Object structure

Określenie zasobów energii wiatru w Polsce z wykorzystaniem rezultatów numerycznych modeli meteorologicznych = Determination of wind-energy resources in Poland using the results of numerical meteorological models


Przegląd Geograficzny T. 94 z. 1 (2022)


Mazur, Andrzej : Autor


Mazur, Andrzej : Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy



Place of publishing:


Date issued/created:



24 cm

Subject and Keywords:

wind energy ; meteorological model ; computational grid resolution ; wind-grid profile


The article presents a comparison of the results of calculations of wind energy resources based on measurements at meteorological stations and on the basis of the results of the COSMO meteorological model in three basic resolutions in the period of 2011-2019. The aim of the study was to compare the results of calculations of wind energy resources obtained on the basis of measurements at meteorological stations and on the basis of analyzes resulting from the work of meteorological numerical models, operating at various spatial scales. It was found that the use of archived results of analyzes of meteorological models, especially those in high resolution, allows for such an assessment in a climatological sense in the same way as the results of measurements at meteorological stations used for this purpose. For investment purposes, calculations of wind energy resources at higher altitudes were also carried out, so that the results could also be applied to high wind turbines – those of higher power.


Archer, C.L. & Jacobson, M.Z. (2003). Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. Journal of Geophysical Research, 108(D9, 4289), ACL 10‑1-ACL 10‑20. https://doi.org/10.1029/2002JD002076 DOI
Archer, C.L. & Jacobson, M.Z. (2005). Evaluation of global wind power. Journal of Geophysical Research, 110(D12110), 1‑20. https://doi.org/10.1029/2004JD005462 DOI
Duniec, G., Interewicz, W., Mazur, A., & Wyszogrodzki, A. (2017). Operational setup of the soil-perturbed, time-lagged Ensemble Prediction System at the Institute of Meteorology and Water Management - National Research Institute. Meteorology Hydrology and Water Management, 5(2), 43‑51. https://doi.org/10.26491/mhwm/71048 DOI
Hahmann, A.N., Sile, T., Witha, B., Davis, N.N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González Rouco, J.F., Navarro, J., Olsen, B.T., & Söderberg, S. (2020). The Making of the New European Wind Atlas, Part 1: Model Sensitivity. Geoscientific Model Development Discussion. https://doi.org/10.5194/gmd-2019-349 DOI
Hall, M.J. (2003). The interpretation of non-homogeneous hydrometeorological time series a case study. Meteorological Applications, 10, 61‑67. https://doi.org/10.1017/S1350482703005061 DOI
Jąderko, A., & Gała, M. (2016). Odtwarzanie zmiennych stanu w układzie sterowania turbiną wiatrową z generatorem indukcyjnym. Przegląd Elektrotechniczny, 92(12), 53‑56. https://doi.org/10.15199/48.2016.12.14 DOI
Lorenc, H. (1996). Struktura i zasoby energetyczne wiatru w Polsce. Warszawa: Materiały Badawcze IMGW.
Michalak, P. (2009). Ocena zasobów energii wiatru na potrzeby małej energetyki wiatrowej. Elektrotechnika i elektronika, 28(1‑2), 14‑19.
Omer, A.M. (2008). On the wind energy resources of Sudan. Renewable and Sustainable Energy Reviews, 12(8), 2117‑2139. https://doi.org/10.1016/j.rser.2006.10.010 DOI
Papoulis, A., & Pillai, S.U. (2002). Probability, random variables, and stochastic processes. Boston: McGraw-Hill.
Papritz, A., & Stein, A. (2002). Spatial Prediction by Linear Kriging. W: A. Stein, F. van der Meer, B. Gorte (red.), Spatial Statistics for Remote Sensing (s. 83‑113). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47647-9_6 DOI
Troen, I., & Petersen, E.L. (1989). European Wind Atlas. Roskilde: Risoe National Laboratory.


Przegląd Geograficzny





Start page:


End page:


Resource type:


Detailed Resource Type:




Resource Identifier:

doi:10.7163/PrzG.2022.1.4 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2022.1.4


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund





Citation style: