Object structure

Analiza zachmurzenia na zobrazowaniach Landsat 8 w latach 2013‑2020 jako ocena stopnia ich przydatności w monitoringu arktycznych lodowców = Analysis of cloud cover on the 2013‑2020 Landsat 8 imagery as an assessment of its usefulness in monitoring of the High-Arctic tidewater glacier


Przegląd Geograficzny T. 95 z. 2 (2023)


Nowak, Marcin : Autor Affiliation ORCID ; Czarnecki, Kamil : Autor Affiliation ORCID



Place of publishing:


Date issued/created:



24 cm

Subject and Keywords:

Landsat 8 ; Quality Assessment Band ; cloud cover ; usefulness of the imagery ; Arctic ; Kaffiøyra


The main aim of the presented work was to assess Landsat 8 satellite imagery for the presence of cloud cover over the terminal zone of the Aavatsmark Glacier (NW Spitsbergen, Svalbard). The work used all downloadable Landsat 8 imagery taken from the start of the mission (early 2013) to the end of 2020 and covering the entire area of interest (AOI). There were a total of 868 satellite images. The degree of visibility of the AOI zone in each image was calculated using Quality Assessment Band image (QA), which is an integral part of the Landsat 8 dataset. The QA data were reclassified, grouped into specific visibility classes and presented on an annual and monthly basis. An analysis of the incidence of usable imagery, i.e. imagery with no more than 5% cloud cover, was also carried out. Of all the available imagery, over the years analysed, only 176 (approx. 20%) contained a fully visible area, while approx. 60% of the images had more than 95% cloud cover. These data were also compared with the results of cloud cover at the nearest weather station in Ny-Ålesund.


Berthier, E., Raup, B., & Scambos, T. (2003). New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. Journal of Glaciology, 49(167), 503‑511. https://doi.org/10.3189/172756503781830377 DOI
Bhardwaj, A., Joshi, P.K., Snehmani, Sam, L., Singh, M.K., Singh, S., & Kumar, R. (2015). Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris. International Journal of Applied Earth Observation and Geoinformation, 38, 51‑64. https://doi.org/10.1016/j.jag.2014.12.011 DOI
Bindschadler, R. (2002). History of lower Pine Island Glacier, West Antarctica, from Landsat imagery. Journal of Glaciology, 48(163), 536‑544. https://doi.org/10.3189/172756502781831052 DOI
Błaszczyk, M., Jania, J.A., & Hagen, J.O. (2009). Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Polish Polar Research, 30, 85‑142.
Chudley, T., & Willis, I. (2019). Glacier surges in the north-west West Kunlun Shan inferred from 1972 to 2017 Landsat imagery. Journal of Glaciology,65(249), 1‑12. https://doi.org/10.1017/jog.2018.94 DOI
Liu, G., Guo, H., Yan, S., Song, R., Ruan, Z., & Lv, M. (2017). Revealing the surge behaviour of the Yangtze River headwater glacier during 1989‑2015 with TanDEM-X and Landsat images. Journal of Glaciology, 63(238), 382‑386. https://doi.org/10.1017/jog.2017.4 DOI
Hagen, J.O., Liestøl, O., Roland, E., & Jørgensen, T. (1993). Glacier atlas of Svalbard and Jan Mayen, Norsk Polarinst. Meddelelser, 129, 1‑141. Pobrane z: https://brage.npolar.no/npolar-xmlui/handle/11250/173065
Halberstadt, A.R.W., Gleason, C.J., Moussavi, M.S., Pope, A., Trusel, L.D., & DeConto, R.M. (2020). Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification. Remote Sensing, 12(8), 1327. https://doi.org/10.3390/rs12081327 DOI
Hall, D.K., Chang, A.T., & Siddalingaiah, H. (1988). Reflectances of glaciers as calculated using Landsat-5 Thematic Mapper data. Remote Sensing of Environment, 25(3), 311‑321. https://doi.org/10.1016/0034-4257(88)90107-1 DOI
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., & Kääb, A. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856), 726‑731. https://doi.org/10.1038/s41586-021-03436-z DOI
Ihlen, V. (2019). Landsat 8 (L8) Data Users Handbook. EROS, version 5.0. Pobrane z: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (08.06.2023)
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press.
IPCC. (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge, United Kingdom and New York: Cambridge University Press.
Jawak, S., Joshi, M., Luis, A., Pandit, P.H., & Somadas, A.T. (2019). Mapping velocity of the potsdam glacier, east antarctica using landsat-8data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 13, 1753‑1757. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1753-2019 DOI
Jia, B., Hou, S., & Wang, Y. (2021). A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sensing, 13(6), 1220. https://doi.org/10.3390/rs13061220 DOI
Kääb, A., Lefauconnier, B., & Melvold, K. (2005). Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data. Annals of Glaciology, 42, 7‑13. https://doi.org/10.3189/172756405781812916 DOI
Kovalskyy, V., & Roy, D. (2015). A One Year Landsat 8 Conterminous United States Study of Cirrus and Non-Cirrus Clouds. Remote Sensing, 7(1), 564‑578. https://doi.org/10.3390/rs70100564 DOI
Laborde, H., Douzal, V., Piña, H.A.R., Morand, S. & Cornu, J.F. (2017). Landsat-8 cloud-free observations in wet tropical areas: a case study in South East Asia. Remote Sensing Letters, 8(6), 537‑546. https://doi.org/10.1080/2150704X.2017.1297543 DOI
Lankauf, K.R. (2002). Recesja lodowców rejonu Kaffiøyry (Ziemia Oskara II - Spitsbergen) w XX wieku. Warszawa: Instytut Geografii i Przestrzennego Zagospodarowania PAN. Pobrane z: http://rcin.org.pl/Content/1546/PDF/Wa51_3557_r2002-nr183_Prace-Geogr.pdf (08.06.2023)
Laska, M., Barzycka, B., & Luks, B. (2017). Melting Characteristics of Snow Cover on Tidewater Glaciers in Hornsund Fjord, Svalbard. Water, 9(10), 804. https://doi.org/10.3390/w9100804 DOI
López-Puigdollers, D., Mateo-García, G., & Gómez-Chova, L. (2021). Benchmarking Deep Learning Models for Cloud Detection in Landsat-8 and Sentinel-2 Images. Remote Sensing, 13(5), 992. https://doi.org/10.3390/rs13050992 DOI
Masek, J.G., Wulder, M.A., Markham, B.L., McCorkel, J.T., Crawford, C.J., Storey, J.C., & Jenstrom, D. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. https://doi.org/10.1016/j.rse.2020.111968 DOI
Oishi, Y., Ishida, H., & Nakamura, R. (2018). A new Landsat 8 cloud discrimination algorithm using thresholding tests. International Journal of Remote Sensing, 39, 9113‑9133. https://doi.org/10.1080/01431161.2018.1506183 DOI
Norges Svalbard- og Ishavs-undersøkelser & Orvin, A.K. (1958). The place-names of Svalbard, dealing with new names 1935‑55 (Supplement 1). Oslo: I kommisjon hos Universitetsforlaget.
Przybylak, R., Kejna, M., & Araźny, A. (2011). Air Temperature and Precipitation Changes in the Kaffioyra Region (NW Spitsbergen) from 1975 to 2010. Papers on Global Change, 18, 7‑22. https://doi.org/10.2478/v10190-010-0001-10 DOI
Sahu, R., & Gupta, R.D. (2019a). Surface velocity dynamics of Samudra Tapu Glacier, India from 2013 to 2017 using Landsat-8 data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-5/W2, 75‑81. https://doi.org/10.5194/isprs-annals-iv-5-w2-75-2019 DOI
Sahu, R., & Gupta, R.D. (2019b). Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery. Geocarto International, 36, 1591‑1611. https://doi.org/10.1080/10106049.2019.1659423 DOI
Simmons, D. (1986). Flow of the Brunt Ice Shelf, Antarctica, Derived from Landsat Images, 1974‑85. Journal of Glaciology, 32(111), 252‑254. https://doi.org/10.3189/S0022143000015586 DOI
Sobota, I. (2005). Zarys hydrografii Kaffiøyry. W: M. Grześ, I. Sobota (red.), Kaffiøyra. Zarys środowiska geograficznego Kaffiøyry (NW Spitsbergen) (s. 13‑16). Toruń: Oficyna Wydawnicza TURPRESS.
Sobota, I., & Lankauf, K.R. (2010). Recession of Kaffiøyra Region Glaciers, Oscar II Land, Svalbard. Bulletin of Geography - physical geography series, 3, 27‑45. https://doi.org/10.2478/bgeo-2010-0002 DOI
Sobota, I. (2013). Współczesne Zmiany Kriosfery Północno - Zachodniego Spitsbergenu na Przykładzie Regionu Kaffiøyry. Toruń: Wydawnictwo Naukowe UMK.
Sobota, I., Weckwerth, P., & Nowak, M. (2016). Surge dynamics of Aavatsmarkbreen, Svalbard, inferred from the geomorphological record. Boreas, 45(2), 360‑376. https://doi.org/10.1111/bor.12160 DOI
Sobota, I. (2021). Glaciers. W: I. Sobota (red.), Atlas of Changes in the Glaciers of Kaffiøyra (Svalbard, the Arctic) (s. 77‑89). Toruń: Wydawnictwo Naukowe UMK.
Wang, H., Yang, R., Li, X., & CAO, S. (2017). Glacier parameter extractionusing Landsat 8 images in the eastern Karakorum. IOP Conference Series: Earth and Environmental Science, 57(1), 012004. https://doi.org/10.1088/1755-1315/57/1/012004 DOI
Waechter, A., Copland, L., & Herdes, E. (2015). Modern glacier velocities across the Icefield Ranges, St Elias Mountains, and variability at selected glaciers from 1959 to 2012. Journal of Glaciology, 61(228), 624‑634. https://doi.org/10.3189/2015JoG14J147 DOI
Williams, R. (1987). Satellite Remote Sensing of Vatnajökull, Iceland. Annals of Glaciology, 9, 127‑135. https://doi.org/10.3189/S0260305500000501 DOI
Williams, R., Hall, D., & Benson, C. (1991). Analysis of glacier facies using satellite techniques. Journal of Glaciology, 37(125), 120‑128. https://doi.org/10.3189/S0022143000042878 DOI
Xiao, C., Li, P., & Feng, Z. (2018). Spatio-temporal differences in cloud cover of Landsat-8 OLI observations across China during 2013‑2016. Journal of Geographical Sciences, 28, 429‑444. https://doi.org/10.1007/s11442-018-1482-0 DOI
Yalcin, M., & Polat, N. (2020). The Impact of Glacier Surface Temperature on the Glacier Retreat of Ağrı Mountain. Journal of the Indian Society of Remote Sensing, 48(10), 1433‑1441. https://doi.org/10.1007/s12524-020-01167-8 DOI


Przegląd Geograficzny





Start page:


End page:


Resource type:


Detailed Resource Type:




Resource Identifier:

doi:10.7163/PrzG.2023.2.1 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2023.2.1


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund





Citation style: