Metadata language
Geographia Polonica Vol. 94 No. 1 (2021)
Creator:Mihajlović, Jovan : Autor ; Burić, Dragan : Autor ; Ducić, Vladan : Autor ; Milenković, Milan : Autor
Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:pogoda ekstremalna ; trąba wodna ; warunki synoptyczne ; Tivat (Czarnogóra; miasto) ; Adriatyk ; Czarnogóra
Abstract:Recently Montenegro has often been faced with extreme weather events. The aim of this paper is to provide a detailed synoptic analysis of a severe weather event, a waterspout, and to confirm an indication that in most cases such events could potentially be forecasted, which is of great practical significance, since human lives and property can be saved. The paper presents the research results of synoptic and mesoscale weather conditions which created a favourable meteorological environment for a waterspout development in Tivat (Montenegrin coast) on June 9, 2018, around 01 UTC (03 CET). Based on field survey analysis, the rating of tornado intensity by the Fujita scale (F-scale) has been done by assessing the damage. The synoptic type for this situation was CLOSED-SW and was determined by a detailed examination of atmospheric circulation. The results presented in the manuscript can help decision makers in Montenegro to take certain adaptation measures (above all, in tourism and construction) in order to mitig te the negative consequences of weather extremes.
References:
Bissolli, P., Grieser, J., Dotzek, N., Welsch, M. (2007). Tornadoes in Germany 1950-2003 and their relation to particular weather conditions. Global and Planetary Change, 57(1-2), 124-138. https://doi.org/10.1016/j.gloplacha.2006.11.007
Brady, R.H., Szoke, E.J. (1988). The landspout - A common type of Northeast Colorado tornado. In Preprints, 15th Conf. On Severe Local Storms (pp. 312-315). Baltimore, MD: American Meteorological Society.
Browning, K.A. (1964). Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. Journal of the Atmospheric Sciences, 21(6), 634-639. https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2
Burić, D., Ducić, V., Luković, J. (2011). Kolebanje klime u Crnoj Gori u drugoj polovini XX i početkom XXI vijeka. Crnogorska Akademija Nauka i Umjetnosti.
Burić, D., Ducić, V., Mihajlović, J. (2013). The climate of Montenegro: Modificators and types - part two. Bulletin of the Serbian Geographical Society, 93(4), 83-102. https://doi.org/10.2298/GSGD1304083B
Burić, D., Ducić, V., Mihajlović, J. (2014). The climate of Montenegro: Modificators and types - part two. Bulletin of the Serbian Geographical Society, 94(1), 73-90. https://doi.org/10.2298/GSGD1401073B
Burić, D.B., Dragojlović, J.M., Milenković, M.Đ., Popović, Lj.Z., Doderović, M.M. (2018). Influence of variability of the East Atlantic Oscillation on the air temperature in Montenegro. Thermal Science, 22(1 Part B), 759-766. https://doi.org/10.2298/TSCI170710211B
Burić, D., Dragojlović, J., Penjišević-Sočanac, I., Luković, J., Doderović, M. (2019). Relationship between atmospheric circulation and temperature extremes in Montenegro in the period 1951-2010. In W. Leal Filho W, Trbic G, Filipovic, D. (Eds.), Climate change adaptation in Eastern Europe: Climate change management (pp. 29-42). Cham: Springer. https://doi.org/10.1007/978-3-030-03383-5_3
Burić, D., Doderović, M. (2020). Changes in temperature and precipitation in the instrumental period (1951-2018) and projections up to 2100 in Podgorica (Montenegro). International Journal of Climatology, 1-17. https://doi.org/10.1002/joc.6671
Doderović, M., Burić, D., Dragojlović, J. (2020). Significance of early announcement of weather extremes: Case study - Montenegro. EasyChair Preprint no. 3182. https://easychair.org/publications/preprint/Z42V
Choy, B.K., Spratt, S.M. (1994). A WSR-88D approach to waterspout forecasting. NOAA Tech Memo NWS SR, 156.
Davies, J.M. (1993). Hourly helicity, instability, and EHI in forecasting supercell tornadoes. In Preprints, 17th Conf on Severe Local Storms, St Louis, MO (pp. 107-111). American Meteorological Society.
Davies-Jones, R.P. (1984). Streamwise vorticity: The origin of updraft rotation in supercell storms. Journal of the Atmospheric Sciences, 41(20), 2991-3006. https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
Davies-Jones, R., Trapp, R.J., Bluestein, H.B. (2001). Tornadoes and tornadic storms. In Severe Convective Storms (pp. 167-222). Boston, MA: American Meteorological Society. https://doi.org/10.1175/0065-9401-28.50.167
Dotzek, N. (2001). Tornadoes in Germany. Atmospheric Research, 56(1-4), 233-251. https://doi.org/10.1016/S0169-8095(00)00075-2
Dotzek, N. (2003). An updated estimate of tornado occurrence in Europe. Atmospheric Research, 67-68, 153-161. https://doi.org/10.1016/S0169-8095(03)00049-8
Ducić, V., Luković, J., Burić, D., Stanojević, G., Mustafić, S. (2012). Precipitation extremes in the wettest Mediterranean region (Krivošije) and associated atmospheric circulation types. Natural Hazards and Earth System Sciences, 12(3), 687-697. https://doi.org/10.5194/nhess-12-687-2012
Fujita, T.T. (1981). Tornadoes and downbursts in the context of generalized planetary scales. Journal of the Atmospheric Sciences, 38(8), 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
Galway, JG. (1956). The lifted index as a predictor of latent instability. Bulletin of the American Meteorological Society, 37(10), 528-529. https://doi.org/10.1175/1520-0477-37.10.528
Gianfreda, F., Miglietta, M.M., Sansò, P. (2005). Tornadoes in Southern Apulia (Italy). Natural Hazards, 34, 71-89. https://doi.org/10.1007/s11069-004-1966-3
Glickman, T.S. (2000). Glossary of Meteorology. 2nd Edition. Boston, MA: American Meteorological Society.
Golden, J.H. (1971). Waterspouts and tornadoes over south Florida. Monthly Weather Review, 99(2), 146-154. https://doi.org/10.1175/1520-0493(1971)099<0146:WATOSF>2.3.CO;2
Golden, J.H. (1974). The life cycle of Florida Keys' waterspouts. I. Journal of Applied Meteorology and Climatology, 13(6), 676-692. https://doi.org/10.1175/1520-0450(1974)013<0676:TLCOFK>2.0.CO;2
Golden, J.H. (1977). An assessment of waterspout frequencies along the U.S. east and Gulf coasts. Journal of Applied Meteorology and Climatology, 16(3), 231-236. https://doi.org/10.1175/1520-0450(1977)016%3C0231:AAOWFA%3E2.0.CO;2
Golden, J.H., Sabones, M.E. (1991). Tornadic waterspout formation near interesting boundaries. In Preprints, 25th International Conference on Radar Meteorology. Preprints, 25th International Conference on Radar Meteorology (pp. 420-423). Paris: American Meteorological Society.
Guarnieri, A., Oddo, P., Pastore, M., Pinardi, N., Ravaioli, M. (2008). The Adriatic basin forecasting system: New model and system development. In H. Dahlin, M.J. Bell, N.C. Flemming, S.E. Petersson (Eds.), Coastal to global operational oceanography: Achievements and challenges (pp. 184-190). Proceeding of the Fifth International Conference on EuroGOOS, 20-22 May 2008. Exeter, UK: EuroGOOS Publication. http://hdl.handle.net/2122/4782
Hagemeyer, B.H. (1994). First look at a marine supercell over the Gulf Stream. NOAA Tech Attach, SR/SSD, 94-23, Ft Worth, TX.
Hess, G.D., Spillane, K.T. (1990). Waterspouts in the Gulf of Carpentaria. Australian Meteorological Magazine, 38, 173-179. http://www.bom.gov.au/jshess/docs/1990/hess1.pdf
Holzer, A.M. (2001). Tornado climatology of Austria. Atmospheric Research, 56(1-4), 203-211. https://doi.org/10.1016/S0169-8095(00)00073-9
Huschke, R.E. (Eds). (1959). Glossary of Meteorology. Boston, Mass: American Meteorological Society.
IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: IPCC.
Janjic, Z.I., Gerrity Jr, J.P., Nickovic, S. (2001). An alternative approach to nonhydrostatic modeling. Monthly Weather Review, 129(5), 1164-1178. https://doi.org/10.1175/1520-0493(2001)129<1164:AAATNM>2.0.CO;2
Janjic, Z.I. (2003). A nonhydrostatic model based on a new approach. Meteorology and Atmospheric Physics, 82, 271-285. https://doi.org/10.1007/s00703-001-0587-6
Kunz, M. (2007). The skill of convective parameters and indices to predict isolated and severe thunderstorms. Natural Hazards and Earth System Sciences, 7(2), 327-342. https://doi.org/10.5194/nhess-7-327-2007
Kurnik, B., Füssel, H.M., van der Linden, P., Simmons, A. (2017). Changes in the climate system, Section 3.2: Atmosphere. In Climate change, impacts and vulnerability in Europe 2016: An indicator-based report (pp 69-88). EEA report, No 1/2017. https://www.eea.europa.eu/publications/climate-changeimpacts-and-vulnerability-2016
Matsangouras, I., Nastos, P., Bluestein, H., Pytharoulis, I., Papachristopoulou, K., Miglietta, M. (2017). Analysis of waterspout environmental conditions and of parent-storm behaviour based on satellite data over the southern aegean sea of greece. International Journal of Climatology, 37(2), 1022-1039. https://doi.org/10.1002/joc.4757
Mihajlović, J., Ducić, V., Burić, D. (2016). Tornadic waterspout event in Split (Croatia) - analysis of meteorological environment. Journal of the Geographical Institute Jovan Cvijić, SASA, 66(2), 185-202. https://doi.org/10.2298/IJGI1602185M
Miller, R.C. (1967). Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central. Technical Report 200 (Rev). Air Weather Service, Scott Air Force Base.
Moncrieff, M.W., Miller, M.J. (1976). The dynamics and simulation of tropical cumulonimbus and squall lines. Quarterly Journal of the Royal Meteorological Society, 102(432), 373-394. https://doi.org/10.1002/qj.49710243208
Mostafa, A.N., Wheida, A., El Nazer, M., Adel, M., El Leithy, L., Siour, G., … Alfaro, S.C. (2019). Past (1950-2017) and future (-2100) temperature and precipitation trends in Egypt. Weather and Climate Extremes, 26, 100225. https://doi.org/10.1016/j.wace.2019.100225
Oddo, P., Pinardi, H., Zavatarelli, M. (2005). A numerical study of the interannual variability of the Adriatic Sea (2000-2002). Science of The Total Environment, 353(1-3), 39-56. https://doi.org/10.1016/j.scitotenv.2005.09.061
Oddo, P., Pinardi, H., Zavatarelli, M., Colucelli, A. (2006). The Adriatic basin forecasting system. Acta Adriatica: International Journal of Marine Sciences, 47(Suppl), 169-184. https://hrcak.srce.hr/8550
Palmieri, S., Pulcini, A. (1979). Trombe d'aria sull'Italia. Rivista di Meteorologia Aeronautica, 39(3-4), 263-277.
Penzar, B., Penzar, I., Orlić, M. (2001). Vrijeme i klima hrvatskog Jadrana. Zagreb-Koprivnica-Split: Dr. Feletar, Hrvatski hidrografski institut.
Peterson, R.E. (1998). A historical review of tornadoes in Italy. Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 123-130. https://doi.org/10.1016/S0167-6105(98)00010-5
Pipinato, A. (2018). Recent northeast Italian tornado events: lesson learned for improving structures. Natural Hazards, pp 40. https://doi.org/10.1007/s11069-018-3380-2
Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J., Gill, D.O., … Duda, M.G. (2017). The weather research and forecasting model: Overview, system efforts, and future directions. Bulletin of the American Meteorological Society, 98(8), 1717-1737. https://doi.org/10.1175/BAMS-D-15-00308.1
Radović, V., Iglesias, I. (2020). Extreme weather events: Definition, classification, and guidelines towards vulnerability reduction and adaptation management. In W. Leal Filho, A.M. Azul, L. Brandli, P.G. Özuyar, T. Wall (Eds.), Climate Action. Cham: Springer. https://doi.org/10.1007/978-3-319-95885-9_68
Renko, T., Kuzmić, J., Šoljan, V., Strelec Mahović, N. (2016). Waterspouts in the Eastern Adriatic from 2001 to 2013. Natural Hazards, 82, 441-470. https://doi.org/10.1007/s11069-016-2192-5
Rossow, V.J. (1970). Observations of waterspouts and their parent clouds. Washington: National Aeronautics and Space Administration. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700020540.pdf
Snow, J. (2020). Tornado. In Encyclopædia Britannica. Retrieved from https://www.britannica.com/science/tornado
Simpson, J., Roff, G., Morton, B.R., Labas, K., McCumber, M., Penc, R. (1991). A Great Salt Lake waterspout. Monthly Weather Review, 119(12), 2741-2770. https://doi.org/10.1175/1520-0493-119-12-2740.1
Sioutas, M.V. (2011). A tornado and waterspout climatology for Greece. Atmospheric Research, 100(4), 344-356. https://doi.org/10.1016/j.atmosres.2010.08.011
Sioutas, M.V., Keul, A.G. (2007). Waterspouts of the Adriatic, Ionian and Aegean Sea and their meteorological environment. Atmospheric Research, 83(2-4), 542-557. https://doi.org/10.1016/j.atmosres.2005.08.009
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., … Powers, J.G. (2008). A description of the advanced research WRF Version 3. (No. NCAR/Tech. Note - 475+STR). University Corporation for Atmospheric Research. http://dx.doi.org/10.5065/D68S4MVH
Sioutas, M., Flocas, H.A. (2003). Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment. Theoretical and Applied Climatology, 75, 189-202. https://doi.org/10.1007/s00704-003-0734-8
Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A., … Vogt, J. (2014). Climate of the Carpathian Region in the period 1961-2010: Climatologies and trends of 10 variables. International Journal of Climatology, 35, 1322-1341. https://doi.org/10.1002/joc.4059
Stadtherr, L., Coumou, D., Petoukhov, V., Petri, S., Rahmstorf, S. (2016). Record Balkan floods of 2014 linked to planetary wave resonance. Science Advences. 2(4), e1501428. https://doi.org/10.1126/sciadv.1501428
Stagge, J.H., Kingston, D.G., Tallaksen, L.M., Hannah, D.M. (2017). Observed drought indices show increasing divergence across Europe. Scientific Reports, 7, 14045. https://doi.org/10.1038/s41598-017-14283-2
Szilagyi, W. (2004). The great waterspout outbreak of 2003. Mariners Weather Log, 48 (3). Retrieved from https://www.vos.noaa.gov/MWL/dec_04/waterspout.shtml
Wakimoto, R.M., Lew, J.K. (1993). Observations of a Florida waterspout during Cape. Weather and Forecasting, 8(4), 412-423. https://doi.org/10.1175/1520-0434(1993)008<0412:OOAFWD>2.0.CO;2
World Meteorological Organization (WMO). (2016). Guidelines on the definition and monitoring of extreme weather and climate events: Draft version - first review by TT-DEWCE (Dec 2015). [May 11, 2020] http://www.wmo.int/pages/prog/wcp/ccl/opace/opace2/documents/DraftversionoftheGuidelin esontheDefinitionandMonitoringofExtremeWeatherandClimateEvents.pdf
Zanini, M.A., Hofer, L., Faleschini, F., Pellegrino, C. (2017). Building damage assessment after the Riviera del Brenta tornado, northeast Italy. Natural Hazards, 86(3), 1247-1273. https://doi.org/10.1007/s11069-017-2741-6
0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0194
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Licencja Creative Commons Uznanie autorstwa 4.0
Terms of use:Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Digitizing institution:Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Original in: Projects co-financed by: Access: