Object structure
Title:

Możliwości wykorzystania porostów Hypogymnia physodes (L.) Nyl. do oceny wpływu przemysłu cementowego na środowisko przyrodnicze Białego Zagłębia = Possibilities of using lichen Hypogymnia physodes (L.) Nyl. to assess the impact of the cement industry on the natural environment of Białe Zagłębie

Subtitle:

Przegląd Geograficzny T. 97 z. 1 (2025)

Creator:

Kozłowski, Rafał : Autor Affiliation ORCID ; Ludew, Marta : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2025

Description:

24 cm

Subject and Keywords:

cement industry ; trace elements ; dust ; bioindication ; lichen ; bioaccumulation

Abstract:

Air pollution in Europe, including Poland, still exceeds the levels recommended by the World Health Organization (WHO), despite numerous systemic and legal changes. This issue is not only a significant threat to human health but also has a broad impact on the natural environment. Air pollutants are mobile and can affect various environmental components over large areas. Harmful substances inhaled by humans lead to many diseases, negatively impact nature by disrupting photosynthesis, transpiration, and respiration processes, and cause the corrosion of metals and building materials (Degórska and Bartnicki, Abstract The cement industry in the Świętokrzyskie region, with plants in Nowiny, Ożarów, and Małogoszcz, plays a significant economic role, generating over 600 jobs. However, the activities of this industry are associated with the emission of dust and gases, which are a significant source of air pollution. The Lafarge Małogoszcz Cement Plant has been classified as one of the most environmentally burdensome plants in the region. Although data from recent years show a downward trend in emissions, these dusts still have a significant impact on the environment both locally and over greater distances through air migration (GUS, 2020; GIOŚ, 2023). To assess the condition of the natural environment under the influence of the cement industry, biomonitoring was used, which is based on analyzing the reactions of living organisms to pollutants. This method allows for the study of changes occurring in ecosystems at different levels: cellular, individual, and population. The lichen Hypogymnia physodes (L.) Nyl. was used in the studies, which is considered one of the best indicators of air sanitary conditions due to its ability to accumulate heavy metals proportionally to their concentrations in atmospheric dust (Jóźwiak, 2010; Traczewska, 2011). The studies were conducted in the so-called Białe Zagłębie area, covering about 50 km², with the Lafarge Małogoszcz Cement Plant at its center. The lichens were collected from the Borecka Forest, an area with minimal industrial influence, and exposed at measurement points around the cement plant. After three months of exposure, the samples were collected and analyzed in a laboratory, where the content of elements such as Pb, Cr, Co, Cu, Ni, Zn, Al, and Fe was measured. The studies showed that the cement industry significantly impacts air quality in the region, with the highest concentrations of pollutants near the cement plant. Hypogymnia physodes (L.) Nyl. lichens proved to be an effective bioindicator, allowing for precise monitoring and assessment of the environmental condition. The obtained data can be an important source of information for local authorities, governments, and environmental protection institutions, enabling effective actions to protect ecological systems. Knowledge about the impact of pollutants on the environment and the effectiveness of biomonitoring methods are crucial for conducting effective monitoring and environmental protection. The conclusions from the conducted studies may contribute to further development of technologies that reduce emissions and the introduction of stricter environmental standards, which in turn can improve air quality and the health of the region’s residents.

References:

Aslan, A., Gurbuz, H., Kenan Yazici, K., Cicek, A., Turan, M., & Ercisli, S. (2012). Evaluation of lichens as bio-indicators of metal pollution. Journal of Elementology, 3, 353‑369. https://doi.org/10.5601/jelem.2013.18.3.01 DOI
Balabanova, B., Stafilov, T., Sajn, R., & Baceva, K. (2012). Characterisation of heavy metals in lichen species Hypogymnia physodes and Evernia prunastri due to biomonitoring of air pollution in the vicinity of copper mine. International Journal of Environmental Research, 6(3), 779‑794. https://doi.org/10.22059/IJER.2012.549 DOI
Białońska, D., & Dayan, F.E. (2005). Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. Journal of Chemical Ecology, 31, 2975‑2991. https://doi.org/10.1007/s10886-005-8408-x DOI
Bojko, A., Bylińska, E., & Jezierski, A. (2004). Determination of the degree of degradation of chlorophyll in epiphytic lichen thalli Hypogymnia physodes (L.) Nyl. by extraction with DMSO. Zeszyty Problemowe Nauk Rolniczych, 501, 51‑59.
Czarnota, P. (1995). The content of micro- and macroelements in thalli Hypogymnia physodes in Gorce National Park - An attempt at lichenoindication. Parki Narodowe Rezerwaty Przyrody, 14(3), 69‑88.
Conti, M.E., Tudino, M., Stripeikis, J., & Cecchetti, G. (2004). Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy. Journal of Atmospheric Chemistry, 49, 83‑94. https://doi.org/10.1007/s10874-004-1216-9 DOI
Damps, K., Zarembski, A., & Macczak, Z. (2013). Roczna ocena jakości powietrza w województwie pomorskim. Raport za rok 2013. Gdańsk: Wojewódzki Inspektorat Ochrony Środowiska. Pobrane z: https://powietrze.gios.gov.pl/pjp/rwms/publications/card/295 (24.05.2024).
Dąbrowiecki, P., Mucha, D., Gayer, A., Adamkiewicz, Ł., & Badyda, A. (2015). Assessment of air pollution on the respiratory system based on pulmonary function tests performed during spirometry days. Advances in Experimental Medicine and Biology, 873, 43‑52. https://doi.org/10.1007/5584_2015_152 DOI
Degórska, A., & Bartnicki, J. (2011). Udział Polski w atmosferycznym transporcie zanieczyszczeń powietrza na obszarze Europy. Warszawa: Monografia, Instytut Ochrony Środowiska - Państwowy Instytut Badawczy.
Demiray, A.D., Yolcubal, I., Akyol, N.H., & Çobanoģlu, G. (2012). Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecological Indicators, 18, 632‑644. https://doi.org/10.1016/j.ecolind.2012.01.024 DOI
Di Lella, LA., Frati, L., Loppi, S., Protano, G., & Riccobono, F. (2004). Environmental distribution of uranium and other trace elements at selected Kosovo sites. Chemosphere, 56, 861‑865. https://doi/org/10.1016/j.chemosphere.2004.04.036 DOI
Dulewicz, J. (2016). Pyły, ludzie, przyroda. Zanieczyszczenie powietrza atmosferycznego w województwie kieleckim w latach 1975‑1989. Polska 1944/45‑1989. Studia i Materiały XIV/2016.
Dzubaj, A., Backor, M., Tomko, J., Peli, E., & Tuba, Z. (2008). Tolerance of the lichen Xanthoria parietina. Ecotoxicalogy and Environmental Safety, 70(2), 319‑326. https://doi.org/10.1016/j.ecoenv.2007.04.002 DOI
EC. (2004). Zintegrowane Zapobieganie i Ograniczanie Zanieczyszczeń (IPPC). Dokument Referencyjny dla najlepszych dostępnych technik w przemyśle cementowo-wapienniczym. Komisja Europejska. Pobrane z: https://eippcb.jrc.ec.europa.eu/ (5.07.2024).
EEA. (2019). Raport: Środowisko Europy 2020 - stan i prognozy. Europejska Agencja Środowiska. Luksemburg: Urząd Publikacji Unii Europejskiej. Pobrane z: https://www.eea.europa.eu/pl/publications/srodowisko-europy-2020-stan/at_download/file (5.07.2024).
Eğilli (Ölmez), E., Topcuoğlu, S., Kut, D., Kirbaşoğlu, Ç., & Esen, N. (2003). Heavy metals and radionuclides in lichens and mosses in Thrace, Turkey. Bulletin of Environmental Contamination and Toxicology, 70, 502‑508. https://doi.org/10.1007/s00128-003-0014-4 DOI
Gałuszka, A. (2005). The chemistry of soils, rocks and plant bioindicators in three ecosystems of the Holy Cross Mountains. Poland. Environmental Monitoring and Assessment, 110, 55‑70. https://doi.org/10.1007/s10661-005-6290-1 DOI
GIOŚ Raport. (2023). Roczna ocena jakości powietrza w województwie świętokrzyskim za rok 2022. Kielce: GIOŚ.
GUS Raport: Statystyki GUS, Polska w liczbach. (2020). Statystyczne Vademecum Samorządowca. Kielce: Bank Danych Lokalnych.
Hu, G.-P., & Balasubramanian, R. (2003). Wet deposition of trace metals in Singapore. Water, Air and Soil Pollution, 144, 285‑300. https://doi.org/10.1023/A:1022921418383 DOI
Jóźwiak, M.A., & Jóźwiak, M. (2009). Influence of cement industry on accumulation of heavy metals in bioindicators. Ecological Chemistry and Engineering S, 16(3), 323‑334.
Jóźwiak, M. (2010). Biomonitoring środowisk lądowych i wodnych. Tom 3 z Monitoring Środowiska Przyrodniczego. Kielce: Wydawnictwo Uniwersytetu Humanistyczno-Przyrodniczego Jana Kochanowskiego.
Jóźwiak, M. (2012). Macroscopic changes of Hypogymnia physodes (L.) Nyl. in antropogenic stress conditions. Monitoring Środowiska Przyrodniczego, 13, 51‑62.
Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. Boca Raton: CRC Press. DOI
Kłos, A., Rajfur, M., Wacławek, M., & Wacławek, W. (2008). The accumulation of micro- and microelements in mosses and lichens. Ecological Chemisty and Enginering S, 15(3), 397‑423.
Kozłowski, R. (2013). Funkcjonowanie wybranych geoekosystemów Polski w warunkach zróżnicowanej antropopresji na przykładzie gór niskich i pogórza. Landform Analysis, 23, 1‑150.
Kozłowski, R., & Szwed, M. (2019). Utilisation of bio- and geoindicators for assessment of the state of natural environment in the south-western part of the Świętokrzyskie Mountains. W: A. Krakowiak-Bal & M. Vaverkova (red.), Infrastructure and Environment (pp. 161‑168). Cham: Springer. https://doi.org/10.1007/978-3-030-16542-0_22 DOI
Kozłowski, R., Szwed, M., & Żukowski, W. (2019). Pine needles as bioindicator of pollution by trace elements from cement-limestone industry in central eastern Poland. Carpathian Journal of Earth and Environmental Sciences, 14(2), 541‑549. https://doi.org/10.26471/cjees/2019/014/102 DOI
Nimis, P.L., Andreussi, S., & Pittao, E. (2001). The performance of two lichen species as bioaccumulators of trace metals. Sciences of The Total Environment, 275, 43‑51. https://doi.org/10.1016/S0048-9697(00)00852-4 DOI
Ng, O.-H., Tan, B.C., & Obbard, J.P. (2006). Lichens as bioindicators of atmospheric heavy metal pollution in Singapore. Environmental Monitoring and Assessment, 123, 63‑74. https://doi.org/10.1007/s10661-005-9120-6 DOI
Purvis, O.W., Dubb, in W., Chimonides, P.D.J., Jones, G.C., & Read, H. (2008). The multi-element content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. Sciences of The Total Environment, 390, 558‑568. https://doi.org/10.1016/j.scitotenv.2007.10.04 DOI
Sawicka-Kapusta, K., Zakrzewska, M., Bydłoń, G., & Hajduk, J. (2010). Estimation of air pollution in the base stations of the integrated nature monitoring system by heavy metals and Sulphur dioxide in 2001‑2009 using lichen Hypogymnia physodes. Monitoring Środowiska Przyrodniczego, 11, 63‑71.
Scerbo, R., Ristori, T., Possenti, L., Lampugnani, L., Barale, R., & Barghigiani, C. (2002). Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sciences of The Total Environment, 286, 27‑40. https://doi.org/10.1016/S0048-9697(01)00959-7 DOI
Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Chabudziński, Ł., Dobrowolski, R., Grzegorczyk, I., et al. (2018). Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica, 91, 143‑170. https://doi.org/10.7163/GPol.0115 DOI
Sporek, K. (1995). Odczyn kory sosny zwyczajnej (Pinus sylvestris L.) wskaźnikiem zanieczyszczeń atmosfery pyłami alkalicznymi. Sylwan, 139(9), 97-104.
Szwed, M. (2020). Ocena stanu środowiska przyrodniczego południowo-zachodniej części Gór Świętokrzyskich na podstawie geo- i bioindykatorów. Praca doktorska na Uniwersytecie Jana Kochanowskiego w Kielcach.
Szwed, M., Kozłowski, R., & Żukowski, W. (2020). Assessment of Air Quality in the South-Western Part of the Świętokrzyskie Mountains Based on Selected Indicators. Forests, 499(11), 1‑16. https://doi.org/10.3390/f11050499 DOI
Świercz, A. (1999). Wpływ emisji alkalicznej na gleby i bory sosnowe w "Białym Zagłębiu". Część 2. Kielce: KTN.
Świercz, A. (2003). Zawartość pierwiastków metalicznych w glebie, igliwiu i korze sosny po zmniejszeniu immisji alkalicznej. Regionalny Monitoring Środowiska Przyrodniczego, 4, 107‑113.
Świercz, A. (2006). Suitability of pine bark to evaluate pollution caused by cement-lime dust. Journal of Forest Science, 52, 93‑98. DOI
Traczewska, T.M. (2011). Biologiczne metody oceny skażenia środowiska. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
WHO. (2021). Globalne wytyczne jakości powietrza WHO: Pył zawieszony (PM2,5 i PM10), ozon, dwutlenek azotu, dwutlenek siarki i tlenek węgla. Streszczenie. Kopenhaga: Regionalne Biuro WHO dla Europy.
Zając, R. (1979). Przyczyny i stan zagrożenia atmosfery w Białym Zagłębiu. Prace SGPiS 6, Warszawa.
Zakrzewski, S. (2000). Podstawy toksykologii środowiska. Warszawa: Wydawnictwo Naukowe PWN.

Relation:

Przegląd Geograficzny

Volume:

97

Issue:

1

Start page:

87

End page:

103

Resource type:

Text

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2025.1.5

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: