Object structure

The use of general transit feed specification (GTFS) application to identify deviations in the operation of public transport at morning peak hours on the example of Szczecin


Europa XXI 31 (2016)


Goliszek, Sławomir ORCID ; Połom, Marcin ORCID



Place of publishing:


Date issued/created:



Każdy numer posiada własny tytuł.

Type of object:


Subject and Keywords:

General Transit Feed Specification (GTFS) ; public transport ; isochrones


The article examined the possibility of using General Transit Feed Specification (GTFS) to identify deviations of public transport in morning hour traffic. Deviations in the functioning of public transport spanned in a radius of 30 minutes public transport travel time from the center of the city. The adopted travel time to the center is taken from a comprehensive traffic study performed in the city where indicated value of 27 minutes (comprehensive traffic study ...) is used as the average travel time of public transport. Diagnosis of deviations in the operation of public transport was taken on a weekday between 6:30 and 8:30 am at 5 min intervals. The results of calculations of time availability were made every 5 minutes and applied to each other and trimmed among themselves. Hence the contour line was established within isochrone of 30 minutes, with the identification of areas with 100% certainty of public transport access to the center of the city and areas of lesser public transport accessibility. The resultant isolines were measured against the population living in census districts, on the basis of which the areas of certain as well as uncertain 30 minute travel time to the center of the city were determined.


