 -4.6(4) €23-07-C22-C18 [174.9(2)
C19-C18-C22-06 176.8(2) C17-C18-C22-06 [-2.3(4)
C19-C18-C22-07 -2.7(3) C17-C18-C22-07 [178.2(2)

Table $8. Anisotropic atomic displacement parameters (A2) for 12. The anisotropic atomic
displacement factor exponent takes the form: -2ri?[ h2a*2U;; +...+2hka" b" Uy, |

Uy U, Us; Uss Uss U,
N1 [0.0406(10) [0.0441(12) [0.0659(14) [0.0033(11) [0.0139(9) [-0.0097(8)
01 [0.0297(7)  |0.0482(9)  [0.0505(10) [0.0159(8) [0.0039(7)  |0.0018(6)
02 [0.0299(8)  |0.0651(11) [0.0631(11) [0.0227(9) [0.0001(7)  |0.0034(7)
03 [0.0484(10) [0.0705(12) [0.0493(10) [0.0254(10) [0.0039(8)  |-0.0008(9)
04 [0.0514(10) |0.0502(11) [0.0725(13) [0.0008(10) |-0.0022(9) [0.0149(8)
05 [0.0397(8)  |0.0566(10) [0.0448(9) |-0.0050(9) |-0.0068(7) |0.0010(7)
06 [0.0534(10) [0.0658(12) [0.0614(11) [0.0255(10) [0.0142(8) |-0.0031(8)
07 [0.0361(8)  [0.0679(12) [0.0637(11) [0.0178(10) [0.0065(8) |-0.0126(8)
C1 [0.0414(14) |0.068(2) 0.091(2)  |-0.0046(19) 0.0163(14) |-0.0207(13)
C2 [0.0343(13) [0.084(2) 0.0692(19) |-0.0005(18) |0.0073(12) |-0.0056(13)
C3  [0.0299(11) |0.072(2) 0.0597(18) [0.0020(16) [0.0019(11) |-0.0039(11)
C4 [0.0312(10) [0.0423(13) [0.0420(13) |-0.0067(11) [0.0038(9)  |-0.0038(9)
C5 [0.0355(11) [0.0342(12) [0.0464(13) |-0.0087(11) [0.0102(10) |-0.0077(9)
C6 [0.0360(11) [0.0335(12) [0.0420(13) |-0.0006(10) [0.0084(9)  |-0.0007(9)
C7 [0.0500(14) [0.0473(15) [0.0545(16) [0.0124(14) [0.0124(13) [0.0041(12)
C8 [0.0664(19) |0.093(2) 0.111(3)  [0.055(2)  [0.0226(18) |0.0008(17)
C9 [0.0626(17) [0.0553(17) [0.100(2)  |0.0191(18) [0.0196(16) |-0.0132(14)
C10 [0.0313(10) |0.0439(13) [0.0364(12) [-0.0001(11) |0.0008(9)  |0.0016(9)
C11 [0.0285(10) [0.0358(12) [0.0357(12) |-0.0021(10) [0.0034(8)  |-0.0001(8)
C12 [0.0286(10) [0.0350(12) [0.0386(12) [-0.0013(10) |0.0026(9)  |0.0014(8)
C13 [0.0296(10) |0.0380(12) [0.0417(12) [0.0037(11) |0.0052(9)  |0.0003(9)
C14 [0.0303(10) [0.0324(11) [0.0318(11) |-0.0016(10) [0.0036(8)  |-0.0007(8)
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Ull U22 U33 U23 U13 U12
C15 [0.0295(10) |0.0328(11) [0.0315(11) [-0.0048(10) |0.0029(8)  |0.0001(8)
C16 [0.0336(10) [0.0372(12) [0.0334(11) [-0.0011(10) |0.0012(9)  |0.0020(9)
C17 [0.0418(11) |0.0400(12) [0.0322(12) [0.0047(11) |0.0049(9)  |0.0009(9)
C18 [0.0363(11) [0.0379(12) [0.0373(12) [0.0004(11) [0.0076(9)  |-0.0026(9)
C19 [0.0304(10) [0.0375(12) [0.0379(12) |-0.0028(10) [0.0022(9)  |-0.0001(9)
C20 [0.0379(11) [0.0413(13) [0.0385(12) [0.0068(11) [0.0038(9) |0.0008(10)
C21 (0.0457(14) |0.080(2) 0.0594(17) [0.0042(16) |-0.0169(12) |-0.0061(13)
C22 [0.0425(12) [0.0440(13) [0.0432(14) [0.0039(12) [0.0086(10) |-0.0035(10)
C23 [0.0462(15) [0.108(3) 0.094(2)  [0.034(2)  |0.0067(15) |-0.0303(16)

x/a y/b z/c U(eq)
H8A  |0.6568 0.8888  |-0.1710 0.107
H8B  [0.6195 1.0319  |-0.1471 0.107
H9A [0.8136 0.9883  [-0.1077 0.086
H9B  [0.7501 1.0341  |-0.0366 0.086
H21A [0.7632 0.4395  |0.3513 0.097
H21B |0.7633 0.5937  |0.3685 0.097
H21C [0.8087 0.5396  [0.2913 0.097
H23A (0.0067 0.2119  |0.1949 0.125
H23B [-0.0812 0.3223  [0.1586 0.125
H23C [-0.0227 0.3313  |0.2489 0.125
H10 [0.707(2) 0.539(3) [0.1413(15)  |0.054(7)
H19 [0.1821(18) [0.532(2) [0.0856(12)  [0.036(6)
H1A [0.957(3) 0.877(3) [-0.0349(18) |0.083(10)
H2A  [1.036(2) 0.709(3) [0.0601(16) |0.064(8)
H3A  [0.901(3) 0.684(3) (0.148(2) 0.087(10)
H3B  [0.891(3) 0.550(4) [0.102(2) 0.091(11)
H7A  [0.511(3) 0.956(3) [-0.0652(19) |0.086(10)
H2B  [0.951(2) 0.641(3) |-0.0168(18) [0.070(9)
H7B  [0.496(3) 0.846(3) |-0.1249(19) |0.080(10)
H1B  [0.930(3) 0.906(4) |0.060(2) 0.110(12)
H3  [0.349(3) 0.292(3) [0.2888(17) [0.074(9)

Table $10. Hydrogen bond distances (A) and angles (°) for

12.

Donor-H |Acceptor-H |Donor-Acceptor|Angle
03-H3-06 0.95(3) |1.69(3) 2.574(2) 152.(3)
C2-H2B~07 |1.06(3) |2.57(3) 3.521(4) 149.(2)
C23-H23A+05(0.96 2.5 3.115(3) 121.4

Table S9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (A2) for 12.
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A total of 5680 frames were collected. The total exposure time was 37.87 hours. The frames were
integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration
of the data using a monoclinic unit cell yielded a total of 45603 reflections to a maximum 6 angle
of 66.19° (0.84 A resolution), of which 3201 were independent (average redundancy 14.246,
completeness = 91.9%, Rint = 14.21%, Rsig = 12.25%) and 1257 (39.27%) were greater than

20(F2). The final cell constants of a = 11.3428(5) A, b = 20.3876(9) A, c = 8.5895(4) A, B = 93.145(3)°,
volume = 1983.35(15) A3, are based upon the refinement of the XYZ-centroids of 7323 reflections
above 20 o(l) with 7.806° < 20 < 111.6°. Data were corrected for absorption effects using the multi-
scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.772. The
calculated minimum and maximum transmission coefficients (based on crystal size)

are 0.5960 and 0.9220.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space
group P 1 21/c 1, with Z = 4 for the formula unit, C,5H,,NO;. The final anisotropic full-matrix least-
squares refinement on F2 with 283 variables converged at R1 = 7.38%, for the observed data and
WR2 =23.70% for all data. The goodness-of-fit was 0.989. The largest peak in the final difference
electron density synthesis was 0.273 e-/A3 and the largest hole was -0.257 e-/A3 with an RMS
deviation of 0.060 e-/A3. On the basis of the final model, the calculated density was 1.418 g/cm3 and
F(000), 888 e-.

Table $12. Sample and crystal data for 13.

Identification code KVy0615_10

Chemical formula Cy5H,1NOy

Formula weight 423.41 g/mol

Temperature 296(2) K

Wavelength 1.54178 A

Crystal size 0.093 x0.118 x 0.654 mm

Crystal habit red needle

Crystal system monoclinic

Space group P121/c1

Unit cell dimensions a=11.3428(5) A o =90°
b =20.3876(9) A B =93.145(3)°
c =8.5895(4) A y = 90°

Volume 1983.35(15) A3

A 4

Density (calculated) 1.418 g/cm3

Absorption coefficient 0.884 mm-1

F(000) 888

Table S13. Data collection and structure refinement for 13.

Theta range for data collection

3.90to0 66.19°

Index ranges

-12<=h<=12, -22<=k<=23, -9<=I<=9

Reflections collected

45603

Independent reflections

3201 [R(int) = 0.1421]

Coverage of independent
reflections

91.9%
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Absorption correction

multi-scan

Max. and min. transmission

0.9220 and 0.5960

Structure solution technique

direct methods

Structure solution program

SHELXL-2014 (Sheldrick, 2014)

Refinement method

Full-matrix least-squares on F2

Refinement program

SHELXL-2014 (Sheldrick, 2014)

Function minimized

2 w(Fo2 - Fc2)2

Data / restraints / parameters (3201 /0/ 283
Goodness-of-fit on F2 0.989
A/omax 0.006
. - R1=0.0738, wR2 =
Final R indices 1257 data; 1>20(l) 0.1727
all data R1=0.2244, wR2 =
0.2370

Weighting scheme

w=1/[02(F02)+(0.0977P)2+1.3622P]
where P=(Fo2+2Fc2)/3

Extinction coefficient 0.0002(1)
Largest diff. peak and hole 0.273 and -0.257 eA-3
R.M.S. deviation from mean  [0.060 eA-3

Table S14. Atomic coordinates and equivalent isotropic atomic displacement parameters (A2) for 13.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x/a y/b z/c U(eq)

N1 [0.0470(4)|0.3526(2) |0.3296(5)[0.0535(13)
01 |0.8548(3) |0.15605(17) |0.1646(4) |0.0513(10)
02 |0.7813(3) |0.06119(18) |0.0827(4) |0.0723(13)
03 |0.6111(3) [0.25900(14) |0.8953(4) |0.0442(9)
04 |0.5256(3) |0.37712(17) |0.8099(5) |0.0805(14)
05 |0.3723(3) |0.37069(16) |0.6370(4) |0.0668(12)
06 |0.3440(4) |0.15007(18) |0.6299(5) [0.0871(15)
07 |0.4453(3) |0.06125(17) |0.6947(4) |0.0679(12)
C1 |0.0523(5) |0.4238(3) |0.3430(7)[0.0765(19)
C2 |0.9991(6) 0.4567(3) |0.2021(8)[0.097(2)

C3 |0.8758(5) |0.4335(3) |0.1653(7) [0.0699(18)
C4 |0.8695(4) |0.3599(2) |0.1623(6)[0.0457(14)
C5 |0.9545(4) 0.3217(3) |0.2509(6) [0.0421(13)
C6 |0.9487(4) |0.2528(3) |0.2506(6) [0.0413(13)
C7 |0.0401(4) |0.2123(2) |0.3416(6)|0.0513(15)
C8 |0.1558(4) |0.2492(3) |0.3616(7) [0.0655(17)
C9 |0.1351(5) 0.3165(3) |0.4257(7)|0.0669(18)
€10 |0.7817(4) 0.3281(2)  |0.0759(6) |0.0458(14)
C11 |0.7731(4) 0.2596(2)  |0.0732(6) |0.0390(13)
C12 |0.8576(4) 0.2240(2)  |0.1620(6) [0.0423(14)
€13 |0.6902(4) 0.2230(3)  |0.9827(5) [0.0373(13)
C14 |0.6871(4) 0.1562(2) |0.9792(6) |0.0420(14)
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x/a y/b z/c U(eq)
C15 |0.7727(4) [0.1203(3)  |0.0748(6) 0.0493(15)
C16 [0.5999(4) [0.1252(2) |0.8818(6) |0.0462(14)
C1710.5200(4) |0.1599(2) ]0.7928(6) [0.0410(13)
€18 |0.5235(4) [0.2310(2)  |0.7979(6) 0.0386(14)
C19 |0.4527(4) 0.2732(2)  |0.7190(6) |0.0436(14)
C20 [0.4593(5) [0.3437(3) |0.7318(6) |0.0500(15)
C21|0.3689(5) |0.4415(3) ]0.6327(7) |0.089(2)
€22 (0.4273(5) [0.1257(3)  |0.6972(7) |0.0514(15)
C23|0.3583(5) [0.0224(2) |0.6063(7) |0.0743(19)
Table S15. Bond lengths (A) for 13.
N1-C5 1.369(6) |N1-C1 1.457(6)
N1-C9 1.460(6) |01-C15 1.384(5)
01-C12 1.385(5) |02-C15 1.210(5)
03-C13 1.354(5) |03-C18 1.387(5)
04-C20 1.194(5) |05-C20 1.360(5)
05-C21 1.444(6) |06-C22 1.190(5)
07-C22 1.330(5) |07-C23 1.447(5)
C1-C2 1.483(7) |C1-H1A 0.97
C1-H1B 0.97 C2-C3 1.494(7)
C2-H2A 0.97 C2-H2B 0.97
C3-C4 1.504(6) |C3-H3A 0.97
C3-H3B 0.97 C4-C10 1.372(6)
C4-C5 1.426(6) |C5-C6 1.406(6)
C6-C12 1.381(6) |C6-C7 1.509(6)
c7-C8 1.514(6) |C7-H7A 0.97
C7-H7B 0.97 C8-C9 1.502(7)
C8-H8A 0.97 C8-H8B 0.97
C9-H9A 0.97 C9-H9B 0.97
C10-C11 1.400(6) |C10-H10 0.93
C11-C12 1.396(6) |c11-C13 1.402(6)
C13-C14 1.363(6) |C14-Cl6 1.409(6)
C14-C15 1.437(6) |C16-C17 1.353(6)
C16-H16 0.93 C17-C18 1.450(6)
C17-C22 1.474(7) |C18-C19 1.336(6)
C19-C20 1.443(6) |C19-H19 0.93
C21-H21A |0.96 C21-H21B |0.96
C21-H21C 0.96 C23-H23A |0.96
C23-H23B 0.96 C23-H23C |0.96
Table S16. Bond angles (°) for 13.
C5-N1-C1 121.6(5) |C5-N1-C9 122.0(5)
C1-N1-C9 115.7(5) |C15-01-C12 122.2(4)
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C13-03-C18 122.8(4) |C20-05-C21 115.9(4)
€22-07-C23 116.7(4) |[N1-C1-C2 111.9(5)
N1-C1-H1A 109.2  [C2-C1-H1A 109.2
N1-C1-H1B 109.2  |C2-C1-H1B 109.2
H1A-C1-H1B 107.9  [c1-C2-C3 111.3(5)
C1-C2-H2A 109.4  |C3-C2-H2A 109.4
C1-C2-H2B 109.4  |C3-C2-H2B 109.4
H2A-C2-H2B 108.0  |C2-C3-C4 111.2(5)
C2-C3-H3A 109.4  |C4-C3-H3A 109.4
C2-C3-H3B 109.4  |C4-C3-H3B 109.4
H3A-C3-H3B 108.0  |C10-C4-C5 118.8(5)
C10-C4-C3 120.8(5) |C5-C4-C3 120.4(5)
N1-C5-C6 119.6(5) [N1-C5-C4 119.3(5)
C6-C5-C4 120.9(5) |C12-C6-C5 117.4(5)
C12-C6-C7 121.6(5) |C5-C6-C7 121.0(5)
C6-C7-C8 110.7(4) |C6-C7-H7A 109.5
C8-C7-H7A 109.5  |C6-C7-H7B 109.5
C8-C7-H7B 109.5  [H7A-C7-H7B 108.1
C9-C8-C7 110.0(5) |C9-C8-H8A 109.7
C7-C8-H8A 109.7  |C9-C8-HSB 109.7
C7-C8-H8B 109.7  |H8A-C8-HSB 108.2
N1-C9-C8 111.7(4) |N1-C9-H9A 109.3
C8-C9-H9A 109.3  |N1-C9-H9B 109.3
C8-C9-H9B 109.3  |[H9A-C9-H9B 107.9
C4-C10-C11 121.8(5) |C4-C10-H10 119.1
C11-C10-H10 119.1  [C12-C11-C10 117.7(5)
C12-C11-C13 116.4(5) |C10-C11-C13 125.8(5)
C6-C12-01 115.7(5) |C6-C12-C11 123.3(5)
01-C12-C11 120.9(5) |03-C13-C14 121.0(4)
03-C13-C11 114.9(5) |C14-C13-C11 124.1(5)
C13-C14-C16 118.5(4) |C13-C14-C15 118.7(5)
C16-C14-C15 122.8(5) |02-C15-01 116.3(5)
02-C15-C14 126.1(5) |01-C15-C14 117.6(5)
C17-C16-C14 121.8(4) |C17-C16-H16 119.1
C14-C16-H16 119.1  [C16-C17-C18 119.3(5)
C16-C17-C22 120.1(5) |C18-C17-C22 120.5(5)
C19-C18-03 115.6(4) |C19-C18-C17 127.8(5)
03-C18-C17 116.6(4) |C18-C19-C20 125.2(5)
C18-C19-H19 117.4  |C20-C19-H19 117.4
04-C20-05 121.3(5) |04-C20-C19 129.8(5)
05-C20-C19 109.0(5) |05-C21-H21A 109.5
05-C21-H21B 109.5  |H21A-C21-H21B [109.5
05-C21-H21C 109.5  |H21A-C21-H21C [109.5
H21B-C21-H21C  [|109.5  |06-C22-07 121.5(5)
06-C22-C17 126.7(5) |07-C22-C17 111.8(5)
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07-C23-H23A 109.5 07-C23-H23B 109.5
H23A-C23-H23B  |109.5 07-C23-H23C 109.5
H23A-C23-H23C [109.5 H23B-C23-H23C |109.5
Table S17. Torsion angles (°) for 13.

C5-N1-C1-C2 -33.8(7) |C9-N1-C1-C2 155.8(5)
N1-C1-C2-C3 54.5(7) |C1-C2-C3-C4 -50.5(7)
C2-C3-C4-C10 -154.4(5) |C2-C3-C4-C5 26.2(7)
C1-N1-C5-C6 -175.3(5) |C9-N1-C5-C6 -5.6(7)
C1-N1-C5-C4 8.6(7) C9-N1-C5-C4 178.3(5)
C10-C4-C5-N1 175.8(4) |C3-C4-C5-N1 -4.8(7)
C10-C4-C5-C6 -0.2(7)  |c3-C4-C5-C6 179.1(5)
N1-C5-C6-C12 -176.2(4) |C4-C5-C6-C12 -0.2(7)
N1-C5-C6-C7 2.6(7) C4-C5-C6-C7 178.7(4)
C12-C6-C7-C8 152.5(5) |C5-C6-C7-C8 -26.3(6)
C6-C7-C8-C9 51.4(6) |C5-N1-C9-C8 32.4(7)
C1-N1-C9-C8 -157.3(5) |C7-C8-C9-N1 -54.8(6)
C5-C4-C10-C11 0.4(7) C3-C4-C10-C11 -179.0(5)
C4-C10-C11-C12 |-0.1(7)  |C4-C10-C11-C13 [-176.7(5)
C5-C6-C12-01 179.9(4) |C7-C6-C12-01 1.1(7)
C5-C6-C12-C11 0.5(7) C7-C6-C12-C11 -178.3(4)
C15-01-C12-C6 -176.4(4) |C15-01-C12-C11 [3.1(7)
C10-C11-C12-C6  |-0.4(7) |C13-C11-C12-C6 [176.5(4)
C10-C11-C12-01 |-179.8(4) |C13-C11-C12-01 |-2.9(7)
C18-03-C13-C14 |-0.2(7) |C18-03-C13-C11 (179.4(4)
C12-C11-C13-03 |-178.6(4) |C10-C11-C13-03 [|-1.9(7)
C12-C11-C13-C14 |1.0(7) C10-C11-C13-C14 |177.7(5)
03-C13-C14-C16 |0.3(7) C11-C13-C14-Ci6 [-179.3(4)
03-C13-C14-C15 |-179.7(4) |C11-C13-C14-C15 |0.7(8)
C12-01-C15-02  [177.6(4) |C12-01-C15-C14 |-1.2(7)
C13-C14-C15-02 |-179.3(5) |C16-C14-C15-02 |0.7(8)
C13-C14-C15-01 |-0.6(7) |C16-C14-C15-01 (179.4(4)
C13-C14-C16-C17 |0.0(7) C15-C14-C16-C17 (180.0(5)
C14-C16-C17-C18 |-0.3(7) C14-C16-C17-C22 |-177.6(5)
C13-03-C18-C19 |-179.8(4) |C13-03-C18-C17 |-0.1(6)
C16-C17-C18-C19 |180.0(5) |C22-C17-C18-C19 [|-2.7(8)
C16-C17-C18-03 |0.4(7) C22-C17-C18-03 (177.7(4)
03-C18-C19-C20 |-1.8(7) C17-C18-C19-C20 |178.6(5)
C21-05-C20-04  |2.4(8) C21-05-C20-C19 |[-178.2(4)
C18-C19-C20-04 |0.5(9) C18-C19-C20-05 |[-178.9(5)
C23-07-C22-06  |-0.1(8) |C23-07-C22-C17 |178.9(4)
C16-C17-C22-06 |169.9(6) |C18-C17-C22-06 |-7.4(9)
C16-C17-C22-07 |-9.1(7) |C18-C17-C22-07 |173.6(4)
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Table $18. Anisotropic atomic displacement parameters (A2) for 13. The anisotropic atomic
displacement factor exponent takes the form: -2n2[ h2 a*2 U11+ ...+ 2 hka* b* U12]

Uil |u22 U3 |u23 u13 u12
N1 |0.042(3)[0.062(3)[0.055(3) |-0.005(3) |-0.012(2) |-0.009(3)
01 [0.044(2) 0.051(2) [0.057(2) [0.002(2)  |-0.0133(19) [0.0024(19)
02 [0.071(3) 0.039(2) [0.104(3) [0.006(2)  |-0.028(2) [0.007(2)
03 [0.036(2) 0.039(2) [0.055(2) |-0.0009(18) |-0.0126(18) |[-0.0015(18)
04 (0.082(3) 0.044(3) [0.110(4) |-0.004(2)  |-0.047(3)  |-0.005(2)
05 [0.061(3) 0.041(2) [0.093(3) |-0.001(2)  |0.035(2) [0.009(2)
06 [0.063(3) 0.053(3) [0.140(4) |-0.019(2)  |-0.052(3)  |0.008(2)
07 [0.061(3) 0.040(2) [0.098(3) |-0.001(2)  |-0.038(2) [-0.007(2)
C1 [0.077(5) [0.063(5) [0.086(5) |-0.003(4)  |0.022(4)  |-0.024(4)
C2 [0.093(5) [0.072(5) [0.119(6) [0.023(4)  |-0.048(5)  |-0.026(4)
C3 [0.061(4) [0.048(4) |0.098(5) |-0.001(3)  |0.020(4)  [-0.007(3)
C4 |0.038(3) 0.048(3) [0.051(4) [0.001(3)  |-0.006(3)  [0.004(3)
C5 [0.033(3) 0.051(4) [0.043(3) |-0.006(3)  [0.005(3)  [-0.010(3)
C6 [0.031(3) 0.055(4) [0.038(3) [0.003(3)  [0.001(3)  [0.005(3)
C7 |0.040(3) [0.066(4) |0.048(4) [0.007(3)  |-0.001(3)  |0.004(3)
C8 [0.031(3) [0.099(5) [0.065(4) [0.011(4)  |-0.014(3)  |0.000(3)
C9 [0.051(4) 0.086(5) [0.060(4) |-0.003(4)  |-0.020(3)  |0.001(3)
C10 |0.037(3) |0.046(4) [0.053(4) |-0.002(3)  |-0.004(3)  [0.003(3)
C11 |0.028(3) 0.044(3) |0.045(3) [0.001(3)  |0.001(3) [0.003(3)
C12 |0.041(4) 0.039(3) [0.047(4) |-0.002(3)  [0.004(3)  [-0.003(3)
C13 |0.025(3) 0.044(3) [0.042(4) [0.005(3)  |-0.002(3)  |0.004(3)
C14 |0.034(3) 0.037(3) |0.054(4) [0.005(3)  |-0.004(3)  |0.000(3)
C15 |0.039(4) 0.048(4) |0.059(4) |-0.002(3)  |-0.007(3)  [0.001(3)
C16 0.037(3) 0.037(3) |0.064(4) [0.002(3)  |-0.001(3)  |0.000(3)
C17 0.029(3) 0.042(3) [0.052(4) |-0.002(3)  |-0.003(3)  |0.002(3)
C18 |0.030(3) [0.035(3) [0.050(4) [0.000(3)  |0.001(3)  [-0.003(3)
€19 |0.035(3) [0.038(3) [0.057(4) [0.000(3)  |-0.009(3)  |0.000(3)
€20 [0.042(4) 0.046(4) |0.061(4) [0.002(3)  |-0.007(3)  |0.004(3)
€21 (0.112(6) 0.039(4) [0.112(6) |-0.003(4)  |-0.034(4) [0.022(4)
€22 |0.039(4) 0.042(4) |0.072(4) [0.001(3)  |-0.008(3)  |0.005(3)
€23 [0.063(4) 0.044(3) [0.112(5) |-0.010(3)  |-0.030(4)  [-0.016(3)

Table S19. Hydrogen atomic coordinates and

isotropic atomic displacement parameters (A2)

for 13.

x/a y/b z/c U(eq)
H1A 1.1340 ]0.4373 0.3590 0.092
H1B 1.0107 |0.4374 0.4333 0.092
H2A 1.0468 |0.4478 0.1141 0.116
H2B 0.9987 |0.5038 0.2188 0.116
H3A 0.8477 |0.4507 0.0647 0.084
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x/a y/b z/c U(eq)
H3B  [0.8247 [0.4501  [0.2432  [0.084
H7A  [1.0524 |0.1715 [0.2870  [0.062
H7B  [1.0118 |0.2019  [0.4432  [0.062
H8A  [1.2099 [0.2253  [0.4322  [0.079
H8B  [1.1913 |0.2528 [0.2618  [0.079
H9A  [1.1087 [0.3126  [0.5308  [0.08
HOB  [1.2088 [0.3407  [0.4308  [0.08
H10 [0.7263 |0.3528  [0.0174  [0.055
H16  [0.5971 |0.0796  |-0.1213  [0.055
H19  [0.3946 [0.2558  |-0.3496 [0.052
H21A [0.4479 (0.4583  |-0.3695 [0.134
H21B [0.3329 [0.4576  |-0.2762 [0.134
H21C [0.3237 |0.4556  |-0.4589 [0.134
H23A [0.2900 [0.0166  |-0.3339  [0.112
H23B [0.3913 |-0.0197 |-0.4163 [0.112
H23C [0.3359 [|0.0445  |-0.4895 [0.112

Table $20. Hydrogen bond distances (A) and angles (°) for 13.

Donor-

Donor-H |Acceptor-H Acceptor Angle
C23-H23B...04 0.96 2.46 3.305(6) 146.6
C19-H19...06 0.93 2.24 2.882(6) 126.1
C9-H9B...05 0.97 2.57 3.350(6) 137.8
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Figure S9. Absorption (solid) and emission (dotted) spectra for compounds 12 (in CH,Cl,) and 13 (in

DMSO0).

Table S21. The spectroscopic properties for compounds 12 and 13.

Dye Solvent | A,ps™* [nm] €103 [Micm?] | Acn™@ [nm] | AV [cmY] (on
12° CH,Cl, 418 37 520 4700 0.73
13 CH,Cl, 491 32 —b

DMSO 497 25 571 2600 0.037

a— Compound 12 in DMSO does not show linear dependence of the absorption vs. concentration.

b —In the fluorescence spectrum compound 13 in CH,Cl, shows emission from two forms.

S71



Photostability measurements

Photostability was determined through the variation in absorption of each sample at the appropriate

absorption maximum wavelength (A,,,) with respect to irradiation time. Ethanol was selected as the

solvent. Concentrations giving similar optical densities (A = 1) were used. Quartz cells of samples were

irradiated with a 300 W Xe lamp (Asahi spectra MAX-350) for 120 min (for compounds 4-7 in DMSO),
50 min (for compounds 8-11 in DMSO ) and 30 min for all dyes in DCM at 25 °C equipped with a UV/vis

mirror module through a glass fiber. The absorption spectra were measured at appropriate times

during the irradiation. Rhodamine 6G, Fluorescein and Rdl12° in appropriate solvents were used as

references.

N—N
/

)
I
Y o o
)

Figure S10. The structure of Rdl12.
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Figure S11. Photostability of rhodols 8-11 compared to the Rhodamine 6G in EtOH, fluorescein in 0,1M
NaOH aqueous solution and RdI12 measured in DMSO using a collimated light source from a 300W Xe

lamp.
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Theoretical methods

We have performed the DFT and TD-DFT calculations with the Gaussian 16 code® on all dyes. For 4, we
performed a conformational search on the side esters groups and only the most stables ones were
latter used. Default Gaussian16 thresholds and algorithms were used but for an improved optimization
threshold (10~ au on average residual forces), a stricter self-consistent field convergence criterion (10
10 3.u.) and the use of the ultrafine DFT integration grid.

Firstly, the S, geometries have been optimized with DFT and the vibrational frequencies have been
analytically determined, using the M06-2X meta-GGA hybrid exchange-correlation functional.” These
calculations were performed with the 6-311G(d,p) atomic basis set and account for solvent effects
through the linear-response PCM approach considering DCM as solvent.® Secondly, starting from the
optimal ground-state geometries, we have used TD-DFT with the same functional and basis set to
optimize the S; geometry and compute the vibrational frequencies. All optimized structures
correspond to true minima of the potential energy surface. Thirdly, the vertical transition energies
were determined with TD-DFT and the same functional, but a larger basis set, namely 6-311+G(2d,p),
in gas-phase as well as in solution using the cLR? variant of the PCM,? in its non-equilibrium limit.

As the shortcomings of TD-DFT for cyanine derivatives!® are known, the obtained transition energies
were also computed using COSMO-ADC(2)*' with the Turbomole 7.3 code.’? These ADC(2) energies
were calculated in gas phase applying the resolution of identity scheme, and using the aug-cc-pVDZ
atomic basis set.

The vibrationally resolved spectrum were determined with the FCClasses 3 program.'314 We used a
time-dependent formulation, applied the FC approximation (HT effects were neglected), and selected
the so-called Vertical Gradient> vibronic model for the band topologies on the basis of the TD-DFT
data only. We used a simulation temperature of 298K. The obtained stick spectrum were convoluted
with Gaussian having HWHM of 300 cm™. The radiative and internal conversion rates have been
obtained using the TVCF formalism.'® These calculations were made within the time-dependent
formulation, the same FC approach and the Vertical Gradient model.'> For the radiative part, we used
the same broadening as for the band shapes, i.e., a 300 cm™ Gaussian, but this is known to be not
important for the radiative rate.!” For the IC part, we used a 10 cm™ broadening Lorentzian, which is a
typical value in the literature.”:18
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Additional theoretical data

11

Figure S13. Electron density difference (EDD) plots for the lowest excited states of compounds 4-11,
as obtained with TD-DFT. The blue and red lobes correspond to regions of decrease and increase of
electron density respectively. Contour threshold: 0.001 au.
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Figure S14. Computed vibrationally-resolved absorption and emission spectra for 4 (left) and 8 (right).
The presence of the typical ““cyanine shoulder” is clear in all cases.

Table S22. Computed vertical absorption, vertical emission, and 0-0 wavelengths with TD-DFT and
ADC(2) for rhodols 4-11. All values are given in nm. We recall here that vertical transition energies
cannot be directly compared to experimental A, and that, in contrast, 0-0 values can be rigorously
to the experimental crossing point between the absorption and fluorescence curves. It can be noted
that the experimental values are bracketed by the TD-DFT and ADC(2) estimates, but closer from the
latter.

CLR?-PCM-TD-DFT COSMO-ADC(2)

}\'vert—abso }‘-vert—fluo ?\'0—0 }‘-vert—abso 7\fvert—fluo }‘-0—0
4 440 471 466 562 625 603
5 452 491 479 585 665 640
6 445 480 472 573 643 620
7 443 478 472 570 640 617
8 452 478 477 592 641 622
9 467 496 492 621 681 663
10 456 487 482 601 660 642
11 460 486 485 607 659 640

Table $23. Computed radiative and international conversion rates (108 s!) and deduced quantum yield
of emission.

kr kic &
8 3.44 1.48 0.70
9 2.97 1.65 0.64
10 3.23 1.56 0.67
11 3.22 1.54 0.68
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1. Experimental details

1.1.Synthesis

All chemicals were used as received unless otherwise noted. All reported 'H and *C NMR spectra were
collected using 500 MHz and 600 MHz spectrometers. Chemical shifts (6 ppm) were determined with TMS as
the internal reference; J values are given in Hz. Chromatography was performed on silica gel (230-400 mesh).
Thin layer chromatography (TLC) was carried out using Merck PLC Silica gel 60 Fzs4 1 mm plates. The mass
spectra were obtained via electron ionization (EI-MS) or electrospray ionization (ESI-MS).

1.1.1 Experimental part

OHC F

2,3,5,6-Tetrafluoro-4-hydroxybenzaldehyde (2): HMTA (1.1 eq, 0.165 mol, 23.1 g) was slowly added to the
solution of 2,3,5,6-tetrafluorophenol (0.15 mol, 24.9 g) in TFA (120 mL) (exothermic reaction). The mixture
was stirred under argon at 100 °C overnight. Subsequently 10% HClaq (150 mL) was added and the reaction
mixture was stirred at 100 °C for another 1 h. The solution was cooled to room temperature, diluted with
H,0, and extracted with EtOAc (150 mL x 2) and CHCl; (150 mL x 1). The organic fractions were collected,
dried over Na,SO., and solvents were removed under reduced pressure. The product was purified using
column chromatography (silica, hexane/EtOAc, 2:1 and then 1:1) and recrystallized from cold hexane to
obtain the pure product (21 g, 72 %) as off-white crystals. *H NMR (500 MHz, DMSO) & 10.1 (s, 1H).
Spectroscopic properties are in agreement with the literature data.?

Rhodol 4: A solution of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and 8-hydroxy-
1,1,7,7-tetramethyljulolidine (1 mmol, 245 mg) in toluene (30 ml) was stirred under argon at 90 °C overnight.
The solution was cooled to room temperature and the precipitate was filtered and washed with toluene. The
crude product was crystallized from Et,0 to give the pure product (333 mg, 83 %) as violet crystals. M.p. 235
— 236 °C (from Et,0).

H NMR (500 MHz, CDCls) 6 8.02 (d, J = 1.5 Hz, 1H), 7.28 (s, 1H), 3.59 - 3.48 (m, 2H), 3.45 - 3.39 (m, 2H), 1.93
-1.84 (m, 2H), 1.83 - 1.75 (m, 2H), 1.58 (s, 6H), 1.34 (s, 6H). *C NMR (126 MHz, CDCls) § 165.5 (dd, J = 11.9;
6.0 Hz), 152.0, 149.3, 144.3 (dd, J = 259.4; 12.3 Hz), 141.7 (dt, J = 253.2; 7.3 Hz), 139.0 (dd, J = 241.9; 6.7
Hz), 139.0 (t, J = 9.3 Hz), 135.9 (m), 130.8, 125.5, 114.8, 110.5, 103.5 (d, J = 20.0 Hz), 47.9, 47.5, 38.5, 34.7,



32.3,32.2,29.7,28.2. *F NMR (470 MHz, CDCls) 6 -153.4 (dd, J = 17.6, 5.4 Hz), -160.0 (dd, J = 17.7, 14.5 Hz),
-168.3 (dd, J = 14.0, 5.4 Hz). HRMS (ESI) calc. for C23H23NOsF3; 402.1681 [M + H]*, found 402.1679.

F
CCCL
~N o) o)
H F
11

Rhodol 11: 3-Ethylamino-p-cresol (2 mmol, 302 mg), 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2 mmol,
388 mg) and xylene (35 mL) were placed in a sealed tube. The resulting mixture was stirred under Ar at 135
°C for 1 h. After cooling to RT, the precipitate was filtered and washed with Et,0. Recrystallization of crude
product with MeOH/Et,0 gave dark purple solid (188 mg, 31 %). M.p. 283 — 285 °C.

H NMR (500 MHz, pyridine-ds) & 8.17 (s, 1H), 7.39 — 7.35 (m, 1H), 7.32 (s, 1H), 6.79 (s, 1H), 3.39 (p, J = 7.0
Hz, 2H), 2.22 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz, pyridine-ds) & 165.5 (dd, J = 17.6; 6.3 Hz),
155.6, 155.0, 145.1 (dd, J = 258.9; 12.0 Hz), 142.1 (dd, J = 253.0; 7.4 Hz), 139.9 (t, J = 9.1 Hz), 139.5 (dd, J =
239.7; 7.1 Hz), 136.3 (m), 131.0, 122.8, 110.2, 104.4 (d, J = 20.2 Hz), 95.0, 38.5, 17.5, 14.1. 1°F NMR (470 MHz,
Pyridine-ds) & -152.2 (dd, J = 18.1, 5.2 Hz), -157.8 (dd, J = 18.0, 13.5 Hz), -166.7 (dd, J = 14.2, 5.0 Hz). HRMS
(ESI) calc. for C16H13NO2F3 308.0898 [M + H]*, found 308.0901.

F
CIOC
(C4Hg)oN O @)
F

12

Rhodol 12: A solution of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and N,N-di-n-butyl-
3-aminophenol (1 mmol, 221 mg, 225 uL) in toluene (30 ml) was stirred under argon at 90 °C overnight. The
reaction mixture was cooled to room temperature and concentrated under vacuum. The crude product was
purified using column chromatography (silica, CH,Cl./MeOH, 98:2) to give the pure product (130 mg, 35 %)
as red crystals. M.p. 219 - 220 °C.

H NMR (500 MHz, CDCl3) 6 8.01 (s, 1H), 7.43 (d, J = 9.0 Hz, 1H), 6.72 (dd, J = 9.1, 2.4 Hz, 1H), 6.60 (d, J = 2.4
Hz, 1H), 3.43 (t, J = 7.9 Hz, 4H), 1.70 - 163 (m, 4H), 1.47 — 1.38 (m, 4H), 1.01 (t, J = 7.3 Hz, 6H). 13C NMR (126
MHz, CDCls) 6 166.2 (td, J = 16.9, 5.5 Hz), 155.7, 154.2, 144.5 (dd, J = 260.7, 12.1 Hz), 141.4 (dt, J = 254.8, 7.4
Hz), 139.3 (t, J = 8.9 Hz), 138.8 (dd, J = 242.4, 6.6 Hz), 135.5 (m), 131.5, 111.5, 109.7, 105.2, 96.8, 51.5, 29.3,
20.2, 13.9. 1°F NMR (470 MHz, CDCls) & -149.9 (dd, J = 17.4, 5.1 Hz), -154.8 (dd, J = 17.5, 13.0 Hz), -164.4 (dd,
J=12.9, 4.8 Hz). HRMS (ESI) calc. for C»1H23sNO,F3 378.1681 [M + H]*, found 378.1687.
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Rhodol 13: A mixture of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and 5-(piperidin-1-
yl)benzene-1,3-diol?> (1 mmol, 193 mg) in xylene (30 ml) was stirred under argon at 160 °C overnight. The
resulting precipitate was filtered and washed with boiling MeOH to give the pure product (259 mg, 74 %) as
dark red crystals. M.p. > 350 °C.

'H NMR (500 MHz, CF;COO0D) & 8.84 (s, 1H), 6.77 (s, 1H), 6.70 (s, 1H), 3.84 (br s, 4H), 1.87 (br s, 6H). *C NMR
(126 MHz, CFsCOOD) 6 160.0 (t, /= 5.2 Hz), 158.0 (dd, J = 186.4, 6.7 Hz), 144.9, 142.9 - 142.5 (m), 139.01 (dd,
J=9.6,8.7 Hz), 138.12 (d, J = 8.2 Hz), 137.2, 135.3, 133.1, 104.2, 104.1, 97.0, 92.8, 50.5, 25.9, 23.1. Due to
the poor solubility of compound 13 and the complexity of 3C NMR spectrum, it is not possible to assign all
signals. F NMR (470 MHz, CF;COOD) 6 -146.6 (dd, J = 18.5, 11.3 Hz), -161.0 (d, J = 18.3 Hz), -162.5 (br d, J =
8.2 Hz). HRMS (ESI) calc. for C1gsH13NO3F3; 348.0848 [M-H]", found 348.0843.

OH F

Hed

(CeH13)2N 0 9
F

14

Rhodol 14: A mixture of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and 5-N,N-n-
dihexylamino-benzene-1,3-diol® (1 mmol, 293 mg) in xylene (30 ml) was stirred under argon at 160 °C
overnight. The resulting precipitate was filtered and recrystallized from CH,Cl,/MeOH to give the pure
product (392 mg, 87 %) as dark red crystals. M.p. 301 - 303 °C.

H NMR (500 MHz, DMSO-dg) & 11.32 (s, 1H), 8.32 (s, 1H), 6.46 — 6.43 (m, 1H), 6.21 (d, J = 1.9 Hz, 1H), 3.43 (t,
J=7.8 Hz, 4H), 1.63 — 1.51 (m, 4H), 1.31 (br s, 12H), 0.88 (t, J = 6.9 Hz, 6H). *C NMR (126 MHz, DMSO-ds) &
163.3 (td, /=17.2, 4.9 Hz), 157.8, 155.2, 155.1, 145.5, 142.6 (dd, J = 230.3; 11.0 Hz), 139.6, 139.2, 139.0 (t, J
= 8.8 Hz), 137.4, 131.6 (t, J = 14.4 Hz), 103.2, 100.1 (d, J = 20.1 Hz), 94.2, 90.2, 50.7, 30.9, 26.9, 25.8, 22.0,
13.8. Due to the poor solubility of compound 13 and the complexity of *C NMR spectrum, it is not possible
to assign all signals. °F NMR (470 MHz, DMSO-dg) & -145.9 (dd, J = 19.8, 4.8 Hz), -154.3 (dd, J = 19.4, 14.6 Hz),
-161.0 (dd, /= 13.9, 3.2 Hz). HRMS (ESI) calc. for C3sH31NOsF3; 450.2256 [M + H]*, found 450.2257.

OH

@fi
(C4H9)2N (@) O

7

7-(Dibutylamino)-4-hydroxy-2H-chromen-2-one 7: A mixture of N,N-di-n-butyl-3-aminophenol (5, 4.5 mmol,
1g,1.02 ml) and bis-(2,4,6-trichlorophenyl)-malonate (5.4 mmol, 2.5 g) in toluene (50 ml) was refluxed under
4



argon overnight. The reaction mixture was cooled to room temperature and the resulting precipitate was
filtered, washed with toluene and pentane to give pure product (0.93 g, 72%) as pale yellow crystals. M.p.
206 — 208 °C.

'H NMR (500 MHz, DMSO-d¢) 6 11.89 (br's, 1H), 7.54 (d, J = 9.0 Hz, 1H), 6.64 (dd, J = 9.0, 2.4 Hz, 1H), 6.41 (d,
J=2.4Hz, 1H), 5.26 (s, 1H), 3.33 (t, /= 7.7 Hz, 4H), 1.56 — 1.47 (m, 4H), 1.33 (h, J= 7.4 Hz, 4H), 0.92 (t,J=7.3
Hz, 6H). 3C NMR (126 MHz, DMSO-de) 6 166.9, 163.2, 156.5, 151.7, 124.5, 108.7, 103.9, 96.9, 86.5, 50.4, 29.3,
20.0, 14.3. HRMS (ESI) calc. for C17H24NO3 290.1756 [M + H]*, found 290.1757.

(C4Hg)oN

Rhodol 9: A mixture of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and coumarin 7 (1
mmol, 289 mg) in xylene (30 ml) was stirred under argon at 160 °C overnight. The reaction mixture was cooled
to room temperature and the resulting precipitate was filtered to give the pure product (361 mg, 81 %) as
dark green crystals. M.p. 279 — 280 °C.

'H NMR (600 MHz, CDCls) 6 8.38 (d, J = 1.5 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 6.73 (dd, J = 9.3, 2.4 Hz, 1H), 6.49
(d, J=2.4 Hz, 1H), 3.45 - 3.40 (m, 4H), 1.69 — 1.61 (m, 4H), 1.42 (h, J = 7.4 Hz, 4H), 1.00 (t, J = 7.4 Hz, 6H). 3C
NMR (151 MHz, CDCls) 6 160.3, 158.9, 157.1, 154.7, 142.4 (dd, J = 260.7, 8.2 Hz), 139.2 (dd, J = 250.8, 6.4 Hz),
137.9, 133.4 - 133.3 (m), 125.7, 111.0, 108.4, 108.2, 100.1, 100.0, 97.7, 51.5, 29.3, 20.2, 13.9. Due to the
poor solubility of compound 13 and the complexity of 3C NMR spectrum, it is not possible to assign all signals.
1F NMR (470 MHz, CDCl5) -146.96 (dd, J = 16.0, 4.2 Hz), -150.29 (dd, J = 15.9, 12.9 Hz), -159.60 — -160.22 (m).
HRMS (ESI) calc. for C2aH23NO4F3 446.1579 [M + H]*, found 446.1582.

OH

9-Hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-pyrano(2,3-f]pyrido[3,2,1-ij]quinolin-11-one
(8): A mixture of 1,1,7,7-tetramethyl-8-hydroxyjulolidine (6, 4 mmol, 0.98 g) and bis-(2,4,6-trichlorophenyl)-
malonate (4.8 mmol, 2.22 g) in toluene (50 ml) was refluxed under argon overnight. The reaction mixture
was cooled to room temperature and the resulting precipitate was filtered, washed with hexane to give pure
product (0.48 g, 38 %) as pale yellow crystals. M.p. 178 — 180 °C.

H NMR (500 MHz, DMSO-dg) 6 11.76 (bs, 1H), 7.41 (s, 1H), 5.25 (s, 1H), 3.25 (t, J = 6.0 Hz, 2H), 3.21-3.15
(m, 2H), 1.76 — 1.71 (m, 2H), 1.68 (t, J = 6.0 Hz, 2H), 1.43 (s, 6H), 1.23 (s, 6H). 3C NMR (126 MHz, DMSO-ds)
8 167.1,162.9, 152.7, 146.0, 127.4, 118.4, 114.4, 104.2, 86.1, 46.9, 46.4, 35.8, 32.3 (2), 31.2, 29.3. HRMS
(ESI) calc. for C19H24NO3 314.1756 [M + H], found 314.1762.



Rhodol (10): A mixture of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and coumarin 8 (1
mmol, 313 mg) in xylene (30 ml) was stirred under argon at 160 °C overnight. The reaction mixture was cooled
to room temperature, concentrated under vacuum and purified using column chromatography (silica,
CH,Cl,/Et,0, 9:1) to give the pure product (240 mg, 51 %) as dark purple crystals. M.p. 304 — 306 °C.

1H NMR (500 MHz, CDCls) 6 8.37 (d, J = 1.1 Hz, 1H), 7.69 (s, 1H), 3.49 (t, J = 6.2 Hz, 2H), 3.39 (t, J = 5.8 Hz, 2H),
1.87 = 1.83 (m, 2H), 1.79 (t, J = 6.2 Hz, 2H), 1.55 (s, 6H), 1.36 (s, 6H). *C NMR (126 MHz, CDCls) 6 167.0 (td, J
= 17.6; 5.8 Hz), 160.2, 158.5, 153.3, 149.9, 144.8 (dd, J = 264.4; 12.5 Hz), 142.2 (dt, J = 260.0; 7.1 Hz), 139.2
(dd, J = 249.2, 6.5 Hz), 138.1 — 137.9 (m), 134.2 — 133.1 (m), 130.4, 118.9, 115.4, 107.3, 107.1, 100.1, 99.5,
48.0,47.3,38.5,34.7, 32.3, 29.6, 28.5. 1°F NMR (470 MHz, CDCls) & -147.2 (dd, J = 16.5, 4.4 Hz), -151.5 (dd, J
= 16.4, 13.2 Hz), -160.5 (dd, J = 13.3, 2.9 Hz). HRMS (ESI) calc. for C6H23NO4Fs 470.1579 [M + H]*, found
470.1585.

OHC F F

di-n-hexylamine F O % E
F
HO OH NayS,05 H,0, (CgHy3z)2N OH xylene, 160°C

150°C S1. 6% N(CgH13)2

15, 20%

Scheme S1. Synthesis of -expanded rhodol 15.

(CeH13)2N OH

S1

7-(dihexylamino)naphthalen-2-ol (S1): The mixture of 2,7-dihydroxynaphthalene (3.2 g, 20 mmol), N,N-di-n-
hexylamine (40 mmol, 7.4 g, 9.3 ml) and sodium metabisulfite (42 mmol, 8 g) in 120 ml of water was placed
in pressure tube and stirred upon heating at 150 °C for 2 hours. The reaction mixture was cooled to room
temperature, diluted with 300 ml of water and extracted with DCM (3 x 150 ml). The organic layer was dried
over Na,SO4 and concentrated under vacuum. The residue was purified using column chromatography (silica,
hexane /EtOAc, 4:1) to give pure product (380 mg, 6 %) as colourless oil.

'H NMR (500 MHz, CDCls) 6 7.58 (d, J = 9.0 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 6.95 — 6.87 (m, 2H), 6.76 (dd, J =
8.7,2.5Hz, 1H), 6.66 (d, J = 2.6 Hz, 1H), 3.34 (t, /= 7.7 Hz, 4H), 1.66 — 1.58 (m, 6H), 1.40 - 1.31 (m, 12H), 0.91
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(t, J= 7.1 Hz, 6H). 3°C NMR (126 MHz, CDCls) § 153.9, 146.7, 136.6, 129.3, 128.7, 121.6, 113.6, 113.0, 107.6,
103.8,51.2,31.8,27.3, 26.9, 22.7, 14.1. HRMS (ESI) calc. for C2;H3sNO 328.2640 [M + H]*, found 328.2642

N(CgH13)2

15

Rhodol (15): A mixture of 2,3,5,6-tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and naphthalene
S1 (1 mmol, 327 mg) in xylene (30 ml) was stirred under argon at 160 °C for 7 h. The reaction mixture was
cooled to room temperature, concentrated under vacuum and purified via column chromatography (silica,
CH,ClL/Et20, 9:1) to give pure product (97 mg, 20 %) as dark blue crystals. M.p. 152 — 153 °C.

H NMR (500 MHz, CD,Cl,) & 8.63 (s, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 9.1 Hz, 1H), 7.18 (d, J = 8.8 Hz,
1H), 7.15 (br s, 1H), 7.08 (dd, J = 9.1, 1.9 Hz, 1H), 3.47 (t, J = 7.9 Hz, 4H), 1.75 — 1.68 (m, 4H), 1.47 — 1.35 (m,
12H), 0.94 (t, J = 7.1 Hz, 6H). *C NMR (126 MHz, CD,Cl,) & 166.6 (m), 154.1, 149.1, 143.9 (dd, J = 262.4, 12.7
Hz), 140.9 — 140.7 (m), 138.1 (dd, J = 207.7, 7.3 Hz), 137.1, 131.7, 130.7, 122.1, 115.1, 112.0, 110.2, 109.8,
109.6, 98.5, 96.6, 51.1, 31.6, 27.1, 26.7, 22.7, 13.7. °F NMR (470 MHz, CD,Cl,) & -148.65 (dd, J = 15.9, 5.1 Hz),
-149.94 (dd, J = 15.8, 11.9 Hz), -163.26 (dd, J = 12.2, 4.9 Hz). HRMS (ESI) calc. for CasH33NO,F; 484.2463 [M +
HJ*, found 484.2462.

xylene, 160°C,
72 h

di-i-propylamine ",
HO OH  Na,S,05 H,0, )\N OH K,CO; )\N o)
160°C H CH4CN H
S2,61%
S3, 56% |
)\ OO Pd/C, 10% )\ OO in the neat
N OH =~ N OH ~
N H,, MeOH H 250°C, Ar
6 min
- |
OHC F S5, 90% S4, X%
F T OH .
F
: OO
B N 0 0
F

16, 10%

Scheme S2. Synthesis of linear t-expanded rhodol (16).
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7-(Isopropylamino)naphthalen-2-ol (S2): The mixture of 2,7-dihydroxynaphthalene (10 g, 62.5 mmol), N,N-
diisopropylamine (125 mmol, 12.63 g, 17.65 ml) and sodium metabisulfite (131.25 mmol, 24.94 g) in H,0
(100 ml) was stirred in the pressure tube at 120 °C for 24 hours. The reaction mixture was cooled to room
temperature and extracted with EtOAc (3 x 300 ml). The organic phases were collected, dried over Na;SO4
and concentrated under vacuum. The residue was purified using column chromatography (silica,
hexane/EtOAc, 3:1) to give pure product (7.61 mg, 61 %) as off-white crystals. M.p. 139 — 140 °C.

'H NMR (500 MHz, CDCl3) 6 7.54 (t, J = 8.2 Hz, 2H), 6.89 (d, J = 2.6 Hz, 1H), 6.78 (dd, J = 8.7, 2.5 Hz, 1H), 6.69
(dd, J = 8.8, 2.3 Hz, 1H), 6.63 (d, J = 2.3 Hz, 1H), 3.74 (hept, J = 6.3 Hz, 1H), 1.27 (d, J = 6.3 Hz, 6H). 3*C NMR
(126 MHz, CDCls) 6 153.9, 145.7, 136.6, 129.5, 128.9, 122.8, 116.0, 113.3, 107.8, 103.8, 44.3, 22.9. HRMS (ESI)
calc. for Ci3H1sNO 202.1232 [M + H]*, found 202.1234.

LT

S3

7-(Allyloxy)-N-isopropylnaphthalen-2-amine (S3): To the mixture of 7-(N-isopropylamino)naftalen-2-ol (7.5 g,
0.037 mol) and KyCOs (12.7 g,0.092 mol) in acetone (350 ml) allyl bromide (4 ml, 0.046 mol) was added. The
reaction mixture was stirred at room temperature overnight. The solid was filtered off, the solvent was
evaporated and the residue was purified via column chromatography (silica, heksan/EtOAc, 100:1). The
product was obtained in 56 % yield as yellow oil. M.p. 46 — 47 °C.

H NMR (500 MHz, CDCl3) & 7.56 — 7.49 (m, 2H), 6.93 (d, J = 2.5 Hz, 1H), 6.87 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 —
6.66 (m, 2H), 6.17 - 6.06 (m, 1H), 5.45 (dq, J = 17.2; 1.6, 1H), 5.30 (dq, J = 10.4; 1.4, 1H), 4.62 (dt, J= 5.3, 1.6
Hz, 2H), 3.74 (hept, J = 6.3 Hz, 1H), 3.60 (s, 1H), 1.26 (d, J = 6.2 Hz, 6H). *C NMR (126 MHz, CDCl3) 6 157.2,
145.7, 136.5, 133.5, 129.1, 128.7, 122.7, 117.5, 115.8, 114.4, 105.7, 104.3, 68.7, 44.2, 22.9. HRMS (El) calc.
for C16H1sNO 241.1467 [M*], found 241.1464.

A AL,
H

S4

1-Allyl-7-(isopropylamino)naphthalen-2-ol (S4): 7-allyloksy-2-(N-isopropylamino)naftalen (5 g, 0.02 mol) was
placed in a round-bottom flask under argon atmosphere and heated with heatgun (approx. 250 °C) till the
moment when the color of the oil changes to light brown (= 4 - 6 min). The reaction mixture was purified via
column chromatography (silica, hexane/EtOAc, 1:1). The product was obtained in 50 % yield as beige solid.
M.p. 105 - 107 °C.

H NMR (500 MHz, CDCls) & 7.56 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 6.84 (d, J = 2.3 Hz, 1H), 6.78 (d, J
= 8.7 Hz, 1H), 6.72 (dd, J = 8.7, 2.3 Hz, 1H), 6.13 — 6.01 (m, 1H), 5.15 — 5-09 (m, 2H), 4.38 (br s, 1H), 3.82 —
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3.72 (m, 3H), 1.31 -1.26 (m, 7H). 13C NMR (126 MHz, CDCls) & 151.6, 145.7, 136.1, 135.1, 129.7, 127.9, 123.1,
115.5, 115.2, 114.7, 113.5, 101.2, 44.3, 29.5, 22.8. HRMS (El) calc. for CigHisNO 241.1467 [M*], found

241.1460.
A AL,
H

S5

7-(Isopropylamino)-1-propylnaphthalen-2-ol (S5): To the solution of 1-allyl-7-N-isopropylaminonaftalene-2-
ol (2.4 g, 0.01 mol) in methanol (100 ml) was added 10 % Pd/C (85 mg). The flask was filled with hydrogen
and the reaction mixture was stirred at rt for 3h. The resulting solid was filtered off and washed with 30 ml
of methanol. The filtrate was concentrated under vacuum to give the product in 90 % yield as yellow solid.
M.p. 112 - 113 °C.

'H NMR (500 MHz, CDCls) & 7.53 (d, J = 8.7 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 6.83 (d, J = 2.3 Hz, 1H), 6.75 (d, J
= 8.6 Hz, 1H), 6.70 (dd, J = 8.7, 2.3 Hz, 1H), 4.73 (br s, 1H), 3.77 (hept, J = 6.3 Hz, 1H), 3.65 (br s, 1H), 2.95 —
2.88(m, 2H), 1.70 (h, J = 7.4 Hz, 2H), 1.28 (d, J = 6.3 Hz, 6H), 1.05 (t, J = 7.4 Hz, 3H). 3C NMR (126 MHz, CDCls)
6 150.9, 145.6, 135.0, 129.7,127.3,123.2,117.8, 115.0, 113.3, 101.3, 44.3, 27.1, 22.9, 22.5, 14.4. HRMS (ESI)
calc. for C16H2,NO 244.1701 [M + H]*, found 244.1702.

F
A SOOI
N 0 0
H F

16

1,2,4-Trifluoro-8-(isopropylamino)-6-propyl-3H-benzo[b]xanthen-3-one (16): A mixture of 2,3,5,6-
tetrafluoro-4-hydroxybenzaldehyde (2, 1 mmol, 194 mg) and naphthalene S5 (1 mmol, 243 mg) in xylene (30
ml) was stirred under argon at 160 °C for 72 h. The reaction mixture was cooled to room temperature,
concentrated under vacuum and purified via column chromatography (silica, CH,Cl,/MeOH, 95:5). Resulting
solid was washed with boiling MeOH to give pure product (40 mg, 10 %) as dark purple crystals. M.p. 325 —
326 °C.

In spite of all our attempts to dry compound 16, we did not manage to get rid of some solvents and their
peaks are present on *H NMR spectrum.

H NMR (500 MHz, DMF-d;) 6 8.60 (s, 1H), 8.24 (s, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.19 (dd, J = 9.0, 2.1 Hz, 1H),
7.02 (d,J=2.2 Hz, 1H), 6.63 (d, /= 7.4 Hz, 1H), 3.98 (h, /= 6.5 Hz, 1H), 3.25 (t, /= 7.5 Hz, 2H), 1.83 (h, J=7.4
Hz, 2H), 1.35 (d, J = 6.3 Hz, 6H), 1.09 (t, J = 7.4 Hz, 3H). Due to the poor solubility of compound 13 and the
complexity of 3C NMR spectrum, it is not possible to assign all signals. *3C NMR (126 MHz, DMF-d;) 6 150.5,
146.4, 139.0, 137.5, 131.9, 130.9, 124.5, 119.9, 118.8, 114.7, 108.8, 99.4, 43.7, 34.2, 34.0, 29.1, 26.3, 22.1,
21.9, 13.5. F NMR (470 MHz, DMF-d;) 6 -150.2 (dd, J = 15.3, 4.5 Hz), -157.3 (dd, J = 15.4, 10.6 Hz), -165.8
(ddd, J=10.5, 4.5, 1.8 Hz). HRMS (ESI) calc. for C33H,1NO>F3 400.1524 [M + H]*, found 400.1523.
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Athorough analysis of one-dimensional (1D) NMR and two-dimensional (2D) NMR spectra provides sufficient
structural information about compound 16. *H NMR spectrum shows NH-iPr group as doublet with chemical
shift 6.63 ppm (NH) together with doublet (1.35 ppm) and septet (3.98 ppm) of isopropyl group. Propyl group
appears as two triplets (1.09 ppm and 3.25 ppm) and sextet (1.82 ppm). Moreover, 5 peaks were detected in

aromatic area in *H NMR spectra. The correlations in *H*C HSQC, and *C*3C HMBC spectra allow to assign

most of the signals belonging to the molecule with the exception of quaternary carbons 1, 2, 3 and 4.

Correlations in 3C13C HMBC fully support the linear structure of rhodol 16, that was further confirmed by

single crystal X-ray analysis.

1.1.2 'H and ¥*C NMR spectra for synthesized compounds
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1.1.3 X-Ray crystallography analysis of compound 16

The X-ray measurement of 16 was performed at 130.0(5) K on a Bruker D8 Venture Photonll diffractometer
equipped with a TRIUMPH monochromator and a MoKa fine focus sealed tube (A = 0.71073 A). A total of
2372 frames were collected with Bruker APEX3 program.® The frames were integrated with the Bruker SAINT
software package® using a narrow-frame algorithm. The integration of the data using a triclinic unit cell
yielded a total of 30681 reflections to a maximum 6 angle of 27.00° (0.78 A resolution), of which 4078 were
independent (average redundancy 7.524, completeness = 99.9%, Rint = 3.11%, Rsig = 1.74%) and 3236 (79.35%)
were greater than 20(F2). The final cell constants of a = 8.2480(4) A, b = 11.2545(5) A, c = 11.6084(6) A, a =
66.730(2)°, B = 71.581(2)°, y = 88.148(2)°, V = 933.90(8) A3, are based upon the refinement of the XYZ-
centroids of 9896 reflections above 20 o(l) with 5.458° < 20 < 54.32°. Data were corrected for absorption
effects using the Multi-Scan method (SADABS)®. The ratio of minimum to maximum apparent transmission
was 0.971. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.978
and 0.994.

The structure was solved and refined using SHELXTL Software Package’® using the space group P"1"", with Z
= 2 for the formula unit, C,3H20FsNO,. The final anisotropic full-matrix least-squares refinement on F2 with
269 variables converged at R1 = 3.98%, for the observed data and wR2 = 12.15% for all data. The goodness-
of-fit was 1.035. The largest peak in the final difference electron density synthesis was 0.327 e-/A3 and the
largest hole was -0.208 e-/A3 with an RMS deviation of 0.046 e-/A3. On the basis of the final model, the
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calculated density was 1.420 g/cm3 and F(000), 416 e-. The details concerning the crystal data and structural

parameters of 16 are collected in Table S1.

The structure is fully ordered. All heavy atoms were refined anisotropically. All but one hydrogen atoms were

placed in calculated positions and refined within the riding model, their temperature factors were not refined

and were set to be 1.2 (Car-H atoms) or 1.5 (CHs atoms) times larger than Ueq of the corresponding heavy

atom. The H atom of the amine group engaged in hydrogen bond was refined together with the isotropic

ADP. The atomic scattering factors were taken from the International Tables.” Molecular graphics was

prepared using program Mercury 2020.2.0.1° Thermal ellipsoids parameters are presented at 20% probability

level in Figure S1.

Table S1. Data collection and structure refinement parameters for 16.

Formula Ca3H20F3NO

M,/ g mol? 399.40

T/ K 130.5(5)

A A 0.71073

Crystal size 0.052x0.129x0.206mm

Space group P1

Unit cell dimensions a =8.2480(4) A a = 66.730(2)°
b =11.2545(5) A 6 =71.581(2)°
c=11.6084(6) A y = 88.148(2)°

v/ AR, z 933.90(8), 2

D,/ g cm? 1.420

u/ mm? 0.111

F(000) 416

amin; amax 2.620, 27.00°

Index ranges

-10<h<10,-14<k<14,-14</<14

Reflections collected/ independent

30681/ 4078 (Rin: = 0.0311)

Completeness 99.9%

Absorption correction Multi-Scan

Tmaxy Trmin 0.994, 0.978
Refinement method Full-matrix LSQ on F?
Data / restraints / parameters 4078 /0/ 269

GOF on F? 1.035

Final R indices

3236 data; 1>20(/)
R1=0.0398, wR2 =0.1112
all data

R1 =0.0530, wR2 = 0.1215

Apmax; Apmin

0.327 eA3,-0.208 eA?
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Figure S1. Thermal ellipsoid plot at 50% probability level together with numbering scheme of heavy
atoms in the 16 structure, hydrogen atoms omitted for clarity.

A specimen of Cy3H20FsNO,, approximate dimensions 0.052 mm x 0.129 mm x 0.206 mm, was used for the X-
ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 VENTURE Bruker D8
VENTURE system equipped with a fine focus sealed tube (MoKa, A = 0.71073 A) and a TRIUMPH
monochromator.

Table S2. Data collection details for 16.

| Axis ||dx/mm||29/° w/° | &/° | x/° |Width/° Frames”Time/sH Wavelength/A ||Vo|tage/kV|| Current/mA || Temperature/K|
[Phi ][40.038 |0.00[360.00 |[360.00 |[54.74 ]jo.50  |[720  ][10.00 |[0.71076 |[s0 |[30.0 |[130 |
|omega |[40.037 |[3.00]357.00 |0.00 ||-54.74 |50  |[236  ||60.00 |0.71076 ||s0 |[30.0 ||l230 |
|omega |[40.037 |[3.00][357.00 |[90.00 ||-54.74 [[0.50  ][236  ||60.00 ][0.71076 ||s0 |[30.0 ||[230 |
|omega |[40.037 |[3.00][357.00 |[180.00 ||-54.74 [[0.50  |[236  ||60.00 [[0.71076 ||s0 |[30.0 |[230 |
|omega |[40.037 |[3.00][357.00 |[270.00 ||-54.74 [[0.50  |[236  ||60.00 |0.71076 ||s0 |[30.0 ||l230 |
|omega |[40.037 |[3.00][251.00 |[360.00 ||54.74 |[o.50  ][236  ||60.00 ][0.71076 ||s0 |[30.0 ||[230 |
|omega |[40.037 |[3.00][251.00 [[120.00 ||54.74 |[o.50  |[236  ||60.00 [[0.71076 ||s0 |[30.0 |[230 |
|omega |[40.037 |[3.00[251.00 |[240.00 ||54.74 |j0.50  |[236  ||60.00 |0.71076 ||s0 |[30.0 ||l230 |

A total of 2372 frames were collected. The total exposure time was 29.53 hours. The frames were integrated
with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using
a triclinic unit cell yielded a total of 30681 reflections to a maximum 6 angle of 27.00° (0.78 A resolution), of
which 4078 were independent (average redundancy 7.524, completeness = 99.9%, Rint = 3.11%, Rsig = 1.74%)
and 3236 (79.35%) were greater than 20(F?). The final cell constants
of a=8.2480(4) A, b = 11.2545(5) A, c = 11.6084(6) A, a = 66.730(2)°, B = 71.581(2)°, y = 88.148(2)°, volume
= 933.90(8) A3, are based upon the refinement of the XYZ-centroids of 9896 reflections above 20 ofl)
with 5.458° < 20 < 54.32°. Data were corrected for absorption effects using the Multi-Scan method (SADABS).
The ratio of minimum to maximum apparent transmission was 0.971. The calculated minimum and maximum
transmission coefficients (based on crystal size) are 0.9780 and 0.9940.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -
1, with Z = 2 for the formula unit, C;3H20F3NO,. The final anisotropic full-matrix least-squares refinement on
F2 with 269 variables converged at R1 = 3.98%, for the observed data and wR2 = 12.15% for all data. The
goodness-of-fit was 1.035. The largest peak in the final difference electron density synthesis was 0.327 e
/A3 and the largest hole was -0.208 e /A3 with an RMS deviation of 0.046 e'/A3. On the basis of the final model,
the calculated density was 1.420 g/cm? and F(000), 416 e
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Table S3. Sample and crystal data for 16.

|Identification code “KVy_702

|Chemica| formula “C23H20F3N02

‘Formula weight H399.40 g/mol
‘Temperature H130(0) K

Wavelength l0.71073 A

‘Crystal size H0.0SZ x0.129 x 0.206 mm
‘Crystal system Htriclinic

’Space group HP -1

‘Unit cell dimensions Ha =8.2480(4) A Ha = 66.730(2)°

| lo = 11.2545(5) A B =71581(2)°

| e = 11.6084(6) A v = 88.148(2)°

Volume |933.90(8) A® I
: B

‘Density (calculated) H1.420 g/cm3

’Absorption coefficient Ho.lll mm’?

IF(000) 416

Table S4. Data collection and structure refinement for 16.

IDiffractometer |Bruker D8 VENTURE Bruker D8 VENTURE

fine focus sealed tube (MoKa, A =0.71073

Radiation source

A)

‘Theta range for data collection

[2.62 to 27.00°

‘Index ranges

|-10<=h<=10, -14<=k<=14, -14<=I<=14

‘Reflections collected

30681

’Independent reflections

14078 [R(int) = 0.0311]

Coverage of independent
reflections

99.9%

|Absorption correction

HMuIti-Scan

IMax. and min. transmission

10.9940 and 0.9780

‘Structure solution technique

Hdirect methods

|Structure solution program

|SHELXS-2013/1 (Sheldrick, 2015)

‘Refinement method

HFuII-matrix least-squares on F?

’Refinement program

|SHELXL-2018/3 (Sheldrick, 2015)

|Function minimized

w(Fo? - Fe
£ w(Fs? - F2)

‘Data / restraints / parameters H4078 /0/269

|Goodness-of-fit on F? “1.035

Final R indices 3236 data; R1=0.0398, wR2 =
1>20(l) 0.1112
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R1=0.0530, wR2 =
0.1215

w=1/[0?(F,?)+(0.0628P)?*+0.3780P]
where P=(F,*+2F?)/3

‘Largest diff. peak and hole HO.327 and -0.208 eA ‘
‘R.M.S. deviation from mean H0.046 eA3 ‘

all data

Weighting scheme

Table S5. Atomic coordinates and equivalent isotropic atomic displacement parameters (A2) for 16.
U(eq) is defined as one third of the trace of the orthogonalized U; tensor.

| wa | ww || ae | Ulea |
F1 ]l0.59198(11)0.87151(8) |/0.74174(8) [0.0271(2)
02 [0.83840(14)[0.07770(10)[0.57891(11)[[0.0297(3)|
F3  ]/0.94706(12)]0.15823(8) ]/0.31044(9) [0.0312(2)
F4 [0.81335(11)[0.02886(9) [0.20159(8) [0.0286(2)|
Ic1  |l0.64889(18)]0.90732(13)][0.60874(13)[[0.0205(3)
Ic2 ]0.77691(18)]0.01719(14)][0.53072(14)[[0.0221(3)
3 [0.82939(18)[0.05456(13)]0.38778(14)[0.0229(3)|
Ic4 ]0.76315(18)]0.99031(13)][0.33468(13)[[0.0209(3)
c4A [0.63781(17)[0.88022(13)]0.41367(13)[/0.0191(3)|
Ics  ]l0.57062(17)]0.80969(13)][0.36381(13)[[0.0196(3)
c5A [0.44882(17)[/0.70005(13)[/0.44987(13)[[0.0185(3)|
Ic6  [0.38022(17)[0.62316(13)]0.40407(13)[0.0190(3)|
|c6A |(0.26282(16)]0.51527(13)][0.49094(13)[[0.0176(3)

)

)

)

)

)

)

)

€7 [0.19410(17)[/0.43598(13)[0.44356(13)([0.0195(3)|
Ic8  [0.07893(17)[0.33121(13)]0.52662(13)[/0.0199(3)|
Ico [0.02435(17)[j0.29446(13)[0.66799(13)[[0.0194(3)|
10 |/0.09064(17)]0.36895(13)][0.71781(13)[[0.0190(3)
|c10A//0.20845(16)||0.48068(13)][0.63245(13)[[0.0180(3)
Ic11 [0.27552(17)[j0.56038(13)][0.68084(13)[[0.0186(3)|
c11A//0.39392(17)][0.66469(13)][0.58931(13)[[0.0182(3)
012 [0.46228(12)[0.73813(9) [0.63823(9) [0.0197(2)|
|C12A]|0.58274(17)|[0.84114(13)][0.55527(13)[[0.0180(3)|
IN13 |/0.91090(16)]0.18678(12)][0.74481(12)[[0.0235(3)
Ic14 [0.83755(19)[0.13330(14)[/0.88939(14)([0.0241(3)|
c15 |/0.7632(2) [0.99346(15)][0.93727(15)[0.0319(4)

)

)

)

)

Ic16 [0.7019(2) [0.21457(16)]0.93665(15)[0.0320(4)|
c17 ]|0.22345(18)[[0.53007(13)][0.82725(13)[[0.0208(3)|
18 ]0.3317(2) [0.43334(15)][0.89773(14)[0.0273(3)
Ic19 [0.2768(2) |0.40380(19)[0.04543(16

0.0396(4)




Table S6. Bond lengths (A) for 16.

F1-c1  |[1.3524(15) Jo2-c2  |1.2397(17) |
F3-c3  [[1.3432(16) |[F4-c4 11.3507(15) |
c1-c12A  [1.3577(19) |c1-C2 1.4351(19) |
c2c3 |1457(2) |c3-ca [1.339(2) |
c4-c4A  |1.4251(19) |caA-c5  [1.366(2) |
(C4A-C12A [1.4393(18) |c5-c5A  [1.4148(19) |
cs-Hs  [o.9s lcsa-ce  |[1.3916(19) |
IC5A-C11A [1.4223(18) |c6-ceA  [1.3858(19) |
ice-H6  |0.95 lceac7  |[1.4275(19) |
Ic6A-C10A [[1.4463(18) |[c7-c8 [1.3482(19) |
c7-H7 o5 lcs-ca |1.4407(18) |
cs-H8  [o.95 lco-N13  [[1.3534(18) |
lco-c10  ][1.3960(19) |lc10-C10A |[1.4118(18) |
Ic10-H10  |0.95 lcloA-c11 |[1.4327(19) |
c11-c11A [[1.3761(19) |lc11-c17  |1.5097(18) |
IC11A-012 [1.3882(16) |012-C12A |1.3588(16) |
IN13-C14  [1.4590(18) |N13-H13N [0.87(2) |
c14-c15  |[1.5222) |lctaci6  [1.527(2) |
c14-H14  [1.0 lc15-H15A [/0.98 |
C15-H15B [0.98 [c15-H15C  |0.98 |
c16-H16A [(0.98 lc16-H16B |/0.98 |
Ic16-H16C |(0.98 lc17-c18  |[1.532(2) |
[c17-H17A [0.99 lc17-H17B ]/0.99 |
c18-c19  [1.524(2) |c18-H18A [0.99 |
Ic18-H18B |(0.99 lc19-H19A |0.98 |
c19-H19B [0.98 lc19-H19C |0.98 |

Table S7. Bond angles (°) for 16.

F1ci-c12A  |119.83(12) [F1-c1-c2 |116.86(12) |
c12a-c1c2 |123.30(12) |02-c2-C1 1123.64(13) |
02-C2-C3 [121.68(13) ||c1-c2-C3 1114.67(12) |
|C4-C3-F3 [120.98(13) ||c4-c3-c2 [122.16(13) |
F3-c3-C2 |116.86(12) [c3-Cc4-F4 120.47(13) |
|C3-C4-C4A [122.48(13) |[F4-c4-c4A [117.05(12) |
c5-caA-c4 |124.36(12) |lc5-caA-c12A  [[118.91(12) |
c4-C4A-C12A  |116.71(12) |C4A-C5-C5SA  [[120.59(12) |
|C4A-C5-HS 119.7 [c5A-C5-H5 [119.7 |
|C6-C5A-C5 [122.69(12) [c6-C5A-C11A  [[117.79(12) |
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c5-c5A-C11A [119.51(12) |lceA-ce-c5A  [[121.39(12) |
C6A-C6-H6 1193 [c5A-c6-He [119.3 |
|C6-C6A-C7 |121.18(12) |c6-C6A-C10A  [120.08(12) |
c7-C6A-C10A  [[118.74(12) |/c8-C7-C6A [121.94(12) |
c8-C7-H7 [119.0 [c6A-C7-H7 [119.0 |
c7-c8-C9 |120.16(12) |c7-c8-H8 [119.9 |
|Co-C8-H8 [119.9 IN13-co-c10  [[124.02(12) |
IN13-c9-C8 |116.58(12) ||c10-co-c8 [119.39(12) |
lco-c10-c10A  |121.39(12) [c9-c10-H1I0 1193 |
IC10A-C10-H10  [[119.3 lci0-cioac11  |122.50(12) |
C10-C10A-C6A  [118.37(12) |c11-c10A-c6A  [[119.14(12) |
IC11A-C11-C10A [117.72(12) |lc11A-c11-c17  [120.45(12) |
cloA-c11-c17  [121.80(12) |lc11-c11A-012  [117.00(12) |
C11-C11A-C5A  |[123.84(12) |012-C11A-C5A  ][119.16(12) |
IC12A-012-C11A |121.00(10) |C1-C12A-012  |[118.56(12) |
c1-c12A-C4A  [120.65(13) |j012-c12A-c4A  [120.79(12) |
IC9-N13-C14  [125.69(12) |C9-N13-HI13N  |[113.7(14) |
C14-N13-H13N  |[120.6(14) |N13-C14-C15  ][108.01(12) |
IN13-c14-c16  |111.84(12) |c15-C14-Cl6  |[111.52(13) |
IN13-C14-H14  [[108.5 lc15-c14-H14 1085 |
C16-C14-H14 1085 [c14-c15-H15A  [[109.5 \
C14-C15-H15B  [[109.5 |H15A-C15-H15B |[109.5 |
C14-C15-H15C  [[109.5 |H15A-C15-H15C |[109.5 |
H15B-C15-H15C [[109.5 [c14-c16-H16A  [109.5 |
C14-C16-H16B  |[109.5 |H16A-C16-H16B |[109.5 |
c14-c16-H16C  |[109.5 |H16A-C16-H16C [[109.5 |
[H16B-C16-H16C |[109.5 lc11-c17-c18  |113.20(11) |
c11-c17-H17A  [108.9 [c18-c17-H17A  |[108.9 |
lc11-c17-H17B  |[108.9 lc18-c17-H17B  |[108.9 |
H17A-C17-H178 |107.8 c19-c18-c17  [[112.38(13) |
C19-C18-H18A  |[109.1 [c17-c18-H18A  [[109.1 |
C19-C18-H18B  [[109.1 [c17-c18-H18B  [[109.1 |
H18A-C18-H18B |107.9 [c18-C19-H19A  [|209.5 |
(C18-C19-H19B  |[109.5 |H19A-C19-H19B |[109.5 |
c18-C19-H19C  [[109.5 |H19A-C19-H19C |[109.5 \

|

H19B-C19-H19C |[109.5 |

|
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Table S8. Torsion angles (°) for 16.

[F1-C1-C2-02 [1.4(2) [c12A-c1-c2-02 -179.67(14) |
F1-C1-c2-C3 |-177.94(11) |c12A-c1-c2-C3 1.0(2) |
02-C2-C3-C4 |-179.64(14) |c1-c2-c3-c4 :0.3(2) |
02-C2-C3-F3 l-0.3(2) lc1-c2-c3-F3 [178.98(12) |
[F3-C3-C4-F4 l-0.1(2) lc2-c3-c4-F4 179.14(12) |
[F3-C3-C4-C4A |-179.83(12) ||c2-c3-c4-can -0.6(2) |
|C3-C4-C4A-C5 |-178.03(14) |F4-c4-caA-Cs 12.3(2) |
|C3-C4-C4A-C12A |0.8(2) |[F4-ca-caa-c12A |-178.94(11) |
|C4-C4A-C5-C5A [178.80(12) |lc12A-c4A-c5-c5A  l0.0(2) |
|C4A-C5-C5A-C6 |-178.24(12) |lcaA-cs-csa-c1iA |1.1(2) |
|C5-C5A-C6-C6A [179.11(12) |c11A-csA-ce-ceA  |-0.3(2) |
C5A-C6-C6A-C7 |-179.38(12) |lcsA-ce-c6A-C10A  l0.3(2) |
|C6-C6A-C7-C8 -179.55(13) |c10A-c6A-C7-C8 0.8(2) |
C6A-C7-C8-C9 -1.4(2) lc7-c8-co-N13 -178.82(12) |
|c7-C8-C9-C10 l0.6(2) IN13-c9-cr0-c10A  |-179.82(13) |
|C8-C9-C10-C10A 0.9(2) lco-cro-croaci1 [178.61(12) |
|C9-C10-C10A-C6A -1.4(2) ce-cea-cloA-c10  |l-179.06(12) |
|C7-C6A-C10A-C10 lo.58(18)  |ce-ceA-cloacii  ]0.93(19) |
|C7-C6A-C10A-C11 |-179.42(11) |lc10-C10A-C11-C11A [177.94(12) |
[C6A-C10A-C11-C11A  |-2.06(19)  |lc10-C10A-C11-C17  |-0.3(2) |
(C6A-C10A-C11-C17  [179.72(12) |lc10A-c11-c11A-012 |-177.72(11) |
c17-c11-C11A-012  [0.52(19)  [c10A-c11-Cl1A-C5A  [2.1(2) |
c17-c11-C11A-Cc5A  |-179.62(12) |[ce-csAciiaci1 |-1.0(2) |
|C5-C5A-C11A-C11 [179.62(12) |lc6-c5A-c11A-012  [l178.88(11) |
|C5-C5A-C11A-012 |-0.52(19)  |lc11-c11A-012-C12A |178.56(11) |
(C5A-C11A-012-C12A  [-1.31(18)  |F1-C1-C12A-012 -1.3(2) |
C2-C1-C12A-012 [179.81(12)  |[F1-c1-c12A-C4A [178.09(11) |
C2-C1-C12A-C4A l-0.8(2) lc11a-012-c12Aa-c1 [-178.13(12) |
IC11A-012-C12A-C4A  [2.52(18)  |lc5-c4A-C12A-Cl |l178.80(13) |
|c4-C4A-C12A-C1 l0.1(2) lcs-cancrea-012 |1.87(19) |
|C4-C4A-C12A-012 [179.26(11)  |/c10-co-N13-C14 11.4(2) |
|C8-C9-N13-C14 -179.25(13) ||co-N13-C14-C15 |-162.65(14) |
|C9-N13-C14-C16 [74.27(18)  |c11Ac11-c17-c18  |}92.27(15) |
IC10A-C11-C17-C18 |8s.90(16)  |c11-c17-c18-c19  |}179.87(13) |
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Table S9. Anisotropic atomic displacement parameters (A2) for 16.

The anisotropic atomic displacement factor exponent takes the form: -2n?[h?a™? Uj1 +...+2hka" b U1y ]

| L Us | Un || Us || Us || Us | Un |

F1  [0.0348(5) [0.0287(5) |0.0176(4)|-0.0108(3)|-0.0059(3)|-0.0040(4)|

02 ]l0.0341(6) [0.0265(5) ]0.0323(6)[-0.0152(5)[-0.0112(5)[-0.0039(4)|

F3 ]0.0319(5) ||0.0255(5) |/0.0290(5)[-0.0068(4)[-0.0049(4)[-0.0111(4)|

F4 ]l0.0311(5) [0.0307(5) |/0.0166(4)[-0.0048(3)[-0.0034(3)[-0.0077(4)|

Ic1 [0.0231(7) [0.0202(7) |j0.0179(6)|-0.0083(5)|-0.0056(5)|[0.0018(5) |

ic2 [0.0217(7) [j0.0195(7) |j0.0282(7)|-0.0121(6)|-0.0091(6)|[0.0031(5) |

3 ]0.0192(7) [0.0189(7) ]0.0253(7)[-0.0054(6)-0.0047(5)|-0.0017(5)|

Ic4 [0.0210(7) [0.0220(7) |j0.0166(6)|-0.0059(5)|-0.0049(5)|[0.0011(5) |

Ics  [0.0202(7) [j0.0210(7) |j0.0158(6)|-0.0061(5)|-0.0056(5)|[0.0032(5) |

csA [0.0189(6) [0.0187(6) ||0.0175(6)|-0.0068(5)|-0.0063(5)|[0.0032(5) |

ic6 ]|0.0197(6) [0.0211(7) ||0.0156(6)[-0.0071(5)[-0.0057(5)[[0.0034(5) |

—_ e~~~ |||~ || =~

c6A [0.0164(6) [0.0187(6) ||0.0176(6)|-0.0075(5)|-0.0054(5)|[0.0039(5) |

Ic7 |0.0204(6) [0.0222(7) |0.0169(6)|-0.0089(5)|-0.0064(5)|[0.0041(5) |

Ic8 ||0.0206(6) [0.0222(7) ||0.0198(6)[-0.0110(5)|-0.0075(5)]|0.0030(5) |

)
)
)
)
)
)
c4A ||0.0180(6) [[0.0188(6) |0.0185(6)[-0.0059(5)|-0.0057(5)[[0.0031(5) |
)
)
)
)
)
)
)

lco  [o.0182(6) [0.0195(6) ||0.0187(6)|-0.0067(5)|-0.0053(5)][0.0017(5) |

10 ]|0.0199(6) [[0.0206(7) ||0.0153(6)[-0.0070(5)|-0.0046(5)[0.0004(5) |

c10A]j0.0164(6) [0.0188(6) ||0.0188(6)|-0.0078(5)|-0.0057(5)|[0.0028(5) |

11 |l0.0181(6) [0.0198(6) |/0.0171(6)[-0.0074(5)[-0.0052(5)[[0.0032(5) |

C11A/0.0200(6) [[0.0179(6) |0.0194(6)[-0.0091(5)|-0.0078(5)0.0023(5) |

012 ]|0.0224(5) [0.0188(5) ]0.0173(5)[-0.0079(4)[-0.0047(4)[-0.0026(4)|

c12A/0.0179(6) ||0.0166(6) |0.0186(6)[-0.0068(5)|-0.0052(5)[[0.0024(5) |

IN13 [0.0267(6) [0.0241(6) ||0.0189(6)|-0.0087(5)|-0.0058(5)|-0.0054(5)|

14 ]j0.0252(7) [0.0255(7) ]|0.0169(6)[-0.0050(5)[-0.0049(5)|-0.0049(6)|

c15 [0.0342(8) [0.0296(8) ||0.0241(7)|-0.0060(6)|-0.0044(6)|-0.0108(6)|

c18 [0.0294(8) [0.0318(8) |0.0195(7)|-0.0095(6)|-0.0078(6)|[0.0035(6) |

)
)
) (
Ic16 ||0.0306(8) [[0.0367(9) |0.0226(7)[-0.0099(6)|-0.0035(6)[0.0010(7) |
c17 [0.0222(7) [0.0216(7) ||0.0184(6)|-0.0094(5)|-0.0045(5)|-0.0014(5)|
) (
) (

19 [0.0486(10)[/0.0472(10)]/0.0221(8)|-0.0115(7)|-0.0145(7)|[0.0124(8) |
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Table $10. Hydrogen atomic coordinates and isotropic atomic displacement parameters (A2) for 16.
L | wa | b | zc | Uleq) |
H5  Joo.6060  |0.8345 |l0.2705 [0.024 |
H6  |l0.4146  |o.6451 [0.3113 [0.023 |
H7  Jl0.2306  |0.4577 [0.3508 [0.023 |
H8  ]0.0337 |0.2815 [0.4919 0.024 |
H10 Jo.0557 03439 Jo.8111 J0.023 |
H13N [-0.120(3) |0.151(2) [0.700(2) |l0.045(6) |
H14 |-0.0679 |0.1326 0.9263 [0.029 |
H15A [-03252 |-0.0080 [0.8977 |0.048 |
H15B |-0.2881 |-0.0442 [[1.0343 [o.048 |
H1sC |-0.1450 |-0.0574 J0.9107 Jo.048 |
H16A [-0.2500 [0.3059 [0.8959 |0.048 |
|
|
|
|
|
|
|
|
|

H16B |-0.3330 [0.1829 1.0336 [0.048
Hi6C |-0.3983 [0.2071 [0.9109 |o0.048
H17A J0.1012  |0.4939 [o0.8701 |0.025
H17B ]0.2343  |o.6119 ]0.8384 |l0.025
H18A 03210 03513 [0.8868 ||0.033
H18B |0.4540 |0.4695 ]j0.8554 l0.033
H19A |0.2811  |0.4852 ][1.0569 |l0.059
H19B |0.3548  |0.3469 [1.0848 |l0.059
H19C J0.1593  |0.3603 [1.0895 |0.059

Table S11. Hydrogen bond distances (A) and angles (°) for 16.

Donor-
H

N13-H13N-02#1  |0.87(2)[2.002) |]2.8664(16)  [173.(2)]

Acceptor-H||Donor-Acceptor|| Angle

Symmetry transformations used to generate equivalent atoms:
#1  x-1,y-1,z



1.2.Spectroscopic characterization

Linear absorption and emission spectra were collected on freshly prepared solutions, under ambient
conditions. Dilute solutions (optical density less than 0.1) were used to minimize inner filter effects and/or
aggregation. Spectrophotometric grade solvents were used as received.

A Perkin-Elmer Lambda650 double beam spectrophotometer was used for linear absorption measurements,
and an Edinburgh Instruments FLS1000 fluorometer for fluorescence spectroscopy. Fluorescence quantum
yields were estimated using a dilute solution of fluorescein in NaOH 0.1 M as reference standard (QY = 90%,
excitation wavelength: 490 nm). Emission decays were measured with the time-correlated single-photon
counting (TCSPC) method, for excitation with a 60 ps pulsed laser diode (excitation wavelength: 405 nm).
Fluorescence lifetimes were extracted from the reconvolution fit of experimental decay curves, and judged
both by the chi-squared test and the visual inspection of residues.

Excitation anisotropies were collected with a Fluoromax-3 (Horiba Jobin-Yvon) fluorometer. The solvent (2-
methyltetrahydrofuran) was stored over molecular sieves for 24h and filtered on PTFE syringe filters (0.22
um pore size). Solutions were vitrified by rapid immersion in liquid nitrogen, using the Horiba FL-1013 liquid
nitrogen dewar assembly.

Two-photon absorption spectra were collected with the two-photon-excited fluorescence (2PEF)
technique,***2 with a Nikon A1R MP+ Upright two-photon microscope. Freshly prepared solutions of the
dyes were contained in 1 cm path length quartz cuvette and excited by a Coherent Chameleon Discovery
femtosecond pulsed laser with tunable wavelength output (660-1320 nm) focused on the sample through a
25x water-dipping objective (NA=1.1). Fluorescence signal was collected in epifluorescence mode.
Fluorescein in NaOH 0.1 M was used as standard for quantitative measurement of 2PA cross-sections,

according to the procedure proposed by Albota et al.**

1.3.Photochemical stability

A freshly prepared air-equilibrated solution of each dye in chloroform (concentration ~ 1-3x10™ mol L?)
contained in a standard 1 cm X 1 cm quartz cuvette was irradiated by a laser beam (1 = 530.9 nm) expanded
with a lens to illuminate the entire volume of the sample. The absorbance of the solution was measured with
a Perkin-Elmer Lambda650 spectrophotometer and monitored over time. The photodecomposition quantum

yield ¢, was estimated according to the following expression:

—_ (D (Amaxyo)_D(/lmax,T))NA
¢

= 51
10°Peimax) fy (1—107PVexeD) gy 1

where D (A, t) is the optical density of the sample at wavelength A and time t, T is the total irradiation time
(in seconds), 4,4y is the maximum of the absorption band (551 nm for 4, 585 nm for 10, 586 nm for 15, 544
nm for 16 and 536 nm for 17), N,, is the Avogadro’s number, P is the irradiation intensity (in photons s* cm™?),
€ is the molar extinction coefficient (in M cm™) and 4., is the excitation wavelength.
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2. Experimental data
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Figure S2. Normalized absorption (left) and emission (right) spectra of compounds 9 and 11-14 in solvents of
different polarity (HEX: hexane, TOL: toluene, CHL: chloroform, AC: acetone, ACN: acetonitrile, DMSO:
dimethyl sulfoxide).
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Figure S3. Normalized absorption (left) and emission (right) spectra of investigated compounds in
chloroform: rhodols (top panels) and merocyanines (bottom panels; spectra of rhodol 4 are included for
comparison).

Figure S4. The structures of known m-expanded rhodols and merocyanines.
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Figure S5. Temporal dependence of the absorbance at the maximum of the absorption band (D (1,,45)) of 4,
10, 15, 16 and 17 under continuous laser irradiation (4., = 530.9 nm, laser power P = 10 or 30 mW). Dye
4: Apax = 551 nm; dye 10: 1,4, = 585 nm; dye 15: A,,,,, = 586 nm; dye 16: 4,4, = 544 nm; dye 17:
Amax = 536 nm. Solvent: chloroform.
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Figure S6. Two-photon absorption cross-section g, (black dots) and molar extinction coefficient & (blue
dotted line) of 10, 15 and 17 in chloroform (1 GM = 10°° cm* s photons™?). The uncertainty on the cross-
section is on the order of 20-25% for 15 and 10% for the other compounds.
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Figure S7. Excitation anisotropy (dots) of compounds 4, 10, 15, 16 and 17 collected in glassy 2-
methyltetrahydrofuran at 77 K. Excitation spectra collected under the same experimental conditions (dashed
lines) are reported as a guide to the eye.

3. TDDFT results

3.1.Computational details

(TD)DFT calculations in the gas phase were performed with the Gaussian16 package.’ The long-range
corrected hybrid functional M06-2X® was used with the 6-31G(d) basis set. Stationary points located by
geometry optimizations (ground state and excited state minima) were characterized by frequency analysis.
The geometry of the first excited state was optimized in chloroform adopting the PCM model.}”!8° TDDFT
calculations on the optimized geometries included up to 15 singlet states.

3.2.Solvation model

We adopt the Onsager model,?° where the solute is described as a point dipole located at the center of a
spherical cavity inside the solvent, which, in turn, is treated as a continuum dielectric medium. The solvent
generates at the solute location an electric field, called the reaction field F,., proportional to the solute dipole
moment.??>23 Two contributions to the solvent response can be recognized: an electronic component, F,;,
due to the distortion of the electronic clouds of the solvent molecules, and an orientational component, F,,.,
due to the reorientation of polar solvent molecules around the solute.

Imposing the proportionality of both F. components to the solute dipole moment, the total reaction field,
F. = F, + F,,, experienced by the solvated dye is:

E = 1o () + 15 (1) (52)
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where (/1) is the expectation value of the dipole moment operator of the solute in the state of interest, and
the prefactors read:

2
Tel = tmeed’ f(€opt) (S3)
2
Tor = 4meqad (f(est) - f(Eopt)) (54)
where € is the vacuum permittivity, a is the radius of the cavity occupied by the solute, and f(€) = 2:_11

with €5, measuring the static dielectric constant and €,,, is the squared refractive index at optical.

The electronic component of the reaction field, with typical frequencies in the UV, is treated in the
antiadiabatic approximation, assuming its instantaneous response to charge fluctuations in the dye.?
Conversely, the slow orientational motion of the solvent is treated in the adiabatic approximation, neglecting
the associated kinetic energy.?

With these approximations, the Hamiltonian describing a solvated molecule reads:
Hype = Hy— 802 — F,.0 + —FZ%  (S5)
tot g 2 or 27y or

where Hy is the gas phase Hamiltonian and /i is the dipole moment operator. The second term in the right
hand side of Equation S5 includes the effects of fast solvation, while the last two terms account for the
orientational contribution in polar solvents.

In our calculation, H,, is written on the basis of the eigenstates of the gas phase Hamiltonian as obtained
from TDDFT calculations. In this work we considered 16 basis states, including the ground and the 15 lowest-
energy excited states, which ensured convergence on calculated properties. The matrix elements of the
dipole moment operator were calculated with Multiwfn software.?® Only the x-component of the dipole
moment was accounted for (i = fi,,, where x identifies the direction connecting donor and acceptor
moieties), since it is largely dominant over the other components. The parameter a entering the expressions
for r,; and r,,- (Equations S3-S4) was set to the Onsager radius calculated for the dyes (5.71 Afora, 578 A
for 10, 5.44 A for 15 and 16, 5.87 A for 17). The values of €, and €opt Used for the different solvents are
reported in Table S14.

To describe absorption, we used TDDFT results in the optimized ground-state geometry, while to describe
emission we used the results obtained in the S; geometry optimized in chloroform within PCM formalism.?’

Figure S8. The two main resonance structures of rhodol 4: neutral (left) and dipolar (right). The pi-conjugated
skeleton of the rhodol is emphasized in bold.
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Table S12. Length of bonds b; and b, (defined as in Figure S8) in the ground state equilibrium geometry and
bond-length alternation (BLA = b, — b;). The geometry was optimized in gas phase at M06-2X/6-31G(d) level.

4 10 15 16 17
by /A 1.424 1422 1434 1435 1434
b, /A 1.362 1362 1358 1355 1.375
BLA/A -0.062 -0.060 -0.076 -0.080 -0.059

Figure S9. Colored polygons define the donor (D, blue) and acceptor (A, red) regions chosen for the
calculation of the cumulative atomic charges reported in Table S13.

Table S13. Cumulative Hirshfeld atomic charges on the donor (D) and acceptor (A) groups calculated in the

ground state and after vertical excitation to S;. Molecules have been partitioned as in Figure S9.

So Sy
Compound A D A D A D
4 -0.2303 +0.2304 -0.3212 +0.3213 -@ -@
10 -0.1705 +0.1705 -0.2492 +0.2492 -@ -@
15 -0.2024 +0.2024 -0.2530 +0.2530 -0.4697 +0.4697
16 -0.1841 +0.1841 -0.3469 +0.3469 -@ -@
17 -0.2317 +0.2317 -0.3152 +0.3152 -@) -@)
@ not calculated.
Table S14. Dielectric properties of the solvents used in this work.
Solvent Eopt Est
Hexane 1.89 1.88
Cyclohexane 2.03 2.03
Toluene 2.24 2.38
Chloroform 2.09 4.81
Acetone 1.85 20.7
Acetonitrile 1.81 37.5
Dimethyl 2.18 46.7
sulfoxide
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Figure S11. The same as in Figure 4 (main text) for dye 15.
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Figure S12. The same as in Figure 4 (main text) for dye 17.

4. Essential state models and the calculation of linear and nonlinear optical spectra in the
essential state model

The two electronic basis states D —m — A and DT — m — A~ are separated by an energy gap 2z, and are
mixed by a matrix element V2t. A single effective vibrational coordinate accounts for the variation of the
molecular geometry upon charge transfer, the strength of the coupling being measured by the vibrational
relaxation energy, &,. Experimental spectra of 4 in nonpolar solvents point to a sizable anharmonicity.
Accordingly, to reproduce the vibronic shape, the two basis states are assigned two harmonic potential
energy surfaces with displaced minima, as to account for the different equilibrium geometries, and with
different frequencies, w,, and wy, for the neutral and zwitterionic state, respectively.

The Onsager model is again adopted to describe solvation.? The contribution of fast solvation (electronic
solvation) is implicitly accounted for in the definition of the molecular Hamiltonian (and specifically in the
definition of 2z;).>° The orientational component of the solvent reaction field is instead treated within the
adiabatic approximation, introducing the solvent relaxation energy &,,, as an empirical parameter that
increases with the solvent polarity.

The molecular model parameters, ZZO,\/Zt, Uo » &y, Wy, and wy, are adjusted to best reproduce experimental
spectra and are all strictly solvent independent, so that the highly non-trivial dependence of optical spectra
upon the solvent polarity is accounted for by just tuning &,,-.

The coupled electron-vibrational Hamiltonian is written on the non-adiabatic basis obtained as the direct
product of the two electronic basis states times the vibrational eigenstates of the harmonic oscillator
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associated to the vibrational coordinate. The vibrational basis is truncated to 10 states. The diagonalization
of the Hamiltonian matrix yields the exact vibronic eigenstates of the system that enter the following
expression for the calculation of optical spectra.

Specifically, the molar extinction coefficient £(¥), in units of M cm™, was obtained from the following sum-
over-states (SOS) expression:

oy 10mNAV 1 2 1 (Vg
S(V)_3ln10hcsoa\/ﬁzn‘ugnexp[ 2( o )] (56)

where 7 is the wavenumber (in cm™), N, is the Avogadro number, c is the light speed, &, is the vacuum

dielectric constant, and o is the width of the Gaussian bandshape assigned to each transition. The terms u g,
and Vg, are the transition dipole moment and wavenumber of the transition from the ground state (g) to

the excited state n and the sum runs over all the excited states.

The fluorescence spectrum [ (V) was calculated as:

- 3 2 1 (VY 2
1) o 2= S sdpenp |1 (22) | 157
where f denotes the fluorescent state and the sum runs over all states having lower energy than f.

The 2PA cross-section (in GM units) was calculated according to the following expression:*?

2
0y (w) = 1058%1m(y(—w; W, W, —w)) (S8)
where ¢ is the speed of light and (y) is the orientationally averaged second hyperpolarizability. The tensor
elements of y(—w; w, w, —w) are obtained by the sum-over-states (SOS) expression, only including two-

photon resonant terms:?

(gl Lz [m)m g ) nl | g) . (gl L)t mym] e n)inlw | g)
Qg—w)(Qmg—2w)(Qpg—w) (Q;g_w) Qmg—2w)(Qpg—w)

1
)’ijkl(—wi w, 0, —w) = ;szn

(gl DLz [m)ml i n)in| | ) .\ (9]t mym @ n) || g)

S9
Qg—w)(Qmg—2w)(Qpg—w) (Q;g—a)) Qmg—2w0)(Qpg-—w) ( )

In the SOS above, we set Q;;, = w4 — il'and i = u — (glfi|g), where the index g denotes the ground state,
and the other indexes run over all excited states, both in the electronic ground and excited state manifold.

In this work, we considered only the x-component of the dipole moments, so that the only relevant tensor
term is Yyxxx- Accordingly, the orientationally averaged second hyperpolarizability reduces to (y) = %yxxxx.

In polar solvents, the Hamiltonian depends on the orientational component of the reaction field F,,: to
account for the fluctuations of F,,. around the equilibrium value, responsible for spectral broadening effects
at finite temperature, the diagonalization of the molecular Hamiltonian and the calculation of the spectra is
repeated on a grid of F,,. values. The final spectra are finally calculated summing up the spectra calculated
for different F,,- values, weighting each spectrum for the relevant Boltzmann distribution (referred to the
ground-state energy for absorption and to the Kasha’s state for emission).
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