1. Aarhaug J., Elvebakk B., 2015. The impact of Universally accessible public transport–a before and after study. Transport Policy, vol. 44, pp. 143–150.
https://doi.org/10.1016/j.tranpol.2015.08.003 -
2. Falavigna C., Hernandez D., 2016. Assessing inequalities on public transport affordability in two latin American cities: Montevideo (Uruguay) and Córdoba (Argentina). Transport Policy, vol. 45, pp. 145–155.
https://doi.org/10.1016/j.tranpol.2015.09.011 -
3. Farber S., Morang M. Z., Widener M. J., 2014. Temporal variability in transit-based accessibility to supermarkets. Applied Geography, vol. 53, pp. 149–159.
https://doi.org/10.1016/j.apgeog.2014.06.012 -
4. Fiori A., Mignone A., Rospo G. 2016. DeCoClu: Density consensus clustering approach for public transport data. Information Sciences, vol. 328, pp. 378–388.
https://doi.org/10.1016/j.ins.2015.08.054 -
5. Fransen K., Neutens T., Farber S., De Maeyer P., Deruyter G., Witlox F., 2015. Identifying public transport gaps using time-dependent accessibility levels. Journal of Transport Geography, vol. 48, pp. 176–187.
https://doi.org/10.1016/j.jtrangeo.2015.09.008 -
6. Goliszek S., 2014. Poprawa dostępności miejskim transportem zbiorowym w Olsztynie w świetle inwestycji infrastrukturalnych z perspektywy UE 2014-2020. Transport Miejski i Regionalny, vol. 5, pp. 30-36.
7. Goliszek S., Rogalski M., 2014. Przestrzenno-czasowe zmiany dostępności komunikacyjnej miejskim transportem zbiorowym w Rzeszowie w świetle inwestycji współfinasowanych ze środków UE na lata 2014-2020. Transport Miejski i Regionalny, vol. 7, pp. 23-30.
8. Goliszek S., 2014. Zmiany dostępności miejskim transportem zbiorowym w Lublinie w wyniku inwestycji infrastrukturalnych finansowanych z funduszy UE do roku 2020. Transport Miejski i Regionalny, vol. 9, pp. 15-21.
9. Goliszek S., 2014. Dostępność komunikacyjna transportem zbiorowym w Białymstoku – wpływ środków z perspektywy UE na lata 2014-2020. Transport Miejski i Regionalny, vol. 11, pp. 19-26.
10. Hadas Y., 2013. Assessing public transport systems connectivity based on Google Transit data. Journal of Transport Geography, vol. 33, pp. 105–116.
https://doi.org/10.1016/j.jtrangeo.2013.09.015 -
11. Hadas Y., Ranjitkar P., 2012. Modeling public-transit connectivity with spatial quality-of-transfer measurements. Journal of Transport Geography, vol. 22, pp. 137–147.
https://doi.org/10.1016/j.jtrangeo.2011.12.003 -
12. Gmina Miasto Szczecin, 2010. Kompleksowe Badania Ruchu w Szczecinie w 2010 roku. Szczecin.
13. Krawczyk G., 2013. Strategiczne zarządzanie rozwojem transportu zbiorowego w Polsce, Transport Miejski i Regionalny, vol. 2, pp. 3-7.
14. Łapko A., 2014. Urban Tourism in Szczecin and its Impact on the Functioning of the Urban Transport System. Procedia – Social and Behavioral Sciences, vol. 151, pp. 207–214.
https://doi.org/10.1016/j.sbspro.2014.10.020 -
15. Małecki K., Iwan S., Kijewska K., 2014. Influence of Intelligent Transportation Systems on Reduction of the Environmental Negative Impact of Urban Freight Transport Based on Szczecin Example. Procedia-Social and Behavioral Sciences, vol. 151, pp. 215-229.
https://doi.org/10.1016/j.sbspro.2014.10.021 -
16. Mouwen A., 2015. Drivers of customer satisfaction with public transport services. Transportation Research Part A: Policy and Practice, vol. 78, pp. 1–20.
https://doi.org/10.1016/j.tra.2015.05.005 -
17. Poelman H., Dijkstra L., 2015. Measuring access to public transport in European cities. Regional Working Paper.
18. Połom M., Tarnawski R., 2011. Wsparcie modernizacji i rozwoju komunikacji miejskiej w Lublinie z funduszy strukturalnych. Transport Miejski i Regionalny, vol. 10, pp. 35-41.
19. Ratajski L., 1989, Metodyka kartografii społeczno-gospodarczej. Warszawa: Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych.
20. Salonen M., Toivonen T., 2013. Modelling travel time in urban networks: comparable measures for private car and public transport. Journal of Transport Geography, vol. 31, pp. 143–153.
https://doi.org/10.1016/j.jtrangeo.2013.06.011 -
21. Sierpiński G., 2010. Miary dostępności transportowe miast i regionów. Zeszyty Naukowe Politechniki Śląskiej, vol. 1825, Katowice.
22. Sobczyk W., 1985. Dostępność komunikacyjna w układach osadniczych miast. Warszawa: Komitet Badań Regionów Uprzemysłowionych.
23. Tao S., Rohde D., Corcoran J., 2014. Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap. Journal of Transport Geography, vol. 41, pp. 21–36.
https://doi.org/10.1016/j.jtrangeo.2014.08.006 -
24. Todd L., 2013. The New Transportation Planning Paradigm. ITE Journal, vol. 83, pp. 20-28.
25. Wang C. -H., Chen, N., 2015. A GIS-based spatial statistical approach to modeling job accessibility by transportation mode: case study of Columbus, Ohio. Journal of Transport Geography, vol. 45, pp. 1–11.
https://doi.org/10.1016/j.jtrangeo.2015.03.015 -
26. Warakomska K., 1970. Ekwidystanta od dróg i od przystanków autobusowych a rozmieszczenie ludności w województwie lubelskim, Lublin: UMCS.
27. Widener M. J., Farber S., Neutens T., Horner M., 2015. Spatiotemporal accessibility to supermarkets using public transit: an interaction potential approach in Cincinnati. Ohio. Journal of Transport Geography, vol. 42, pp. 72–83.
https://doi.org/10.1016/j.jtrangeo.2014.11.004 -


Europa XXI



Start page:


End page:


Resource type:


Detailed Resource Type:



File size 1,7 MB ; application/pdf

Resource Identifier:

1429-7132 ; 10.7163/Eu21.2016.31.4


CBGiOŚ. IGiPZ PAN, call nos.: Cz.6406, Cz.6407 ; click here to follow the link




Rights Reserved - Free Access

Terms of use:

Copyright-protected material. May be used within the limits of statutory user freedoms

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure





Citation style: